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Abstract 

We consider hierarchical Bayes analyses of an experiment conducted to enable 

calibration of a set of mass-produced resistance temperature devices (RTDs).  These were 

placed in batches into a liquid bath with a precise NIST-approved thermometer, and 

resistances and temperatures were recorded approximately every 30 seconds.  Under the 

assumptions that the thermometer is accurate and each RTD responds linearly to 

temperature change, we use hierarchical Bayes methods to estimate the parameters of the 

linear calibration equations. Predictions of the parameters for an untested RTD of the 

same type, and interval estimates of temperature based on a realized resistance reading 

are also available (both for the tested RTDs and for an untested one produced under the 

same production process conditions). 
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I.  INTRODUCTION 

In some statistical calibration problems, it is of interest to extend the calibration 

from a set of devices tested to other devices made under the same conditions.  (We will 

refer to the calibration equations on the original set of devices as “direct” calibrations, 

and the extension of these equations to similar devices as “indirect” calibration.)  Both 

direct and indirect calibrations are subject to error, and the precision with which the 

parameters of calibration equations are known is therefore of interest.  (Of course, 

parameters of an indirectly determined calibration equation are known less precisely than 

those from the direct calibrations.)  In addition, users of devices that have been calibrated 

(either directly or indirectly) often want to know the precision with which they know a 

measurand – the quantity being measured – based on a value read from a device in hand.  

Again, this precision differs depending on whether the device was directly or indirectly 

calibrated. 

How to produce estimates and predictions of interest (particularly interval 

versions of these and especially those concerning an indirect calibration) via classical (or 

“frequentist”) statistical methods is not completely clear.  (Even when the model for read 

values for a particular measurand is a simple linear regression model, this turns out to be 

a problem involving nonlinear random effects.)   However, in a Bayesian framework, 

producing such measures of precision and such intervals is, at least in principle, 

straightforward.  One simply consults the posterior distribution of any quantity of interest 

(its conditional distribution given the data from calibration studies).  We present a case 

study (of a real multiple-device calibration study) illustrating how this can be 
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accomplished in practice using WinBUGS, a (currently free) Bayesian statistical software 

package. 

An interesting byproduct of our analysis is that in cases like the one discussed, 

where calibration data on multiple devices is simultaneously collected for comparison to 

that from a single accurate (and typically more precise) “standard device” or “reference 

point,” it is not only possible to do the calibrations, but also to simultaneously estimate 

the precision of the standard device. 

 

II.  THE CALIBRATION EXPERIMENT 

The case we will discuss concerns a calibration experiment for a set of 

interchangeable resistance temperature devices (RTDs) using a single NIST-approved 

thermometer.  The RTDs under consideration were used in a heating, ventilation, and air 

conditioning (HVAC) research facility affiliated with the Iowa Energy Center.  Large-

scale tests requiring simultaneous temperature measurements at multiple locations in an 

HVAC system are performed at this facility. 

[1] describes the physical methods used in temperature sensor calibration work at 

the Iowa Energy Center.  In order to calibrate the RTDs (that we will assume came from 

a single set of production process conditions), subsets of them were placed in a liquid 

bath alongside the thermometer.  Observations from each of the RTDs (resistances) and 

the thermometer (in degrees Fahrenheit) were taken over time.  The readings from the 

RTDs were synchronized and taken every 30 seconds.  Those of the thermometer were on 

a different (and not always completely regular) schedule.  Times between thermometer 

readings were usually 30 seconds, but on occasion were as little as 28 seconds or as much 
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as 31 seconds.  The data set we analyzed consists of series of thermometer readings 

(taken roughly every 30 seconds) paired with sets of RTD readings taken at time points 

no more than 15 seconds away from the thermometer readings. 

The bath temperature was purposely manipulated by the researchers over the 

course of the calibration experiment.  We have not used data from “transition periods” 

when energy was being actively put into or taken out of the bath in order to change the 

temperature.  Rather, we have used only data from “steady state/equilibrium” portions of 

the experiment, where the bath temperature control system was attempting to hold a 

constant temperature.  The approximately 30-second period between observations was 

long enough that we found no statistically significant auto-correlations in the (several) 

steady state thermometer reading series. 

In the part of the data set we consider, a dozen RTDs are represented.  These were 

tested in subsets of four in four different baths. One subset was subjected to two baths, 

the remaining two subsets were subjected to a single bath each.   Across the baths, the 

minimum and maximum temperatures used in the calibration experiment were 22 and 

104 FD .    The within-bath temperatures had ranges of between 9 and 64 FD .  The 

minimum number of observation vectors (thermometer temperature and four RTD 

resistances) from a bath was 180, and the maximum was 781.  Altogether, in the data set 

we consider, there were a total of 2146 observation vectors. 

 

III.  STATISTICAL MODELS AND METHODS 

We assume that the RTDs all respond linearly to changes in real temperature over 

the range used in the experiment, and that those linear relationships between real 



 5

temperature and mean resistance did not change in time.  Further, we will assume that the 

thermometer was an accurate indicator of temperature in FD  (i.e. the expected 

temperature reading was the true temperature).  Under these assumptions we proceed to 

specify a probability model for our data and specify prior distributions for the model 

parameters.   

Let 

 

the true bath temperature at time-point  in bath 

 the temperature read from the thermometer at time-point  in bath 

the resistance read at time-point  in bath  on RTD 

ij

ij

hij

T j i

X j i

Y j i h

=

=

=

 

A model for thermometer readings is 
 ij ij ijX T η= +  (1) 

where we assume that the ijη  are iid (independent and identically distributed as) 

( )2N 0, ησ .  (This is commonly known in the statistical literature as an additive 

measurement error model.)  Conditioned on the intercept 1hb  and slope 2hb  peculiar to 

RTD h , we will model the resistance readings from that RTD as 

 1 2hij h h ij hijY b b T ε= + +  (2) 

where we assume that the hijε  are iid ( )2N 0, εσ  and independent of the ijη .  Note that 

using equation (1), equation (2) may be rewritten as 

 ( )1 2hij h h ij ij hijY b b X η ε= + − +  (3) 

(This explicitly displays the role of the potential measurement error of the thermometer in 

determining what is observed.) 
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Finally, to complete the hierarchical model for the observables in terms of random 

effects, we assume that the intercept-slope pairs for the RTDs are themselves random 

draws from some distribution.  Specifically suppose that 

 ( )1
2

2

~ iid MVN ,h

h

b
b

 
 
 

β Σ  (4) 

independent of the  and ij hijη ε . 
 

To this point, the model specified by displays (3) and (4) has parameters 

2 2, , , and η εσ σ β Σ .  These describe respectively the imprecision of the thermometer, the 

variability in measured resistance of a given RTD at a fixed temperature, the mean of the 

intercepts and slopes for the “real” calibration equations across RTDs, and the variability 

in those intercept-slope pairs.  This is a nonlinear random effects model.  (See, for 

example, [2].) 

We take a Bayesian approach to the analysis of data based on this model and 

specify a “prior” (joint) distribution for the model parameters.  (A prior distribution is a 

“pre-data” distribution meant to describe what are usually somewhat vague pre-

experimental beliefs about model parameters.  It is typical in defining a joint prior to 

specify some marginal distributions, and then adopt a product or independence form 

based on these.) 

To begin, we used the prior distribution 

 2 ~ InvGamma( , )a bη η ησ  (5) 

This means that the reciprocal of 2
ησ  – the precision of the η  distribution – has a 

Gamma( , )a bη η  prior.  We chose parameters and a b  such that the mean of the prior 
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distribution for 2
ησ  (say ( )/ 1m b a= − ) was equal to the thermometer manufacturer’s 

reported measurement variance (namely .000891), and the variance of the prior (say 

( ) ( )( )22 / 1 2v b a a= − − ) was relatively large (we used the value 10).   (Setting 

( )/ 1m b a= −  and ( ) ( )( )22 / 1 2v b a a= − −  and solving for and a b  gives 22 /a m v= +  

and ( )21 /b m m v= + .  We thus used 2.00000008aη =  and bη = .0008910007.  We 

similarly used a prior distribution 

 2 ~ InvGamma( , )a bε ε εσ  (6) 

with mean 1 and variance 1000. 

 Finally, to complete the specification of the prior, we modeled the mean intercept-

and-slope vector as 

 ( )6
2~ MVN ,10β 0 I  (7) 

and modeled the variance-covariance matrix of the intercept-and-slope vectors as 

 ( )2~ InvWishart ,λΣ Ω  (8) 

for appropriate Ω  and λ .  ( Here 2k =  is the number of rows and columns in Σ . 

Provided Ω  is positive definite and the “degrees of freedom” 1 3kλ > + = , this type of 

distribution over covariance matrices has mean ( ) 11kλ −− − Ω .  For 3kλ > +  the 

elements of Σ  have finite variances.  As 11 0−− = →Ω Ω , and as 1λ → − , this 

distribution approaches the multivariate Jeffrey’s density, which is a noninformative prior 

distribution for Σ  (see [3], page 88).)  Using the distributions easily available in 
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WinBUGS we let ( )1
2~ Wishart 10 ,5.1−Σ I , which is equivalent to 

( )2~ InvWishart .1 ,5.1Σ I . 

 The specifications (3)-(8) then (assuming prior independence) provide a (joint) 

probability model for the observables and parameters.  Bayes inference for parameters 

makes use of their “posterior distribution,” – the conditional distribution of the 

parameters given the observables.  Note that prediction of unobservable random effects 

or functions of them (even for RTDs not represented in the data set) is also possible by 

considering a joint distribution for parameters, observables, and random effects, and then 

the posterior distribution of parameters and random effects (the conditional distribution 

given observables). 

For a calibration experiment involving t  interchangeable devices, prediction of 

the random effects 

 1

2

for 1,2, , , 1h

h

b
h t t

b
 

= + 
 

…  (9) 

is of interest, the first t  of these representing the direct calibrations and the ( )st1t +  

representing an indirect calibration.  Additionally, if newY  is a new observed resistance 

value, and newε  a corresponding unobserved new draw from the ( )2N 0, εσ distribution, the 

quantity 

 new new 1
new

2

h

h

Y bT
b
ε− −

=  (10) 

is also of interest.  In the present context, this is the real temperature corresponding to the 

measured resistance, and its prediction can be made both for RTDs represented in the 

original data set and for the case of 1 13h t= + =  corresponding to an indirect calibration.  
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MCMC (Markov Chain Monte Carlo) methods implemented in WinBUGS (based 

on successive substitution/Gibbs sampling and Metropolis-Hastings algorithms) were 

employed to produce vectors with empirical distribution approximating the full posterior 

distribution.  (See [4].  The software is presently available at no cost and can be 

downloaded from www.mrc-bsu.cam.ac.uk/bugs .  Example WinBUGS code is included 

as an Appendix to this paper.)  Three chains were run simultaneously and monitored 

(using “time series” plots of parameters and random effects of interest and values of the 

Gelman-Rubin statistic) for burn-in to a single posterior.  (Initial values of variances 

2 2 and ε ησ σ  for the three chains were 0.001, 1, and 1000.  All other initial values were 

pseudo-randomly generated.)  Upon burn-in, the sequences of vectors of parameters and 

random effects visited by the chain were thinned until autocorrelations for all variables 

were negligible.  Updating of the three chains continued until an additional 25,000 

vectors from each chain were produced at this sampling rate.  Marginal posterior 

distributions were then estimated from the resulting 75,000 vectors.  Estimates of the 

posterior moments and quantiles for quantities of interest were obtained from the 

approximate marginal posteriors. 

 

IV.  RESULTS 

The analyses were done in WinBUGS Version 1.3.  As indicated above, three 

MCMC chains (each with ~2,200 variables to update at each iteration) were run 

simultaneously.  On a machine with a 3.0 GHz Pentium IV processor and 1 Gb of RAM, 

a burn-in of 254,000 iterations took approximately 4 hours.  After the burn-in, every 25th 

iterate was saved until 25,000 vectors were obtained from each chain.  
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As point predictions of the calibration intercepts and slopes for the RTDs tested in 

the experiment, we used sample means from the estimated marginal posterior 

distributions.  These point predictions and 95% credible limits for these (obtained from 

the lower and upper 2.5% points of the approximate posteriors) are collected in Table 1.  

Further, an indirect calibration was made for an additional hypothetical RTD produced 

under the process conditions represented by the tested thermometers.  The 13th set of 

regression coefficients (marked with *) in Table 1 are the predictions for the hypothetical 

RTD. 

For β , the bivariate point prediction (approximate posterior mean) was (1181, 

9.190) .  A 95% credible set for 1β was (1175, 1188), and the 95% credible set for 2β was 

(9.076, 9.302).   



 11

TABLE 1.  Summary Statistics for RTDs from WinBUGS Analysis   

Node Mean 2.5% Median 97.5% Width 
b1,1 1192 1191 1192 1194 3 
b2,1 8.860 8.798 8.860 8.922 0.124 
b1,2 1191 1189 1191 1193 4 
b2,2 8.967 8.905 8.967 9.030 0.125 
b1,3 1189 1188 1189 1189 1 
b2,3 9.153 9.147 9.153 9.158 0.011 
b1,4 1166 1166 1166 1167 1 
b2,4 9.441 9.435 9.441 9.447 0.012 
b1,5 1199 1198 1199 1199 1 
b2,5 9.012 9.007 9.012 9.018 0.011 
b1,6 1178 1176 1178 1180 4 
b2,6 9.161 9.098 9.161 9.225 0.127 
b1,7 1158 1158 1158 1159 1 
b2,7 9.540 9.535 9.540 9.546 0.011 
b1,8 1182 1181 1182 1182 1 
b2,8 9.232 9.227 9.232 9.238 0.011 
b1,9 1186 1186 1186 1187 1 
b2,9 9.171 9.166 9.171 9.177 0.011 
b1,10 1175 1175 1175 1176 1 
b2,10 9.294 9.289 9.294 9.299 0.010 
b1,11 1174 1172 1174 1175 3 
b2,11 9.243 9.179 9.243 9.307 0.128 
b1,12 1186 1186 1186 1187 1 
b2,12 9.195 9.190 9.195 9.200 0.010 

* b1,13 1181 1159 1181 1203 44 
* b2,13 9.191 8.791 9.191 9.595 0.804 

 

It is interesting that for RTDs 1, 2, 6, and 11, the credible sets for the regression 

coefficients are considerably wider than those for the other RTDs.  This makes sense, 

because all four of these were in the bath that produced only 180 observations.  This 

count is less than a quarter of that for the other RTDs.  Since RTDs 8, 9, 10, and 12 were 

in two baths, they had 404 observations more than RTDs 3, 4, 5, and 7 (which had 781 

observations).  When comparing the widths of the credible sets for these two sets of 
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RTDs, we see very little to no change in the width of the credible sets with increasing 

“sample size.” 

  We were also able to obtain an estimate of the size of the measurement errors of 

the thermometer.  (Notice that in our analysis we did not have to assume that the 

thermometer reads without error, only that it is accurate.)  For this data set, the point 

estimate of the parameter ησ  (again a posterior mean) was 0.1548 FD  with a 95% credible 

set of (.1498, .1601).  The manufacturers of the thermometer probe, thermometer readout 

device, and bath apparatus list their respective “accuracies” as 0.018 F± D , 0.045 F± D , and 

0.018 F± D  respectively.  Further, it seems that their interpretations of these figures is that 

they specify uniform conditional distributions of the truth given a reading associated with 

the apparatus.  (This interpretation seems to be consistent with the 1993 ISO Guide to 

Expression of Uncertainty in Measurement [5] discussed in [6].)  If one assumes 

independence and compounds such errors additively, the resulting standard deviation is 

approximately 0.030 FD .  So our analysis suggests that there is substantially more 

uncertainty associated with the thermometer readings than naïve compounding of 

manufacturer precision figures would predict.  Whether there is some source of variation 

we have failed to account for (like, for example, the lack of exact synchronization of 

observation between the thermometer and RTDs), age has degraded performance of the 

equipment below a “brand new condition” level considered by the manufacturers, or the 

manufacturer values are simply too optimistic is unknown. 

 Arriving at prediction intervals for the measurand represented in (10) is strikingly 

simple.  From (10), the distribution of newT  conditioned on 2
new 1 2, , ,  and h hY b b εσ  is 

plausibly taken to be Normal with mean ( )new 1 2/h hY b b−  and variance 2 2
2/ hbεσ .  The 
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MCMC can provide predicted/estimated values for 2
1 2, ,  and h hb b εσ  at each iteration.  

(This is true even for 13h =  if the current values of and β Σ  are used to generate an 

intercept-slope pair from the distribution (4).)  Then (using the 

( )( )2 2
new 1 2 2N / , /h h hY b b bεσ−  conditional distribution of newT  suggested above) a 

prediction of newT  can be generated.  The empirical distribution of the predictions of the 

measurand then functions as an approximation for the posterior predictive distribution of 

newT .  (Notice that this posterior provides clearly interpretable quantification of the 

uncertainty in temperature newT  associated with a new reading newY  from an RTD.)  The 

sample moments and quantiles of this empirical distribution provide the point and 

interval estimates for newT .  

By way of example, when the 12th RTD reads a resistance of 2100, the estimated 

temperature is 99.35 FD  with 95% posterior probability that the temperature is between 

99.15 and 99.55 FD .  When an indirectly calibrated RTD reads a value of 2100, the 

estimated temperature is 99.99 FD  with a 95% credible set being (97.26, 102.90).   

 In order to gain some understanding of the sensitivity of our analysis to the 

choices made in specifying priors, we experimented with a wide range of priors for Σ .  

We used “conjugate” (Inverse Wishart) priors with Ω  ranging from .001  to 1000I I  and 

2 and 5.1λ λ= = .  In addition, we also experimented with a range of non-conjugate 

priors for Σ  (ones with independent inverse gamma marginals for variances and a 

uniform marginal for the correlation coefficient).  We found the ability to get the MCMC 

to burn-in (so that empirical representations of posteriors can be obtained) to be 
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somewhat dependent on the choice of the prior for Σ .  But burn-in was possible for most 

of the possibilities we considered (14 of 18). 

Across those choices of prior for which burn-in was achieved, inferences for 

intercepts, slopes, and newT  for RTDs actually tested changed very little.  This is probably 

simply a reflection of a very large number of observations upon which to estimate the 

parameters of the direct calibrations.  The data “overwhelm the prior.”  The situation is 

somewhat different for an indirectly calibrated RTD.  For the hypothetical 13th RTD, 

point estimates changed very little, but intervals changed substantially with choice of the 

prior for Σ .  This makes sense.  In terms of estimating parameters for Σ , the effective 

sample size is small (there are only 12 intercept-slope pairs represented in the data set).  

The relevant data (the fairly precisely known 12 pairs) did not overwhelm prior 

assumptions on the parameters of the distribution (4), and those show up as affecting the 

posterior precision of the intercept, slope, and inverse predictions (the newT ) for an 

untested RTD. 

 

V.  DISCUSSION 

If we had not incorporated element (1) and subsequently element (3) into our 

analysis (i.e. had treated thermometer readings as exact temperatures), the model here 

would have been a (simpler) linear mixed effects model.  But even in that simplified 

0ησ =  context, it was not completely clear to us how to handle interval estimation for a 

measurand from an indirect calibration using classical/frequentist statistical methods.  

The present Bayesian approach seemed more promising.  And using it, we were able to 
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estimate the precision of the thermometer, a quantity that we would have otherwise had 

to take on faith from the manufacturer. 

We are not the first to notice the possibility of taking a Bayes approach to 

calibration problems.  See, for example, [7] and the references therein.  However, the 

particular model we've used (specifically including imprecision in thermometer readings) 

and the multiple device and (particularly the) “indirect calibration” aspects of our 

problem seem to us to be non-standard. 

WinBUGS made computations manageable, if not completely trivial.  Without 

this software, programming the MCMC would have been formidable.  But using 

WinBUGS (keeping in mind the caution of its developers that “MCMC sampling can be 

dangerous!”) we see that quite complicated calibration problems can be handled via a 

Bayesian approach. 
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VIII.  Appendix (WinBUGS Code) 

model 
{  
############################## PRIORS ############################################ 
 
# THE PRIOR ON THE PRECISION OF THE THERMOMETER 
  tau.eta ~ dgamma(2.000000008, .0008910007) 
 
# THE PRIOR ON THE PRECISION OF A RTD 
  tau.epi ~ dgamma(2.001, 1.001) 
 
# THE PRIOR ON THE MEAN INTERCEPT AND SLOPE OF ALL RTDs  
  beta[1:2]~ dmnorm(m.beta[],p.beta[ , ]) 
 
# THE PRIOR ON THE PRECISION MATRIX OF THE RANDOM INTERCEPTS & SLOPES 
  P[1:2, 1:2] ~dwish(Omega[ , ], 5.1)   
 
############################## MODELS ########################################### 
 
# MODEL FOR THE RANDOM EFFECTS OF THE RTDs FOR WHICH THERE IS DATA 
  for (h in 1:12){ 
   b[h , 1:2] ~ dmnorm(beta[], P[ , ]) 
                 } 
 
# MODEL FOR THE ERROR TERM OF THE THERMOMETER (eta[i,j]) 
  for (i in 1:B){ 
   for (j in 1:n[i]){ 
    eta[i, j] ~ dnorm(0, tau.eta) 
        } 
         } 
# MODEL FOR THE OBSERVATIONS FROM THE RTDs (Y[h,i,j,k])      
for (m in 1:N){ 
                   # THE EXPECTED VALUE OF y[h,i,j,k]            
              E.Y[m] <- b[RTD[m], 1] + b[RTD[m], 2]*(X[m] - eta[BATH[m],OBS[m]])  
 
               # THE MODEL FOR Y[h,i,j,k] 
       Y[m] ~ dnorm( E.Y[m], tau.epi) 
    }  
 
############################## PREDICTIONS ####################################### 
##############################    STEP 1   ####################################### 
 
 
# THE FOLLOWING STEPS ARE TO OBTAIN THE CURRENT ITERATE VALUE FOR STOCHASTIC NODES 
# NEEDED FOR THE CALIBRATION OF AN UNTESTED RTD AND PREDICTION OF T.new. 
 
  for (h in 1:12){ 
   for (i in 1:2){ 
                     bstar[h,i]<-b[h,i] 
                    } 
                 } 
 
  for(i in 1:2) { 
                 beta.star[i]<-beta[i] 
                } 
  for (i in 1:2){ 
   for (j in 1:2){ 
                     P.star[i,j] <- P[i,j] 
                    } 
                } 
  tau.epi.star<- tau.epi 
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############################## PREDICTIONS ####################################### 
##############################    STEP 2   ####################################### 
 
# CALIBRATION OF AN UNTESTED RTD 
bstar[13,1:2]~dmnorm(beta.star[], P.star[,]) 
 
 
 
# PREDICTION FOR THE TEMPERATURE T.new GIVEN y.new, b[h,], AND var.epsilon 
for (h in 1:13){ 
                   # THE EXPECTED VALUE OF T.new GIVEN y.new, b[h,], AND var.epsilon 
              E.T.new[h] <- (Y.new[h] - bstar[h,1])/bstar[h,2] 
                   # THE PRECISION OF T.new GIVEN y.new, b[h,], AND var.epsilon 
              P.T.new[h] <- (bstar[h,2]*bstar[h,2])*tau.epi.star 
                   # THE MODEL FOR T.new 
              T.new[h] ~ dnorm(E.T.new[h], P.T.new[h]) 
               } 
 
 
############################### CALCULATIONS ##################################### 
# STANDARD DEVIATION NODE 
  sig.eta <- sqrt(1/tau.eta) 
# STANDARD DEVIATION NODE 
  sig.epi <- sqrt(1/tau.epi) 
# INVERSION OF THE PRECISION MATRIX (P)  
# TO OBTAIN THE VARIANCE-COVARIANCE MATRIX (Sigma) 
  for (i in 1:2){ 
   for (j in 1:2){        
        V[i,j] <- inverse( P[,],i,j) 
       } 
      } 
} 
 
### NODES TO FOLLOW: sig.epi, sig.eta, V,  b, bstar[13,], beta, T.new 
 
### INITIAL VALUES 
list(tau.epi=1000, tau.eta=1000) 
list(tau.epi=1, tau.eta=1) 
list(tau.epi=.001, tau.eta=.001) 
 
### DATA 
 
list(N=8584, B=4, n=c(779,781, 406,180), 
     m.beta = c(0,0), p.beta = structure(.Data = c(1.0E-6, 0, 0, 1.0E-6), .Dim = c(2, 2)) ,  
     Y.new=c(1411, 1641, 1411, 1641, 1870, 1870, 2100, 1411, 1641, 1870, 2100, 2100, 2100), 
     Omega = structure(.Data = c(0.1, 0, 0, 0.1), .Dim = c(2, 2)))  
 
 
Y[] X[] BATH[] OBS[] RTD[] 
1567 40.9667 1 1 8 
1570 40.9667 1 1 9 
............ etc.......................... 


