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Abstract

The analysis of temporal data is an important issue in current

research, because most real-world data either explicitly or implicitly

contains some information about time. The key to successfully solv-

ing temporal learning tasks is to analyze the assumptions that can be

made and prior knowledge one has about the temporal process of the

learning problem and �nd a representation of the data and a learn-

ing algorithm that makes e�ective use of this knowledge. This paper

will present a concise overview of the application of Support Vector

Machines to di�erent temporal learning tasks and the corresponding

temporal representations.

1 Introduction

There is a multitude of learning tasks related to temporal phenomena and,

correspondingly, there are many possible representations for temporal data.

Learning tasks and representations are closely related: the No Free Lunch

Theorem [25, 26] implies that �nding an adequately biased representation

can make a hard learing problem easy (and, vice versa, that �nding this

representation itself is hard).

�

A short version of this paper appears in the Proceedings of the IEEE International

Conference on Accoustics, Speech and Signal Processing (ICASSP 2003)
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Statistical time series analysis has developed two big classes of represen-

tations, namely those in the time domain and those in the frequency domain

[4]. Analysis in the time domain is based on the correlation between the

current and previous observations, while the frequency domain tries to de-

compose the time series into cyclic components at di�erent frequencies. For

learning tasks, time series analysis has the following objectives : description

(to describe a time series by certain statistics), explanation (to understand

the process behind a time series), prediction (to predict future values of the

time series) and control (control the process behind the time series to gener-

ate certain future values).

For Machine Learning, an overall theory of temporal analysis is much less

developed. Learning tasks are usually taken from speci�c real-world problems

and representations are often constructed ad hoc. Morik [15] di�erentiates

between two di�erent aspects of time, the linear precedence of events and

immediate dominance of temporal categories. These terms originate from

natural language theory [9]. Immediate dominance refers to the construction

of higher-level categories of the time-dependent elements, exemplary learning

tasks based on the concept of immediate dominance are the discovery of

frequent episodes [14] or �rst order logic learning based on Allen's interval

relations [1]. The aspect of linear precedence refers to the linear temporal

order of the single events and is most prominent in the framework of time

series analysis.

The focus of this paper lies on the time series representation and the types

of learning tasks that can be solved with support vector machines (SVMs,

[24]). Support vector machines have been applied to very di�erent kinds

of learning problems, for example to time series prediction by Mukherjee et

al. in [17] and by M�uller et al. in [18]. A regression problem for time series

has been solved with SVMs in [20], where certain coeÆcients of chemical

components have been predicted from chromatography time series. Chang

et al. [3] have presented an approach for time series segmentation with SVMs,

which consists of simultaneously learning multiple SVMs models for one time

series.

All of these applications are based on a single time series representation,

the phase space representation, i. e. creating d-dimensional examples by mov-

ing a window of length d over the time series. The theoretical foundation for

this is the theorem of Takens [23, 19] which states that for dynamical systems

of a certain type, the phase-space reconstruction and the unobserved inter-

nal structure of the system are topologically identical, given the embedding
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dimension is large enough. At �rst glance, this seems like the perfect tool:

We know that we can �nd out all we need to know about a time series simply

by looking at large enough time windows and in the SVM we have a learning

algorithm that is well known to perform well on high-dimensional data. But

this conclusion is fallacious. First of all, Taken's theorem does only hold for

dynamical systems which can be described by di�erential equations of a cer-

tain form. Generally, one cannot decide whether this is the case for a given

real-word data set. Second, the theory of structural risk minimization [24],

on which the SVM is based, is only formulated for independent, identically

distributed data. Clearly, the independence assumption is violated for time

series data. Although versions of the central theorems of structural risk min-

imization do also hold for dependent data of weak dependence structure [8]

and in practice, SVMs have been shown to perform quite well on time series

data, one should be careful to transfer results of the SVM to this type of

data. Finally, even if the premises of Taken's theorem and the structural risk

minimization principle do hold, a di�erent representation of the data may

lead to a much easier generalization (it is the \large enough dimension"-part

of Taken's theorem that can cause much trouble).

The next section will give a short introduction to Support Vector Ma-

chines. In section 3 we will investigate the relation between the SVM and

statistical time series modeling, in particular autoregressive models and the

Fourier transform. After that, in section 4, we will discuss alternative rep-

resentations that were used in di�erent applications with real-world data.

Finally, section 5 will present novel temporal learning tasks which can be

solved using SVMs.

2 Support Vector Machines

Support Vector Machines are based on the work of Vladimir Vapnik in statis-

tical learning theory [24]. Statistical learning theory deals with the question,

how a function f from a class of functions (f

�

)

�2�

can be found, that mini-

mizes the expected risk

R[f ] =

Z Z

L(y; f(x))dP (yjx)dP (x) (1)

with respect to a loss function L, when the distributions of the examples

P (x) and their classi�cations P (yjx) are unknown and have to be estimated

from �nitely many examples (x

i

; y

i

)

i2I

.
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The SVM algorithm solves this problem by minimizing the regularized

risk R

reg

[f ], which is the weighted sum of the empirical risk R

emp

[f ] with

respect to the data (x

i

; y

i

)

i=1:::n

and a complexity term jjwjj

2

R

reg

[f ] = R

emp

[f ] + �jjwjj

2

:

In their basic formulation, SVMs �nd a linear decision function y =

f(x) = sign(w � x+ b) that both minimizes the prediction error on the train-

ing set and promises the best generalization performance. One of the major

tricks of SVM learning is the use of kernel functions to extend the class of

decision functions to the non-linear case. This is done by mapping the data

from the input space X into a high-dimensional feature space X by a function

� : X ! X

and solving the linear learning problem in X . The actual function � does

not need to be known, it suÆces to have a kernel function k which calculates

the inner product in the feature space.

K(x; y) = �(x) � �(y)

3 Time Series Models

Using the phase space model to represent the time series data together with

a linear prediction function leads to the class of autoregressive (AR) models

[4]. Obviously, AR models can be learned by a SVM with linear kernel, so

it does not surprise that the SVM does not perform very di�erent on data

generated from an AR model than other methods for AR model estimation,

like the Yule-Walker equations. However, it can be seen that the SVM is

more robust against outliers in the data. The following table compares the

mean absolute error of a AR model learned using the Yule-Walker equations

against a SVM model. In the �rst case, the data was generated from an AR

model, in the second case 10% of outliers were added (validation set results

averaged over 4 runs with di�erent models).

For time series analysis in the frequency domain, the Fourier transforma-

tion can be used to transform the examples for the SVM. There also exist

kernel function, which make this transformation explicitly, e. g. the Fourier

kernels proposed by Vapnik in [24], Ch. 11. or the time-frequency kernel of
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Data Tool d=2 d=3 d=4 d=5

AR model AR 0.640 0.624 0.624 0.633

SVM 0.648 0.634 0.632 0.639

AR+outliers AR 0.942 0.922 0.919 0.911

SVM 0.885 0.826 0.832 0.827

Figure 1: Performance of AR and SVM model.

Davy et al. [7]. Vapnik's kernel is based on the typical kernel trick: While

the constructing the Fourier series expansion of a time series is hard, calcu-

lating the inner product in the feature space given by the Fourier expansion

of order N is easy:

K(x

i

; x

j

) =

sin(

2N+1

2

(x

i

� x

j

))

sin

(x

i

�x

j

)

2

Vapnik also suggests di�erent kernels for regularized Fourier expansions for

improved approximation properties. The kernel of Davy et al. is based on

Cohen's time-frequency distributions [5], which generalize the Fourier trans-

formation for the analysis of non-stationary time series.

4 Time Series Representations for Real-World

Data

Time series models are a well understood research area. However, in practice

we see over and over again that much data manipulation has to be done

in order to get good results. In this section we will show some examples

of representation tricks that can be used when analysing time series with

Support Vector Machines. The main advantage of SVMs is that the relevant

equations that describe the generelization errors of SVMs [24] do not depend

on the dimensionality of the data but only on the margin of the separating

hyperplane, which makes the SVM especially suited for high-dimensional

data. While this reasoning is not strictly valid - the margin depends on the

geometry of the data and hence also on the dimension - empirical evidence

show that this property of SVMs does hold in practice (see e. g. [10]). This

allows us to enhance the represenation with certain attributes which improve

the temporal analysis of the data.
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Often, time series can be decomposed into a long-term linear trend, a

cyclical component and a rest, where the trend and the cyclical component

are �tted before the actual analysis of the rest is being performed. For

the trend, when analysing a time series on the basis of the phase space

representation and a linear kernel (i. e. using an AR model), we can simply

add the time t as another attribute to the data. By this, the SVM will learn

a function w

1

x

1

+ : : :+w

d

x

d

+w

d+1

t, i. e. it will automatically decide, which

e�ects in the data to attribute to the trend w

d+1

t and which to the rest model

w

1

x

1

+ : : :+ w

d

x

d

.

The case of cyclical components is more complicated, because they cannot

be as easily identi�ed and �ltered from the data as a simple trend. But often

the most diÆcult problem in practice is that lots of statistical procedures

for modeling periodic functions cannot be applied, because what looks like a

periodic component actually is not one. In Figure 2 you can see the weekly

sales of a certain item in a retail store. One can easily see the e�ects of

christmas sales in the 51st and preceeding weeks and also the lower e�ects

of easter sales in the 12th week. One can easily imagine that these e�ects

will occur periodic every year at the same time. But they don't! In some

years, christmas is in the 51st week of the year, but in some it is already in

the 50th week. On a daily time scale, christmas will repeat itself every 365

days in most years, but in 366 days in a leap year. The data of the eastern

can vary about �ve weeks. Therefore, in [21] 20 additional binary attributes

were used to mark the presence of holidays, special sale promotions, and

other signi�cant events in that particular week. In the example of Figure 2,

this reduced mean absolute error by more than 20% from 116:15 to 91:063

(test error over one year, averaged over 4 di�erent stores).

Another case of sales time series is shown in Figure 3. This time, the

subject are newspapers and the sales are reported on a daily basis. We can

clearly see that there is a cycle of 6 days in the data (the newspaper does not

appear on sundays) and that sales are especially high for the weekend edition

on saturdays. Hence, instead of using the phase space representation on the

original time series, we can also reason that we have indeed 6 di�erent time

series of sales (one for each weekday) and use the phase space representation

there. And third, we can also use a mixed representation where we use the

last couple of days plus the last couple of weekdays to predict the time series.

Testing these three representations, we can see that modeling only one time

series achieves a mean absolute test error of 8:102, the approach with 6 time

series has an error of 5:942 and the mixed approach reaches an error of 5:654.
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Figure 2: Retail Store Sales per Week.

Sometimes, best results are achieved if one drops the idea of a time series

at all. For example, for the task of recommending drug administration from

recorded vital signs of intensive care patients - a high dimensional, noisy

classi�cation problem on multivariate time series - it was found in [16] that

the best representation was to ignore time dependencies completely and make

a non-temporal classi�cation based on the last obeservation only. In the �eld

of chromatography, Rittho� et al. [20] solved the problem of predicting

certain chemical coeÆcients based on the chromatographical analysis of a

substance (which is a time series of intensities of chemical components) by

describing the time series by chosen analytical properties, e. g. the location

of its maximum. That is, they did not use the time series observations at all,

but only new, aggregated features. This technique alone reduced the error

by 50%.
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Figure 3: Newspaper Sales per Day.

5 Advanced Temporal Learning Tasks

The phase space represenation bases on the asumption that the temporal de-

pendence structure of the time series can be suÆciently captured in a short

�nite window of observations. This allows the examples generated from each

window to be treated as if they were generated independently and thus, the

order in which the examples are presented to the learning algorithm is not

important. This assumption fails, if the process that generates the time

series changes over time. This scenario is called concept drift. Usually, con-

cept drift is treated by using only a certain number of the newest examples,

where the actual number of examples used is chosen heuristically. For SVMs,

Klinkenberg and Joachims [12] proposed an approach where this number is

chosen based on eÆcient performance estimators for SVMs [11]: for each

possible number b of batches, a SVM is learned on the newest b batches and

its leave-one-out performance on the last batch of data is estimated. The

�nal classi�er is the SVM with the best estimated performance.

This approach was generalized in two ways in [13]. By assigning a speci�c

weight to each example, one can limit the inuence that this examples has

8



on the �nal decision function. For temporal data, the weight can be set

according to the age of the example, giving less inuence to older, possibly

outdated examples. As an alternative, one can learn a temporary decision

function on only the newest batch of data and use this function to identify

all examples that correspond to the newest model. All batches, where the

temporary classi�er performs signi�cantly worse than on the newest set, are

discarded from the �nal training set, from which the �nal classi�er is learned.

This last approach is of advantage, if the change in the process behind the

model is very sharp instead of a slow drift. The scenario is called concept

shift.

Another interesting problem is the detection of outliers in time series. The

procedure of Bauer [2] constructs a certain ellipse (derived from an assumed

autoregessive model) around the phase space representation of the time series

all points outside of this ellipse are delcared as outliers. This procedure can

be generalized by using a SV estimation of the support of the points [22] in

the phase space. This directly applies the de�nition of Davies and Gather

[6] of the �-outlier-region as the region of points with the lowest probability,

so that the probabilty of the whole region is �.

6 Summary and Conclusions

This paper presented a concise overview of time series analysis using Support

Vector Machines. Of course, due to space constraints we could not cover all

existing approaches in as much detail as they deserved.

In conclusion, we �nd that the key to successful time series analysis with

SVMs lies in �nding the right represenation. The excellent generalization

properties of the SVM, especially its good performance on high-dimensional

data, make it easy to improve results by adding additional temporal features

or constructing specialised kernel functions.
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