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Abstract

Standard median filters preserve abrupt shifts (edges) and remove impulsive noise (outliers)
from a constant signal but they deteriorate in trend periods. FIR median hybrid (FMH)
filters are more flexible and also preserve shifts, but they are much more vulnerable to
outliers. Application of robust regression methods, in particular of the repeated median, has
been suggested for removing subsequent outliers from a signal with trends. A fast algorithm
for updating the repeated median in linear time using quadratic space is given in Bernholt
and Fried (2003). We construct repeated median hybrid filters to combine the robustness
properties of the repeated median with the edge preservation ability of FMH filters. An
algorithm for updating the repeated median is presented which needs only linear space.
We also investigate analytical properties of these filters and compare their performance via
simulations.

Keywords: Signal extraction; Drifts; Jumps; Outliers; Update algorithm

1 Introduction

Robust filtering of online monitoring data is a challenging task. In intensive care the heart
rate and blood pressure are measured in short time lags which provides important information
for bedside decision support. The extraction of the underlying, clinically relevant signal from
the observed time series is a basic task. A solution needs to preserve abrupt level shifts
and monotonic trends, while irrelevant short-term fluctuations and outliers caused by e.g.
patient’s movements or measurement artifacts should be removed.

The extraction of a signal (μt) from a time series (xt) can be formalized using a components
model like

xt = μt + ut + vt, t ∈ Z. (1)

Here, μt is the smoothly varying level of the time series, possibly with a few abrupt shifts,
which we want to extract from the data, ut is additive noise from a symmetric distribution
with mean zero and variance σ2, and vt is impulsive (spiky) noise from some outlier generating
mechanism.

Linear filters like moving averages track trends and are very efficient for Gaussian noise
(ut), but they are highly vulnerable to impulsive noise (outliers or spikes) and they blur level
shifts (also called step changes, edges or jumps). Standard median filters remove outliers and
preserve level shifts (Tukey, 1977, Nieminem, Neuvo and Mitra, 1989), but their output does
not properly represent linear trends. FIR median hybrid (FMH) filters (Heinonen and Neuvo,
1987, 1988) combine advantages of linear and nonlinear filters by taking the median value
of several linear FIR subfilters. The linear subfilters can be designed to track polynomial
trends well, and the use of the central observation as central subfilter allows to preserve
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level shifts similarly good as standard median filters. Davies, Fried and Gather (2004)
suggest application of a robust regression estimator like the repeated median to overcome
the difficulties of the median in trend periods.

In this paper we investigate robust hybrid filters, which are designed to combine the good
properties of FMH filters with the robustness of the repeated median in trend periods.
Instead of linear subfilters we use robust counterparts, namely half-window medians for a
constant signal and half-window repeated medians for a linear trend. For the central subfilter,
we can apply either the central observation or the median value of the whole time window.
We investigate analytical properties of the resulting hybrid filters and compare their ability
to attenuate Gaussian noise, to resist outliers and to preserve abrupt shifts in case of a
constant signal and in a trend period via simulations.

In Section 2 we review repeated median and FMH filters and introduce repeated median
hybrid filters as a combination of these. In Section 3 we discuss the fast computation of
the filters and propose a new algorithm for updating the repeated median. In Section 4 we
investigate the filters from a theoretical point of view. In Section 5 we compare their perfor-
mance in basic data situations via simulations. In Section 6 we present some applications to
real and simulated data for further comparison before we end up drawing some conclusions.

2 Hybrid filters

We introduce some classes of nonlinear filters. Let the filter input be a time series (xt).
Moving averages and standard median filters are based on the idea to approximate the
signal (μt) underlying (xt) by moving a time window of fixed width n = 2k + 1 through the
series to approximate the true level of the time series in the center of the window. Hence,
applying any such method causes a time delay of k observations. A short delay can be
achieved by a small choice of k, but for the cost of reduced smoothing.

2.1 Filters based on robust regression

Standard median filters (running medians) approximate the signal μt in the center of a
moving time window {xt−k, . . . , xt+k} by the median of these observations,

SM(xt) = μ̃t = med{xt−k, . . . , xt+k}, t ∈ Z.

This means to treat the level μt as locally almost constant. This assumption is of course
not appropriate in trend periods. Therefore, Davies et al. (2004) suggest to fit a local linear
trend μt+i = μt + iβt, i = −k, . . . , k, by robust regression. Here, μt is again the level and βt

is the slope in the center of the time window. Based on a comparison of methods with high
breakdown point they recommend Siegel’s (1982) repeated median defined by

RM(xt) = μ̃RM
t = med{xt−k + kβ̃t, . . . , xt+k − kβ̃t}

β̃RM
t = medi=−k,...,k

{
medj=−k,...,k,j �=i

xt+i − xt+j

i − j

}
.

The slope within the time window is estimated by taking repeated medians of pairwise slopes,
namely an inner median with one observation being fixed, and then the median of all these
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inner medians. Bernholt and Fried (2003) present an algorithm for updating the repeated
median (RM) filter in linear time using quadratic space when moving the time window by
one step, which reduces the computational complexity of a straightforward implementation
substantially.

2.2 Linear median hybrid filters

Linear median hybrid filters have been suggested to combine the good properties of linear
and median filters by linear and nonlinear operations (Heinonen and Neuvo, 1987, 1988,
Astola, Heinonen and Neuvo, 1989). They are computationally much less expensive than
standard median filters and offer increased flexibility due to the use of linear subfilters Φj ,
j = 1, . . . , M , which are applied to the input data before taking the median of the outcomes.
When the subfilters respond to a finite number of impulses only the resulting procedure
is called linear median hybrid filter with finite impulse response, more briefly FIR median
hybrid filter or FMH filter:

FMH(xt) = med{Φ1(xt), Φ2(xt), . . . ,ΦM (xt)}, t ∈ Z,

where Φ1(xt), . . . ,ΦM (xt) are the outputs of the FIR filters. The proper choice of M and of
the subfilters depend on the type of signal and on the demands specified by the operator.
FMH filters can even be less biased at edges than the standard median (Astola et al., 1989).

Heinonen et al. (1985) and Kalli et al. (1985a, 1985b) filter blood pressure measurements
by a simple FMH filter with M = 3 subfilters, namely two one-sided moving-averages and
the current observation xt as central subfilter for edge preservation:

Φ1(xt) =
1
k

k∑
i=1

xt−i, Φ2(xt) = xt, Φ3(xt) =
1
k

k∑
i=1

xt+i.

Like the standard median this FMH filter implicitly takes the signal as locally almost constant
since ordinary location estimates are applied. Instead of moving averages, predictive FMH
filters apply FIR subfilters for one-sided extrapolation of a trend:

PFMH(xt) = med{ΦF (xt), xt, ΦB(xt)},

ΦF (xt) =
k∑

i=1

hixt−i, ΦB(xt) =
k∑

i=1

hixt+i.

Heinonen and Neuvo (1988) choose the weights hi to obtain optimal (in the sense of mean
square error MSE) predictions for a polynomial signal which is disturbed by Gaussian white
noise imposing the restriction that the exact signal value is obtained in the deterministic
case without noise. For a polynomial of degree zero corresponding to a constant signal this
reduces to the simple FMH filter given above. For a polynomial of degree one, i.e. a linear
trend μt+i = μt+iβt, the resulting weights are hi = 4k−6i+2

k(k−1) , i = 1, . . . , k. Another possibility
is to use predictions of different degrees. The combined FMH filter

CFMH(xt) = med{ΦF (xt), Φ1(xt), xt, Φ3(xt), ΦB(xt)},

applies the subfilters Φ1(xt), Φ3(xt), ΦF (xt) and ΦB(xt) for forward and backward extrap-
olation of a constant signal or a linear trend given above.
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2.3 Repeated median hybrid filters

In view of increased computational power computation time is nowadays a much less severe
constraint. In order to increase the robustness of the procedure, we can construct hybrid
filters with robust instead of linear subfilters.

It is near at hand to replace the one-sided moving averages Φ1(xt) and Φ3(xt) by half-window
medians μ̃F

t = med{xt−k, . . . , xt−1} and μ̃B
t = med{xt+1, . . . , xt+k}, and the one-sided lin-

ear extrapolators ΦF (xt) and ΦB(xt) by robust linear regression estimators RMF (xt) and
RMB(xt), with RMF (xt) and RMB(xt) denoting the estimate of the level at time t obtained
by applying the repeated median to xt−k, . . . , xt−1 and to xt+1, . . . , xt+k, respectively:

RMF (xt) = med{xt−k + kβ̃F
t , . . . , xt−1 + β̃F

t }
β̃F

t = medi=−k,...,−1

{
medj=−k,...,−1,j �=i

xt+i − xt+j

i − j

}

RMB(xt) = med{xt+1 − β̃B
t , . . . , xt+k − kβ̃B

t }
β̃B

t = medi=1,...,k

{
medj=1,...,k,j �=i

xt+i − xt+j

i − j

}
.

In the resulting repeated median hybrid filters we can use the central observation xt as
central subfilter for edge preservation like in the FMH filters or we can replace xt by the
median μ̃t of the time window. We investigate both possibilities in the following and call
them RMH and RMMH filters, respectively. Moreover, we will consider the robust predictive
and robust combined variants

PRMH(xt) = med{RMF (xt), xt, RMB(xt)}
CRMH(xt) = med{RMF (xt), μ̃F

t , xt, μ̃
B
t , RMB(xt)}

PRMMH(xt) = med{RMF (xt), μ̃t, RMB(xt)}
CRMMH(xt) = med{RMF (xt), μ̃F

t , μ̃t, μ̃
B
t , RMB(xt)} .

3 Computation

We briefly explain the basic ideas of efficient implementation of the previous procedures.
Signal extraction using a moving time window allows application of algorithms for updating
the results from the previous window in order to save computation time.

3.1 Median

An algorithm for updating (or ‘maintaining’) the standard median is given in Cormen, Leis-
erson and Rivest (1990, Section 15.1). This algorithm uses a red-black tree for storing the
values in the current time window in a sorted order. Deletion and insertion of a value is sup-
ported in O(log n) worst case time using O(n) space. In each node of the tree, the number of
nodes in the left respectively right subtree is maintained. Using this information the median
in the updated tree can be found in logarithmic time, by starting at the root of the tree and
always branching into the appropriate subtree until a leaf of the tree, the median is reached.
This reduces the time needed for calculating the median from scratch using Quickselect,
which has an average running time of O(n).
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3.2 Repeated Median

An algorithm for updating the repeated median in O(n) time using O(n2) space is presented
by Bernholt and Fried (2003) using a hammock graph for storing the data in the dual space.
Here, we present a new algorithm which is based on ideas of Stein and Werman (1992)
and which needs O(n) space only. Consider the data (t + i, xt+i), i = −k, . . . , k, in the
current time window along with the observation times as points in the plane. According to
the point-line duality the point (t + i, xt+i) can be mapped to the dual line �i defined by
v = (t + i)u + xt+i in (u, v) coordinates. In the dual space, we say that the point (u, v) is
located left of the line � if there exists a constant c > 0 such that the point (u + c, v) is
located on �. The terms right of, above and below are defined analogously. The pairwise
slope (xt+i−xt+j)/(i−j) in the calculation of β̃t is the u-coordinate of the intersection point
(uij , vij) of the lines �i and �j . The solution with parameters (μ̃RM

t , β̃RM
t ) is mapped to the

point (−β̃RM
t , μ̃RM

t ), which is the intersection of two lines. We order the lines �i according to
their occurrence on an imaginary vertical line ν at position −β̃t and denote this permutation
of the lines by π. In each updating step, one former line has to be deleted from π and a new
one inserted into π. If the solution has changed, the permutation at the new position has to
be computed. This is done by moving the imaginary line ν towards the new solution point
as displayed in Figure 1.

Figure 1 about here

At each intersection point visited, while moving, the two lines intersecting in this point
are transposed within π. We will refer to the number of visited intersection points as S.
The direction of the line movement is determined by counting for each line �i the number
ci of intersection points on �i to the left of ν. Let L = #{ci : ci > �(n − 1)/2�} and
R = #{ci : ci ≤ �(n − 1)/2�}. A new solution (−β̃RM

t+1 , μ̃RM
t+1 ) is attained if L = R. In the

case that two inner medians are located on the same intersection point they are identical and
only |L−R| ≤ 1 can be reached since the corresponding ci’s are both increased or decreased
by one if this intersection point is passed. Otherwise, if L < R we need to move to the right,
while we need to move to the left if L > R.

Figure 2 about here

In order to maintain the permutation π we store the lines in a dictionary T , e.g., a red-black
tree or AVL-tree, illustrated in Figure 2 and described in Cormen, Leiserson and Rivest
(1990). As the depth of such trees is bounded by O(log n), these data structures support
insertion, deletion and search in O(log n) time. Note that the next point to be visited, when
moving the vertical line, is always an intersection point of two lines which are neighbors in
the current permutation π. In order to find the next intersection point in O(log n) time w.r.t.
the ordering of the u-coordinate, we store the intersection points on both sides of the current
imaginary line ν in two priority queues QL and QR e.g. organized as heaps. When moving ν

to the next intersection point two lines are swapped, which creates two new neighborhoods
and destroys two old ones. Depending on the location of new (old) intersection points w.r.t.
ν they need to be inserted (deleted) in the priority queues, which can be done in O(log n)
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time. The next intersection point in the priority queue can also be found in O(log n) time.
Insertion (deletion) of a new (old) line in an updating step involves updating the ci’s. Call
the position of the inserted (deleted) line πi. As the inserted (deleted) line �∗ has the largest
(smallest) slope, all lines stored in π1, . . . , πi−1 (πi+1, . . . , πn) intersect �∗ on the left hand
side. Therefore the ci’s for all lines that are stored left (right) of �∗ in the tree have to be
increased (decreased) by 1. The problem is that there are O(n) ci’s changing their value and
that the correct L has to be computed. In order to achieve a running time of O(log n), we
store the following variables in each node of the search tree T :

• u(v): The update value of the node v. The correct ci of a leaf can be obtained by
summing up over all u found on the path from the root of the tree to that leaf.

• wa(v): The maximal value of a ci in the subtree of v smaller than n/2.

• a(v): The number of ci in the subtree of v which are equal to wa.

• wb(v): The minimal value of a ci in the subtree of v greater than n/2.

• b(v): The number of ci in the subtree of v which are equal to wb.

The new line is inserted as a node v∗ into the search tree T . Consider the search path P to the
node v∗, the boundary B = {v′ | v′ is a child of v, v ∈ P and v′ /∈ P} and the left boundary
B� = {v′ | v′ is a left child of v, v ∈ P and v′ /∈ P}. During the insertion we increase the
values u, wa and wb in all nodes v ∈ B� by one. L is changed by ΔL, which is the number of
all nodes v ∈ P where wa has exceeded n/2: ΔL =

∑
v ∈ P {a(v) | wa(v) > n/2}. To update

the values of wa and wb, we call for every v ∈ B� the following update routine:

Routine Update(v)
Input:

A node v. Let v1 and v2 be the two child nodes.
begin

(The case that one of v1 and v2 does not exist is not explicitly mentioned)
if wa(v) > n/2 then

wb(v) := wa(v) and b := a

if v is a leaf then
a := 1 and wa(v) := ci, that is stored in this node v.

else
Add u(v) to the values of wa(v1),wb(v1),wa(v2) and wb(v2).
u(v) := 0
Call Update(v1) and Update(v2)
wa(v) := max{wa(v1), wa(v2)}

a(v) :=

⎧⎪⎪⎨
⎪⎪⎩

a(v1) + a(v2) if wa(v1) = wa(v2)

a(v1) if wa(v1) > wa(v2)

a(v2) otherwise
end if

end if
end
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The procedure visits all nodes on the ΔL paths towards leaves where the value of the ci has
exceeded n/2, thus the computing time for inserting (deleting) a line is O(ΔL · log n). As
the algorithm has to make at least ΔL/2 steps until the new optimum is reached and one
move of the vertical line ν can be computed in O(log n), the overall running time is bounded
by S · O(log n). In Section 6.1 we study the possible values of S empirically.

The algorithm described above allows updating the regression slope. For updating the ex-
tracted signal value we use the fact that

RM(xt) = medi=−k,...,k

{
medj=−k,...,k,j �=i

jxt+i − ixt+j

i − j

}
.

(Stein and Werman, 1992) and we modify the algorithm in such a way that we use an
imaginary horizontal line instead.

3.3 Repeated median hybrid filters

The calculation of the repeated median hybrid filters requires obtaining the median of three
or five values and updating the backward extrapolating filter(s) as described above, which
are stored and reused for calculating the forward extrapolating filters. Using a FIFO queue,
which can be implemented as a linked list, the new element (RMB(xt), β̃B

t ) is inserted at
the head of the list, and RMF (xt) is obtained from the previous (RMB(xt−k−1), β̃B

t−k−1) at
the end of the list as

RMF (xt) = RMB(xt−k−1) + (k + 1)β̃B
t−k−1

before deleting (RMB(xt−k−1), β̃B
t−k−1). All this can be done in O(1) time. The μ̃F

t is got
immediately from such a list of the μ̃B

t . Using the former computations saves a constant
factor. Nevertheless, the running time is dominated by the computation of RMB(xt).

3.4 FMH filters

Besides calculating the median of three or five values in O(1) time, updating the FMH filters
needs to maintain weighted sums of the observed values. Replacing a value in an ordinary
sum for obtaining an updated arithmetic mean can be done in O(1) time. For ΦB(xt) we
use

ΦB(xt) − ΦB(xt−1) =
k∑

i=1

hixt+i −
k∑

i=1

hixt+i−1

= hkxt+k − h1xt +
6

k(k − 1)

k−1∑
i=1

xt+i .

This allows updating the difference which is added to the previous ΦB(xt−1) in O(1) time.

4 Analytical properties

For a theoretical analysis of the filtering procedures we use the components model (1) and
study the behavior in a single time window centered at zero considering the data points
x−k, . . . , x0, . . . , xk with the same k for all filters.



4 ANALYTICAL PROPERTIES 8

4.1 Equivariance and invariance

Equivariance and invariance are important properties of statistical procedures. Location
equivariance means that adding a constant to all observations (in the time window) changes
the resulting estimate accordingly. Similarly, scale equivariance means that multiplication
of all observations with a constant changes the extracted signal in the same way. All the
previous procedures have both properties.

For tracking linear trends sometimes linear trend preservation is considered, which means
that the output of the filter is identical to the measured time series if the observations lie on
a straight line. This property is weak and is inherent to all the previous methods. However,
it does not consider observational noise, which can hamper the tracking of linear trends.
Another property is preferable instead, which we might call trend invariance: The extracted
signal should not depend on a trend as long as the central level remains fixed. This means,
when varying the trend in the time window replacing x−k, . . . , xk by x−k − kβ, . . . , x−1 −
β, x0, x1 + β, . . . , xk + kβ, the estimated central level should remain the same.

The RM, the predictive FMH and the predictive RMH are the only trend invariant procedures
among those presented in Section 2. The trend invariance of the RM follows directly from
the regression equivariance of the underlying regression estimator. When adding a constant
trend to some data, the backward and forward subfilters of the predictive FMH and RMH
still result in the same extrapolations, and hence the median will be taken from the same
values as before.

The standard median is not trend invariant. Consider e.g. the case k = 1 and the obser-
vations 1, 0,−3 with median zero. Adding a trend with slope β = 2 we obtain the sample
−1, 0,−1 with median −1, i.e. the outcome depends on the underlying slope. In the same
way, FMH and RMH filters are not trend invariant when subfilters are used which are not
trend invariant like medians or one-sided moving averages.

4.2 Noise-free situation - a best case analysis

The tracking of trends, the preservation of abrupt shifts and the removal of impulsive noise
(outliers) are essential properties of robust filters. The best possible performance of a proce-
dure can be inspected in a noise-free situation, where σ2 = 0. The standard median preserves
a level shift exactly in this idealized situation, and it removes up to k subsequent spikes com-
pletely when using the window width n = 2k + 1 and the signal is constant otherwise. It
even allows to recover monotonic trends, but it preserves a shift in a trend period only if the
shift has the same direction as the trend. Otherwise the shift gets blurred, and spikes within
a trend cause further undesirable effects.

As opposed to standard medians, FMH filters do not delay a level shift when there is an
impulse in the opposite direction to the step within k time points after the shift. However,
they suffer from smearing then as the height of a shift and a constant signal value close to
the shift change (Heinonen and Neuvo, 1987). Like all methods considered here, FMH filters
recover a linear trend exactly in the noise-free situation. The combined FMH removes a
single spike and preserves a shift exactly only in case of a constant signal or if the outlier
(shift) has the same direction as the trend, while e.g. a negative spike (shift) in an upward
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trend produces smearing. The predictive FMH removes a single spike and preserves a shift
exactly within a linear trend period irrespective of the directions as it is trend invariant.

The RM can remove k−1 spikes completely within a single time window as then the median
slope for each of the k+2 clean data points is calculated from k+1 pairs of clean observations.
This number is slightly smaller than for the median in case of a constant signal, but for the
RM it does not depend on a trend at all.

The repeated median hybrid filters improve on the FMH filters w.r.t. the removal of spikes
as they can resist up to �k/2� subsequent outliers without any effect. For the predictive
RMMH this number is even 2�k/2� − 1. In order to see this, we note that for the predictive
filters two subfilters giving the exact signal value are sufficient to guarantee that this is also
true for the hybrid filter, while for the combined filters it is sufficient that there is one more
filter with a smaller and one with a larger outcome. Furthermore, each of the extrapolating
RM filters gives the exact signal value if it is influenced by at most �k/2� − 1 spikes. Now,
if there are only �k/2� spikes at the right hand side of the center, the forward extrapolating
subfilter and the central subfilter and hence the RMH and the RMMH give the exact signal
value (as the outcome of one of the half-window medians in the combined filters will be at
most and the other one at least the signal value). If not all of the �k/2� spikes are at the same
side of the center both extrapolating RM filters give the exact signal value. However, more
than �k/2� negative outliers at the right of the center in an upward trend can change the
backward extrapolating filters and hence the combined RMH and RMMH to become smaller
than the signal value, while outliers at positions 0, . . . , �k/2� change the central subfilter
and the backward extrapolating RM filter in the predictive RMH arbitrarily. The predictive
RMMH, however, gives the exact signal value as long as there are at most �k/2�− 1 outliers
at one side of the center and k spikes altogether because then one of the extrapolating filters
and the median give the correct value. This is guaranteed if there are at most 2�k/2� − 1
subsequent spikes. Note that the performance of the combined RMMH depends on the
sign of the trend and the spikes: The half-window medians are still to the same side of the
signal value as in the case without spikes when being affected by �k/2� spikes in the same
direction as the trend, e.g. if both are positive. Therefore, the combined RMMH can remove
more spikes completely, namely �k/2� + 1, if they are in the same direction as the trend.
Furthermore, the predictive RMH and RMMH preserve shifts exactly, while for the combined
RMH and RMMH this is true only if the shift is in the same direction as the trend, just like
for the combined FMH. Table 1 summarizes these results.

Table 1: Number of subsequent spikes removed from a linear trend without noise.
SM RM PFMH CFMH PRMH CRMH PRMMH CRMMH
0 k − 1 1 0 �k/2� �k/2� 2�k/2� − 1 �k/2�

4.3 Continuity - small deviations

The results in the previous subsection are for the case without observational noise. Davies
(1993) suggests application of continuous, particularly of Lipschitz continuous procedures
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for restricting the influence of small changes in the data like rounding or a small amount of
observational noise.

All the filters investigated here are Lipschitz continuous. The median, like any other order
statistic, is Lipschitz continuous with constant 1 as changing every observation by less than
a value δ changes the median at most by δ. As every linear filter is Lipschitz continuous
with constant max|hi|, the maximal absolute weight, an FMH filter is Lipschitz continuous
with constant max|hj

i |, the maximal absolute weight given by any subfilter. The repeated
median is Lipschitz continuous with constant 2k +1: The slope estimate changes at most by
2δ when changing each observation by at most δ, and hence the level estimate is bounded
not to change more than (2k + 1)δ as none of the trend corrected observations changes
more. Accordingly, the repeated median hybrid filters are Lipschitz continuous with the
same constant 2k + 1.

4.4 Breakdown - a worst case analysis

We can apply the concept of breakdown point to measure the amount of contamination
in a single time window which makes the extracted signal value worthless, i.e. arbitrarily
large or small. The finite-sample breakdown point is obtained by changing a fraction of the
data points, thus getting a contaminated sample. The finite-sample breakdown point is then
defined to be the smallest fraction of contaminated points such that the estimate can be any
value.

When applying the median to n = 2k + 1 data points x−k, . . . , xk, the breakdown point is
(k + 1)/n telling us that at least half of the sample needs to be ‘outlying’ in order to make
the level approximation completely unreliable.

The breakdown point for the level estimation by each of the FMH filters is only 2/n. The
outcome of the central subfilter and of the subfilters for forward extrapolation and hence the
outcome of the FMH filter can be made arbitrarily large by replacing the observation in the
center and another observation which has positive weight for all predicting subfilters, e.g.
the observation just at the left hand side of the center. Hence, two subsequent spikes cause
the same, just somewhat dampened pattern in the extracted signal.

Breakdown of the RM affords contamination of at least k observations, while for the pre-
dictive RMH the observation in the center and at least �k/2� observations at one side of it
need to be replaced. For the combined RMH, one more observation is necessary in order to
destroy also the corresponding half-window median. Therefore, the breakdown points are
(�k/2�+1)/n and (�k/2�+2)/n corresponding to replacing e.g. 6 and 7 out of n = 21 obser-
vations, respectively. For the predictive RMMH, at least �k/2� observations both at the left
and at the right hand side of the center need to be replaced to destroy both extrapolating
subfilters, i.e. the breakdown point is 2�k/2�/n meaning that e.g. 10 bad observations are
necessary to make the PRMMH break down if n ∈ {21, 23}. For the combined RMMH,
destruction of both subfilters to one side affords replacement of �k/2�+1 observations there,
and destruction of the linear extrapolating filter on the other side needs another �k/2� con-
taminated observations, summing up to 2�k/2�+1 out of n, which is 11 both for n = 21 and
n = 23, i.e. the breakdown point is the same as for the median or slightly smaller. Table 2
summarizes these results.
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Table 2: Breakdown points in a single time window.
SM RM FMH PRMH CRMH PRMMH CRMMH

k + 1
n

k
n

2
n

�k/2� + 1
n

�k/2� + 2
n

2�k/2�
n

2�k/2� + 1
n

5 Simulation experiments

We perform some Monte Carlo experiments for a comparison of the filter procedures in basic
data situations and in the presence of observational noise. We use the components model (1)
with μt = μ0 + tβ generating the observational noise from an autoregressive model of order
one, AR(1), ut = φut−1 + εt, where the innovations εt form Gaussian white noise with mean
zero and variance σ2. AR(1) models are a convenient choice for modelling autocorrelations.
Because of location and scale equivariance we set μ0 = 0 and σ2 = 1 without loss of generality.
The results for the RM, the PFMH and the PRMH do neither depend on the choice of β

since these methods are trend invariant.

The suitable choice of the window width n = 2k + 1 depends on the application, i.e. on the
situations a filtering procedure needs to handle. For removing patches of subsequent outliers
we must choose k sufficiently large, while upper limits for k are imposed by the duration of
periods in which trends can be assumed to be approximately linear and by the admissible
time delay. We choose a window width of n = 2k + 1 = 21 and investigate the attenuation
of Gaussian noise, the preservation of level shifts and the removal of outlier patches.

5.1 Efficiency

Firstly we compare the attenuation of Gaussian noise. All methods are unbiased then because
of symmetry. We simulate 50000 time windows for each slope β = 0, 0.05, . . . , 0.5 and
correlations ρ ∈ {0, 0.6} in order to compare the efficiencies of the filters as measured by the
percentage MSE relative to the arithmetic mean, see Figure 3.

The standard median looses a lot of efficiency with an increasing slope, while the RM is
almost as efficient as the median for a constant signal throughout. The usage of the one-
sided arithmetic means or medians increases the efficiencies of the combined hybrid filters
substantially for a nearly constant signal, but this gain gets lost with increasing slope as the
filters become dominated by the subfilters extrapolating a linear trend. The combined and
the predictive versions become nearly undistinguishable for a moderate trend with β = 0.2
in case of zero autocorrelations, while positive autocorrelations slow this decrease down.
Each of the RMMH filters is more efficient than the corresponding FMH filter, while the
corresponding RMH filter is slightly less efficient. Positive autocorrelations increase the
relative efficiencies of the (repeated) median based filters substantially.

Figure 3 about here



5 SIMULATION EXPERIMENTS 12

5.2 Preservation of shifts

Level shifts need to be localized and tracked as exactly as possible. In order to investigate the
preservation of a shift within a linear trend we simulate signals with β ∈ {−0.5, 0, 0.5} and
generate data situations which mimic the intrusion of a shift into the window replacing an
increasing number 1, 2, . . . , 10 of observations at the end of the window by additive outliers
of size s ∈ {2, 4, . . . , 10}. For each setting we simulate 2000 windows and calculate the bias,
the standard deviation and the root of the mean square error RMSE for all methods. We find
larger outliers to have stronger effects and compare the maximal bias, standard deviation
and RMSE for a fixed number of outliers, i.e. observations affected by the shift.

Figure 4 depicts the RMSE for a constant signal (β = 0) and for a steep upward or downward
trend (β = ±0.5). Like in most of the following comparisons the RMSE is dominated by
the bias, while the standard deviations are much less increasing with an increasing number
of outliers. We restrict to the RMSE therefore. If the shift and the trend have the same
direction, e.g. if both are upwards, the RM is the only filter to become strongly biased,
namely when more than 5 (24%) observations are affected. The median and the hybrid
methods perform very well then, the FMH and the RMH filters being even better than the
median in case of a constant signal. This picture changes substantially if the shift and the
trend have opposite directions. As outlined in section 4.2, the median smooths the shift
then. The CRMMH resists up to four (19%), the CRMH and the PRMMH up to six (29%)
and the CFMH up to 7 (33%) affected observations. Only the PFMH and the PRMH do
not smooth a shift at all as for a constant signal since they are trend invariant. In the case
of positive autocorrelations φ = 0.6, we find an increase of variance for all methods, but the
results are essentially the same otherwise.

Figure 4 about here

5.3 Removal of patchy impulsive noise

We investigate the ability of the methods to remove impulsive noise (outliers). In applications
like intensive care with vital sign time series we find irrelevant patches of several subsequent
outliers of similar size, which should not influence the outcome of the filtering, and sometimes
even more than one outlier patch occurs within a short time period.

For some of the methods the location of the outliers is essential for the effect they have.
The hybrid methods are to be expected to perform well when all outliers are located at the
same side of the window as then only one and two subfilters respectively are affected. The
FMH and RMH filters are influenced most if the central observation is outlying. Since the
window is moved through the data an outlier patch will be found at any location in the
window at some time point. We consider several settings with either one outlier patch in the
center of the window or with two separated outlier patches. The situation with one outlier
patch at the start or at the end of the window has been treated implicitly in the previous
subsection. In each situation we replace an increasing number 1, 2, . . . , 10 of observations by
additive outliers of size s ∈ {2, 4, . . . , 10} and calculate the RMSE, the bias and the standard
deviation from 2000 simulation runs for each setting.
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Figure 4 reports the RMSE’s for one outlier patch next to the center of the window, where
we replace the observations at time points 0, 1, 2, . . . , 9 by positive outliers. We find this
situation to be a worst case for most of the methods. The RMSE’s are again mainly due
to bias, only the PRMH shows an increase of variance for 3 to 5 outliers. The PFMH is
strongly biased already in case of 2 outliers, while the PRMH resists them much better. The
performance of the other methods depends on the underlying slope. Two positive outliers
within an upward trend damage the CFMH considerably, while the CRMH resists 2 (10%)
outliers in case of a trend and 5 (24%) outliers in case of a constant signal satisfactorily. The
RMMH filters perform very similarly to the median showing a weakly increasing bias. The
best method in case of a trend is the RM, which resists about 6 (29%) outliers in the center.

When moving the time window further getting the outlier patch right in the center of the
window at time points 0, 1,−1, 2,−2, . . . , 5 (not shown here), the RMH filters perform some-
what better than before, while the PRMMH is strongly biased in case of more than 5 (25%)
outliers even in case of a constant signal. In a trend period, the RM is again the most
resistent method.

The repeated median hybrid filters also resist two patches of additive outliers within half
a window width distance at t = 0, 10,−1, 9,−2, 8,−3, 7,−4, 6 much better than the FMH
filters, see Figure 5. If both patches have the same sign, the PRMH resists up to four outliers,
which is twice as much as the FMH filters. The other filters perform very well in case of a
constant signal, but the RM is the only method to remove more than six positive outliers
from a negative trend. If the patches have different sign (not shown here), the PFMH is
strongly affected already by two outliers, just like the CFMH in case of a trend.

Regarding situations with an outlier patch at each end of the window we replace the obser-
vations at time points −10, 10,−9, 9, . . . ,−6, 6 by additive outliers, see Figure 5. Outliers at
both ends of the window have a smaller effect on the hybrid filters than outliers in the center.
If both patches have the same sign, it needs more than three outliers for the PFMH and
more than seven for the PRMH and the PRMMH to become considerably affected, which
is similar to the median in a trend period. The CRMMH improves on the median as it
accommodates well up to eight outliers even within a trend. The RM and the CRMH even
resist up to almost 50% outliers without being affected a lot. Outlier patches with different
sign cause much smaller problems here as the bias effects of the outliers nearly cancel each
other out.

Figure 5 about here

6 Application to time series

We now apply the procedures to time series with an underlying complex signal choosing the
window width again as n = 21. At the start and the end of the series we append the first
and the last value respectively for signal extraction except for the RM, for which we use the
regression lines in the last first and the last window.
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6.1 Simulated time series

We simulate a time series of length 300 with an underlying signal containing constant periods
as well as trend periods and three shifts, which is all overlaid by N(0,1) white noise, see Figure
6. 5% of the observations have been replaced by outliers of size -10, which are positioned
as three isolated, three pairs and two triples of outliers, which have been inserted at time
points chosen at random. The repeated median preserves the shift within the constant signal
worse, but those within trends better than the median, and it is smoother during the trend
periods. The FMH and the PRMH are more variable than these, but they preserve the shifts
much better. The PFMH shows similar spikes as the time series when these have a length of
at least two. The PRMH is only mildly affected by these and we find it to perform similarly
to a standard median with a suitably chosen short window width. However, for the latter
the choice of the window width is more critical as it tracks outlier patches with a length
more than half this width, while the PRMH accommodates them largely. The CRMH and
the PRMMH preserve the shifts and the extremes better than the RM but they are more
volatile.

Figure 6 about here

We use this example for getting information on the number S of moves needed for updating
the repeated median when using the new algorithm which only needs linear space. Figure
7 illustrates that S increases linearly with increasing window width for a steady state or
a trend period, but quadratically when a shift or a local extreme occur. This points at a
running time of O(n log n), but in a worst case, e.g. at a shift, it might be O(n2 log n).

Figure 7 about here

6.2 Real time series

We analyze two time series representing arterial blood pressure, see Figures 8 and 9. Again
the repeated median (not shown here) results in the smoothest signal, but like the median it
underestimates the extremes. The PFMH and the PRMH preserve the local extremes and
track long fluctuations, and the PRMH is not affected by short patches. The PRMMH and
the CRMH are in between the PFMH, the median and the repeated median. The CRMH
performs very well in the second example.

Figure 8 about here

Figure 9 about here

7 Summary

As expected none of the filters investigated here is overall optimal. Standard median filters
are highly robust and preserve edges in case of a constant signal, but they worsen considerably
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in trend periods. Repeated median filters are not affected by trends and attenuate both
Gaussian and spiky noise well. However, they smooths shifts and extremes considerably.
Predictive FMH filters are also not affected by trends and preserve shifts better than the
median, but they are neither efficient for Gaussian noise nor robust. Combined FMH filters
attenuate Gaussian noise more efficiently than predictive FMH filters in case of a constant
signal and track shifts better than the median, but worse than the predictive FMH.

We prefer repeated median hybrid filters to the FMH filters since they provide the same
benefits and are considerably more robust as they accommodate a substantially larger
number of spikes. Update algorithms allow fast computation of these robust filters. The
predictive RMH filter is interesting as it is not affected by trends and can preserve shifts
exactly. Its major drawback might be its low efficiency, which might be improved upon
in a second step by applying a linear filter to its outcome. The combined RMMH shows
a performance close to the median offering similar robustness properties and slightly
better performance in trend periods, but being less efficient. The combined RMH and the
predictive RMMH can be seen as compromises between these extremes. They offer larger
efficiency and higher robustness than the predictive RMH and preserve shifts better than
the median. Although the predictive RMMH has the better analytical properties since more
spikes are needed to influence its results and since it can preserve a shift irrespective of
the directions of the shift and an underlying trend, we have found the combined RMH to
perform better in practice.
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Figure 1: After a new line is inserted, the imaginary vertical line is moved from the old
median towards the new median. The black intersection points are visible to the algorithm
at this point in time and stored in the heap. The white intersection points become visible if
the two incident lines become neighbored in the permutation.
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Figure 2: Each data item is stored in a node of the binary search tree. Each node has
pointers to a left and/or right child node. If neither left nor right child exists, the node is
called a leaf. The depth of the tree is the number of nodes on the longest path from the root
to a leaf.
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Figure 3: Relative efficiencies for Gaussian noise, autocorrelations ρ = 0.0 (left) and ρ = 0.6
(right): median (·), RM (�), PFMH (×), CFMH (+), PRMH (◦), CRMH (•), PRMMH (�)
and CRMMH ( ).
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Figure 4: RMSE for the intrusion of a level shift (left) and for an outlier patch just to the
right of the center (right), slope β = 0.5 (top), β = 0.0 (center) and β = −0.5 (bottom):
median (·), RM (�), PFMH (×), CFMH (+), PRMH (◦), CRMH (•), PRMMH (�) and
CRMMH ( ).
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Figure 5: RMSE for positive outlier patches lagged by a half (left) and a full window width,
slope β = 0.5 (top), β = 0.0 (center) and β = −0.5 (bottom): median (·), RM (�), PFMH
(×), CFMH (+), PRMH (◦), CRMH (•), PRMMH (�) and CRMMH ( ).
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Figure 6: Simulated time series with outlier patches of length up to three (dotted) and
underlying signal (dashed). Top: SM (thin solid), RM (bold solid). Bottom: PFMH (thin
solid), PRMH (bold solid).
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Figure 7: Number S of moves needed for updating the repeated median at each time point,
window width n = 21 (top) and n = 31 (bottom), upper 10 percentage point (dotted),
median (thin solid), mean (bold solid), and lower 10 percentage point (dashed).



7 SUMMARY 23

0 50 100 150 200 250 300

50
10

0
15

0
20

0

time

si
gn

al

0 50 100 150 200 250 300

50
10

0
15

0
20

0

time

si
gn

al

Figure 8: Time series representing arterial pressure (dotted) and extracted signals. Top:
PFMH (thin solid), PRMH (bold solid). Bottom: PRMMH (thin solid), CRMH (bold
solid).
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Figure 9: Time series representing arterial pressure (dotted) and extracted signals. Top:
PFMH (thin solid), PRMH (bold solid). Bottom: PRMMH (thin solid), CRMH (bold
solid).


