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Abstract

In this note we present a direct and simple approach to obtain bounds on the asymp-

totic minimax risk for the estimation of constrained binomial and multinomial proportions.

Quadratic, normalized quadratic and entropy loss are considered and it is demonstrated

that in all cases linear estimators are asymptotically minimax optimal. For the quadratic

loss function the asymptotic minimax risk does not change unless a neighborhood of the

point 1=2 is excluded by the restrictions on the parameter space. For the two other

loss functions the asymptotic minimax risks remain unchanged if additional knowledge

about the location of the unknown probability of success is imposed. The results are also

extended to the problem of minimax estimation of a vector of constrained multinomial

probabilities.

AMS subject Classi�cation: 62C20

Keywords and phrases: binomial distribution, multinomial distribution, entropy loss, quadratic

loss, constrained parameter space, least favourable distribution

1 Introduction

We consider the problem of estimating the unknown parameter � of a binomial proportion

P

�

(X = k) = B

n;k

(�) :=

�

n

k

�

�

k

(1� �)

n�k

; 0 � k � n(1.1)

1



where 0 � � � 1. In many statistical problems the experimenter has de�nite prior information

regarding the value of �, often given in the form of bounds 0 � a < b � 1 such that � 2 [a; b].

A commonly used approach to incorporate information of this type in the construction of an

estimator is the minimax concept. A minimax estimate minimizes the maximal risk over the

bounded parameter space [a; b].

Usually neither the determination of a minimax estimate nor the calculation of the minimax

risk (i.e. the risk of the minimax estimate) is a straightforward problem. For the problem of

minimax estimation of the parameter of the binomial distribution over the bounded parameter

space [a; b] � [0; 1] Berry (1989) found minimax estimates for small values of n and squared error

loss and a symmetric parameter space, i.e. a = 1�b. Recently Marchand and MacGibbon (2000)

determined minimax estimators for the parameter space [0; b] and quadratic and normalized

quadratic loss, provided that the parameter b is smaller than a certain bound, say b

�

(n), which

converges to 0 with increasing sample sizes. These authors also determined the linear minimax

rules and corresponding risks for any bounded parameter space [a; b]; see also Lehn and Rummel

(1987) for some related results on Gamma-minimax estimation of a binomial probability with

restricted parameter space and Charras and van Eeden (1991) for some admissibility results in

this context.

It is the purpose of the present paper to provide more information about this minimax esti-

mation problem from an asymptotic point of view. We present a simple and direct approach

to derive the asymptotic minimax risk for the estimation of a binomial probability, which is

known to be in an interval [a; b]. We consider quadratic, normalized quadratic, and also the

entropy loss. The asymptotic minimax risks for the these loss functions are determined for any

interval [a; b]. If the point 1=2 is not contained in the interval [a; b], the asymptotic minimax

risk with respect to the quadratic loss di�ers for the constrained and unconstrained case, while

there are no asymptotic improvements if

1

2

2 [a; b] or if the normalized quadratic or entropy

loss function are chosen for the comparison of estimators. Our results also show that the linear

minimax rules by Marchand and MacGibbon (2000) are asymptotically minimax optimal. The

results are also extended to the situation, where the probability of success is known to be lo-

cated in a more general set � � [0; 1] and to the problem of minimax estimation of a vector of

constrained multinomial probabilities. The last-named problem has found much less attention

in the literature. For some results regarding minimax estimation without restrictions on the

vector of parameters we refer to the work of Steinhaus (1957), Trybula (1958, 1986), Olkin

and Sobel (1977), Wilczynski (1985), He (1990) and Braess, Forster, Sauer, and Simon (2002)

among many others.

The remaining part of this paper is organized as follows. Section 2 contains the necessary

notation. The main results and some parts of the proofs for the binomial distribution are

given in Section 3 while some more technical arguments are deferred to an appendix. Although

the multinomial distribution contains the binomial as a special case, the latter case is treated

separately in Section 4, mainly because we think that this organization facilitates the general

reading of the paper.
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2 Notation and point of departure

Consider the problem of estimating the parameter � of the binomial distribution (1.1) and let

L : [0; 1]� [0; 1]! R(2.1)

denote a convex loss function. It is well known [see e.g. Ferguson (1967)] that for convex loss

functions it is suÆcient to consider nonrandomized rules of the form

Æ : f0; 1; 2; : : : ; ng ! [0; 1](2.2)

for the estimation of the probability �. The quality of such an estimator is measured by the

expected risk

R(Æ; �) := E

�

[L(�; Æ(X))] =

n

X

k=0

B

n;k

(�)L(Æ

k

; �) ;(2.3)

where we use the notation Æ

k

= Æ(k) for the sake of simplicity (k = 0; : : : ; n). An estimator Æ

�

is called minimax estimate with respect to the loss function L if

sup

a���b

R(Æ

�

; �) = inf

Æ

sup

a���b

R(Æ; �);(2.4)

where the in�mum is taken over the class of all nonrandomized estimators. In this paper we

consider the quadratic loss function

L

qu

(q; p) := (p� q)

2

;(2.5)

the normalized or standardized quadratic loss function

L

sq

(q; p) :=

(p� q)

2

p(1� p)

;(2.6)

and the entropy loss function

L

KL

(q; p) := p log

p

q

+ (1� p) log

1� p

1� q

;(2.7)

that is also called Kullback{Leibler distance. The loss functions (2.5) and (2.6) have been

studied by Marchand and McGibbon (2000) in the same context while the entropy loss L

KL

has been used for minimax estimation with an unconstrained parameter space by Cover (1972)

and Wieczorkowski and Zieli�nski (1992), who obtained some numerical results. Braess and

Sauer (2003) established sharp asymptotic bounds for the minimax risk with respect to this

loss function if [a; b] = [0; 1].

In the unconstrained case the minimax rules for the loss functions (2.5), (2.6) are well known

and given by the \add-�-rules"

Æ

�

k

=

k + �

n+ 2�

; k = 0; : : : ; n;(2.8)
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where � =

1

2

p

n and � = 0, respectively; see Lehmann (1983). The phrase add-�-rule is adopted

from learning theory [see Cover (1972), Krichevskiy (1998)], where minimax rules with respect

to entropy loss are used to obtain optimal codings. In particular, add-�-rules are linear and

have the symmetry property

Æ

�

(k) + Æ

�

(n� k) = 1:(2.9)

The corresponding minimax risks are given by

inf

Æ

sup

�2[0;1]

R

qu

(Æ; �) =

n

4(n+

p

n)

2

;(2.10)

inf

Æ

sup

�2[0;1]

R

sq

(Æ; �) =

1

n

;(2.11)

and

inf

Æ

sup

�2[0;1]

R

KL

(Æ; �) =

1

2n

(1 + o(1));(2.12)

respectively. The asymptotic minimax estimate for the entropy loss is achieved by the combi-

nation of three add-�-rules, i.e.

Æ

KL

k

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1=2

n+5=4

k = 0;

2

n+7=4

k = 1;

k+3=4

n+3=2

k = 2; : : : ; n� 2;

n�1=4

n+7=4

k = n� 1;

n+3=4

n+5=4

k = n;

(2.13)

see Braess and Sauer (2003).

3 Constrained minimax estimation of binomial proba-

bilities

Our �rst result shows that the minimax rules remain asymptotically optimal if the parameter

space is restricted to an interval [a; b], which contains the point 1=2.

Theorem 3.1 Assume that 0 � a < 1=2 < b � 1, then we have for n!1

inf

Æ

sup

�2[a:b]

R

qu

(Æ; �) =

n

4(n+

p

n)

2

(1 +O(n

�1

)) =

1

4n

(1 +O(n

�1=2

));

inf

Æ

sup

�2[a;b]

R

sq

(Æ; �) =

1

n

(1 +O(n

�1=2

));

inf

Æ

sup

�2[a;b]

R

KL

(Æ; �) =

1

2n

(1 + o(1)):
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Proof of Theorem 3.1. The upper bounds are immediate from (2.10){(2.12) because the maxi-

mal risk with respect to the restricted parameter space [a; b] � [0; 1] is always smaller than the

original one. The essential step is the proof of the lower bound for the risk with respect to the

quadratic loss function.

We recall that the add-�-rule (2.8) with � =

1

2

p

n is the minimax estimate on the unrestricted

interval; see Lehmann (1983), and it yields a constant risk function,

R

qu

(Æ

1

2

p

n

; �) =

n

4(n+

p

n)

2

:(3.1)

Now let w

m

(t) := c

m

t

m

(1 � t)

m

denote the beta-prior, where m =

1

2

p

n � 1 and c

m

is a

normalizing constant such that w

m

integrates to 1. Since we are concerned with lower bounds

here, the normalization may refer to the integral over the (larger) interval [0; 1]. The rule Æ

1

2

p

n

is the Bayes estimate for quadratic loss on the unrestricted parameter space with respect to

the prior w

m

, i.e. we have for any estimate Æ : f0; 1; : : : ; ng ! [a; b]:

Z

1

0

R

qu

(Æ; t)w

m

(t)dt �

Z

1

0

R

qu

(Æ

1

n

p

n

; t)w

m

(t)dt =

n

4(n+

p

n)

2

:(3.2)

Next, note that for any estimate Æ:

R

qu

(Æ; �) � 1 for all � 2 [a; b]:(3.3)

Therefore we obtain from (3.2) and (3.3) for any estimate Æ : f0; 1; : : : ; ng ! [a; b]:

sup

�2[a;b]

R

qu

(Æ; �) �

Z

b

a

R

qu

(Æ; t)w

m

(t)dt

=

Z

1

0

R

qu

(Æ; t)w

m

(t)dt� (

Z

a

0

+

Z

1

b

)R

qu

(Æ; t)w

m

(t)dt

�

Z

1

0

R

qu

(Æ

1

2

p

n

; t)w

m

(t)dt� (

Z

a

0

+

Z

1

b

)w

m

(t)dt:

Now we use Lemma A.1 with � := 1=2 and s :=

p

n � 2 for estimating the integral over the

interval [0; a]. The integral at the right boundary can be treated in the same way. Noting that

R

1

0

w

m

dt = 1 we obtain for suÆciently large n the lower bound

sup

�2[a;b]

R

qu

(Æ; �) �

n

4(n+

p

n)

2

� 2

1

n

2

;(3.4)

which proves the assertion of Theorem 3.1 for the quadratic loss function.

The second part of the theorem regarding the normalized quadratic loss is now a simple conse-

quence. From �(1� �) �

1

4

it follows that

L

sq

(Æ; �) � 4L

qu

(Æ; �)(3.5)
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holds for all arguments. Thus we have for any estimate Æ : f0; : : : ; kg ! [0; 1] and suÆciently

large n:

sup

�2[a;b]

R

sq

(Æ; �) � 4 sup

�2[a;b]

R

qu

(Æ; �) �

n

(n +

p

n)

2

+O

�

1

n

2

�

=

1

n

(1 +O(n

�1=2

)):

An alternative proof which also covers the case

1

2

62 [a; b] and which is more direct will be

provided in connection with Theorem 3.2.

For the remaining lower bound regarding the entropy loss function we also use a comparison

and observe that

L

KL

(q; q) =

@

@p

L

KL

(q; p)

�

�

�

p=q

= 0;

@

2

@p

2

L

KL

(q; p) =

1

p(1� p)

:

Hence,

L

KL

(q; p) � 2L

qu

(q; p) := 2(p� q)

2

:(3.6)

From the result for the quadratic loss function we obtain as above

inf

Æ

sup

�2[a;b]

R

KL

(Æ; �) � 2 inf

Æ

sup

�2[a;b]

R

qu

(Æ; �) =

n

2(n+

p

n)

2

(1 + O(n

�1

)) =

1

2n

(1 + o(1)):

2

In the following we will investigate the situation where the point 1=2 is not contained in the

interval [a; b]. For the normalized quadratic and the entropy loss the asymptotic minimax risks

remain unchanged, while there are di�erences for the quadratic loss function (2.5).

In the proof of Theorem 3.1 we used a priori distribution that is least favorable for the quadratic

loss and for �nite n. Therefore, we got the risk for the quadratic loss with a deviation of O(n

�1

)

as n!1. In all other cases, the prior for the constrained domain di�ers from the prior for the

full interval, and the deviation is only of order O(n

�1=2

). In this context we observe another

feature. In many calculations of a minimax risk a prior is chosen such that the resulting risk

function is a constant or nearly constant function of �. This will be di�erent in the analysis of

restricted parameter spaces which do not contain the point 1=2.

Theorem 3.2 If 0 � a < b � 1=2, then

inf

Æ

sup

�2[a;b]

R

qu

(Æ; �) =

b(1� b)

n

(1 +O(n

�1=2

));(3.7)

inf

Æ

sup

�2[a;b]

R

sq

(Æ; �) =

1

n

(1 +O(n

�1=2

)):(3.8)

Proof. This time we start with the analysis of the normalized quadratic loss.
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The upper bound in (3.8) is obvious from (2.11) again. The proof of the lower bound proceeds

in the spirit of the proof of Theorem 3.1, but requires the use of a non symmetric beta-prior

w

m;`

(t) := c

m;`

t

m

(1� t)

`

(3.9)

(here c

m;`

is again a normalizing constant), which makes the arguments more technical. The

parameters m and ` will be �xed later such that the mode of the density w

m;`

is an interior

point of the interval [a; b] under consideration. The corresponding Bayes estimate (with respect

to the normalized quadratic loss) is known to be

Æ

m;`

(k) = Æ

m;`

k

=

k +m

n+m + `

;(3.10)

[see Lehmann (1983)]. We note that for m 6= ` this estimator has not the symmetry property

(2.9). Sums of the Bernstein polynomials (1.1) with quadratic polynomials are easily treated

[see e.g. Lorentz (1952)], and a htforward calculation gives for the associated risk function

R

sq

(Æ

m;`

; �) =

1

�(1� �)

1

(n+m+ `)

2

f[(m + `)� �m]

2

+ n�(1� �)g:

We now �x (m + `)

2

= n, denote any corresponding estimate by Æ

�

, and obtain

R

sq

(Æ

�

; �) =

1

�(1� �)

1

(n +

p

n)

2

[m

2

+ (n� 2m

p

n)�]:(3.11)

The corresponding Bayes risk is

Z

1

0

R

sq

(Æ

�

; t)w

m;`

(t)dt =

1

(n+

p

n)

2

[

m

`

(n +

p

n) +

p

n+ 1

`

(n� 2m

p

n)]

=

1

n+

p

n

;(3.12)

where we used the condition (m + `)

2

= n and the representations

c

m;`

c

m�1;`�1

=

R

t

m�1

(1� t)

`�1

dt

R

t

m

(1� t)

`

dt

=

(m+ `)(m + `+ 1)

m`

=

n+

p

n

m`

;(3.13)

c

m;`

c

m;`�1

=

R

t

m

(1� t)

`�1

dt

R

t

m

(1� t)

`

dt

=

m+ `+ 1

`

=

p

n + 1

`

:

A comparison with (2.11) shows that (3.12) is only asymptotically optimal, but the prior (3.9)

gives us the exibility for the analysis of the constrained case. Since Æ

�

is the Bayes estimate

on the interval [0; 1], it follows that for any estimate Æ

sup

�2[a;b]

R

sq

(Æ; �) �

Z

b

a

R

sq

(Æ; t)w

m;`

(t)dt

=

Z

1

0

R

sq

(Æ; t)w

m;`

(t)dt�

�

Z

a

0

+

Z

1

b

�

R

sq

(Æ; t)w

m;`

(t)dt

�

Z

1

0

R

sq

(Æ

�

; t)w

m;`

(t)dt�

�

Z

a

0

+

Z

1

b

�

w

m;`

t(1� t)

(t)dt

=

1

n +

p

n

�

�

Z

a

0

+

Z

1

b

�

w

m;`

(t)

t(1� t)

dt:(3.14)
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The remaining integrals are now estimated similarly as in the proof of Lemma 3.1 using the

non symmetric beta-prior. We set � := (a+ b)=2 and

m := �(

p

n� 2) + 1; ` := (1� �)(

p

n� 2) + 1:(3.15)

Observing that � is the point, where the function t

m�1

(1� t)

`�1

attains its unique maximum,

and setting s :=

p

n� 2 we conclude with Lemma A.1 that

Z

a

0

t

m�1

(1� t)

`�1

dt �

1

n

2

Z

1

0

t

m

(1� t)

`

dt(3.16)

for suÆciently large n 2 N . The same bound can be established for the integral over the interval

[b; 1]. Finally, a combination of (3.14) with (3.16) yields

sup

x2[a;b]

R

sq

(Æ; �) �

1

n +

p

n

� 2

1

n

2

=

1

n

(1 +O(n

�1=2

))

for any estimate Æ, which gives the lower bound for (3.8).

We now turn to the proof of the estimate (3.7). The analysis of the quadratic loss for the

interval [0; b] heavily depends on a comparison with the normalized quadratic loss. The upper

bound follows by using the estimate Æ

0

k

= k=n, and (2.11) gives for any � 2 [0; b]

R

qu

(Æ

0

; �) = �(1� �)R

sq

(Æ

0

; �) = �(1� �)

1

n

�

b(1� b)

n

;

(note that b �

1

2

). For deriving the lower bound we note that we have for any estimate Æ and

any 0 < " < b� a

sup

�2[a;b]

R

qu

(Æ; �) � (b� ")(1� b� ") sup

�2[b�";b]

R

sq

(Æ; �):

From (3.8) we know that the last factor is asymptotically at least 1=n(1 + O(n

�1=2

)). Since

" > 0 may be arbitrarily small, the proof is complete. 2

Theorem 3.3 If 0 � a < b � 1, then we have for the Kullback{Leibler distance

inf

Æ

sup

�2[a;b]

R

KL

(Æ; �) =

1

2n

(1 + o(1)):

Sketch of proof. The beta-prior (3.9) leads here to the (non symmetric) linear Bayes estimate

Æ

m;`

(k) =

k +m+ 1

n+m + `+ 2

:

The simple result is due to the fact that the non-polynomial terms � log � and (1� �) log(1� �)

in the loss function have no inuence on the Bayes estimate. The analysis by Braess and Sauer
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(2003) that refers to special properties of the entropy function and Bernstein polynomials,

however, can be extended to (non symmetric) linear estimates as long as m + ` = O(n

1=2

).

In particular, equation (5.8) in the cited paper can be rewritten, and one has to establish an

analogue estimate for the term (1 � �) log(1 � �) (note that one can no longer use symmetry

arguments). Nevertheless, a (uniform) risk of the form

1

2n

(1 + o(1))

can be veri�ed in the subinterval ["; 1� "] for any " > 0. Thus we have a nearly constant Bayes

risk in the actual domain and obtain the minimax value by standard arguments. Therefore,

the asymptotic risk does not change if the interval is reduced. 2

Remark 3.4 The explicit representation of the linear minimax rules given in Marchand and

MacGibbon (2000) [see Theorems 3.5 and 3.9] show that the linear minimax estimates for

quadratic and standardized quadratic loss also achieve the global asymptotic minimax risk in

the case of a restricted parameter space.

Remark 3.5 The results show that the maximum risk with respect to the quadratic loss

function can only be decreased asymptotically by additional knowledge about the probability

of success, if the parameter space is restricted to an interval, which does not contain the

center 1=2. For the two other risk functions additional knowledge regarding the location of the

probability of success does not decrease the risk asymptotically. The arguments also show that

the truncated estimators

Æ

1

2

p

n

k

� Ifa �

k

n

� bg + a � If

k

n

< ag+ b � If

k

n

> bg

Æ

0

k

� Ifa �

k

n

� bg + a � If

k

n

< ag+ b � If

k

n

> bg

and

Æ

KL

k

� Ifa �

k

n

� bg+ a � If

k

n

< ag+ b � If

k

n

> bg

are asymptotically minimax rules; see also Charras and van Eeden (1991).

4 Constrained minimax estimation of multinomial prob-

abilities

In this section we study the problem of minimax estimation for the parameters of a multinomial

distribution under certain constraints. As a by-product we also obtain some generalizations of

the results in Section 3 to more general parameter spaces � � [0; 1]. To be precise, let n; d 2 N

and assume that X = (X

0

; : : : ; X

d

)

T

is a random vector with probability law

P (X

i

= k

i

; i = 0; : : : ; d) = M

n;k

(�) := n!

d

Y

i=0

�

k

i

i

k

i

!

;(4.1)

9



whenever

P

d

i=0

k

i

= n and 0 otherwise. Here the vector of probabilities � = (�

0

; : : : ; �

d

)

T

satis�es

� 2 � :=

n

(x

0

; : : : ; x

d

)

T

2 [0; 1]

d+1

j

d

X

i=0

x

i

= 1

o

;(4.2)

where � denotes the d-dimensional simplex. Throughout this section we let

Æ = (Æ

0

; : : : ; Æ

d

)

T

:

n

(k

0

; : : : ; k

d

) 2 N

d+1

0

�

�

�

d

X

i=0

k

i

= n

o

�! �(4.3)

denote a nonrandomized estimate of �, and we write for the sake of simplicity

Æ

k

= Æ(k) = (Æ

0

(k); : : : ; Æ

d

(k))

T

= (Æ

0

k

; : : : ; Æ

d

k

)

T

:

In the unconstrained case � 2 � much e�ort has been devoted to the problem of minimax

estimation of the vector � with respect to quadratic and normalized quadratic loss functions

[see e.g. Steinhaus (1957), Trybula (1958, 1986), Olkin and Sobel (1977), Wilczynski (1985), He

(1990) among many others]. Braess, Forster, Sauer, and Simon (2002) consider the multivariate

entropy loss and extend the lower bound of Cover (1972) to the multivariate case. In the present

section we consider the problem of minimax estimation of a vector of constrained multinomial

probabilities with respect to the loss functions

L

qu

(Æ; �) =

d

X

i=0

(Æ

i

� �

i

)

2

;(4.4)

L

sq

(Æ; �) =

d

X

i=0

(Æ

i

� �

i

)

2

�

i

;(4.5)

L

KL

(Æ; �) =

d

X

i=0

�

i

log

�

i

Æ

i

:(4.6)

The corresponding risks are denoted by R

qu

, R

sq

, and R

KL

, respectively. Note that

L

sq

(Æ; �) = (

�

Æ �

�

�)�

�1

(

�

Æ �

�

�)

where � = diag(�

1

; : : : ; �

d

)�(�

i

�

j

)

d

i;j=1

is the Fisher information matrix of

�

� and the vectors

�

Æ;

�

�

are obtained from the corresponding quantities Æ, � by omitting the �rst component. Conse-

quently, (4.5) is the multivariate analogue of the normalized loss (2.6). The minimax estimators

in the unconstrained case for the quadratic and normalized quadratic loss functions are given

by

Æ

i

qu

(k) =

k

i

+

p

n=(d+ 1)

n +

p

n

; i = 0; : : : ; d;(4.7)

[see Steinhaus (1957)] and

Æ

i

sq

(k) =

k

i

n

; i = 0; : : : ; d;(4.8)

10



[see Olkin and Sobel (1979)], respectively, where the vector k = (k

0

; : : : ; k

d

) 2 N

d+1

0

satis�es

P

d

i=0

k

i

= n. The rules (4.7) and (4.8) have the form

Æ

i

�

(k) =

k

i

+ �

n + (d+ 1)�

; i = 0; : : : ; d;(4.9)

and are therefore multivariate add-�-rules. The corresponding minimax risks with respect to

the unconstrained parameter space are given by

inf

Æ

sup

�2�

R

qu

(Æ; �) = sup

�2�

R

qu

(Æ

qu

; �) =

d

d+ 1

n

(n +

p

n)

2

;(4.10)

inf

Æ

sup

�2�

R

sq

(Æ; �) = sup

�2�

R

sq

(Æ

sq

; �) =

d

n

;(4.11)

inf

Æ

sup

�2�

R

KL

(Æ; �) =

d

2n

(1 + o(1));(4.12)

respectively [see Braess and Sauer (2003) for the last estimate]. In the following we establish the

asymptotic minimax risks for the estimation of constrained multinomial probabilities, where

the parameter � is known to be contained in a subset � � �: Here the analysis is more involved

since there are no simple generalizations of the inequalities (3.5) and (3.6).

Theorem 4.1 (a) If � � � contains a neighborhood of the point

�

1

d+1

; : : : ;

1

d+1

�

T

, then

inf

Æ

sup

�2�

R

qu

(Æ; �) =

d

d+ 1

n

(n +

p

n)

2

(1 +O(n

�1

)):(4.13)

(b) If � � � contains an open set, then

inf

Æ

sup

�2�

R

sq

(Æ; �) =

d

n

(1 + o(1)):(4.14)

Proof. (a) Since the upper bound is clear from (4.10), we turn to the proof of the lower bound.

We consider the Bayes risk for the prior

w

m

(t) := c

m

d

Y

i=0

t

m

i

(4.15)

where c

m

is a normalization factor. It is well-known [see e.g. Steinhaus (1957)] that the Bayes

estimate is the multivariate add-�-rule (4.9) with � = m + 1, which is independent of the

dimension. Therefore, the rule Æ

qu

as given by (4.7) is the Bayes estimate with respect to the

prior w

m

if we choose m :=

p

n=(d+1)�1. We also recall that R

qu

(Æ

qu

; �) is a constant function

given by the right hand side of (4.10) [see Steinhaus (1957)]. Now we can proceed as in the

proof of Theorem 3.1. We note that R

qu

(Æ; �) � d+1 holds for all pairs (Æ; �), and we only have

to apply Lemma A.2 with � =

1

d+1

(1; 1; : : : ; 1)

T

instead of Lemma A.1 to complete the proof.

11



A proof of part (b) proceeds in the same manner and is a generalization of the proof of the

�rst part of Theorem 3.2. Let � be an interior point of �. In particular, all components of �

are positive. Set m

i

:= (

p

n � d� 1)�

i

+1 for i = 0; 1; : : : ; d. Obviously,

P

d

i=0

m

i

=

p

n. From

Lemma A.3 it follows that the prior (A.1) leads to a Bayes risk that has the correct asymptotic

rate, i.e.

d

n

(1 + o(1)). Moreover, R

sq

(Æ; �) � (d+ 1)=

Q

d

j=0

�

j

holds for all pairs (Æ; �). Now we

also proceed along the lines of the proof in the univariate case, we only have to apply Lemma

A.2 instead of Lemma A.1 to complete the proof. 2

Theorem 4.2 Let � � �, and assume that � is the closure of its interior points. Then

inf

Æ

sup

�2�

R

qu

(Æ

sq

; �) =

1

n

sup

�2�

d

X

i=0

�

i

(1� �

i

)

�

1 +O(n

�1=2

)

�

:(4.16)

Note that (4.16) is a generalization of (4.13) since

sup

�2�

d

X

i=0

�

i

(1� �

i

) =

d

d+ 1

;

if the set � contains the point (

1

d+1

; : : : ;

1

d+1

)

T

.

Proof of Theorem 4.2. For establishing the upper bound, we consider the minimax estimator

with respect to the normalized quadratic loss function L

sq

given in (4.8)

Æ

i

sq

(k) =

k

i

n

:

The resulting risk is

R

qu

(Æ

sq

; �) =

1

n

d

X

i=0

�

i

(1� �

i

);(4.17)

and by taking the supremum we obtain the upper bound.

We turn to the veri�cation of the bound from below. Given " > 0, let � be an interior point of

� such that

d

X

i=0

�

i

(1� �

i

) � sup

�2�

d

X

i=0

�

i

(1� �

i

)� ":

We consider the prior (4.15) with

m

i

:= �

i

s; i = 0; 1; : : : ; d; s :=

p

n� d� 1:(4.18)

The corresponding Bayes estimate for the quadratic loss function is given by

Æ

�i

(k) =

k

i

+m

i

+ 1

n + jmj+ d+ 1

;

12



where we used the notation jmj =

P

d

i=0

m

i

. Note that

P

d

i=0

(m

i

+ 1) =

p

n, and a straightfor-

ward calculation analogous to (A.4) yields

R

qu

(Æ

�

; �) =

1

(n +

p

n)

2

d

X

i=0

n

(m

i

+ 1)

2

� 2(jmj+ d+ 1)(m

i

+ 1)�

i

+ n�

i

o

=

1

(n +

p

n)

2

d

X

i=0

n

(m

i

+ 1)

2

� 2

p

n(m

i

+ 1)�

i

+ n�

i

o

:

Next we note that

R

�

w

m

(t)t

i

dt

R

�

w

m

(t) dt

=

m

i

+ 1

P

d

i=0

m

i

+ d+ 1

=

m

i

+ 1

p

n

:

Hence,

Z

�

R

qu

(Æ

�

; t)w

m

(t) dt =

1

(n+

p

n)

2

d

X

i=0

n

n�

d

X

i=0

(m

i

+ 1)

2

o

=

1

(n+

p

n)

2

d

X

i=0

n

n�

d

X

i=0

m

2

i

� 2jmj � d� 1

o

�

1

(n+

p

n)

2

d

X

i=0

n

n�

d

X

i=0

�

2

i

(

p

n)

2

� 2

p

n

o

=

n

(n+

p

n)

2

d

X

i=0

f1�

d

X

i=0

�

2

i

g(1 +O(n

�1=2

)):

Since � 2 �, it follows that 1�

P

d

i=0

�

2

i

=

P

d

i=0

�

i

(1� �

i

), and the proof can be completed as

the proof of Theorem 4.1a. 2

A Appendix: Auxiliary results

A.1 Two Lemmas

Lemma A.1 If 0 < a < � < 1, then the estimate

Z

a

0

t

�s

(1� t)

(1��)s

dt � (s+ 2)

�4

Z

1

0

t

�s+1

(1� t)

(1��)s+1

dt

� (s+ 2)

�4

Z

1

0

t

�s

(1� t)

(1��)s

dt

holds for suÆciently large s.

13



Proof. We choose  2 (a; �). The function t 7! t

�s

(1 � t)

(1��)s

attains its (unique) maximum

at t = � and consequently we have � := a

�

(1� a)

(1��)

=

�

(1� )

(1��)

< 1. The monotonicity

of this function on (0; �) also implies

Z

a

0

t

�s

(1� t)

(1��)s

dt � a[a

�

(1� a)

(1��)

]

s

= a�

s

[

�

(1� )

(1��)

]

s

�

a

�� 

�

s

Z

�



t

�s

(1� t)

(1��)s

dt

�

a

�� 

1

�(1� )

�

s

Z

�



t

�s+1

(1� t)

(1��)s+1

dt

�

a

�� 

1

�(1� )

�

s

Z

1

0

t

�s+1

(1� t)

(1��)s+1

dt:

The �rst inequality in the assertion now follows from (s+2)

4

�

s

! 0 as s!1, and the second

one is obvious. 2

An extension of the lemma above is required for the analysis of the multivariate case.

Lemma A.2 Assume that � = (�

0

; : : : ; �

d

) is an interior point of the set � � � with �

being de�ned in (4.2). Let �

c

denote the complement of the set � in �. With the notation

�(t) :=

Q

d

i=0

t

�

i

i

, we have for suÆciently large s:

Z

�

c

�(t)

s

dt � (s+ d+ 1)

�4

Z

�

�(t)

s

d

Y

j=0

t

j

dt � (s+ d+ 1)

�4

Z

�

�(t)

s

dt:

Proof. Set r := �(�) and note that the function � attains its unique maximum at the point �.

By compactness, we therefore obtain

� :=

1

r

sup

t2�

c

�(t) < 1:

Now consider the set

T := ft 2 �;�(t) � �

1=2

rg

and let j�

c

j and jT j denote the Lebesgue measure of �

c

and T , respectively. The product

Q

d

j=0

t

j

is positive on the compact set �

c

. With these preparations we obtain the following

estimates for the integral under consideration

Z

�

c

�(t)

s

dt � j�

c

j sup

t2�

c

f�(t)

s

g = j�

c

j (r�)

s

� j�

c

j�

s=2

1

jT j

Z

T

�(t)

s

dt

�

j�

c

j

jT j

sup

t2�

c

n

d

Y

j=0

t

�1

j

o

�

s=2

Z

T

�(t)

s

d

Y

j=0

t

j

dt
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�

j�

c

j

jT j

sup

t2�

c

n

d

Y

j=0

t

�1

j

o

�

s=2

Z

�

�(t)

s

d

Y

j=0

t

j

dt :

Now the �rst assertion follows from (s+ d+ 1)

4

�

s=2

! 0 as s!1, and the second inequality

is obvious. 2

A.2 A suboptimal Bayes risk

Lemma A.3 Let m

i

> 0; i = 0; 1; : : : ; d, m = (m

0

; : : : ; m

d

) and

w

m

(t) := c

m

d

Y

j=0

t

m

j

j

;

Z

�

w

m

(t)dt = 1;(A.1)

denote the (generalized) beta-prior. Then the Bayes estimate with respect to the normalized risk

(4.5) and the prior (A.1) is

Æ

�i

(k) =

k

i

+m

i

n + jmj

;(A.2)

where jmj :=

P

d

i=0

m

i

. If moreover jmj =

p

n, then the risk of Æ

�

is given by (A.4) below and

the Bayes risk is

Z

�

R

sq

(Æ

�

; �)w

m

(t)dt =

d

n +

p

n

:(A.3)

Proof. Using the notation t = (t

0

; : : : ; t

d

) we compute the integral under consideration

Z

�

X

k

M

n;k

(t)

d

X

i=0

(t

i

� Æ

i

(k))

2

t

i

d

Y

j=0

t

m

j

j

dt

=

X

k

n!

k

0

! : : : k

d

!

d

X

i=0

Z

�

(t

i

� Æ

i

(k))

2

t

m

i

+k

i

�1

i

Y

j 6=i

t

m

j

+k

j

j

dt

=

X

k

n!

k

0

! : : : k

d

!

d

X

i=0

n

Æ

i

(k)

2

Q

d

j=0

�(m

j

+ k

j

+ 1)

(m

i

+ k

i

)�(jmj+ n + d)

�2Æ

i

(k)

Q

d

j=0

�(m

j

+ k

j

+ 1)

�(jmj+ n + d+ 1)

+ const

o

:

When the minimum over all Æ(k) is determined, we may add a multiple of

P

d

i=0

Æ

i

(k)� 1 and

obtain (A.2) by looking for a root of the gradient.

Note that Æ

�i

(k) depends only on the component k

i

. Therefore, we can use the reduction to

one-dimensional expressions as given by Lemma 6 of Braess and Sauer (2003). For any set of

functions G

j

: [0; 1]� N ! R we have

X

k

M

n;k

(�)

d

X

i=0

G

i

(�

i

; k

i

) =

d

X

i=0

n

X

j=0

B

n;j

(�

i

) G

i

(�

i

; j) :

15



The risk for the Bayes estimate is now evaluated

R

sq

(Æ

�

; �) =

X

k

M

n;k

(�)

d

X

i=0

1

�

i

(�

i

� Æ

i

(k))

2

=

d

X

i=0

n

X

j=0

B

n;j

(�

i

)

1

�

i

�

�

i

�

j +m

i

n+ jmj

�

2

:

The sums over Bernstein polynomials and quadratic expressions in j yield quadratic expressions

in �

i

,

R

sq

(Æ

�

; �) =

d

X

i=0

1

�

i

n

(�

i

�

m

i

n+ jmj

�

n

n+ jmj

�

i

)

2

+

n

(n+ jmj)

2

�

i

(1� �

i

)

o

=

1

(n+ jmj)

2

d

X

i=0

1

�

i

n

(jmj�

i

�m

i

)

2

+ n�

i

(1� �

i

)

o

:

Next, we restrict ourselves to the case jmj =

p

n to obtain

R

sq

(Æ

�

; �) =

1

(n+

p

n)

2

d

X

i=0

1

�

i

n

m

2

i

� 2jmjm

i

�

i

+ n�

i

o

=

1

(n+

p

n)

2

n

n(d� 1) +

d

X

i=0

m

2

i

�

i

o

:(A.4)

Recall that

R

�

1

t

i

Q

j

t

m

j

j

dt=

R

�

Q

j

t

m

j

j

dt = (jmj+ d)=m

i

, and we have

Z

�

R

sq

(Æ

�

; �)w

m

(t)dt =

1

(n+

p

n)

2

fn(d� 1) +

d

X

i=0

m

i

(jmj+ d)g

=

d

n+

p

n

;

which completes the proof of the lemma. 2
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