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Abstract

For the binary response model, we determine optimal designs which are robust with

respect to misspeci�cations of the unknown parameters. We propose a maximin approach

and provide a numerical method to identify the best two point designs for the commonly

applied link functions. This method is broadly applicable and can be extended to designs

with a given number (� 2) of support points and further link functions. The results are

illustrated for the logistic and probit model, for which the maximin optimal designs are

found explicitly.

Keywords and Phrases: Binary response model, robust optimal design, maximin D-optimality,

Bayesian D-optimality, prior distribution

1 Introduction

We consider the common binary response model where a subject is administered a stimulus

at a dose level x 2 IR. The response X is a binary random variable with success probability

p(x; #), i.e. X � Bin(1; p(x; #)), where x 2 IR is the explanatory variable and # is an unknown

parameter. In this article, we deal with the following parametrization of a two parameter binary

response model,

p(x; #) = F (�(x� �)); # = (�; �)

T

; � 2 IR; � 2 IR

+

;(1.1)
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where F denotes a known distribution function with density f . For this model the Fisher

information for the parameter # at a point x is given by

I(x; #) = h(�(x� �))

 

�

2

��(x� �)

��(x� �) (x� �)

2

!

;

where the function h(z) is de�ned as

h(z) =

f

2

(z)

F (z)(1� F (z))

:(1.2)

An (approximate) design � is a probability measure with �nite support on IR; i.e. the observa-

tions are taken at the support points of the measure proportional to the corresponding masses.

The Fisher information of the design � is given by

M(�; #) =

Z

I(x; #) d�(x);(1.3)

and an optimal design maximizes a real-valued function of the Fisher information matrix, which

is usually referred to as an optimality criterion [see e.g. Silvey (1980)]. A typical example is

D-optimality where the determinant of the Fisher information is maximized with respect to

the design �, thus minimizing the (�rst order approximation of the) volume of the ellipsoid of

concentration for the parameter #.

Much e�ort has been devoted to the problem of �nding good designs for the binary response

model [see Kalish and Rosenberger (1978), Abdelbasit and Plackett (1983), Minkin (1987),

Sitter and Fainaru (1997) among many others]. Since the Fisher information and thus the D-

optimal design depends on the unknown parameter a D-optimal design cannot be implemented

directly in practice. Following Cherno� (1953), numerous authors assume that an initial guess

of # is available and determine so-called locally optimal designs [see Ford, Torsney and Wu

(1992), Sitter and Wu (1993)]. However, misspeci�cations of the parameter can lead to poor

results in the subsequent data analysis. A more robust alternative is to assume suÆcient

knowledge of # to specify a prior distribution for this parameter and to average the respective

optimality criteria over the plausible values of # de�ned by the prior. This leads to so-called

Bayesian optimality criteria [see e.g. Chaloner and Larntz (1989)].

As an alternative for the construction of robust designs, we propose a maximin approach based

on the D-optimality criterion, which only requires the speci�cation of a certain range for the

unknown parameter. We feel that this is a more realistic scenario since practitioners will often

have diÆculties to specify a prior distribution for the unknown parameter #, especially if this

is multidimensional. So far, maximin D-optimal designs have been found only within a very

restricted class of designs, i.e. equidistant designs with equal weights and symmetric about the

mean of the �-interval [see Sitter (1992)]. The main diÆculty for the construction of optimal

designs with respect to maximin optimality criteria is the non-di�erentiability of this type of

criteria. We solve this problem by exploiting the close relation between Bayes- and maximin

optimality criteria [see Dette, Haines and Imhof (2003)]. This allows us to obtain the maximin

D-optimal designs as the limit of some Bayesian optimal designs.
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In Section 2, we describe the above optimality criteria, the method for the construction of

maximin optimal designs and its implementation considering minimally supported designs.

Several examples of link functions are given, for which the method works without modi�cations.

Section 3 deals with extensions of the method to the other commonly applied link functions

as well as designs with more than two support points. In Section 4, the minimally supported

designs from Section 2 are taken up again and investigated with respect to global optimality

(i.e. optimality within the class of all designs). Finally, some of the more technical arguments

are deferred to an appendix.

2 Maximin D-optimal two point designs in the binary

response model

In the following, we motivate and de�ne the optimality criterion under consideration in this

article. As indicated in the introduction, D-optimal designs depend on the unknown model

parameters and are not necessarily robust with respect to their misspeci�cation. There are two

non-sequential approaches to construct optimal designs based on the D-criterion, which are

more robust. On the one hand, it can be reasonable to assume that some prior knowledge about

the parameter # is available in advance, which can be speci�ed by a probability distribution

on the parameter space �. In such cases it makes sense to choose a design that maximizes a

function of the determinant of the information matrixM(�; #) after averaging out the plausible

values of # by a prior distribution, say ~�. Since the use of standardized criteria is recommended

to avoid di�erent scaling [see Dette and Wong (1996) or Dette (1997)] this leads to a Bayesian

optimality criterion based on the D-eÆciencies

e�

D

(�; #) =

�

jM(�; #)j

jM(�

#

; #)j

�

1=2

;

where �

#

denotes the locally D-optimal design for the parameter #. The criterion function

~

	

p

(�) is then de�ned as

~

	

p

(�) =

"

Z

�

�

jM(�; #)j

jM(�

#

; #)j

�

p=2

d~�(#)

#

1

p

; �1 < p < 0;(2.1)

and a Bayesian

~

	

p

-optimal design � with respect to the prior ~� maximizes this expression over

the set of all approximate designs on the design space [see Dette andWong (1996)]. Equivalently,

we will use a simpli�ed notation for this criterion, where each prior distribution ~� is identi�ed

with an associated prior � de�ned by

d�(#) = jM(�

#

; #)j

�q

d~�(#)

replacing the expression p=2 by q. A monotone transformation of the standardized Bayesian

D-optimality criterion function can then be written as

	

q

(�) =

h

Z

�

jM(�; #)j

q

d�(#)

i

1

q

:
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If, on the other hand, the speci�cation of a prior distribution � on the parameter space is not

possible in advance, it is sensible to construct the design for the protection of the experiment

against the worst possible case, i.e. against the values of # 2 � minimizing the D-eÆciency.

In this case the optimal design maximizes the minimal D-eÆciency with respect to � which

yields the standardized maximin D-optimality criterion

	

�1

(�) = inf

#2�

�

�

jM(�; #)j

jM(�

#

; #)j

�

1=2

�

(2.2)

[see M�uller (1995) or Imhof (2001)]. Throughout this article, we call a design maximizing

the above function 	

�1

-optimal (with respect to �), where � denotes the space of possible

values for the parameter #: Obviously, in the maximin case it is not necessary to have a

suÆcient amount of prior knowledge to specify certain preferable values for # as it is in the

Bayesian case. The only "parameter" the experimenter has to choose in advance is the "region

of uncertainty" � as a subset of IR � IR

+

. Note that the standardized maximin criterion is

obtained in the limit from the Bayesian criterion as q tends to �1. For this reason, the

notation 	

�1

is consistent with the above de�nitions. It is easy to see that in the binary

response model with parametrization (1.1) the value of the optimal determinant of the Fisher

information matrix jM(�

#

; #)j does not depend on the value of the parameter vector # 2 �, i.e.

the standardization of the criterion function is constant with respect to #: Therefore we will

use the notation "maximin D-optimal" equivalently to "standardized maximin D-optimal" as

well as the analogous notations for the Bayesian case in the following.

A computational advantage of the Bayesian optimality criterion is its Fr�echet di�erentiability.

As a consequence, standard numerical methods for the determination of Bayesian D-optimal

designs can easily be adapted [see e.g. Chaloner and Larntz (1989)]. The determination of

maximin D-optimal designs, however, is a substantially more complex problem. Usually the

structure of the particular design criterion under consideration has to be used for the con-

struction of algorithms [see Sitter (1992) or Fandom Noubiap and Seidel (2000)]. We will now

discuss a general strategy to obtain maximin optimal designs as limits from Bayesian optimal

designs.

From Theorem 3.1 in Dette, Haines and Imhof (2003) we obtain a close connection between

Bayesian and maximin optimal designs, which we will use to construct maximin D-optimal

designs from their Bayesian counterparts. The �rst part of the following theorem gives a

special case of the above-mentioned result, so that it is applicable for our purpose. Part two,

moreover, deals with a simpli�cation with respect to the choice of the prior �, which will be

exploited in the following to simplify our method.

Theorem 1

1. Let � be compact and � be an arbitrary prior on � where supp(�) = �. Suppose that the

standardized Bayesian D-optimal designs �

q

within a class of designs � with respect to

� converge weakly to some limit �

�

2 � as q ! �1. Then �

�

is standardized maximin

D-optimal within the class �.
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2. Let

N (�) =

n

# 2 � j 	

�1

(�) =

�

jM(�; #)j

jM(�

#

; #)j

�

1=2

o

:

If a superset E of N (�

�

) is known, the above result still holds if we choose a prior � on

E with the condition supp(�) = � replaced by � � supp(�) = E � N (�

�

).

By a standard argument in design theory [see Silvey (1980), Lemma 5.1.3] it can be shown that

Bayesian and maximin D-optimal two point designs for the binary response model are equally

weighted. Thus, in the following we will restrict our attention to uniform distributions as far as

two point designs are considered. The following theorem gives a condition on the function h(z)

so that N (�) is a subset of the boundary of � for all two point designs � with equal weights.

Theorem 2 Let � be convex. If the function h(z) in (1.2) is log-concave on IR then for all

equally weighted two point designs � the determinant jM(�; #)j is a log-concave function in #.

It follows from Ford, Torsney and Wu (1992) that the value of the optimal determinant of the

Fisher information matrix M(�

#

; #) does not depend on the value of the parameter # 2 �,

and as a consequence the standardization of the criterion function is constant with respect to

#: For this reason, log-concavity of the function h(z) implies log-concavity of the standardized

determinant function

jM(�;#)j

jM(�

#

;#)j

and thus N (�

�

) � @�, where @� denotes the boundary of the

region of uncertainty.

Table 1: Results on the log-concavity of the function h(z) for several common link functions

F (z) (s(z) = sign(z)).

link function F (z) h(z) log-concavity of h(z)

Double Exponential

1+s(z)

2

�

s(z)

2

e

�jzj

1

2e

jzj

�1

no

Double Reciprocal

1+s(z)

2

�

s(z)

2

(

1

1+jzj

)

1

(1+jzj)

2

(2jzj+1)

no

Complementary Log-Log 1� e

�e

z

e

2z

�1+e

e

z

yes

Logit

1

(1+e

�z

)

e

z

(1+e

z

)

2

yes

Probit �(z)

�

2

(z)

�(z)(1��(z))

yes

Skewed Logit, m � 1

1

(1+e

�z

)

m

m

2

(1+e

z

)

2

(�1+(1+e

�z

)

m

)

yes

Skewed Logit, m < 1

1

(1+e

�z

)

m

m

2

(1+e

z

)

2

(�1+(1+e

�z

)

m

)

no

Some of the commonly applied link functions and the information concerning the log-concavity

of the corresponding functions h(z) are displayed in Table 1. It is interesting to note that the

size of the parameterm in the skewed logit model determines if the function h(z) is log-concave.

The next theorem gives suÆcient conditions for the function h(z) and the parameter region �

such that the D-optimal two point design is unique.
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Theorem 3 If � is compact and h(z) is log-concave on IR then the maximin D-optimal two

point design is unique.

We are now ready to outline a numerical method to calculate the maximin D-optimal two

point designs for binary response models with parametrization (1.1). From a practical point

of view it is reasonable to assume that the experimenter can specify a certain range for the

position of either parameter before the experiment. This information leads to a rectangular

subset of IR � IR

+

for �, i.e. � = [�

1

; �

2

] � [�

1

; �

2

]. The following result relates maximin

D-optimal designs with respect to various rectangles and yields a substantial simpli�cation of

the optimization problem.

Lemma 4 Let �

�

denote the maximin D-optimal design for the binary response model (1.1)

with respect to the parameter space � = [�

1

; �

2

]� [�

1

; �

2

] and c > 0; � 2 IR: The standardized

maximin D-optimal design �

��

with respect to the parameter space

~

� =

h

�

1

+�

c

;

�

2

+�

c

i

� [c�

1

; c�

2

]

is given by

�

��

(fxg) = �

�

(fcx��g):

From Theorem 2 it follows that if the function h(z) is log-concave then for all equally weighted

two point designs � the minimum of the D-eÆciency of � over # 2 � can only be attained in

the vertices of �, i.e.

N (�) � f(�

1

; �

1

); (�

1

; �

2

); (�

2

; �

1

); (�

2

; �

2

)g:

We can now use Theorem 1 for the construction of maximinD-optimal two point designs, where

E denotes the set of the vertices of � and a prior � on E can be chosen arbitrarily with positive

weight for each vertex. Theorem 1 suggests that for all such priors � the maximin D-optimal

two point design can be calculated as the limit of the Bayesian D-optimal two point designs

with respect to � where q tends to �1.

For computational reasons, we choose � to be the uniform distribution on E. Thus the Bayesian

D-optimal two point design �

q

(with respect to the prior �) can easily be computed numerically

maximizing the function

�

2

X

i=1

2

X

j=1

1

4

(jM(�; �

i

; �

j

)j)

q

�

1

q

:

We start with an initial value for q < 0, e.g., q

0

= �100, calculate �

q

0

and �

q

1

:= �

q

0

�10

and

compare the respective values of x

1

(q

j

) and x

2

(q

j

); j = 0; 1. If both absolute distances are

less than some threshold value we propose to use �

q

1

as an approximation to the maximin D-

optimal two point design. Else we go on computing �

q

2

= �

q

1

�10

, compare the values of x

1

(q

j

)

and x

2

(q

j

) and so on. Usually four (or even less) steps of this procedure are suÆcient to obtain

the maximin D-optimal two point design with high accuracy.

It is not possible to show that the Bayesian D-optimal two point designs �

q

are unique in all

circumstances but in case of convergence we will always get the unique maximinD-optimal two

6



point design [see Theorems 1 and 3]. If the sequence of Bayesian D-optimal designs does not

converge as q ! �1 we propose to change the prior � and start the procedure again.

Recall that in the case of a log-concave function h(z) the worst case set N (�) is a subset of the

vertices of the parameter region � for all uniform two point designs � if the set � of parameters

speci�ed by the experimenter is a closed rectangle. If the condition of log-concavity of h(z)

is not ful�lled the above algorithm cannot be applied without modi�cations since we have no

knowledge about the set N (�): The necessary modi�cations of our method in situations without

log-concavity will be described in the next section.

Below, we give some examples of maximin D-optimal (two point) designs obtained by our

method. We calculated the maximin D-optimal designs by the algorithm described in the

previous paragraph. The sequence of designs obtained by this algorithm converged to a limit

in all cases under consideration in our study. We restrict ourselves to the logit and probit

link functions only, to keep the length of this article in acceptable limits. The Maximin D-

optimal two point designs for the logistic regression model with respect to several representative

situations (concerning di�erent parameter regions �; see column 1-4) are shown in the 5th and

6th column of Table 2. The next two columns of this table give the corresponding locally

D-optimal designs with respect to parameter values for � and �, which seem plausible from a

heuristic point of view, i.e. � and � are chosen as the arithmetic means of the intervals [�

1

; �

2

]

and [�

1

; �

2

], respectively. In the two right panels of Table 2 the corresponding designs for the

probit model are listed.

Table 2: Maximin D-optimal two point designs for the logit and probit link functions with respect

to several parameter spaces. For comparison: The corresponding locally D-optimal designs with

parameters � = (�

1

+ �

2

)=2, � = (�

1

+ �

2

)=2.

� �

�

(logit) local (logit) �

�

(probit) local (probit)

�

1

�

2

�

1

�

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

-1 1

2

3

3

2

-1.295 1.295 -1.425 1.425 -0.698 0.698 -1.051 1.051

-1 1 1 2 -1.018 1.018 -1.029 1.029 -0.505 0.505 -0.759 0.759

0 1 1 2 -0.507 1.507 -0.529 1.529 -0.064 1.064 -0.259 1.259

-0.2 0.2 1 1.5 -1.242 1.242 -1.235 1.235 -0.889 0.889 -0.910 0.910

-0.5 0.5 1 1.5 -1.202 1.202 -1.235 1.235 -0.746 0.746 -0.910 0.910

-0.5 0.5 1 2 -1.007 1.007 -1.029 1.029 -0.564 0.564 -0.759 0.759

It is interesting to see that the locally D-optimal designs (with respect to the center of the

rectangle) in the logistic regression model are rather close to the maximin D-optimal two point

designs. Thus a practical recommendation for the optimal design of experiment in the logistic

regression model is to use the locally D-optimal design for the center ((�

1

+�

2

)=2; (�

1

+�

2

)=2))

of the parameter region � = [�

1

; �

2

] � [�

1

; �

2

], if � is not too large. On the other hand the

7



situation in the probit model is rather di�erent. Here we observe larger di�erences between

the locally and maximin D-optimal designs and the locally D-optimal designs with respect to

the center of the rectangle can be rather ineÆcient. We �nally remark again that the maximin

optimal designs given in Table 2 are optimal within the class of all two point designs. The

discussion if these designs are optimal within the class of all designs is deferred to Section 4.

3 Extensions

There are some "mild" conditions under which the algorithm is applicable without modi�ca-

tions. We can summarize them as the region of uncertainty � being a closed rectangle, which

is reasonable from a practical point of view, and log-concavity of the function h(z), which is

satis�ed for many but not all of the commonly applied link functions. In the following, we will

briey discuss how the method can be modi�ed if the above conditions are not met. In these

cases only the prior distribution on the parameter space � in the Bayesian optimality criterion

has to be modi�ed appropriately and the maximin optimal designs can again be obtained as

limits from Bayesian optimal designs.

(a) Assume that � � IR�IR

+

is a convex, compact set, but not a rectangle (or polygon). If the

function h(z) is log-concave we can choose � as the uniform distribution on the boundary

of the set �. For computational reasons, this distribution should be approximated by an

equidistant grid on the boundary of the set �.

(b) There are several cases where two point designs are not optimal and an eÆcient design

� with more than two support points is of importance. A typical example for such a

situation appears if the optimal two point design is far from the globally optimal design

(for a precise formulation see the next section), or if the design should also be used for

model checking. Then even if the function h(z) is log-concave the function jM(�; #)j will

in general not be log-concave with respect to # for designs � with more than two support

points. In this case we cannot specify a subset of the parameter space � containing N (�

�

)

and thus have to use the uniform distribution on � or its approximation on a grid as a

prior in the Bayesian optimality criterion 	

q

:

(c) If the function h(z) is not log-concave and there is no other way to show that the minimum

of jM(�; #)j over � is attained at the boundary of � we also have to use the uniform

distribution on � or its approximation by a discrete prior �.

Note that in all these cases the numerical procedure is applicable, where the only modi�cation

consists in the choice of the support for the prior distribution � on �. We calculate Bayesian

	

q

-optimal designs and obtain the maximin optimal designs as limit as q ! �1: However, an

additional amount of numerical calculations is required in such a situation because of the more

complicated structure of the optimality criterion caused by the larger support of the prior �.
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4 Global Optimality and EÆciency

The designs found in Section 2 are maximin D-optimal within the class of all two point designs

only. In this section, we will carefully analyze how they perform compared to the corresponding

maximin D-optimal designs within the class of all designs. For the sake of brevity we call

these designs also globally optimal. A powerful tool for checking optimality of a design is an

equivalence theorem, which can be found in Dette, Haines and Imhof (2003).

Theorem 5 A design �

�

is maximin D-optimal with respect to � if and only if there exists a

prior �

�

supported on the set N (�

�

) such that the inequality

d(�

�

; x) =

Z

N (�

�

)

tracefI(x; #)M

�1

(�

�

; #)g d�

�

(#) � 2(4.1)

holds for all x 2 IR.

Following Dette, Haines and Imhof (2003) we call the prior �

�

least favourable distribution.

Checking optimality of the two point designs from Table 2 by the equivalence theorem indicates

that designs corresponding to "small" parameter spaces � tend to be more eÆcient than designs

corresponding to a larger amount of uncertainty about the position of the unknown parameter.

In our examples, the maximin D-optimal two point designs corresponding to the parameter

spaces � = [�0:2; 0:2] � [1; 1:5] and � = [�0:5; 0:5] � [1; 1:5] turn out to be already optimal

within the class of all designs. To give an illustration, Figure 1 shows the function d(�

�

; x) from

the equivalence theorem for some two point designs and a three point design for the logistic

regression model.

In the last section, the necessary modi�cations of our method for determining maximin optimal

designs with more than two support points were given. In the cases, where the two-point designs

from Table 2 are not globally optimal we calculated the optimal three point designs for the

logit example. These designs are listed in Table 3.

Table 3: Maximin D-optimal three point designs for the logit link function with respect to various

parameter spaces.

� �

�

�

1

�

2

�

1

�

2

x

1

x

2

x

3

w

1

w

2

w

3

-1 1

2

3

3

2

-1.889 0 1.889 0.331 0.338 0.331

-1 1 1 2 -1.559 0 1.559 0.281 0.438 0.281

0 1 1 2 -0.655 0.5 1.655 0.415 0.170 0.415

-0.5 0.5 1 2 -1.155 0 1.155 0.415 0.170 0.415
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Figure 1: The function d(�

�

; x) from the equivalence theorem for the logistic regression model.

Top left: The maximin D-optimal two point design with respect to � = [�0:5; 0:5] � [1; 1:5]

(globally 	

�1

-optimal). Top right: The maximin D-optimal two point design with respect to

� = [�0:5; 0:5] � [1; 2] (almost globally 	

�1

-optimal). Bottom left: The maximin D-optimal

two point design with respect to � = [�1; 1]� [1; 2] (far from global 	

�1

-optimality). Bottom

right: The maximin D-optimal three point design with respect to � = [�1; 1] � [1; 2] (globally

	

�1

-optimal).

-2 -1 1 2
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1.925

1.95

1.975

-3 -2 -1 1 2 3

1.9
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1.98

2.02

-3 -2 -1 1 2 3

1.5

2.5

3

-3 -2 -1 1 2 3

1.6

1.7

1.8

1.9

Applying the equivalence theorem yields that all three point designs listed in Table 3 are

maximin D-optimal within the class of all designs. Note that the optimal designs for the

rectangles � = [�0:5; 0:5]� [1; 2] and � = [0; 1]� [1; 2] are the same except for a shift by 0:5,

which is the di�erence of the means of the respective �-intervals [see Lemma 4].

A similar result can be obtained for the corresponding maximinD-optimal three point designs in

the probit model (see Table 4). Only for the parameter region � = [�1; 1]� [1; 2], three support

points are not suÆcient for global maximin D-optimality (see Figure 2). The corresponding

maximin D-optimal four point design, which is also optimal within the class of all designs, is

given in Table 5. The optimality check by the equivalence theorem for the design corresponding

to the parameter region � = [�1; 1]� [1; 2] is carried out in Figure 2.

Considering the maximin D-optimal three point designs for the respective link functions, it

is remarkable that the designs corresponding to the probit model allocate almost half of the

weight to the support point in the center. In the logistic case, however, the situation appears to

be rather di�erent. If the maximin D-optimal two point design is already close to the maximin

D-optimal (three point) design, the outer support points of the maximin D-optimal three point

design are fairly close to those of the maximin D-optimal two point design and are assigned

a large amount of weight. If, on the other hand, the region of uncertainty is larger, so that

10



Table 4: Maximin D-optimal three point designs for the probit link function with respect to

various parameter spaces.

� �

�

�

1

�

2

�

1

�

2

x

1

x

2

x

3

w

1

w

2

w

3

-1 1

2

3

3

2

-1.436 0 1.436 0.262 0.476 0.262

-1 1 1 2 -1.223 0 1.223 0.255 0.490 0.255

0 1 1 2 -0.484 0.5 1.484 0.273 0.454 0.273

-0.5 0.5 1 2 -0.984 0 0.984 0.273 0.454 0.273

Table 5: Maximin D-optimal four point design for the probit link function with respect to the

parameter space � = [�1; 1]� [1; 2].

� �

�

�

1

�

2

�

1

�

2

x

1

x

2

x

3

x

4

w

1

w

2

w

3

w

4

-1 1 1 2 -1.442 -0.319 0.319 1.442 0.223 0.277 0.277 0.223

almost four support points are needed for maximin D-optimality, the optimal design assigns

more weight to the center point.

The �nal goal of this section is to investigate the performance of the maximin D-optimal

designs (with respect to various parameter spaces �) obtained by our method, in particular

the performance of the maximin D-optimal two point designs. An obvious action we can take

to achieve this aim is to have a close look at the D-eÆciencies of the respective designs with

respect to di�erent values of # within the particular parameter space. Note that the criterion

value 	

�1

(�

�

) of the maximin D-optimal (k point) design �

�

itself represents the maximum of

the minimalD-eÆciencies within the corresponding class of designs. It is thus natural from the

Figure 2: The function d(�

�

; x) from the equivalence theorem in the probit model. Left: The

maximin D-optimal three point design with respect to � = [�1; 1]� [1; 2] (almost globally 	

�1

-

optimal). Right: The maximin D-optimal four point design with respect to � = [�1; 1]� [1; 2]

(globally 	

�1

-optimal).

-2 -1 1 2

1.75

1.8

1.85

1.9

1.95

2.05
-2 -1 1 2

1.65

1.7

1.75

1.8

1.85

1.9

1.95

11



choice of our optimality criterion to start our study with the minimal D-eÆciencies over the

parameter space � of the maximin D-optimal two (and more) point designs calculated above.

It is illustrated in Table 6 that (even for the globally maximin D-optimal designs) the minimal

D-eÆciency decreases with larger parameter spaces �, which is intuitively clear. Moreover,

the loss in D-eÆciency caused by a restriction to a k point design is signi�cantly larger in the

probit model compared to the logit case, particularly if only the maximin D-optimal two point

designs are considered. If, on the other hand, a third design point is added, the increase in

minimalD-eÆciency is remarkable in the probit model. For the logistic regression, this increase

is substantially smaller.

Table 6: Minimal D-eÆciencies of the maximin D-optimal k point designs � from the examples

of Table 2 (in parentheses: the number of support points of �). If there is no entry in the table,

the two or three-point design is already globally optimal.

� minimal D-eÆciency of �

�

1

�

2

�

1

�

2

logit (2) probit (2) logit (3) probit (3) probit (4)

-1 1

2

3

3

2

73.4% 38.2% 78.9% 66.0% {

-1 1 1 2 59.4% 17.9% 74.0% 54.1% 55.7%

0 1 1 2 84.0% 65.2% 84.5% 73.1% {

-0.2 0.2 1 1.5 95.8% 93.2% { { {

-0.5 0.5 1 1.5 91.3% 78.7% { { {

-0.5 0.5 1 2 84.0% 65.2% 84.5% 73.1% {

Note that the D-eÆciencies from Table 6 are the minimal D-eÆciencies with respect to the

respective parameter regions � representing the worst case scenario. If the true value of # 2 �

is not an element of the support N (�) of the least favourable distribution the D-eÆciency of �

with respect to # can be signi�cantly larger. Figure 3 shows the D-eÆciency of the minimax

optimal designs if # varies in the speci�ed set �: It can be seen that the D-eÆciencies of the

respective designs increase rapidly if the "true" value has some distance to the support N (�)

of the least favourable distribution.

Table 7 gives the D-eÆciencies of the maximin optimal designs corresponding to the situation

in Figure 3 with respect to some representative "true" values of # 2 [�1; 1] � [1; 2]. Since

the minimal D-eÆciencies (at least for two point designs) always occur on the vertices of the

parameter region � we have already compared the D-eÆciencies with respect to the vertices

of � in Table 6. These results indicate that the maximin D-optimal designs yield reasonable

D-eÆciencies over a broad range of �.

12



Figure 3: The D-eÆciencies of the maximin D-optimal two point designs with respect to � =

[�1; 1]�[1; 2] and the corresponding globally optimal designs. Top left: The maximin D-optimal

two point design for the logistic regression model. Top right: The maximin D-optimal two point

design for the probit model. Bottom left: The globally maximin D-optimal design for the logit

model. Bottom right: The globally maximin D-optimal design for the probit case.

1

1.2

1.4

1.6

1.8

2
-1

-0.5

0

0.5

1

0.6

0.7

0.8

0.9

1

1

1.2

1.4

1.6

1.8

1

1.2

1.4

1.6

1.8

2
-1

-0.5

0

0.5

1

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

1

1.2

1.4

1.6

1.8

2-1

-0.5

0

0.5

1

0.75

0.8

0.85

1

1.2

1.4

1.6

1.8

1

1.2

1.4

1.6

1.8

2-1

-0.5

0

0.5

1

0.6

0.7

0.8

1

1.2

1.4

1.6

1.8

Note that for a �xed value # 62 N (�) the globally maximinD-optimal designs � do not necessar-

ily perform more eÆciently than the maximin D-optimal two point designs. On the contrary,

the maximin D-optimal two point designs in both models show even higher D-eÆciencies to-

wards the center of the parameter region � than the corresponding globally optimal designs. A

reason for this observation can be found in the structure of the considered optimality criterion.

The globally maximin D-optimal designs � protect the experiment against the worst case with

respect to �, i.e. the true value of the parameter vector # is in the set N (�). The optimality

of � on this set is "bought" at the expense of lower D-eÆciencies with respect to parameter

values in � n N (�). Since we cannot eliminate the possibility that the "true" parameter is a

support point of the least favourable distribution �

�

; it is still recommended to use the globally

maximin D-optimal designs � when � is large, because optimal designs with respect to this

criterion yield some protection against the worst case scenario, which the maximin D-optimal

two point designs cannot accomplish for large parameter regions �.

In the following, we consider another somewhat related indicator for the performance of a design

� with a restricted number of support points, i.e. its eÆciency with respect to the criterion
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Table 7: Some D-eÆciencies of the maximin D-optimal two point and globally maximin D-

optimal designs � with respect to the parameter region � = [�1; 1]� [1; 2].

True # D-EÆciency of �

� � logit (2) probit (2) logit (global) probit (global)

0 1.5 100% 87.6% 87.2% 72.0%

-0.5 1.25 90.9% 66.9% 86.7% 77.3%

0.5 1.25 90.9% 66.9% 86.7% 77.3%

-0.5 1.75 89.2% 69.1% 82.7% 67.7%

0.5 1.75 89.2% 69.1% 82.7% 67.7%

function 	

�1

,

e�

	

�1

(�) =

	

�1

(�)

max

�

	

�1

(�)

;

where the maximum is taken over the set of all designs. For the maximin D-optimal two point

designs 	

�1

-eÆciencies are listed in Table 8.

Table 8: 	

�1

-eÆciencies of the Maximin D-optimal two point designs �, which are not globally

optimal.

� e�

	

�1

(�)

�

1

�

2

�

1

�

2

logit probit

-1 1

2

3

3

2

92.9% 57.9%

-1 1 1 2 80.2% 32.1%

0 1 1 2 99.3% 89.2%

-0.5 0.5 1 2 99.3% 89.2%

For the logistic regression model the eÆciencies taken from Table 8 are quite high, so that

for moderate regions � it seems suÆcient to use the corresponding maximin D-optimal two

point design provided that the data should not be used for a goodness-of-�t test of the model.

However, the use of the maximin D-optimal two point design in the probit model can only

be recommended for small parameter spaces. As pointed out before, the implementation of

our method is much easier if only two point designs are required. Furthermore, it may reduce

costs for the experimenter, if the number of support points is as low as possible (depending

on the kind of experiment to be carried out). If, on the other hand, the parameter space

speci�ed by the experimenter is larger, it is recommended to use the modi�ed algorithm and

calculate the globally maximinD-optimal design [see Section 3]. Another situation, in which the

determination of maximin D-optimal designs with more than two support points is necessary,

occurs if the design should also be used for model checking.
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5 Appendix: Proofs

Proof of Theorem 1: The �rst part is a special case of Theorem 3.1 from Dette, Haines

and Imhof (2003) where the criterion function  (M(�; #)) is given by the (square root of the)

determinant of the Fisher information, which is obviously continuous in each argument.

The proof of the second part follows along the same lines as the proof of the above-mentioned

theorem where the auxiliary parameter #

0

is chosen from E instead of �. If the set E is discrete

it is not necessary (and possible) to de�ne open neighborhoods within the set E around the

elements #

E

2 E. Instead of its neighborhood the respective #

E

itself can be inserted in the

proof of Theorem 3.1 from Dette, Haines and Imhof (2003). 2

Proof of Theorem 2: Let, for the sake of typographical brevity, Æ(x) denote the second

derivative of log h(z) evaluated at the point �(x� �). Using the formula

jM(�; #)j =

1

4

h(�(x

1

� �))h(�(x

2

� �))(x

2

� x

1

)

2

�

2

for the determinant of the information matrixM(�; #) of a two point design � with equal weights

at the support points x

1

; x

2

we calculate the eigenvalues of the Hessian H of log jM(�; #)j with

respect to � and � as

�

1;2

=

H

11

+H

22

2

�

r

(H

11

+H

22

)

2

4

�H

11

H

22

+H

2

12

;

where H

ij

; i; j = 1; 2; denote the entries of H. Since

H

11

= �

2

Æ(x

1

) + �

2

Æ(x

2

); H

22

= �

2

�

+ (x

1

� �)

2

Æ(x

1

) + (x

2

� �)

2

Æ(x

2

);

H

12

= �

h

0

(�(x

1

� �))

h(�(x

1

� �))

� �(x

1

� �) Æ(x

1

)�

h

0

(�(x

2

� �))

h(�(x

2

� �))

� �(x

2

� �) Æ(x

2

)

we see immediately that the smaller eigenvalue is less than zero if Æ(x) < 0 for all x 2 IR, i.e.

h(z) log-concave in z 2 IR. The product of the eigenvalues �

1

�

2

turns out to be

�2(Æ(x

1

)+Æ(x

2

))+�

2

[(x

1

��)

2

Æ

2

(x

1

)+(x

2

��)

2

Æ

2

(x

2

)+Æ(x

1

)Æ(x

2

)f(x

1

��)

2

+(x

2

��)

2

g] > 0

if, again, Æ(x) < 0 for all x 2 IR. Hence the larger eigenvalue is also negative and log jM(�; #)j

is a concave function of # for all equally weighted two point designs � if the function h(z) is

log-concave. 2

Proof of Theorem 3: For the sake of typographical brevity, we de�ne the D-eÆciency func-

tion �(�; #) := (jM(�; #)j=jM(�

#

; #)j)

1=2

. It is straightforward to show that for every equally

weighted two point design � the function jM(�; #)j and thus the square root of the standardized

version �(�; #) is log-concave with respect to the design points x

1

; x

2

for all # 2 � if h(z) is

log-concave. The arguments are the same as in the proof of Theorem 2. (Note that the maximin

D-optimal two point design must have equal weights [see Silvey (1980)].)
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De�ne two di�erent designs �

(1)

; �

(2)

with support points x

(1)

i

; x

(2)

i

, i = 1; 2, respectively, and

construct a further design �

(1;2)

by x

(1;2)

i

= (x

(1)

i

+ x

(2)

i

)=2; i = 1; 2. For �xed values of # we

have

�(�

(1;2)

; #) > minf�(�

(1)

; #);�(�

(2)

; #)g(A.1)

because of the log-concavity of �(�; #) in x

1

; x

2

: Let now �

(1)

; �

(2)

be two maximin D-optimal

two point designs with optimal criterion value 	

�

�1

, i.e. min

#2�

�(�

(1)

; #) = min

#2�

�(�

(2)

; #) =

	

�

�1

: In particular, we have

�(�

(1)

; #) � 	

�

�1

; �(�

(2)

; #) � 	

�

�1

8# 2 �:(A.2)

The above minima exist because � is assumed to be compact, which also implies that the set

N (�

(1;2)

) is not empty. From the optimality of the value 	

�

�1

we obtain for all #

�

2 N (�

(1;2)

)

the inequality �(�

(1;2)

; #

�

) � 	

�

�1

: But from (A.1) and (A.2) it follows that

�(�

(1;2)

; #

�

) > minf�(�

(1)

; #

�

);�(�

(2)

; #

�

)g � 	

�

�1

;

which is a contradiction to the assumption that there exist more than one 	

�1

-optimal two

point design. 2

Proof of Lemma 4. Since the value of the determinant of the locally D-optimal design

jM(�

#

; #)j does not depend on # 2 �; the standardized maximinD-optimal design with respect

to

~

� = [

�

1

+�

c

;

�

2

+�

c

]� [c�

1

; c�

2

] can be obtained by maximizing

min

�2[c�

1

;c�

2

]

�2[

�

1

+�

c

;

�

2

+�

c

]

�

�

�

Z

h(�(x� �))

�

�

2

��(x� �)

��(x� �) (x� �)

2

)d�(x)

�

�

�

= min

�2[�

1

;�

2

]

�2[�

1

;�

2

]

�

�

�

Z

h(c�(x�

�+�

c

))

�

c

2

�

2

�c�(x�

�+�

c

)

�c�(x�

�+�

c

) (x�

�+�

c

)

2

�

d�(x)

�

�

�

= min

�2[�

1

;�

2

]

�2[�

1

;�

2

]

�

�

�

Z

h(�(x� �))

�

�

2

��(x� �)

��(x� �) (x� �)

2

�

d

~

�(x)

�

�

�

where the design

~

� is obtained from � by the relation

~

�(fxg) = �(fcx��g):

The assertion of Lemma 4 is now obvious. 2
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