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Abstract

For many problems of statistical inference in regression modelling, the Fisher informa-
tion matrix depends on certain nuisance parameters which are unknown and which enter
the model nonlinearly. A common strategy to deal with this problem within the context
of design is to construct maximin optimal designs as those designs which maximize the
minimum value of a real valued (standardized) function of the Fisher information matrix,
where the minimum is taken over a specified range of the unknown parameters. The max-
imin criterion is not differentiable and the construction of the associated optimal designs
is therefore difficult to achieve in practice. In the present paper the relationship between
maximin optimal designs and a class of Bayesian optimal designs for which the associated
criteria are differentiable is explored. In particular, a general methodology for determining
maximin optimal designs is introduced based on the fact that in many cases these designs
can be obtained as weak limits of appropriate Bayesian optimal designs.

AMS Subject Classification: Primary 62K05 ; Secondary 62F15

Keywords and Phrases: maximin optimal designs, Bayesian optimal designs, nonlinear regression
models, parameter estimation, least favourable prior
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1 Introduction

In many practical problems in regression modelling the Fisher information for the parameters
of interest depends on certain unknown nuisance parameters. Within the context of design this
problem translates into that of maximizing a concave function of the information matrix which
depends on the unknown parameters and clearly this cannot be achieved directly. Over the last
forty years a number of strategies have been developed to address this design problem. Specif-
ically, in 1953, Chernoff suggested the simple but elegant expedient of adopting a best guess
for the unknown parameters and termed the resultant designs locally optimal. The main disad-
vantage to such an approach is that if the unknown parameters are misspecified the resulting
optimal designs can be highly inefficient within the true model setting.
A more robust approach to this problem is to, in some sense, quantify the uncertainty in those
parameters and to incorporate this additional information into the formulation of suitable op-
timality criteria. This has been achieved in practice through the introduction of the concepts
of Bayesian and of maximin optimality. In particular Bayesian optimality criteria are based on
criteria in classical design theory and many of the results from that theory, such as those relat-
ing to equivalence theorems and numerical procedures, can immediately be transferred into the
Bayesian context [see e.g. Pronzato and Walter (1985), Chaloner and Larntz (1989), Chaloner
(1993), Chaloner and Verdinelli (1995)]. For maximin optimality, designs which maximize the
minimum of a function of the Fisher information matrix over a range of parameter values are
sought [see e.g. Pronzato and Walter (1985), Müller (1995), Dette (1997), Müller and Pázman
(1998)]. The resultant designs, termed maximin optimal designs, are particularly attractive
from a practical point of view in that the experimenter is only required to specify an appropriate
range for the unknown parameters. The major problem lies in the construction of these designs
in the sense that the maximin optimality criterion is not differentiable and that as a consequence
results, both algebraic and numeric, are elusive. Indeed there have been few reports of maximin
optimal designs in the literature and strategies for their construction are somewhat ad hoc [see
e.g. Wong (1992), Haines (1995), Imhof (2001)].
In the present study a general approach to obtaining maximin optimal designs as the limits of a
particular class of Bayesian optimal designs is introduced and explored. Roughly speaking the
powerful tools for constructing Bayesian optimal designs for which the associated criteria are
differentiable can be used to obtain maximin optimal designs for which the corresponding crite-
ria are not differentiable. In particular the approach avoids the calculation of a least favourable
prior distribution. Although interest is centered primarily on the construction of maximin opti-
mal designs for nonlinear regression models the approach is quite general and can be applied to
other optimal design problems with a similar structure.
The paper is organized in the following way. In Section 2 some preliminary definitions are given
and Bayesian optimality criteria analogous to Kiefer’s (1974) Φp-criteria are introduced. The
main results of the study are then presented in Section 3. In particular it is shown that under
fairly general conditions the Bayesian optimal designs converge weakly to maximin optimal de-
signs, a result which mirrors the limiting relationship of the corresponding optimality criteria.
Furthermore, the relationship between Bayesian and maximin optimal designs is explored and
powerful equivalence theorems and other associated results are presented. Several applications
of this methodology are illustrated in Section 4 and some broad conclusions are given in Section
5. For ease of reading the proofs of all lemmas and theorems in the paper are included in an
appendix.
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2 Preliminaries

Consider a regression model which depends, possibly nonlinearly, on the parameters θ from a
parameter space Θ ⊂ R

k and on explanatory variables x varying in a compact design space
X ⊂ R

� equipped with a σ-field, which contains all one point sets. An approximate design ξ
for this model is a probability measure on the design space X with finite support x1, . . . , xn

and weights w1, . . . , wn representing the relative proportion of total observations taken at the
corresponding design points [see e.g. Kiefer (1974)]. Let Ξ denote the class of all approximate
designs and Δ ⊂ Ξ some subset of that class. Then, very broadly, an optimality criterion can
be specified as

ψ : Δ × Θ → [0,∞) ,

where the function ψ(ξ, θ) is continuous in the sense that, if a sequence of designs ξn ∈ Δ
converges weakly to a design ξ ∈ Δ as n→ ∞, then

lim
n→∞

ψ(ξn, θ) = ψ(ξ, θ)

for all θ ∈ Θ. Additionally, for fixed ξ ∈ Δ, the function ψ(ξ, θ) is assumed to be continuous in
θ. Examples of such a criterion include, inter alia, D- and c-optimality [Pukelsheim (1993)].
In the present study attention is focussed on optimality criteria which accommodate uncertainty
in the unknown parameters and, specifically, on criteria based on functions of the form ψ(ξ, θ).
To this end it is first necessary to consider a single, fixed parameter value θ ∈ Θ and to introduce
a locally ψ-optimal design over the class of designs Δ as a design ξ∗θ ∈ Δ for which the condition

ψ(ξ∗θ , θ) ≥ ψ(ξ, θ)

holds for all ξ ∈ Δ. A standardized maximin ψ-optimal design in the class Δ can then be defined
as a design which maximizes the criterion

Ψ−∞(ξ) = inf
θ∈Θ

ψ(ξ, θ)

ψ(ξ∗θ , θ)
(2.1)

over all ξ ∈ Δ [see Dette (1997)] and a Bayesian ψ-optimal design with respect to a prior
distribution π on the parameter space Θ as a design which maximizes

Ψ0(ξ) = exp

∫
Θ

logψ(ξ, θ)dπ(θ) (2.2)

over the set Δ [see e.g. Pronzato and Walter (1985) or Chaloner and Larntz (1989)]. More
generally, for fixed q such that −∞ < q < 0 a Bayesian Ψq-optimal design for a prior distribution
π on Θ can be defined as a design ξ ∈ Δ maximizing the criterion

Ψq(ξ) =

[∫
Θ

{
ψ(ξ, θ)

ψ(ξ∗θ , θ)

}q

dπ(θ)

] 1
q

(2.3)

over the subclass of designs Δ [see Dette and Wong (1996)]. Note that the Bayesian ψ-optimality
criterion (2.2) is obtained from (2.3) in the limit as q → 0 and that the standardized maximin
criterion (2.1) is recovered as q → −∞ provided the support of the prior π coincides with the
parameter space Θ, i.e. supp(π) = Θ.
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Remark 2.1. Note that a “relative” metric is used in the definition of the optimality criteria
(2.1) and (2.3) because for different values of θ the values of the criteria ψ(ξ, θ) may not be
not comparable. For example if ψ(ξ, θ) ≥ ψ(ξ, θ0) for all θ ∈ Θ and for any design ξ, a non-
standardized maximin approach would always yield the locally optimal design ξ∗θ0

. Indeed the
advantages of standardization are emphasized in Silvey (1980, pages 57-61) and clearly illustrated
in Dette (1997). On the other hand all the results of this paper remain true for non-standardized
criteria by simply omitting the terms ψ(ξ∗θ , θ) from the corresponding standardized criteria. An
application of the non-standardized case is given in Example 4.5.

3 Bayesian and standardized maximin optimal designs

For every fixed design ξ, the criterion value Ψq(ξ) converges to the value of the maximin criterion
Ψ−∞(ξ) as q → −∞. It is therefore tempting to surmise that this convergence is mirrored in
the corresponding optimal designs themselves. The main result of the present study shows
that, under fairly general conditions, standardized maximin ψ-optimal designs can indeed be
obtained as weak limits of Bayesian Ψq-optimal designs as q → −∞. Although it often turns
out that a maximin optimal design is also Bayesian optimal with respect to a least favourable
prior distribution, the approach does not require that such a distribution is known. Moreover,
no convexity assumption, either on the criterion or on the set of designs, is made.

Theorem 3.1. Let Θ be compact and let π denote an arbitrarily chosen prior distribution on
Θ with supp(π) = Θ. Suppose that the optimality criterion ψ : Δ × Θ → (0,∞) is continuous
in each argument. Suppose that for every q < 0, ζq is a Bayesian Ψq-optimal design in the class
of designs Δ with respect to the prior π and suppose also that the designs ζq converge weakly to
some design ζ∗ ∈ Δ as q → −∞. Then the design ζ∗ is standardized maximin ψ-optimal.

Remark 3.2. For an efficient application of the results in this section it is important to note
that Theorem 3.1 does not depend on the particular prior in the Bayesian optimality criterion.
Therefore specific priors, which either allow an explicit calculation of the Bayesian Ψq-optimal
designs and the corresponding limit as q → −∞ or which simplify the numerical construction
of the Bayesian designs, can be used.

In practice it may well be possible to use Theorem 3.1 to construct a maximin ψ-optimal design
over a class of designs Δ which is not necessarily convex such as, for example, a class of designs
based on a fixed number of support points. Then the global optimality or otherwise of this design
over a class of designs which is convex and which contains Δ, such as the class of all approximate
designs Ξ, can be confirmed by invoking the general equivalence theorem formulated in Theorem
3.3 below.

Suppose that the Fisher information matrix for the parameter θ ∈ Θ of a design ξ ∈ Δ can be
expressed as

M(ξ, θ) =

∫
X
f(x, θ)fT (x, θ)dξ(x) ∈ R

�θ×�θ

where f(x, θ) ∈ R
�θ is a vector-valued function appropriate to the specified regression model and

the dimension lθ may depend on θ. Then the criterion of interest has the form

ψ(ξ, θ) = φθ{Cθ(ξ)} (3.1)
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where φθ(·) is an information function in the sense defined by Pukelsheim (1993, page 119) and

Cθ(ξ) = CKθ
(ξ, θ) =

{
KT

θ M
−(ξ, θ)Kθ

}−1

.

Here Kθ ∈ R
�θ×sθ represents a matrix of full column rank sθ ≤ 	θ, M

−(ξ, θ) denotes a generalized
inverse of M(ξ, θ), and it is assumed that ξ ∈ Δ is feasible, that is R(Kθ) ⊂ R(M(ξ, θ)) for all
θ ∈ Θ.

An Equivalence Theorem for Bayesian Ψq-optimal and standardized maximin ψ-optimal designs
based on criteria of the form (3.1) is now introduced and holds strictly for classes of designs Δ
which are convex. The formulation adopted here is that of Pukelsheim (1993) and relies on the
definition of the polar function of φθ(·) given by

φ∞
θ (D) = inf

C

{tr(CD)

φθ(C)

∣∣∣C > 0
}

where C and D are nonnegative definite matrices. The proof of the next theorem follows essen-
tially the same arguments as those presented in Pukelsheim (1993), Chapter 11, and is therefore
omitted. An alternative formulation of a similar result using directional derivatives can be found
in Fedorov (1980).

Theorem 3.3. Assume that the criterion ψ(ξ, θ) has the form (3.1) and that the class of
designs Δ is convex. Assume also that a design denoted ξ∗ ∈ Δ satisfies the condition R(Kθ) ⊂
R(M(ξ∗, θ)) for all θ ∈ Θ.

(a) The design ξ∗ is Bayesian Ψq-optimal in the class Δ with respect to a prior π on Θ if and
only if for each θ ∈ Θ there exists a nonnegative definite matrix Dθ which solves the polarity
equation

φθ{CKθ
(ξ∗)}φ∞

θ (Dθ) = tr{CKθ
(ξ∗)Dθ} = 1 (3.2)

and a generalized inverse of M(ξ∗, θ), say Gθ, such that the inequality∫
Θ

{
ψ(ξ∗, θ)
ψ(ξ∗θ , θ)

}q

tr{M(η, θ)B(ξ∗, θ)} dπ(θ) −
∫

Θ

{
ψ(ξ∗, θ)
ψ(ξ∗θ , θ)

}q

dπ(θ) ≤ 0 (3.3)

holds for all η ∈ Δ, where B(ξ∗, θ) = GθKθCθ(ξ
∗)DθCθ(ξ

∗)KT
θ Gθ.

(b) Let

N (ξ∗) :=
{
θ ∈ Θ | Ψ−∞(ξ∗) =

ψ(ξ∗, θ)
ψ(ξ∗θ , θ)

}
denote the set of all parameter values in Θ, for which the minimum in (2.1) is attained. Then
the design ξ∗ is standardized maximin ψ-optimal in the class Δ if and only if there exists a prior
πω on the set N (ξ∗), for each θ ∈ supp(πω) a nonnegative definite matrix Dθ satisfying (3.2)
and a generalized inverse of M(ξ∗, θ), say Gθ, such that the inequality∫

N (ξ∗)

tr{M(η, θ)B(ξ∗, θ)} dπω(θ) − 1 ≤ 0 (3.4)

holds for all η ∈ Δ.
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Note that in the case of differentiability the left hand side of the inequality (3.3) is the directional
derivative of the optimality criterion at the point ξ∗ in the direction of η [see Silvey (1980)].
The more general formulation of Theorem 3.3 is required for non-differentiable criteria and
singular information matrices. Morover, the second part of this theorem in effect states that the
standardized maximin ψ-optimal design ξ∗ coincides with the Bayesian Ψ0-optimal design for
the prior distribution πw defined on the set N (ξ∗). The prior πw is usually referred to as the
least favourable or “worst” prior, a term which is borrowed from Bayesian decision theory [see
Berger (1985), page 360]. The next result provides insight into the nature of the set N (ξ∗).

Lemma 3.4. Suppose that the parameter space Θ comprises at least two points and that the
class of designs Δ is convex. Then, for the standardized maximin ψ-optimal design ξ∗ ∈ Δ, the
cardinality of the set N (ξ∗) defined in Theorem 3.3 is at least 2.

In summary therefore, suppose that a candidate standardized maximin D-optimal design, say
ξ∗c , is available. Then the global optimality or otherwise of this design over a class of designs Δ
which is convex can be confirmed by invoking Theorem 3.3 together with Lemma 3.4. The next
two results follow directly from Theorem 3.3 and Lemma 3.4. The proofs are straightforward
and are therefore omitted.

Lemma 3.5. The Bayesian Ψq-optimal design ξ∗ with respect to the prior π is Bayesian Ψq′-
optimal with respect to the prior π̃′, where

dπ̃′(θ) =

( |M(ξ∗, θ) |
|M(ξ∗θ , θ) |

)q−q′

dπ(θ)

and q and q′ are such that −∞ < q, q′ ≤ 0.

Theorem 3.6. The standardized maximin ψ-optimal design ξ∗ is Bayesian Ψq-optimal with
respect to the least favourable prior πw on the set N (ξ∗) for all q ≤ 0. Conversely, if the design
ξ∗ is Bayesian Ψq-optimal for all q such that −∞ < q ≤ 0, then it is standardized maximin
ψ-optimal.

Note that Theorem 3.6 is closely related to results in Section 5.4 of Pshenichnyi (1971), which
show that in cases, where optimization can be performed over a finite dimensional space, a
maximin optimal design is also optimal with respect to a compound criterion of the form∑N

i=1 λiψ(ξ, θi). Here the quantities λi and θi are not known and correspond to the least
favourable prior distribution [see also Cook and Fedorov (1995) for a similar relation in the
context of constrained optimization]. The applicability of Theorem 3.6, or the corresponding
equivalent formulation in Pshenichnyi (1971), is limited because in practice it is not easy to con-
struct the unknown least favourable prior distribution. However, in cases, where optimization
can be performed over a finite dimensional space, these results can be used to derive bounds on
the number of support points of this distribution [see Example 4.5].

4 Applications

4.1 Nonlinear models. Consider a nonlinear model for which the response variable y follows
a distribution from an exponential family with

E(y|x) = η(x, θ) and Var(y|x) = σ2(x) , (4.1)
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where x represents an explanatory variable in the design space X ⊂ R
� and θ is a vector of

unknown parameters in the space Θ ⊂ R
k. If η(x, θ) is continuously differentiable with respect

to θ, then the Fisher information matrix for θ at a single point x is given by

I(x, θ) =
1

σ2(x)

{
∂η(x, θ)

∂θ

}{
∂η(x, θ)

∂θ

}T

and the information matrix for a design ξ belonging to a specified class of designs Δ can be
expressed as M(ξ, θ) =

∫
X I(x, θ) dξ(x) [see e.g. Silvey (1980)]. For this model setting it is usual

to consider criteria φ{M(ξ, θ)}, which are concave functions of the Fisher information matrix.
Then the Bayesian Ψq-optimality criterion with respect to a prior π on Θ and the standardized
maximin optimality criterion is obtained as a special case from (2.1) and (2.3) and the general
theory with Kθ = Ik and ψ(ξ, θ) = φ(M(ξ, θ)). The following corollary specifies the fairly general
conditions under which Theorem 3.1 holds for the nonlinear models considered in this section.
Note that, in the statement of the theorem, the set of all nonnegative definite matrices of order
k × k is denoted NND(k).

Corollary 4.1. Consider the nonlinear model specified by (4.1) and a local optimality criterion
of the form ψ(ξ, θ) = φ{M(ξ, θ)}, where φ(·) is a continuous function from NND(k) to [0,∞).
Let Θ be compact and let π represent any prior distribution on Θ for which supp(π) = Θ.
Suppose that ψ(ξ, θ) > 0 on Δ×Θ and that I(x, θ) is bounded and continuous on X ×Θ. Then,
as q → −∞, the weak limit of the Bayesian Ψq-optimal designs with respect to the prior π in
the class of designs Δ is a standardized maximin φ-optimal design, provided it belongs to Δ.

Example 4.2. Consider the one-parameter logistic regression model with probability of success
1/{1 + exp(−(x− θ))} and x ∈ IR. Note that the information on θ at an observation x is given
by

I(x, θ) =
exp(−(x− θ))

{1 + exp(−(x− θ))}2

and is bounded and continuous. Note also that the locally D-optimal one-point design is located
at x∗θ = θ with I(x∗θ, θ) = 1/4. Suppose now that a parameter space of the form Θ = [−a, a]
with a > 0 is of interest and that single-point standardized maximin D-optimal designs over
that space are to be constructed. For a uniform prior on Θ, the one-point Bayesian Ψq-optimal
design, say xq, maximizes the criterion

Ψq(x) =

{
1

2a

∫ a

−a

[
4 exp(−(x− θ))

{1 + exp(−(x− θ))}2

]q

dθ

} 1
q

for −∞ < q < 0

and it is straightforward to show, either algebraically or by symmetry arguments, that xq = 0 for
all such q. Thus, since the conditions specified in Corollary 4.1 are satisfied for this example, it
follows trivially that the one-point standardized maximin D-optimal design is given by x∗ = 0.

Consider now invoking Theorem 3.3 in order to determine whether or not the design putting all
observations at the point x∗ = 0 is globally maximin D-optimal. The efficiency of this design
relative to the locally optimal design x∗θ = θ is given by 4 exp (θ)/(1 + exp (θ))2 with minima
at the end points of the interval [−a, a] and thus the set N (ξ�) comprises the points −a and a.
Consider now a worst prior which puts equal weights on these points. Then the left hand side
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of (3.4) reduces to

1

2

{
exp(−x)

(
1 + exp(a)

1 + exp(−(x− a))

)2

+ exp(−x)
(

1 + exp(−a)
1 + exp(−(x+ a))

)2
}

− 1

and it can be shown numerically that this derivative is less than or equal to zero for all x ∈
IR provided 0 < a ≤ ln(2 +

√
3). It therefore follows that the single-point design x∗ = 0 is

globally standardized maximin D-optimal on the parameter space [−a, a] provided a satisfies
this inequality, a result in accord with the finding of Haines (1995).

4.2 Model robust and discrimination designs. It is not uncommon for a practitioner to
identify a set of plausible models, rather than a single model, as being appropriate for a particular
data set. In order to accommodate such model uncertainty within the context of optimal design,
criteria which are robust to the choice of model have been developed [see e.g. Läuter (1974)] and
certain of these are explored here. To be specific, consider a class of linear models with means

E(y|x) = g(x, θ) = β0f0(x, θ) + . . .+ β�θ
f�θ

(x, θ),

where x belongs to some design space X and the regression functions fi(x, θ), i = 0, . . . , 	θ, are
known, and with constant variances, σ2. Each model is indexed by a parameter θ taken from
a finite set of indices Θ and the class of such models is denoted F = {g(x, θ) | θ ∈ Θ}. Note
that in many applications the models in the set F are nested but this is not necessary for the
development of the robust design criteria described here.
The Fisher information matrix for the regression parameters (β0, . . . , β�θ

) in the model specified
by g(x, θ) at a design ξ ∈ Δ can be expressed as

M(ξ, θ) =
1

σ2

(∫
X
fi(x, θ)fj(x, θ)dξ(x)

)�θ

i,j=0

for θ ∈ Θ. Thus an optimal design which is robust to

choice of model over the class F should maximize an appropriate real valued function of the
matrices {M(ξ, θ) | θ ∈ Θ} over the set of designs Δ [see e.g. Läuter (1974)]. In particular,
suppose that a prior π on the index set Θ puts probability π(θ) on the parameter θ, where
π(θ) ≥ 0 and

∑
θ∈Θ π(θ) = 1. Suppose also that for each model g(x, θ) in the class F , a criterion

of the form ψ(ξ, θ) = φθ{M(ξ, θ)}, where φθ(·) is an information function, is of interest and that
ξ∗θ is the locally φθ-optimal design associated with this criterion. Then, following Läuter (1974),
a Ψq-optimal robust design with respect to the prior π for the class of models F maximizes the
criterion

Ψq(ξ) =

[∑
θ∈Θ

π(θ)

{
φθ{M(ξ, θ)}
φθ{M(ξ∗θ , θ)}

}q
] 1

q

(4.2)

over the set of designs Δ. Furthermore, following Dette (1997), a standardized maximin optimal
robust design for the class F maximizes the function

min
θ∈Θ

{ φθ{M(ξ, θ)}
φθ{M(ξ∗θ , θ)}

}
again over the set Δ. In view of Theorem 3.1, the standardized maximin robust designs can
be found as weak limits of Ψq-optimal robust designs. These ideas are illustrated by means of
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the following example, which discusses the problem of identifying the degree of a polynomial
regression.

Example 4.3. Consider the class of nested polynomial models with means

g(x, θ) = β0 + β1x+ . . .+ βθx
θ,

where x ∈ X = [−1, 1] and θ ∈ Θ = {1, . . . , d}. Note that the regression functions are given
by fi(x, θ) = xi, i = 0, . . . , θ, and that the information matrix for the model of degree θ can be
expressed as M(ξ, θ) = (

∫
X x

i+jdξ(x))θ
i,j=0. In order to obtain efficient designs for identifying the

appropriate degree of the polynomial regression, Spruill (1990) proposed that a function of the
criteria

ψ(ξ, θ) = φθ{M(ξ, θ)} =
|M(ξ, θ)|

|M(ξ, θ − 1)|
for θ ∈ {1, . . . , d} should be maximized. Suppose now that a uniform prior π is placed on the
index set Θ, i.e. π(θ) = 1

d
for θ ∈ {1, . . . , d}. Then the Ψq-optimal (discrimination) design with

respect to the prior π, say ξ∗q , maximizes (4.2) and can be characterized explicitly in terms of
its canonical moments [see Dette and Studden (1997)]. In particular, by using results in Dette
(1994) it can be shown that the canonical moments (p1, . . . , p2d) of the Ψq-optimal discrimination
design ξ∗q are given by p2d = 1, p2j−1 = 1

2
for j = 1, . . . , d, and by the system of equations

22(d−�)

{
d−1∏

i=�+1

p
1+1/q
2i q

1−1/q
2i

}
(1 − p2�)

1−1/q(2p2� − 1)1/q = 1 , 	 = 1, . . . , d− 1 ,

where q2i = 1 − p2i and
∏d−1

d is interpreted as unity. As q → −∞ this latter system reduces

to the recursion p2� = 1− 2−2(d−�)
∏d−1

i=�+1(p2iq2i)
−1 and consequently ξ∗q converges weakly to the

design ξ∗ with canonical moments p2d = 1, p2j−1 = 1
2

for j = 1, . . . , d, and

p2� =
d− 	+ 2

2(d− 	) + 2

for 	 = 1, . . . , d−1. It now follows immediately from Theorem 3.1 that the design ξ∗ is standard-
ized maximin optimal. Moreover, by invoking Corollary 4.3.3 in Dette and Studden (1997), it is
readily shown that the design ξ∗ puts equal masses at the zeros of the ultraspherical polynomial
C

(2)
d−1(x) [see Szegö (1975)] and masses 1.5 times larger at the boundary points +1 and −1.

The Ψq-optimal and the maximin optimal discrimination designs described here are in fact glob-
ally optimal in the sense that they are optimal over the class of all approximate designs, Ξ.
Thus there exists a least favourable prior πw on the index set Θ for which ξ∗ is Ψ0-optimal.
Furthermore this prior can be obtained explicitly from the canonical moments of the optimal
design ξ∗ by invoking Theorem 6.2.3 of Dette and Studden (1997) and puts weights

πw(θ) =
2(d− θ + 1)

d(d+ 1)

on the parameters θ ∈ {1, . . . , d}. For example, consider the case of d = 4. Then the standardized
maximin optimal discrimination design has masses 1

4
, 1

6
, 1

6
, 1

6
and 1

4
at the points −1,

√
3/8, 0,√

3/8 and 1, respectively. The least favourable prior associates weights 2/5, 3/10, 1/5 and 1/10
with the polynomial models of degree 1, 2, 3 and 4, respectively.
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4.3 Designs for estimating nonlinear functions. Consider the homoscedastic linear regres-
sion model with mean

E(y|x) = β0f0(x) + β1f1(x) + . . .+ βdfd(x) . (4.3)

Suppose that the parameters β belong to a space B and that a nonlinear function of those
parameters, denoted h(β), is of interest. Then the approximate asymptotic variance of the
estimate of such a function is proportional to

θ(β)TM−(ξ)θ(β),

where θ(β) represents the vector of derivatives of h(β) with respect to β, M−(ξ) is a generalized
inverse of the information matrix and θ(β) ∈ R(M(ξ)). Optimal designs which in some sense
minimize this variance are now sought. For ease of notation, consider the induced parameter
space Θ = {[θ(β)T θ(β)]−

1
2 θ(β) : β ∈ B}. Then an appropriate optimality criterion can be

formulated as

ψ(ξ, θ) =

{{
θTM−(ξ)θ

}−1
for θ ∈ R(M(ξ))

0 otherwise

and the locally optimal design ξ∗θ maximizes this criterion. The design problem so described
occurs, for example, when the turning point of a quadratic regression function is of interest [see
e.g. Chaloner (1989)] and also in the context of constructing optimal extrapolation designs for
an interval [see e.g. Spruill (1987)]. The definitions of Bayesian Ψq-optimal and of standardized
maximin ψ-optimal designs based on the above criterion follow directly from the general formu-
lations given in Section 2. Furthermore Theorem 3.1 holds under the conditions specified in the
following corollary.

Corollary 4.4. Let π denote any prior distribution on Θ with supp(π) = Θ. Suppose that
the functions f0(x), . . . , fd(x) in model (4.3) are continuous and bounded and that the locally
optimal criterion value ψ(ξ∗θ , θ) is continuous in θ. Then the weak limit of the Bayesian Ψq-
optimal designs in the class of designs Δ as q → −∞ is a standardized maximin ψ-optimal
design, provided the limiting design belongs to Δ and is non-singular, i.e. its Fisher information
matrix is non-singular.

Example 4.5. Consider the polynomial regression model β0 + β1x+ . . .+ βdx
d on the interval

[−1, 1] and suppose that interest centres on estimating the function h(β) = 1
2
(β2

d−1 + β2
d). It is

well known [see Pukelsheim (1993)] that there always exists a symmetric optimal design relating
to this problem. The asymptotic variance of the estimate of h(β) for such a design is given by
δ−1(ξ, β), where

δ(ξ, β) = δ(ξ, βd−1, βd) =
(
β2

d−1v1(ξ) + β2
dv2(ξ)

)−1

,

and v1(ξ) and v2(ξ) are the diagonal elements of the inverse of the information matrix M−1(ξ) ={(∫
[−1,1]

xi+jdξ(x)
)d

i,j=0

}−1
corresponding to βd−1 and βd respectively. Suppose now that a prior

distribution π which is defined on a compact set B ⊂ R
2\{0} is placed on the parameters βd−1

and βd. If no standardization is used a Bayesian Ψq-optimal design for this prior maximizes the
criterion

Ψq(ξ) =
{∫

B
{δ(ξ, βd−1, βd)}q dπ(βd−1, βd)

}1/q

. (4.4)
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Moreover, it is well known that there exists an optimal design with at most d+1 support points.
Therefore it follows from Pshenichnyi (1971) that there exists a least favourable distribution as-
sociated with the maximin design which is based on at most 2d+2 support points. The following
two examples involve different parameter sets B and are introduced in order to demonstrate the
potential applications of Theorem 3.1.

(a) Suppose that the prior π on the parameters βd−1 and βd is defined on the upper half of the
unit circle, i.e. B = {(βd−1, βd) | β2

d−1 + β2
d = 1, βd ≥ 0}. Then the maximin criterion of interest

reduces to
min

β2
d−1+β2

d=1,βd≥0
δ(ξ, βd−1, βd). (4.5)

Note that no standardization in (4.5) is used here since this is implicit in the definition of the set
B. The Bayesian Ψq-optimality criterion (4.4) can be maximized by invoking arguments similar
to those presented in Studden (1989). Specifically the resultant optimal design has canonical
moments of odd order given by p2i−1 = 1

2
for i = 1, . . . , d, while those of even order maximize

Ψq(ξ) =

d−1∏
j=1

q2j−2p2j

{∫ 1

0

(
1 − β2

d +
β2

d

q2d−2p2d

)−q

dπ(βd)
}1/q

(4.6)

Suppose now that the prior distribution on βd is taken to be dπ(βd) = 2βddβd. Then the integral
in (4.6) can be evaluated explicitly and it follows that p2i = 1

2
for i = 1, . . . , d− 2, p2d = 1, and

that p2d−2 is given by the unique solution of the equation

1 − z − q(1 − 2z) = (1 − q(1 − z))(1 − z)−q+1

in the interval (0, 1). It is easy to see that this solution converges to 1/2 as q → −∞, and
consequently that the required maximin optimal design, i.e. the design ξ∗ maximizing (4.5), has
canonical moments pi = 1/2 for i = 1, . . . , 2d − 1 and p2d = 1. Then it follows immediately
from Corollary 4.3.3 of Dette and Studden (1997) that ξ∗ puts masses 1/d at the roots of the
Chebyshev polynomial of the second kind Ud−1(x) and masses 1/2d at the points −1 and 1.
Thus the maximin optimal design in fact coincides with the D1-optimal design for polynomial
regression of degree d on the interval [−1, 1].

(b) This second example illustrates the application of Theorem 3.1 to the numerical construction
of maximin optimal designs and also involves no standardization of the criterion. Specifically,
suppose that the set B is chosen to be [1, 2]×[2, 3] and that the prior distribution on B has density
proportional to βd−1βddβd−1dβd. In this case the Bayesian Ψq-optimality criterion relating to
(4.4) can be maximized numerically in terms of canonical moments. It follows algebraically that
pi = 1

2
for i = 1, . . . , 2d − 3, p2d−1 = 1

2
, p2d = 1, while the canonical moment p2d−2 depends on

the parameter q and can easily be obtained numerically. Values of p2d−2 for selected values of q
are given in the following table

q −5 −10 −20 −50 −100 −200 −∞
p2d−2 0.5834 0.5776 0.5801 0.5834 0.5846 0.5852 0.5858

The Bayesian Ψq- and the maximin optimal designs corresponding to these canonical moments
can then be obtained from the results in Studden (1989). In particular the support points
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−1 = x0 < x1 < . . . < xd−1 < xd = 1 of these designs correspond to the roots of the polynomial

(x2−1)
{
Ud−1(x)+(2p2d−2−1)Ud−3(x)

}
and the masses are given by

p2d−2

2(1+p2d−2(d−2))
for the points

−1 and 1 and by

ξ∗(xj) =
[
d− 1 − 2p2d−2Ud−2(xj)

Ud(xj) + (2p2d−2 − 1)Ud−2(xj)

]−1

for the interior support points xj , j = 1, . . . , d − 1. For example, for polynomial regression of
degree 5 on the interval [−1, 1], the requisite maximin optimal design can be obtained numerically
and puts masses 0.1885, 0.2053 and 0.1062 on the points ±0.2880,±.7900 and ±1 respectively.

5 Conclusions

This study provides a cohesive approach to the construction of maximin optimal designs for a
broad range of nonlinear model settings. It is demonstrated that under fairly general conditions
Bayesian Ψq-optimal designs converge to standardized maximin optimal designs. Before the
results can be implemented however, Bayesian Ψq-optimal designs for the model, the optimality
criterion and the class of designs of interest must be constructed. In some cases such designs
are available in the literature. Then, in implementing Theorem 3.1, it is necessary to find the
requisite maximin optimal design as the limit of the appropriate Bayesian Ψq-optimal designs.

On the other hand for many nonlinear model settings it is possible that Bayesian Ψq-optimal
designs cannot be obtained in an explicit algebraic form. In such cases these Bayesian optimal
designs can usually be calculated numerically for a range of increasingly negative q values and the
limiting and hence the standardized maximin optimal design identified, at least approximately.
Specific choices of the prior distribution, as for example discrete approximations of the uniform
distribution, can simplify this numerical construction substantially.

A secondary but nevertheless important feature of the present study is the suite of results for
convex classes of designs presented in Section 3 and based on Theorem 3.3. These results provide
considerable insight into the nature of standardized maximin optimal designs and their relation
to the Bayesian Ψq-optimal designs and in addition provide tools for confirming the global
optimality or otherwise of candidate designs. However it should immediately be emphasized
that, while a standardized maximin optimal design is globally optimal provided it is Bayesian
Ψ0-optimal for some least favourable prior, the identification of that prior is not straightforward.
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APPENDIX

Proof of Theorem 3.1. Note first that the continuity of ψ implies that the normalizing
function

ν(θ) := ψ(ξ∗θ , θ) , θ ∈ Θ,

is lower semicontinuous. For if θ ∈ Θ and {θj}∞j=1 ⊂ Θ is a sequence that converges to θ, then

lim inf
j→∞

ν(θj) = lim inf
j→∞

ψ(ξ∗θj
, θj) ≥ lim inf

j→∞
ψ(ξ∗θ , θj) = ψ(ξ∗θ , θ) = ν(θ).

Let ε > 0, and let θ0 ∈ Θ be such that

ψ(ζ∗, θ0)
ν(θ0)

≤ Ψ−∞(ζ∗) + ε.

Then, since ν is lower semicontinuous and ψ is continuous, there is a relatively open neighborhood
U ⊂ Θ of θ0 such that

ψ(ζ∗, θ)
ν(θ)

≤ Ψ−∞(ζ∗) + 2ε for all θ ∈ U.

As supp(π) = Θ, π(U) > 0. Since ζq converges weakly to ζ∗,

ψ(ζq, θ)

ν(θ)
→ ψ(ζ∗, θ)

ν(θ)

for every θ ∈ Θ. It therefore follows from Egorov’s theorem [see e.g. Hewitt and Stromberg
(1965), page 158] that there exist a measurable set V ⊂ Θ with π(V ) > 1− 1

2
π(U) and a number

q0 < 0 such that∣∣∣∣ψ(ζq, θ)

ν(θ)
− ψ(ζ∗, θ)

ν(θ)

∣∣∣∣ ≤ ε for all θ ∈ V and all −∞ < q ≤ q0.

Thus for all −∞ < q ≤ q0,

{Ψq(ζq)}q ≥
∫

U∩V

{
ψ(ζq, θ)

ν(θ)

}q

dπ(θ) ≥ {Ψ−∞(ζ∗) + 3ε}q π(U ∩ V ).

Obviously, π(U ∩ V ) > 0, and it follows that

lim sup
q→−∞

Ψq(ζq) ≤ {Ψ−∞(ζ∗) + 3ε} lim sup
q→−∞

{π(U ∩ V )} 1
q = Ψ−∞(ζ∗) + 3ε.

As ε > 0 was arbitrary, one has

lim sup
q→−∞

Ψq(ζq) ≤ Ψ−∞(ζ∗).
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Consequently, if ξ ∈ Δ is any competing design, then

Ψ−∞(ξ) = lim
q→−∞

Ψq(ξ) ≤ lim sup
q→−∞

Ψq(ζq) ≤ Ψ−∞(ζ∗).

This proves that ζ∗ is indeed a standardized maximin optimal design in the class Δ. �

Proof of Lemma 3.4. Let ξ∗ denote the standardized maximin optimal design and assume
that N (ξ∗) = {θ0} is a singleton. Then the Equivalence Theorem 3.3 for standardized maximin
optimality shows that ξ∗ is locally D-optimal for the parameter θ0 in the class Δ. Therefore

1 =
ψ(M(ξ∗, θ0))
ψ(M(ξ∗θ0

, θ0))
= min

{ψ(M(ξ∗, θ))
ψ(M(ξ∗θ , θ))

∣∣∣ θ ∈ Θ
}

≤ 1,

which implies N (ξ∗) = Θ contradicting the hypothesis that #N (ξ∗) = 1. �

Proof of Corollary 4.1. The assumption that I(x, θ) is continuous and bounded implies
that for every fixed θ, the criterion

ψ(ξ, θ) = φ{M(ξ, θ)}

is continuous in ξ. The assumption also implies by Lebesgue’s convergence theorem that for
every ξ, ψ(ξ, θ) is continuous in θ. The assertion now follows from Theorem 3.1. �

Proof of Corollary 4.4. Let ζq be the Ψq-optimal designs in the class Δ, so that as
q → −∞, ζq converges weakly to a non-singular design ζ∗. Then

lim
q→−∞

M(ζq) = M(ζ∗),

in particular M(ζq) is non-singular for q ≤ q0, say. Hence ψ(ζq, θ) converges to ψ(ζ∗, θ) for each
θ. Thus for q ≤ q0,

ψ(ζq, θ)

ψ(ξ∗θ , θ)

is continuous and for q → −∞, converges to

ψ(ζ∗, θ)
ψ(ξ∗θ , θ)

.

An inspection of the proof of Theorem 3.1 shows that this is sufficient to ensure that ζ∗ is a
standardized maximin optimal design. �
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