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2 Institut für Wirtschafts- und Sozialstatistik,

Universität Dortmund, 44221 Dortmund

3 Risk Management Support & Control, WestLB AG, 40217 Düsseldorf

The risk of a credit portfolio depends crucially on correlations between the prob-

ability of default (PD) in different economic sectors. Often, PD correlations have

to be estimated from relatively short time series of default rates, and the resulting

estimation error hinders the detection of a signal. We present statistical evidence

that PD correlations are well described by a (one-)factorial model. We suggest a

method of parameter estimation which avoids in a controlled way the underestima-

tion of correlation risk. Empirical evidence is presented that, in the framework of the

CreditRisk+ model with integrated correlations, this method leads to an increased

reliability of the economic capital estimate.

Managing portfolio credit risk in a bank requires a sound and stable estimation of the

loss distribution with a special emphasis on the high quantiles denoted as Credit Value-at-

Risk (CreditVaR). The difference between the CreditVaR and the expected loss has to be

covered by the economic capital, a scarce resource of each bank. From a risk management

perspective, the definition of industry sectors allows to diversify credit risk. The degree to

which this diversification is successful depends on the strength of correlations between the

sectors. Moreover, the correlations between sector PDs crucially influence the CreditVaR

and hence the economic capital.

In large banks, the concentration risk in industry sectors is a key risk driver. In Cred-

itRisk+ [1], concentration risk is modelled as a multiplicative random effect on the PD per

counterpart in a given sector. In the original version of CreditRisk+, the loss distribu-

tion is calculated for independent sector variables. Correlations between PD fluctuations

in different sectors can be integrated into CreditRisk+ with the method of Bürgisser et al.

∗ The first two authors have contributed equally.
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[2]. For the calculation of the CreditVaR it is important whether input parameters like the

correlation coefficients between sector PDs are known or must be estimated. In the latter

case, this estimation leads to an additional variability of the target estimate, in our case the

portfolio loss. In this way, uncertainty in the estimation of PD correlations translates itself

into uncertainty of the economic capital of a bank.

The estimation of cross–correlations is difficult due to the ”curse of dimensionality”:

if the length T of the available time series is comparable to the number K of industry

sectors, the number of estimated correlation coefficients is of the same order as the

number of input parameters with the result of large estimation errors. A way out of this

dilemma is the use of a factor model with a reduced dimensionality of the parameter

space. We present evidence that the PD correlations for K = 20 industry sectors are

well captured by a one–factor model. Surprisingly, even the parameter estimation for the

one–factor model is subject to large statistical fluctuations and gives rise to a considerable

uncertainty in the CreditVaR. We discuss these fluctuations in detail and suggest a

bootstrap method which allows to find an upper limit for the parameters. We assess the im-

pact of different conservative estimates with respect to the CreditVaR of a realistic portfolio.

Description of data set

As the economic activity and the probability of default in a given industry sector is not

directly observable, we approximate it by the insolvency rate in that sector over the last T

years. The probability of insolvency PDkt of sector k in year t is calculated as the ratio of

the number of insolvencies in that sector to the total number of companies in the sector

ˆPDkt =

∑

A ∈ sector k in year t I{A fails}
∑

A ∈ sector k in year t

. (1)

With the help of insolvency rates, the default probability for a given company A can be

factorized into an individual expected PD pA and the sector specific relative PD movement

Xk with expectation 〈Xk〉 = 1 according to

P (A fails) = pAXk with Xkt =
P̂Dkt

1
T

∑

t P̂Dkt

. (2)

For this study, we use sector specific default histories as supplied by the federal statistical

office of Germany. We analyze default rates for a segmentation of the economy into 20

sectors and estimate the sample covariance matrix Σemp and sample correlation matrix Cemp



3

as

Σemp
ij =

1

T−1

T
∑

t=1

(Xit−1)(Xjt−1), C emp
ij = Σemp

ij /σXi
σXj

(3)

with σ2
Xi

= Σemp
ii .

Test for independent sectors

We first ask whether the sample correlation matrix of the PD time series is compatible with

the hypothesis of zero correlations. Ideas for testing this hypothesis for covariance matrices

date back to the seventies [3], and were recently generalized to situations where the number

of time series is larger than the sample size [4]. Here, we use an adaption of the tests [3, 4]

to test for the equivalence of correlation matrix to the unit matrix. The test statistics

R̃ =
1

K
tr

[

C2
]

− 1 , (4)

for a correlation matrix C is both K– and T–consistent with the T–limiting distribution

R := (T−1)KR̃/2 D→ χ2
K(K−1)/2 [5]. The factor T −1 rather than T is chosen to improve the

finite T properties of the test. For our example with T = 7 and K = 20, we find R = 348.31,

whereas the critical value for α = 0.05 is Rcrit = 223.16. Hence, the independence of sector

PDs must not be assumed and a model describing sector correlations is needed.

Description of one–factor model

We diagonalize the empirical cross correlation matrix Cemp and rank order its eigenvalues

λi,emp < λi+1,emp. As we are interested in modelling correlations rather than covariances,

we normalize the Xit such that they have the same, namely the average variance σ2
X =

(1/K)
∑K

i=1 σ
2
Xi

and subtract the mean

X̃it = (Xit − 1)
σX
σXi

. (5)

We use the components of the eigenvector u(K)
emp corresponding to the largest eigenvalue

λK,emp = 10.38 to define a factor time series

Yt =
K

∑

i=1

u
(K)
i,empX̃it . (6)

As compared to averaging the sector variables without prior information, the definition of

the factor time series from the eigenvector with largest eigenvalue makes sure that the factor
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FIG. 1: The components of the eigenvector u
(K)
emp of the empirical correlation matrix (connected

full circles) are almost identical to the components of the eigenvector u
(K)
point of the point estimator

Cpoint (open circles) .

explains a maximum amount of correlations. The idea arises from factor analysis, see e.g.

[6]. In the context of stock returns, a time series defined according to the prescription of

Eq. 6 was found to agree well with a value weighted stock index [7]. We expect that the

factor time series Eq. 6 describes economy wide changes of relative PD, possibly weighted

by the economic relevance of the individual sectors.

We model the correlations between relative PD movements by a one–factor model

X̃it = biYt + εit . (7)

The coefficients {bi} are found by performing a linear regression. To see whether a one–

factor model fully describes the correlations between the {X̃it}, we apply the test Eq. 4

to the correlation matrix of the residuals {εit}. Taking into account that the regression

reduces the effective length of the residual time series from T to T − 1, we find R = 220.46

slightly below the threshold Rcrit = 223.16. As the assumption of uncorrelated residuals is

not rejected, no further factors are needed for the description of correlations.

The point estimator can now be calculated under the assumption that the residua {εi,t}
are iid observations from uncorrelated random variables εi i = 1, . . . , K, i.e. 〈εiεj〉 = 0 for

i 6= j. Defining the factor variance σ2
Y = 1

T−1

∑T
t=1 Y

2
t , one finds the point estimator for the

cross correlation matrix as

Cpoint
ij = δij + (1− δij)bibjσ

2
Y /σ

2
X . (8)

The largest eigenvalue of Cpoint is found to be λK,point = 10.66 in good agreement with the
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original largest eigenvalue. In addition, the corresponding eigenvector u
(K)
point is found to be

very close to the original eigenvector (Fig.1).

Fluctuations in empirical correlation matrices – a toy model

In this section, we use the results of Monte Carlo simulations to study the relation

between the cross correlation matrix Cmodel resulting from infinitely long model time series

and matrices Csim numerically calculated from finite time series of length T . We find that the

{Csim} differ from Cmodel both in a systematic way, for example a shift of the largest eigenvalue

towards larger values, and a random way, i.e. an individual member of the simulated ensemble

deviates significantly from the average [8, 9].

To simplify simulations, we rewrite Eq. 7 as

X̃it = αβiFt + ciηit . (9)

The random variables are rescaled according to ciηit = εit and αβiFt = biYt such that

their variances are var(F ) = σ2
X and cov(ηiηj) = σ2

Xδij. In addition, the {βi} obey the

normalization condition
∑K

i=1 β
2
i = 1, which makes them comparable to the components of

the eigenvector u(K). The model parameters are subject to the constraint c2i = 1− α2β2
i in

order to enforce var(X̃it) = σ2
X .

The model is completely defined by i) the parameter α determining the largest eigenvalue,

ii) the parameters {βi} and iii) by the probability distribution of the random variables F

and {ηi}. As the empirical PD movements are commonly assumed to follow a gamma

distribution, we model the random variables F and ηi by gamma distributions as well [10].

In addition, we use normal distributions for the random variables and find that the deviation

from a simulation with gamma distributed variables is smaller than 3%. As the simulation

of gaussian random variables is computationally much more efficient than the simulation of

gamma distributed variables, we use normally distributed variables for the computationally

demanding selfconsistent calculations described in the next section.

The infinite time series correlation matrix of the model is given by

Cmodel
ij = δij + (1− δij)α

2βiβj . (10)

In this section, we study the outcome of model simulations for the particularly simple hy-

pothetical case u
(K)
i,model = βi ≡ 1/

√
K in order to gain qualitative insight into the occurring
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FIG. 2: Distribution of the largest eigenvalue and of all components of the corresponding eigen-

vector from simulations of the one–factor model with λK,model = 10.38.

fluctuations. For a given value of α corresponding to λK,model = 10.38, we perform a Monte

Carlo simulation of Eq. 9. We compute the pdf for the largest eigenvalue λK,sim of Csim and

the corresponding eigenvector u
(K)
sim . We find that both quantities have broad distributions

(see Fig. 2). The distribution of eigenvalues has an average 〈λK,sim〉 = 10.72, which is sig-

nificantly larger than the true eigenvalue λK,model = 10.38. In addition, one finds simulated

eigenvalues as low as λK,sim = 5. We quantify the systematic shift of eigenvalues by the

average ∆λ = 〈λK,sim〉 − λK,model. The magnitude of eigenvalue fluctuations is described by

the standard deviation

σλ =
√

〈λ2
K,sim〉 − 〈λK,sim〉2 . (11)

For the distribution shown in Fig. 2 we find σλ = 2.42.

There are significant fluctuations of eigenvector components as well. For theoretical

eigenvector components u
(K)
imodel = 0.224 ∀ i one even finds negative empirical components

indicating spurious anticorrelations, which would lead to dangerous hedges in credit portfo-
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lios. Specifically, we calculate the standard deviation

σui
=

√

〈(u(K)
i,sim)

2〉 − 〈u(K)
i,sim〉2 (12)

and find σui
= 0.083. Since the u

(K)
i,model do not vary across i we only need to estimate one

σui
.

As a conclusion, even if the generating process for relative PD movements is a simple

one–factor model, the empirically found parameters can deviate significantly from the

theoretical ones. We advocate the point of view that the empirical Cemp has to be viewed

as a member of such a fluctuating ensemble in that its eigenvalues and eigenvectors

can deviate significantly from the unknown “true” correlation matrix of PD movements

[8, 9]. Then, the statistical properties of the ensemble {Csim} can be used to derive er-

ror bars for both the largest eigenvalue and the components of the corresponding eigenvector.

Conservative estimates

How can we use these results to make a reliable estimate for the correlation matrix of

relative PD movements? A bank needs to act in a conservative manner to prevent insolvency.

Using the empirical correlation matrix, the bank risks that the correlations are ”accidently”

low. The most conservative approach would be to assume all correlations to be 1, i.e.

u
(K)
i = 1√

K
∀ i. But now the model would effectively one-sector model. Any possibility

to measure concentration risk in certain industry sectors would be prevented. The model

would not enforce diversifying the business across sectors.

As a controlled mediation we introduce ”cases” of add-ons of x = 1, 2, 3 standard devi-

ations to the fluctuating quantities such that the predicted risk for a portfolio is increased.

This means correcting the eigenvalue towards larger values and the eigenvector components

towards the value u
(K)
i ≡ 1/

√
K indicating the same correlation strength for all sectors and

the absence of hedge possibilities.

Specifically, we let u
(K)
i,case = 1/

√
K if

|u(K)
i,emp − 1/

√
K| < x · σui

(13)

and u
(K)
i,case = u

(K)
i,emp±x ·σui

otherwise. The sign is chosen such that the overall risk increases,

i.e. such that u
(K)
i,case falls between the empirical value and 1/

√
K. After applying these

corrections, the eigenvector is normalized. For this calculation, we fix the parameter α such
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FIG. 3: Comparison between the empirical eigenvector u
(K)
emp (diamonds) and the conservative

estimates u
(K)
1σ (circles), u

(K)
2σ (triangles), and u

(K)
3σ (squares).

that the simulated largest eigenvalue λK,sim is equal to the empirically observed one. We

calculate the {σui
} selfconsistently, i.e. we calculate σui

for the u
(K)
i,case which solves Eq.13.

The results are shown in Fig.3. We see that for increasing x = 1, 2, 3, the model eigenvector

comes closer to the null hypothesis of an eigenvector with identical components. While

the empirical eigenvector has significant negative components indicating anticorrelations

between some of the sectors, the negative components in u
(K)
1σ are already strongly reduced

and completely gone in u
(K)
2σ .

Similarly, we add a fluctuation margin to the model eigenvalue [11] such that

λK,case = λK,emp + x · σλ . (14)

Here, x specifies the width of the confidence interval for the estimation of λK,model. We

perform this calculation selfconsistently, i.e. we calculate ∆λ and σλ for the λK,case which

solves Eq.14. We find λK,1σ = 11.17, λK,2σ = 12.93, and λK,3σ = 15.42.

Economic implications of the different correlation matrices

So far, we have described five different estimates for the cross correlation matrix, i.e. Cemp,

Cpoint, Cmodel
1σ , Cmodel

2σ , and Cmodel
3σ . To judge the economic implications of these estimates, we

study the differences in the loss distribution resulting from these correlation estimations.

The CreditVaR is a key quantity in banking when it comes to risk management. Reduced

by the expected loss, it quantifies the capital needed to prevent insolvency for a given level

of security. As capital is a resource it must be considered in the pricing of credit and

trading products. Therefor, we quantify the impact of the different correlation estimates by
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correlation matrix CreditVaR (in billion Euro)

C 2.872

Cpoint 2.825

Cmodel
1σ 3.172

Cmodel
2σ 3.465

Cmodel
3σ 3.665

TABLE I: Analysis of CreditVaR for different correlation matrices

calculating their influence on CreditVaR.

The portfolio we study is realistic – although fictitious – for an international bank. It

consists of 4934 risk units distributed asymmetrically over 20 sectors with 20 to 500 coun-

terparts per sector. The total exposure is 70 bn Euro with a largest exposure of 1.5 bn Euro

and a smallest exposure of 0.25 mn Euro. The counterpart specific default probability varies

between 0.03% and 7%, the expected loss for the total portfolio is 373.3 mn Euro. Table I

shows the CreditVaR calculated by using CreditRisk+ and the method of Bürgisser et al.

[2] for integrating correlations.

We note that the use of a one–factor model changes the CreditVaR only by two percent

as compared to the sample cross correlation matrix. Thus, the assumption of a one–factor

description and the increase of estimation confidence achieved with this assumption yields

portfolio risk estimation compatible with the parameter free estimation.

Our aim is to estimate a quantile of a probability distribution – namely the CreditVaR

of the portfolio loss distribution. In the presence of an unknown parameter, it is a well

established statistical result (see [12]) that the use of the point estimate for the parameter –

derived by a model or not – leads to an underestimation of the quantile estimate. To account

for this additional estimation insecurity, we add a volatility σ to the parameter estimate,

i.e. the correlation matrix. When applying a one–σ estimate, the CreditVaR increases by

400 mn Euro, for the two–σ estimate there is another increase by 300 mn Euro, and using

the three–σ estimate the CreditVaR increases by yet another 200 mn Euro. To put these

numbers in perspective, we note that the CreditVaR without including correlations is found

to be 2.27 bn Euro, and that the assumption of full correlations among all sectors leads to

a CreditVaR of 3.952 bn Euro. Because negative PD correlations are not plausible from
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an economic point of view, the use of the two–σ estimate guarantees a sufficient forecast

reliability on the one hand and allows for some guidance for economical decision on the other

hand.

In summary, we have shown that correlations between empirical default rates for economic

sectors are statistically significant and must be taken into account. We have described these

correlations with a one–factor model and found that this description reproduces well the

empirical correlations. However, when using the model to generate short time series and

calculating their correlation matrix, one typically observes large statistical fluctuations in the

correlation structure. Due to these fluctuations, the parameter estimation for a one–factor

model is plagued by large uncertainties. When estimating the model parameters in such a

way that the empirically observed ones appear as a worst case scenario, the reliability of the

estimate is increased in a systematic way, leading to a moderately increased CreditVaR.

Acknowledgement: We would like to thank A. Müller-Groeling for initiating this project,

and J.-H. Schmidt, A. Wilch, and C. von Lieres und Wilkau for useful discussions. The finan-

cial support of the Deutsche Forschungsgemeinschaft (SFB 475, ”Reduction of complexity

in multivariate data structures”) is gratefully acknowledged.

[1] Credit Suisse First Boston (CSFB) : Credit Risk +: A Credit Risk Management Frame-

work, Technical document, 1997.

[2] Bürgisser, P., A. Kurth , A. Wagner, and M. Wolf, Integrating Correlations, Risk, 07/1999.

[3] John, C.,Some optimal multivariate tests, Biometrika 58, 123-127 (1971).

[4] Ledoit, O. and M. Wolf, Some hypothesis tests for the covariance matrix when the dimension

is large compared to the sample size, Annals of Statistics 30, 1081-1102 (2002).

[5] B. Rosenow, to be published. For correlation matrices, the test statistics R is equivalent to the

statistics W studied in [4]. R has a limiting distribution χ2
K(K−1) as compared to the limiting

distribution χ2
K(K+1) for W as the diagonal elements of a correlation matrix are fixed and do

not fluctuate.

[6] Mardia, K.V., Kent, J.T., Bibby, J.M., Multivariate Analysis, Academic Press, 2000.

[7] P. Gopikrishnan, B. Rosenow, V. Plerou, and H.E. Stanley, Quantifying and interpreting

collective behavior in financial markets, Phys. Rev. E 64, 035106(R) (2001).



11

[8] Laloux, L., P. Cizeau, J.-P. Bouchaud, and M. Potters, Random Matrix Theory, Risk Magazine

12, 69 (1999); see also L. Laloux et al., Phys. Rev. Lett. 83, 1467 (1999).

[9] Plerou, V., P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, Universal and

non–universal properties of cross–correlations in financial time series, Phys. Rev. Lett. 83,

1471 (1999).

[10] As gamma distributed variables have nonzero mean, the model must be rewritten as X̃it+1 =

αβiFt + ciηit, i.e. variables X̃it + 1 with the original expectation value one are modelled.

The expectation values of the random variables are 〈F 〉 = 1/(α 1
K

∑K
i=1 βi +

1
K

∑K
i=1 ci) and

〈ηi〉 = (1− αβi〈F 〉)/ci such that 〈X̃i〉 = 0 for all i.

[11] For the numerical calculation, we also account for the systematic eigenvalue shift ∆λ.

[12] Lehmann, E.L., Testing statistical hypotheses, Chapmann & Hall (1993).


