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Abstract 

 We consider a misconception common among students of statistics involving 

“adjusted” and “unadjusted” sums-of-squares.  While the presence of misconception has 

been noted before (e.g. Hamilton (1986)), we argue that it may be related to the language 

we use in describing the meaning of sums-of-squares.  For linear regression with two 

independent variables, we then present a sufficient condition for 

( ) ( )1 2 1|SSR X X SSR X>  in terms of the signs of the sample correlations between pairs 

of predictor and response variables, and note how this sufficient condition may also be 

related to misconceptions held by some students of statistics. 

 
Introduction 

Students of statistics are often struck by the specific technical definitions we 

assign to words like bias, sufficient, and expected, which have related but less precise 

meanings in other contexts.  Such terms may help students quickly establish an 

understanding of, and even intuition for, some basic statistical ideas because their 

common definitions are usefully suggestive of their statistical meanings.  But the use of 

terms from common language can mislead as well, if we expect too much from such 

parallels.  For example, it is common language in describing statistical regression or 

analysis of variance to speak of one variable’s effect on the response after adjusting for 

another variable, or in explaining the variation remaining after accounting for effects of 

another variable.  The colloquial meanings of such phrases might suggest that we expect 
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to see something of reduced magnitude relative to the corresponding quantity before the 

“adjustment,” as with the annual increase in value of a savings account after adjusting for 

inflation. 

This impression is often enforced by the examples we offer in textbooks and the 

classroom.  For example, in their discussion of the “extra” sum-of-squares, Neter, Kutner, 

Nachtsheim, and Wasserman (1996, section 7.1) describe a study in which amount of 

body fat (Y ) is related to triceps skinfold thickness ( 1X ), thigh circumference ( 2X ), and 

midarm circumference ( 3X ) in a human physiology study.  Based on a sample of 20 

subjects, the sum-of-squares for regression of Y on 1X  alone is shown to be 

( )1 143.12SSR X = , while the extra sum-of-squares associated with 1X  after adjusting for 

2X  is ( )1 2| 33.17SSR X X = .  The authors carefully (and correctly) say that the second 

value represents additional or extra reduction in the error sum-of-squares associated 

with 1X , given that 2X  is already included in the model.  However, depending on the 

words used to further describe this idea, a student may erroneously conclude that 

( )1 2|SSR X X  should never be more than ( )1SSR X . 

Hamilton (1987) pointed out that while most examples in regression textbooks 

used in the 1980’s followed this pattern, adjusted sums-of-squares need not be smaller 

than their unadjusted counterparts, and offered some geometric insights related to this 

phenomenon.  In a more recent textbook, Mendenhall and Sincich (2003, pp 173-175) 

present a regression example in which the price of antique grandfather clocks at auction 

(Y  in dollars) is related to the age of the clock ( 1X  in years) and the number of bidders 

present ( 2X ).  In the data set of 32 observations, ( )1 2,555, 225SSR X = , while 

( )1 2| 3,533, 400SSR X X = , demonstrating the opposite of what some students might 

expect.  Data from this example are reproduced here in Table 1 for convenience. 
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Table 1:  Data from Grandfather Clock Example of Mendenhall and Sincich 

 
1X  2X Y  1X  2X Y  

127 13 1235 170 14 2131
115 12 1080 182 8 1550
127 7 845 162 11 1884
150 9 1522 184 10 2041
156 6 1047 143 6 845 
182 11 1979 159 9 1483
156 12 1822 108 14 1055
132 10 1253 175 8 1545
137 9 1297 108 6 729 
113 9 946 179 9 1792
137 15 1713 111 15 1175
117 11 1024 187 8 1593
137 8 1147 111 7 785 
153 6 1092 115 7 744 
117 13 1152 194 5 1356
126 10 1336 168 7 1262

 
 

A Sufficient Condition for ( ) ( )1 2 1|SSR X X SSR X>  and Related Intuition 

It is instructive to think about the sort of data structures that can lead to adjusted 

sums-of-squares that are larger than their unadjusted counterparts.  For our purposes, 

consider a linear regression problem with two predictors (one degree of freedom each), 

corresponding to the model: 

 0 1 1 2 2Y X Xβ β β ε= + + + . 
Without loss of generality, suppose the response and predictor values have been centered, 

and the predictors further scaled so that, in vector notation 

 
1

2

1 1

2 2

0
0
0
1
1

′ =
′ =
′ =
′ =
′ =

Y 1
X 1
X 1
X X
X X

 

and the model may be written without the intercept.  For notational convenience, denote 

the sample correlation coefficients between pairs of variables as: 

 12 1 2 01 1 02 2, ,  and c c c′ ′ ′= = =X X Y X Y X . 
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We are interested in conditions that lead to 

 ( ) ( )1 2 1| 0SSR X X SSR X− >  

or 

 ( )
1

12 1
1 2 2 2 1 1

12 2

1
0

1
c

c

− ′   ′ ′ ′ − − >    ′    

X
Y X X X X X X Y

X
. 

Noting that we may write the inverse matrix as 

( )
1

12 12
2

12 1212

1 11
1 11

c c
c cc

− −   
=   −−   

 

 
the condition can be rewritten as 

 
( ) ( )2 212

01 12 02 12 01 022
12

2 0
1

c c c c c c c
c

+ − >
−

. 

Because the denominator on the left side is positive, this is equivalent to: 

 ( )( )2 2
12 01 12 02 12 01 02sign 2 0c c c c c c c+ − >  

that is 
 ( ) ( ) ( )2 2

01 02 12 12 01 02 12sign 2 signc c c c c c c+ > . 

Since ( )12 12sign 0c c >  if the two predictors are not orthogonal, this is equivalent to 

 2 2
01 02 01 02 122 /c c c c c+ > . 

  
The above inequality does not have an obvious statistical interpretation, but does 

provide an interesting sufficient condition for ( ) ( )1 2 1| 0SSR X X SSR X− > , because it is 

satisfied when 

 01 02 12 0c c c < . 
That is, the condition is satisfied by any arrangement of data in which an odd number of 

correlations between pairs of 1 2, ,  and Y X X are negative – the cases listed in Table 2. 
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Table 2: Signs of correlations satisfying the condition for ( ) ( )1 2 1|SSR X X SSR X>  

01c 02c 12c

−  −  −  
+  +  −  
−  +  +  
+  −  +  

 

 

These situations may also be counterintuitive to beginning statistics students, who 

may mistakenly interpret the regression equation, excluding the error term, as a linear 

relationship between any two variables with the third variable fixed.  For example, for 

points on the plane described by 

1 2Y X X= −  

1X  and 2X  are inversely related given a fixed value of Y .  Here one of the three 

relationships between pairs of variables, given the third, is direct ( 1and Y X ), while the 

other two are inverse.  In general, either one or all three such relationships must be direct, 

depending on the signs of the coefficients – these are the patterns absent from Table 2.  It 

may not necessarily be obvious to a beginning student of statistics that, for data modeled 

as 

1 2Y X X ε= − + , 

12c  may be negative, positive, or zero, and that which is the case is not apparent from the 

coefficients of the fitted model.  The example cited above from Mendenhall and Sincich 

(2003) may help to clarify this;  recall that: 

 1

2

sale price of the clock (dollars)
age of the clock (years), and
number of bidders participating   .

Y
X
X

=
=
=

 

Here 01 02 12, ,  and c c c  are 0.730, 0.395, and –0.254, respectively, and conform to the 

pattern displayed in the 2nd line of Table 2.  Intuition for the signs of the first two 

correlations is clear; we might speculate that the correlation between predictors is 

negative because fewer bidders can afford more expensive clocks. 
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A Simple Example 

 A very simple example may help reinforce the idea that adjustment for 2X  may 

enhance the apparent linear relationship between Y and 1X .  The data in Table 3, panel 1, 

result in equal row means, so that SSR( 1X ) = 0.  But after adjusting for column averages 

in panel 2, the new row means differ and SSR( 1X | 2X ) > 0.  The data are also presented 

graphically in the two panels of Figure 1.  In the left panel, the plane denotes the fitted 

regression of Y on 1X  alone; it must be flat left-to-right because 2X  is not included in the 

model, but then must also be flat front-to-back (e.g. SSR( 1X ) = 0 ) since any other angle 

would increase the sum of squared distances between data and plane.  The plane in the 

right panel denotes the fitted regression of Y on both 1X  and 2X  together – a perfect fit 

in this contrived case.  Here, because the plane can be tilted left-to-right (e.g. 2X  is 

included), the best (perfect) fit is achieved when it is also tilted front-to-back (e.g. 

SSR( 1X | 2X ) > 0 ).  Note that in this case, correlations between 1X  and 2X , and Y and 

2X , are negative; the correlation between Y and 1X  is exactly zero, but it is clear that 

small perturbations in the data leading to either positive or negative values would 

continue to result in ( ) ( )1 2 1|SSR X X SSR X> . 

 

Table 3:  Example in which ( ) ( )1 2 1|SSR X X SSR X>  

Panel 1: Raw Data   Panel 2: Data “Adjusted” for 2X  

     2X  

1X  
1−  1  

       2X  

1X  1−  1  

1−  -- 5  5    1−  -- 1 1 
0  7  3  5    0  1 1−  0  

1 5  -- 5    1 1−  -- 1−  

 6  4      0  0   
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Figure 1:  The Case of Table 3 

 
 

 

An Adjusted Sum-of-Squares by Any Other Name … 

As noted above, our contention is that some misunderstandings about the 

relationship between unadjusted and adjusted sums-of-squares associated with a variable 

may begin with intuition accompanying the word adjusted.  If we are right, it may help to 

substitute phrases such as “in the presence of other variables” or “ignoring other 

variables.”  It may help students to stress that the explanatory value of 1X  may be 

reduced in the presence of 2X  if the two predictors carry similar information, or it may 

be increased if the unique predictive value of 1X  is more apparent after the effects 

associated only with 2X  have been “filtered.”  Hamilton (1986) points to an example in 

Kendall and Stewart (1973) in which they call 2X  a “masking variable” when its 

omission from the model reduces the apparent importance of 1X .  Regardless of the 

words used, we agree with Hamilton that this issue (still) deserves more attention in our 

classrooms and textbooks.  It is important that students be shown examples in which the 

adjusted sums-of-squares are both larger and smaller than their unadjusted counterparts, 

and that the fact that both cases are possible be made clear. 
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