
Graupner, Marten

Working Paper

The Spatial Agent-based Competition Model (SpAbCoM)

Discussion Paper, No. 135

Provided in Cooperation with:
Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale)

Suggested Citation: Graupner, Marten (2011) : The Spatial Agent-based Competition Model
(SpAbCoM), Discussion Paper, No. 135, Leibniz Institute of Agricultural Development in Central and
Eastern Europe (IAMO), Halle (Saale),
https://nbn-resolving.de/urn:nbn:de:gbv:3:2-27265

This Version is available at:
https://hdl.handle.net/10419/49293

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:gbv:3:2-27265%0A
https://hdl.handle.net/10419/49293
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

THE SPATIAL AGENT-BASED COMPETITION
MODEL(SPABCOM)

MARTEN GRAUPNER

DISCUSSION PAPER NO. 135
2011

DISCUSSION PAPER

Leibniz Institute of Agricultural Development in
Central and Eastern Europe

Theodor-Lieser-Straße 2, 06120 Halle (Saale), Germany
Phone: +49-345-2928 110

Fax: +49-345-2928 199
E-mail: iamo@iamo.de

Internet: http://www.iamo.de

Marten Graubner is postdoctoral research associate in the Department of "Structural Development of
Farms and Rural Areas" at the Leibniz Institute of Agricultural Development in Central and Eastern
Europe (IAMO). His research focuses on spatial pricing and competition in agricultural markets and
its investigation within a framework of computational economics. This paper is based on Chapter 6 of
the author’s dissertation.

Address: Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)

Theodor-Lieser-Straße 2
06120 Halle (Saale)
Germany

Phone: ++49-345-2928-320
Fax: ++48-12-6624-399
E-mail: graubner@iamo.de
Internet: http://www.iamo.de

Discussion Papers are interim reports on work of the Institute of Agricultural Development in Central
and Eastern Europe and have received only limited reviews. Views or opinions expressed in them do
not necessarily represent those of IAMO. Comments are welcome and should be addressed directly to
the author(s).

The series Discussion Papers is edited by:
Prof. Dr. Alfons Balmann (IAMO)
Dr. Stefan Brosig (IAMO)
Prof. Dr. Thomas Glauben (IAMO)
Prof. Dr. Heinrich Hockmann (IAMO)
Dr. Daniel Müller (IAMO)
Dr. Martin Petrick (IAMO)

ISSN 1438-2172

The Spatial Agent-based Competition Model (SpAbCoM)

3

ABSTRACT

The paper presents a detailed documentation of the underlying concepts and methods of the
Spatial Agent-based Competition Model (SpAbCoM). For instance, SpAbCoM is used to
study firms’ choices of spatial pricing policy (GRAUBNER et al., 2011a) or pricing and location
under a framework of multi-firm spatial competition and two-dimensional markets (GRAUBNER et al.,
2011b). While the simulation model is briefly introduced by means of relevant examples
within the corresponding papers, the present paper serves two objectives. First, it presents a
detailed discussion of the computational concepts that are used, particularly with respect to
genetic algorithms (GAs). Second, it documents SpAbCoM and provides an overview of the
structure of the simulation model and its dynamics.

JEL: Y90

Keywords: Agent-based modelling, genetic algorithms, spatial pricing, location model.

ZUSAMMENFASSUNG

DAS RÄUMLICHE AGENTEN-BASIERTE WETTBEWERBSMODELL
SPABCOM

Das vorliegende Papier dokumentiert die zugrundeliegenden Konzepte und Methoden des
Räumlichen Agenten-basierten Wettbewerbsmodells (Spatial Agent-based Competition Model)
SpAbCoM. Anwendungsbeispiele dieses Simulationsmodells untersuchen die Entscheidung
bezüglich der räumlichen Preisstrategie von Unternehmen (GRAUBNER et al., 2011a) oder
Preissetzung und Standortwahl im Rahmen eines räumlichen Wettbewerbsmodells, welches mehr
als einen Wettbewerber und zweidimensionalen Marktgebiete berücksichtigt. Während das
Simulationsmodell in den jeweiligen Arbeiten kurz anhand eines Beispiels eingeführt wird, dient
das vorliegende Papier zwei Zielen. Zum Einen sollen die verwendeten computergestützten
Konzepte, hier speziell Genetische Algorithmen (GA), detailliert vorgestellt werden. Zum
Anderen besteht die Absicht dieser Dokumentation darin, einen Überblick über die Struktur von
SpAbCoM und die während einer Simulation ablaufenden Prozesse zu gegeben.

JEL: Y90

Schlüsselwörter: Agent-basierte Modellierung, Genetische Algorithmen, räumliche Preis-
setzung, Standortmodell.

The Spatial Agent-based Competition Model (SpAbCoM)

5

TABLE OF CONTENT

Abstract ... 3

Zusammenfassung.. 3

1 Introduction .. 7

2 Objective and Methods .. 8

3 Conceptual Model... 9

4 Implementing the Processor’s Decision Making by Genetic Algorithms.............. 10

4.1 Genetic Algorithms: An Introduction .. 10

4.2 GAs for Optimization... 12

4.3 Co-evolutionary GAs ... 15

5 The Repast Model... 16

6 The Static Structure of SpAbCoM.. 16
6.1 Agents... 17

6.2 Behaviour Rules ... 18

6.3 Summarizing Overview.. 23

7 Dynamics of the Simulation... 25
7.1 Initialization of the Simulation... 25

7.2 Running Phase of the Simulation ... 27

8 Summary and possible Extensions.. 28

References ... 31

Marten Graubner

6

LIST OF FIGURES
Figure 1: Buyer-seller interaction with market power on the buyer’s side. 10

Figure 2: An abstraction of the "Simple Model" class in Repast .. 16

Figure 3: Class structure of the agents... 17

Figure 4: Classes associated to AgentProducer to determine the optimal price. 19

Figure 5: The class structure of the processors decision making .. 22

Figure 6: The static class structure of SpAbCoM.. 24

Figure 7: Activity diagram of the simulation’s schedule... 25

Figure 8: Screenshot of the Repast interface during an active simulation of SpAbCoM......... 26

LIST OF TABLES
Table 1: Specification of the GA parameters... 21

Table 2: Selected parameters of the simulation model ... 24

The Spatial Agent-based Competition Model (SpAbCoM)

7

1 INTRODUCTION

To analyze spatial competition, we must consider a number of requirements regarding the
methodology. These can be summarized in the issues of complexity and the need for flexibility.
First, there are spatially differentiated actors. Transport costs affect the cost structure of a firm
such that each location may feature an individual price, supply, and consequently profitability.
Particularly, under a two-dimensional framework, the solution space may be large and
discontinuous, and functional relations may not be tractable with common calculus-based
methods. These features introduce a high degree of complexity to the investigation of spatial
competition. Second, the review of spatial economic literature shows a broad variety of models
that differ by one or more important assumptions. In this respect, we might consider the firm’s
price strategy or competitive behaviour as well as whether transport costs are quadratic or
linear in distance. A further important characteristic is the elasticity of the supply or demand
functions. As heterogeneous as the assumptions of the models are, their results may also differ
and sometimes even be contradictory. The uni-causal nature of most analytical models is a
major reason for this variety. Of course, the approach is necessary due to the complexity
issues named above. However, it may be desirable to have a more flexible tool that can assess
the impact of particular conditions as well as their interdependencies on the model’s outcome.

Agent-based modelling (ABM) is one option for investigating complex systems under flexible
conditions. Not only can we account for heterogeneity within the model to explicitly consider
the spatial dimension, but we can also incorporate powerful solution concepts as genetic
algorithms (GA). GAs are particularly important for the Spatial Agent-based Competition
Model (SpAbCoM) presented in this paper because they enable the identification of solutions
where other methods may fail. The motivation to use an ABM approach is extensively
discussed in literature (cf. AXELROD, 1997; TESFATSION, 2006) and shall not be repeated here.
Instead, I present the implementation of the agent-based structure into a simulation model of
spatial competition. While ABM enables the introduction of spatially differentiated actors into
the model, the method also provides the possibility to consider other sources of heterogeneity.
In this respect, the subsequent presented simulation model does not exploit the potential of
ABM in many aspects. Some selected features, in which extensions are not only interesting
but also easily importable, are presented in footnotes within this paper.1 The major objective
of this paper, however, is to describe the functioning of SpAbCoM. Particular attention is
given to GAs as optimization technique with respect to the spatial competition strategy of
agents.

In the next section, we reconsider the general decision problem that should be solved by
SpAbCoM, before we introduce the computational tools that are used. The conceptual
framework is based on a spatial input market and described in Section 3. The identification of
optimal strategies under spatial competition is the major objective of the simulation; therefore,
we discuss the GA optimization in more detail. In Section 4, I characterize GAs and their
standard structure and present the adjustment to strategic interactions. In Section 5, I introduce the
simulation software that is used, before describing the structure and finally the dynamics of
SpAbCoM in Sections 6 and 7, respectively. The latter represents the stepwise description of
the simulation.

1 In this regard, it is worth mentioning that an extension of the simulation model in such aspects might be

easily accomplished, the interpretation or evaluation of the results, however, is most likely a rather
demanding task.

Marten Graubner

8

2 OBJECTIVE AND METHODS

First, we may reconsider the objective of the simulation. Under a framework of spatially
distributed producers and processors, we assume market power on the processor’s side.
Accordingly, we use the simulation as a technical mean to identify the optimal strategy Γ∈γ of
the maximization problem:

(1) { }Γ∈Π=Π γγγ),(max)(γ' .

In this spatial competition framework, we denote γ as a strategy consisting of four decision
variables with),,,(yxm αγ = and γ' is a vector of the other players’ strategies. The last two
variables of a strategy are the location of a firm in space represented by x-y coordinates. The
other two variables refer to a firm’s linear price strategy. Thereby, a local price)(rm at
distance r from the processor’s location is defined as trmrm α−=)(. While t is the constant
transport rate, m is the price at the processor’s location and]1,0[∈α relates to the degree of
spatial price discrimination β , with αβ −=1 . If 0=β , there is no spatial price
discrimination (cf. GRAUBNER et al., 2011a).

To implement the spatial competition model, we employ the Recursive Porous Agent
Simulation Toolkit (Repast) (COLLIER et al., 2003). Repast was originally developed by
SALLACH (2004), NORTH et al. (2006), and others as a free open source toolkit. The software
provides the basics for agent-based programming as a graphical user interface, sample
models, and a comprehensive class library. Particularly, Repast J from the Repast 3 package is
used. This component enables the model development in Java. As C++ or Smalltalk, Java is
an object oriented programming (OOP) language.

In basic terms, OOP follows the principle: "from the general to the specific". That is, one seeks to
simplify complex structures and relations by breaking them down into simple parts. In OOP, objects
are data structures of attributes and operations (methods), mostly in terms of a class. Classes are
prototypes, whereas instances of them can be generated by assigning values to the characteristics of
the classes. To illustrate the concept, we can think of cars. A car has, among other things, four
wheels, a colour, one engine, and a steering wheel, and it should be drivable (accelerate and brake).
While each car has these attributes (engine, wheels) and methods (accelerate and brake), one can
subdivide cars. For instance, we can differentiate gas and diesel cars. Both are subclasses of cars
featuring the same attributes and methods but additionally the type of fuel. Moreover, for each class
it is possible to think of the different shaping of the common characteristics. One car is red; the other
is blue. A red car is an instance of the class "cars". A blue car powered with diesel is an instance of
the subclass "diesel cars".

In this respect, OOP is appealing for agent-based modelling. TESFATSION (2006) defines
agents as an encapsulated piece of software that includes data together with behavioural
methods which act on these data. In this sense, agents are objects as defined above. Agent-
based models are characterized by a set of autonomous heterogeneous agents and their
interactions.

The agents’ heterogeneity can be distinguished at two levels. There may be inter-or intra-class
heterogeneity. The latter simply refers to differences in the values of the characteristics, as in
the case of red and blue cars. Hence, these are differences among instances of the same class.
Inter-class heterogeneity goes beyond the value differences. Instead, the type of attributes or
methods is different, or there may be additional attributes (e.g., diesel or gas). With respect to
our spatial competition problem, inter-class heterogeneity refers to the differences between

The Spatial Agent-based Competition Model (SpAbCoM)

9

producers and processors. Intra-class heterogeneity, e.g., denotes the spatial differentiation of
producers due to their location in the market region.

3 CONCEPTUAL MODEL

The core model to implement the simulation is an abstraction of a buyer-seller interaction,
which corresponds to the discussion in GRAUBNER et al. (2011a,b). Because the focus is on
agricultural markets and their spatial nature, there is a high number of spatially distributed
producers, whereas processing is concentrated at few locations. Accordingly, buyers have
local market power. Actors of that group can influence the supply over the price, whereas
producers are price takers. Nevertheless, the role of the producers is crucial with respect to
market interactions and the allocation of supply. Based on the highest price at a producer’s
location, i.e., the local price, the supplier not only decides the quantity that should be
produced but also where it will be delivered.

The local price of a producer hinges on the price setting of the processors. Basically, there are
internal and external factors that determine the price at a particular location of a particular
processor. The external conditions are, e.g., the transport rate or the price on the product
market. The first refers to the cost of transportation required for one unit of the input over one
unit of distance. The latter is the marginal revenue product, i.e., the price received by the
processor for one unit of the processed input. Internal factors, on the other hand, can be
directly influenced by the processor and correspond to its decision variables. There are four
decision variables in the most general implementation used within SpAbCoM. Two determine
the location of the processor within the market and the two others represent its price strategy.
The identification of the optimal internal conditions is the core of the spatial competition
problem and also the major focus of the simulation model.

Figure 1 summarizes the conceptual model of the simulation. Based on the combination of
external and internal factors, the processing firm offers a price at particular locations and, thus, to
particular producers. For instance, a supplier will not receive a price offer if the corresponding
transport costs are too high. The general rule, however, is that the local profit of a processor
must be non-negative.

The input quantity of the producer is determined based on the local price and its translation
through the producer’s supply function. Furthermore, the production is allocated to processors
at the market level. Once the price, supply and its allocation is known, the processor’s profit is
determined and the price decision can be updated. The selection and update (or evaluation) of
a price strategy is implemented by a genetic algorithm, which will be discussed in Section 4.
We separate the selection and evaluation because under competition there is a difference
between the set of producers who receive a price offer from a particular processor and the set
of producers who actually deliver to that processor (see also Section 7.2). While the first
depends on the profitability to serve a location by the processor, the latter hinges on the
processor’s price and whether there are better (price) options for the producer.

Finally, it is worth mentioning that we investigate a static competition model. The simulation,
however, features a dynamic process. These dynamics are internal and required for optimizing
the processor’s decision by a GA. We may think of this process as an internal model of a
decision maker in the framework of a classical oligopoly model such as Cournot or Bertrand
competition. Basically, these models are static, yet we can calculate reaction functions
determining the optimal strategy subject to the other firms’ decisions. In most of the analyzed
cases by GRAUBNER et al. (2011a) and GRAUBNER et al. (2011b), these reaction functions are
multivariate and discontinuous. While analytically not tractable, the simulation can work
along such reaction function to identify equilibria (if any exists). As reaction functions are a

Marten Graubner

10

technical and illustrative device in strategic interaction of a static game (TIROLE, 2003), so is
the GA optimization an abstraction of the internal decision rule of agents. Thus, we must be
clear that even though there are internal dynamics of the simulation, the core problem is static
throughout this paper.

Figure 1: Buyer-seller interaction with market power on the buyer’s side.

4 IMPLEMENTING THE PROCESSOR’S DECISION MAKING BY GENETIC
ALGORITHMS

In an input market framework of spatial competition, processing firms have local market
power. The consequence is that strategic interactions must be incorporated within the simulation
model. Hence, to determine its optimal decision, a processor must not only consider the effects on
the decision of the producers but also on the other processing firms in the neighbourhood
(neighbourhood interactions). While the decision of the producers can be implemented as a
deterministic condition (see Section 6.2), this is not feasible in the case of the processors due
to a highly complex solution space. Instead, this task, the determination of the optimal spatial
strategy, is modelled by means of genetic algorithms. The objective of this section is to
introduce the concept of GA, before we discuss the actual implementation within SpAbCoM.

4.1 Genetic Algorithms: An Introduction
Genetic algorithms are heuristic search methods for optimization or for identification of equilibria
(REEVES AND ROWE, 2003). The major fields of application are complex problems with large,
potentially poorly understood decision or strategy spaces. GAs are based on the mechanics of
natural selection and natural genetics (GOLDBERG, 1989). A basic principle of the search
algorithm is the "survival of the fittest" (DAWID, 1999). That is, strategies which are regarded
as superior based on an evaluation criterion are more likely to be selected as the solution to a
problem.

The origin of the development of genetic algorithms is linked to the pioneering work of John
Holland and colleagues (HOLLAND, 1975). However, the idea of adapting biological principles

The Spatial Agent-based Competition Model (SpAbCoM)

11

such as selection and mutation as solution techniques can also be found in RECHENBERG (1973)
and SCHWEFEL (1977) or FOGEL (1963) and FOGEL et al. (1966).

To classify GAs, we can distinguish different groups of optimization methods. First, there are
direct and numerical methods. The latter can be subdivided into enumerative and random
search methods. In contrast to direct, calculus-based optimization methods, numerical
methods do not rely on derivatives or the existence of closed form solutions. Hence, these
methods are useful if functions are not twice continuously differentiable or if closed form
solutions do not exist or are hardly obtainable. The disadvantage of such methods, however, is
that a solution is always an approximation with the corresponding stochastic error. While
enumerative methods evaluate the objective function at each point of the solution space,
random search only works on a sample of it. The GA belongs to the group of random search
methods. These are (intuitively) based on probability ideas as the law of large numbers and the
central limit theorem (JUDD, 1998). Accordingly, the structural error regarding the random number
that represents the outcome of the method can be influenced by the sample size. However, a GA
differs from other random search methods in two important ways (GOLDBERG, 1989): the GA
works on coded parameters and not with the parameters themselves and it evaluates a population
of points rather than a single point at one time. These features make the GA robust and
efficient in handling "problems of far greater complexity and size than most other methods"
(JUDD, 1998, p.285).

The capability of GAs or similar concepts, summarized as evolutionary computation (EC), and
their relation to evolutionary principles has caused increasing interest in these methods in recent
years. EC is applied to a variety of problems in a broad range of disciplines including natural
science, engineering, mathematics, and economics (FOSTER, 2001). Important contributions,
particularly of GAs in economics, include the simulation of the repeated prisoners dilemma by
AXELROD (1987) or the application on the cobweb model by ARIFOVIC (1994). The same model
serves DAWID AND KOPEL (1998) in investigating different implementations of GAs. PRICE (1997)
applied a GA on standard models of industrial organization as monopoly, Cournot, and Bertrand
competition. VALLÉE AND BAŞAR (1999) as well as ALEMDAR AND SIRAKAYA (2003) investigate
leader-follower competition, whereas BALMANN and HAPPE (2001) explore agricultural land
markets with respect to oligopolistic behaviour. YANG (2006) incorporates GAs into a state depen-
dent dynamic portfolio optimization system to improve the expected return estimation and portfolio
efficiency, while HARUVY et al. (2006) explore proposed reforms of the judge/law clerk market in
the United States.

Another important application of GAs is the simulation of learning as part of human behaviour
(BIRCHENHALL, 1995; DAWID, 1999; RIECHMANN, 1999; 2001; VRIEND, 2000; ARIFOVIC AND
LEDYARD, 2004; BRENNER, 2006). However, unlike these or most of the previous examples, we
do not consider time within the simulation, which is an essential part of learning. Nevertheless, as
we will see in the following sections, to find the optimal solution of a static problem, the GA
consists of a dynamic procedure. In this regard, we can interpret the GA as iterative search for
Nash equilibria, which can be represented as a Markov process (REEVES AND ROWE, 2003, pp.
112). A familiar example of iterated algorithms is the Cournot model, where the repeated,
alternate evaluation of the players’ reaction functions (given the strategy of the competitor) finally
leads to the Nash-equilibrium outcome.

The interpretation of learning in terms of an iterated process as search for on optimal solution of a
(static) problem (BRENNER, 2006) provides an important link between GAs and evolutionary
game theory. RIECHMANN (2001) shows that GA learning is a specific form of an evolutionary
game. The simple canonical GA as presented in Section 4.2 converges towards a Nash
equilibrium in terms of an evolutionary stable state.

Marten Graubner

12

Although we consider a static model, the method is not applied to a pure optimization problem. In
fact, most of the applications in social science go beyond optimization because strategic
interactions are involved. In this respect, SON AND BALDICK (2004) demonstrate that the
canonical GA can misidentify Nash equilibria by following a local optimization path. In this case,
the GA cannot differentiate between local optima and "real" Nash equilibria. Following PRICE
(1997), SON AND BALDICK (2004) show that a co-evolutionary approach overcomes this problem.
We introduce the structure and functioning of a standard GA for a traditional optimization
problem, before we discuss the implementation of the co-evolutionary GA to determine the
optimal strategy of processing firms within the spatial simulation and with strategic interactions
involved.

4.2 GAs for Optimization
Comprehensive introductions to the method are, e.g., GOLDBERG (1989) or MITCHELL (1996).
The more recent book of REEVES AND ROWE (2003) also entails a detailed discussion regarding
different theoretical perspectives of GAs. For the presentation of the method based on industrial
organization models, the paper of PRICE (1997) is recommended.

Although there is no rigorous definition of a GA, at least three attributes are considered as
standard: a population, genetic operators, and a fitness function. A collection of candidate solu-
tions to a particular problem is called the population. The fitness function is the representation of
the underlying (exogenous) objective function and is used to evaluate the quality of a solution.
Finally, genetic operators as selection, crossover, and mutation can be applied to the population to
identify good solutions as well as incorporate and consider new (probably superior) solutions.

We may want to apply a GA to a simple optimization problem over a search space Σ :

(2) ℜ→Σ:h

to maximize the objective function h with respect to a vector of decision variables Σ∈σ .
However, the GA does not work on the decision variables themselves. Instead, the variables
are coded according to a certain alphabet A through a coding function Σ→lA:κ . The size of
the coded search space is determined by l. A problem related information of σ is called the
phenotype, while the coded representation Aa∈ is the genotype of a solution. Because a
solution may consist of a number of decision variables, we distinguish genes and chromosomes.
Genes are the coded representation of one decision variable; the chaining of those forms the
chromosome. For instance, the chromosome can be regarded as the coded strategy of a game.
One possibility of genotype-phenotype mapping is to use binary coding. Thereby, the
candidate solutions are represented by binary numbers as follows:

 phenotype)(σ κ genotype)(a

 5 0123 2020 +++ 0 1 0 1

 11 0123 2202 +++ 1 0 1 1

In the example, the strategy consists of one decision variable which is coded as a bitstring of
length .4=l Of course, it is clear that the search space must not exceed }.15,,1,0{ K=Σ
Hence, the genotype-phenotype mapping depends on the problem at hand.

For a larger search space, we may use 4>l or even other coding schemes. However,
regardless of the particular coding, the representation of a collection of candidate solutions
builds the initial population and is the first step to initialize a GA. Commonly, the initial
population consists of a predefined number of random candidate solutions. The size of the

The Spatial Agent-based Competition Model (SpAbCoM)

13

population depends on the problem in general and the size of the search space in particular.
Basically, a large population size increases the probability of good solutions within the initial
population but may decrease the speed of computation.

The second step of the GA is to evaluate the objective function (2) at all points σ represented
by the chromosomes of the population. It is convenient to use monotonic transformation of
the objective function to ensure a positive measure of the solution’s quality. For instance,
non-negative values are required for the selection operator as described below. The
transformation is called the fitness function and the quality of the solution is the fitness of the
chromosome. We can determine a non-negative fitness value with:

(3) +ℜ→lAf :

Accordingly, if)(σh yields a negative value for the real world problem and σκ =)(a ,)(af
is the positive fitness value of the chromosome based on the monotonic transformation (3).

Once the fitness of all chromosomes is determined, the first genetic operator can be applied.
Although there are different options to implement selection, the common feature is selection
proportional to the fitness value of a chromosome. The higher the fitness of a solution, the
higher the probability to be selected. A common approach for fitness proportional selection is
roulette wheel selection (RWS). Thereby, the total fitness of a population is represented by a
roulette wheel. Each chromosome has a slot on the wheel that is sized proportional to its
fitness value. If we spin the wheel, the probability of selection is proportional to the area of a
sector on the wheel. For instance, the sector is twice as large as a second sector on the wheel
if the fitness of the corresponding solution is twice the fitness of the second solution.
However, RWS is stochastic and there is no guarantee that the best solution is selected.
Another approach is to select a particular number of the fittest chromosomes of the
population. This is usually called best chromosome selection (BCS). The population of
chromosomes is ordered according to the fitness value of the solutions, e.g., in ascending
order. The selection of a predefined number of fittest chromosomes ensures that the best
solution of the population is always selected. Additionally, the selection pressure can be
influenced by the number of chromosomes (the share of the population) which are considered
for selection.

In either case, selection creates a new population consisting of chromosomes from the initial
population but in a different composition. Due to its nature, selection decreases the variability
of the population. The initial population consists of random candidate solutions, so it is
unlikely that a good or even close to optimal solution is contained. In this respect, the
concepts of mutation and crossover are important. Mutation is a random manipulation of a
solution, while crossover recombines the information of two parent chromosomes which
yields two offspring. To illustrate both, we use the previous example. Mutation randomly
alters the genetic information of a chromosome. For instance, one bit at position three of the
string (the genotype) is flipped, which also causes a change in the phenotype.

 σ a 'a 'σ

mutation: 5 0 1 0 1 0 1 1 1 7

crossover:
13

11

1 1 0 1

1 0 1 1

1 1 1 1

1 0 0 1

15

9

Marten Graubner

14

Crossover refers to an exchange of information between two parent chromosomes to create
two offspring. Thereby, the genetic subsequences before and after a randomly chosen locus
are traded. The example above shows that the trade of the first and last two bits of the
chromosomes changes the phenotype from 13 to 15 and from 11 to 9, respectively.

While each of the presented parts of a GA fulfils important tasks, the power of the method
rests in the interaction of the single components. By following MITCHELL (1996, p.10), we
summarise a simple GA by the following steps:

1. Generate the initial population of x random candidate solution.

2. Calculate the fitness of all chromosomes of the current population.

3. Repeat the following steps x times to create a new population:

i Select two chromosomes from the current population. The probability of selection
is an increasing function of the chromosome’s fitness.

ii Execute crossover with given probability, the crossover rate, at the random locus
(crossover point) of the two chromosomes. The crossover point is determined
according a uniform probability distribution. The result of the crossover are two
offspring. If no crossover takes place, the offspring are exact copies of the parents.

iii Mutate the offspring at each locus with a given probability, the mutation rate, and
place the chromosomes in the new population.

4. Replace the current population with the new population.

5. Go to step 2.

The succession of fitness evaluation and application of genetic operators (selection, mutation,
and crossover) is called a generation. The set of all generations is a run. Within a run, the
number of generations is limited by a termination criterion. Common approaches are, e.g., a
predefined number of generations or a certain threshold with respect to the population’s
diversity. While the first criterion ensures that the optimization always stops at the same
iteration, the latter terminates the run if, e.g., some share of the population consists of the
same chromosomes or the variance of the chromosomes’ phenotypes is low and constant over
a particular number of generations.

During the run, i.e., the succession of generations, selection tends to cause good solutions to
survive. In this respect, we can refer to selection as the decision to keep a particular
chromosome in the GA’s population and thus in the process of optimization. However, the
variability of the population decreases. In this respect, selection is the operator that drives the
population’s convergence toward the best solution of the population.

The importance of mutation and crossover rests in two tasks. First, they enable the algorithm
to increase the precision of the method (over generations) by approaching (local) optima. New
solutions, created by mutation or crossover, are favoured over the fittest chromosome of the
population if they are closer to an optima. Consequently, such new solutions are established in
the population through selection. Second, the more important feature is that mutation and
crossover avoid the lock-in of the optimization in local optima. Because both operators create
new solutions, the GA is able to cover the search space effectively during a run. Based on the
chosen coding scheme, these operators can introduce solutions which are significantly different
from previous solutions. In this way, the search space is extended during the optimization
process, which also decreases the dependence regarding the initial population, i.e., the initial
conditions of the optimization.

The Spatial Agent-based Competition Model (SpAbCoM)

15

4.3 Co-evolutionary GAs
The previous structure of a GA is only applicable if the fitness of a chromosome exclusively
depends on its bit values. This is, e.g., not the case in most economic systems in general or in
a normal form, multi-player game in particular. Instead, the payoff of a player’s strategy depends
on the strategies of the other players. This is particularly true under spatial competition due to
neighbourhood interactions. Therefore, we use a so called co-evolutionary (or parallel) GA
model. Each player exhibits an individual population of strategies, i.e., in the simplest case of
two players there are two populations as well.

The basic features of the GA from the previous section, such as coding and the genetic operators,
are not affected. The major difference is the fitness evaluation. In Section 4.2, we simply translated
the genetic information of a chromosome into the phenotype and used this information to
evaluate the (one-dimensional) objective function. While the chromosome in Section 4.2
could also be a multi-dimensional vector of decision variables, we must deal with a n-
dimensional objective function in a co-evolutionary framework. Thus, we can rewrite (2) to:

(4) .: nh ℜ→Σ

A common approach to consider (strategic) interactions within the players’ fitness evaluation
is to implement a tournament (PRICE, 1997; BALMANN AND HAPPE, 2001). Random strategies
are chosen from each player’s population and the vectors of these strategies are evaluated. The
outcome is an individual fitness value for each player, which is assigned to the corresponding
strategy of a player. The process is repeated until a sufficient number of observations are
available to assign values to all strategies of all players. The number of iterations or rounds
within the tournament depends on the search space as well as on the number of players and is
increasing in both. However, the outcome of the tournament is an average fitness value for
each of the players’ strategies. Accordingly, we can alter the previously described
implementation of the GA only by including the tournament in step 2 of the GA’s schedule:

1. Start with a number of initial populations equating the number of players.

2. Repeat the following steps over a sufficient number of iterations:

i Randomly select a single strategy of each player’s population.

ii Play the strategies against each other and determine the individual fitness value
subject to the other players’ strategies.

iii Assign the fitness value to the corresponding strategy.

iv Go to 2i.

3. Determine the average fitness of each strategy based on the values realized in 2iii and
apply the genetic operators: selection, crossover and mutation (similar to step 3 in the
previous GA example on page 14) to create the new population.

4. Replace the current population with the new population.

5. Go to step 2.

The above scheme is the core of the GA implementation within SpAbCoM as described in
Section 6.2. Two particular examples, which illustrate how a co-evolutionary (two-
population) GA works are also presented in GRAUBNER et al. (2011a) and GRAUBNER et al.
(2011b).

Marten Graubner

16

5 THE REPAST MODEL

Based on the conceptual considerations we implement the simulation with the ABM software
Repast. Particularly, Repast’s "Simple Model" serves as the point of departure. This model is a
single class, and simplified it consists of: the simulation schedule, the space, and the agents
therein. To illustrate the structure of an application based on OOP, one can use a standardized
tool as the unified modelling language (UML) (BOOCH et al., 2005). For instance, UML class
diagrams highlight the (class) structure of a software program, how parts of it are related, and
the components of the different classes. Figure 2 shows a UML representation of Repast’s
SimpleModel class. The first (upper) part of any UML class is the class name (bold). The
second part represents the attributes (starting with capital letter), while the third part contains
operations or methods (lowercase letter). Accordingly, the implementation shown in Figure 2
features four attributes and three methods.

The attribute Model provides the graphical user interface of the Repast model. Space
characterizes the artificial region and Agents is a list of objects that can be located in that
region. Predefined parameters as the number of agents, the size of the region, or others are
stored in Parameter.

The methods of the class are setup, buildmodel, and run. The first method initializes
the Repast model with the defined parameters and opens the Repast interface. The
buildmodel method is required to locate agents into the space and visualize the artificial
region. While the previous methods are commonly used only once at the beginning of a
simulation, run is responsible for the dynamics of the simulation. The agents interact within
this method, i.e., actions are executed by agents who may change their and other agents’
attributes. A simple example is the location of agents within the region and the distance
between them. Location and distance to other agents may be the agents’ attributes and there is
a method move specified in run. If agents change their location while run, this clearly
affects their location coordinates. Hence, their attributes are changed. Additionally, this may
affect the distance among agents and thus influences the attributes of other agents.

Figure 2: An abstraction of the "Simple Model" class in Repast

The simple example already shows how Repast’s SimpleModel is extended. Basically, the
attributes and methods in this model are empty. To run a simulation, we must fill them.
Therefore, we implement characteristics and behaviour rules derived from theoretical
considerations regarding spatial competition.

6 THE STATIC STRUCTURE OF SPABCOM

The aim of this section is to present the structure of the simulation model. We introduce the
most important parts as the agents’ hierarchy followed by the behaviour rules on which the
agents’ decisions are based. In the third part, additional components of the simulation are

The Spatial Agent-based Competition Model (SpAbCoM)

17

presented to give a simplified overview of the whole structure. We use UML class diagrams
as a technical device to visualize the structure of the simulation based on the OOP approach.

6.1 Agents
OOP was introduced at the beginning of this paper as a central concept regarding the
implementation of the spatial competition model. The classification of the agents is a good
example to illustrate this. Not surprisingly agents are the core component of an agent-based
model. According to our conceptual framework we can distinguish two types of agents:
producers and processors. Since both types feature common characteristics and there may be a
large number of, e.g., producers, OOP provides an efficient way of modelling. Figure 3 shows
the simplified agents’ class hierarchy of the simulation model. For clarity reasons, the picture
shows only selected attributes and methods of the corresponding classes. In addition to the
representation of classes and their components, UML provides the possibility to illustrate and
specify the relationship among classes. For instance, associations are depicted by lines. The
type of an association is specified, e.g., by different arrowheads. In Figure 3, the empty arrow
from the two lower classes to the upper class denotes inheritance. That is, AgentProducer
and AgentProcessor are subclasses of Agent. Particularly, the two derived classes
feature the same characteristics as the base class plus specific attributes or methods.

Figure 3: Class structure of the agents

Common features of all agents are a unique identification key (ID), the location in space (as x-y
coordinates), and a list of other agents (Partner). Methods derived from the Agent-class
control, e.g., the location (set or change) within the region or a generator for (pseudo) random
numbers. The field Partner, e.g., allows assignment of suppliers to a particular processor or a
purchaser to a particular producer. Most of the features of an object of type Agent are model
intern rather than specific for the spatial competition problem. For instance, the agent is required
to be placed into the artificial region or the clear identification of an object within the simulation
must be enabled. Only instances of the two derived classes AgentProducer and
AgentProcessor are actually generated during a run of SpAbCoM.

Marten Graubner

18

Both types of agents have specific characteristics. Besides the attributes and methods from
Agent, an instance of the class AgentProducer particularly features four attributes and two
methods. The received price (Price) represents the highest price at the producer’s location.
Because producers are price takers and there is potentially more than one processor that sets a
price at this location, the supplier needs to determine the optimal (highest) available price. This is
implemented by selectBestPrice, which also can set or change Price and Processor,
depending on the supplier’s decision. The latter attribute identifies the destination of the
producer’s supply. The quantity to produce, in turn, is determined by Price and the producer’s
individual supply function (SupplyFunction).2 In fact, the supply of the producers is an
important piece of information for the processor’s decision making, particularly regarding the
evaluation of their strategies.

Processors face strategic interactions caused by local market power, so the identification of
optimal strategies is a nontrivial problem. Therefore, an object of AgentProcessor exhibits a
powerful optimization tool in the form of a genetic algorithm (OwnGA). The concept of the
underlying GA is discussed in detail in Section 4.3 and its implementation is presented in the next
section. However, the major task of the field OwnGA is to provide the methods to identify optimal
strategies in terms of the spatial competition game. One feature of the GA is that there is one best
strategy in each generation and this current (optimal) strategy is represented by Price-
Strategy.

In addition to the attribute Partner of the base class, there is the class specific field Suppliers.
Both are used to determine and distinguish the desirable and actual market allocation from the
processor’s point of view. The differentiation between the two lists of producers rests in the
fact that the set of addressees of a price offer (Partner) and the set of actual suppliers
(Suppliers) do not have be equal.3

ProfitFunction is used to evaluate a price strategy. It represents the fitness function of
the GA and is explained in more detail in the corresponding subsection of Section 6.2. A
further attribute of the processors consists of external conditions as the price on the output
market (for the processed good) or the transport rate, which are summarized in the field
ExternalParameters.4

6.2 Behaviour Rules
While the agent’s class hierarchy is one important part of the simulation’s structure, the
agents’ behaviour rules are another crucial component of SpAbCoM. In our framework, a
behaviour rule is the implementation of the agents’ objective functions. On the one hand,
selecting the optimal (highest available) price is the behaviour rule of the producers. On the
other hand, the behaviour rule of the processors is to maximize profit by optimizing the
spatial competition strategy as written in (1). A GA is integrated into the simulation to fulfil
this complex task.

2 At this stage, ABM also provides the opportunity to differentiate producers with respect to their production

functions. Although there might be interesting applications for this framework, we assume a uniform supply
function over the set of producers.

3 This differentiation of actual and potential suppliers is also depicted in
Figure 6 and discussed in Section 7.2.

4 In the case of the processor, it would be feasible to extend the simulation with respect to different marketing
possibilities or transport technologies. In this way, further research could differentiate, e.g., processing firms
with respect to the received output prices or their cost structure. However, throughout this work we assume
that these factors are identical for all processors.

The Spatial Agent-based Competition Model (SpAbCoM)

19

Although the price maximization rule of the producers is rather simple, there are cases in
which we must consider the spatial nature of the problem. In particular, the decision of the
producers may not only consist of the selection of the highest price from a list. Instead, we
may want to incorporate the possibility of arbitrage. In this respect, an agent of the type
AgentProducer may find it profitable to sell its product at a point different from the own
location. Arbitrage is feasible if the price at that point less transport costs, is higher than the
price at the location of the producer. The components, required for their decision, in terms of
the class structure, are presented in the following section before we discuss the
implementation of the processor’s decision making via a GA.

Price maximization of the AgentProducer’s class

Figure 4 illustrates the relation of the three crucial classes that are used to determine the
optimal price for the producers. Associations with an empty diamond as from PriceOffer
to AgentProducer and from AgentProducer to DistanceMatrix denote aggre-
gations. For instance, an object of the type DistanceMatrix contains a set of objects of
the class AgentProducer.

Figure 4: Classes associated to AgentProducer to determine the optimal price

The producer collects the price offers from processors in a list, OfferCollector, to
determine the supply by its supply function. The general form of this function is εwq = with q
being the supply, w the received price, and ε the supply elasticity. Basically, a price offer
contains three pieces of information: the price at the location of the producer (Price), who set
that price (Processor), and what is the processor’s local profit per unit supply at this location
(LocalProfit). Based on the price information, a producer can sort OfferCollector to
select the highest offer by selectBestPrice.5

The DistanceMatrix class is required to incorporate the possibility of arbitrage by
suppliers. Note in this framework arbitrage denotes a positive price difference between two
locations that is larger than the transport costs between these locations. In this case, it is
profitable for the producer to sell the input at the location with the higher price. For each
instance of the class AgentProducer, DistanceMatrix provides data and methods to
determine whether or not this is true. In particular, there are two lists, Producers and
Processors, that comprise the agents of the region. Distances and TCostMatrix are
fields in form of matrices consisting of the distances between all producers as well as the

5 At this point it is easily feasible to incorporate some degree of bounded rationality. For instance, suppliers

may be not able to distinguish marginally different prices. In this case, we could assume that w1 = w2 if |w1 -
 w2|≤ω and ω is a certain threshold so that the producer is indifferent between the corresponding processors.
Even though we do not consider bounded rationality in any part of this work, the possibility to do so is a
further advantage of agent-based modelling.

Marten Graubner

20

producers and processors of the region and the corresponding transport costs. The methods of
DistanceMatrix allow setting and changing of the values of the matrices or, as in the
case of sorting, comparing these values. In this way, each producer can access the distance
and transport costs to all other producers to compare their own price with the prices at other
locations, considering the transport costs. We can summarize the decision rule or objective
function of each producer by:

(5) { }.',max TCwwq −=

Accordingly, a producer selects the maximum price at its location or any other location
subject to the transport costs TC to that location.

Strategy optimization of the AgentProcessor’s class

This section presents the particular implementation of the GA within the structure of the
simulation. The Repast distribution that was used, contains the Java Genetic Algorithm
Package (JGAP) which provides the basics of a simple GA for optimization (MEFFERT et al.).
In the following section, the adaptation of the GA to strategic interactions under spatial
competition is presented. Similar to the producer’s decision making process, processors, i.e.,
objects of AgentProcessor, use instances of different classes to determine the optimal
strategy. Important classes, their features, and relations are illustrated in Figure 5.

The structure is derived from the concept of a co-evolutionary GA as discussed in Section 4.3.
Accordingly, each processor exhibits an individual GA. In Figure 5, a line with the diamond
at its end, an aggregation, illustrates this relation. For instance, the aggregation from GenomP to
AgentProcessor denotes that the first is a part of the latter. Furthermore, ProfitFunct
represents the fitness function of the processor, and is also part of AgentProcessor. The
two methods of this class allow decoding of the genetic information of a chromosome through
the genotype-phenotype mapping (decode) and evaluation of the fitness of the
corresponding strategy (evaluate).

The major parts of the individual GA are summarized by an instance of the GenomP, which
class exhibits a collection of chromosomes (Population) and defines crucial parameters of
the GA optimization as the population size (Popsize) and the number of generations
(Generations). Other parameters are represented by the object OwnConfiguration,
which is stored in the field Configuration of GenomP. Here, the type of selection
(NaturalSelector), the collection of genetic operators (GeneticOperators), and an
algorithm to generate (pseudo) random numbers (RandomGenerator) are set.6 Even
though it is feasible to define the different parameters of the GA within the individual
configuration of each agent, we use global values. That is, these parameters as the mutation or
crossover rate are uniform over the set of producers.7 Table 1 summarizes the parameter
setting of a processor’s GA.

6 The latter is necessary because a number of processes require stochastic initialization as the selection of the

initial population or the determination of the chromosome’s loci for crossover or mutation.
7 Nevertheless, the individual GA of each processor may represent one of the most interesting options to

extend the simulation. For instance, consider the German raw milk market. Here, we find a mixed market
structure where processors are organized either as cooperatives or investor-owned firms. This may have an
impact on the behaviour rule. Due to the individualized decision making of the agents within the simulation,
it would be feasible to incorporate such heterogeneity.

The Spatial Agent-based Competition Model (SpAbCoM)

21

Table 1: Specification of the GA parameters

Parameter Value

Population size 25

Number of generations 2,500

Genes/chromosome 4

Type of selection BCS*

Mutation rate 0.02-0.10

Crossover rate 0.05-0.20
* BCS = best chromosome selector

The values of the parameters are earned by test simulations and from common values in literature.
The selection scheme of best chromosome selection (BCS) is chosen based on three considerations.
The first is the observation that BCS yields a higher adjustment to the optimal value of spatial
optimization problems during test simulations compared to RWS. The second point considers the
extension of the search space. RWS does not guarantee the selection of the best strategy due to its
stochastic nature. Otherwise, it is feasible to use BCS to select a certain share of the original
population and add random strategies to yield the original size of the population. This extends the
search space at a higher rate than only mutation or crossover during simulation. At the same time,
the best strategies remain in the population. The third point considers the fitness differential of
strategies and its impact on selection.

Because we base our analysis mostly on the fittest chromosome and not on the average fitness of the
population, the disadvantage of BCS, neglecting the fitness differential among the best strategies, is
not effective. Basically, in test simulations we observe a higher volatility of the fittest solution under
RWS, while the variety of the population is higher under BCS. If we assume that a higher variability
in the population decreases the probability of look-in of the GA, this may be an advantage of the
BCS.8

The central component of the GenomP class is the population of candidate solutions. Such a
processor’s individual strategy pool, Population, is a list of randomly initialized chromosomes.
Solutions of the spatial competition game can consist of four decision variables (regarding the
location and price policy). In this case, a strategy is represented by chromosomes of four genes. The
JGAP library provides a model chromosome class which we use for the implementation of a
processor’s strategy (Chromosome). The genes of a chromosome code the four decision variables:
mill price (m), price discrimination (in terms of α), and location coordinates (x and y). The two
methods of the Chromosome class are used for genotype-phenotype mapping. Additionally, each
chromosome exhibits a ChromID object. In Figure 5, the filled diamond between Chromosome
and ChromID denotes a stronger form of aggregation, namely a composition. This specifies that
the whole, the chromosome, and its part (ChromID) cannot be separated in terms of their lifetimes,
i.e., the part must be initiated at the moment the chromosome is created.

8 In general, the choice of the selection operator is always arbitrary to some degree. Advantages or dis-

advantages can be compensated for by specific adjustments to the underlying problems. For example, under
RWS it is feasible to always keep the fittest chromosome in the population. However, based on the
programming of the selection operators within the JGAP package, BCS yields superior results for the spatial
competition model.

Marten Graubner

22

Figure 5: The class structure of the processors decision making

The ChromID object does not only identify the particular strategy (with the field ID) but also
the corresponding processor (ProcID) holding the strategy in its population. In addition to
the identification, an instance of ChromID performs important tasks in the framework of the
co-evolutionary GA concept. As presented in Section 4.3, the core of the parallel GA is a
tournament. A ChromID object collects the information during the test rounds. The method
addProfit assigns the outcome of a test, the current fitness value, to a list (Perform)
whose number of entries equals the number of tests (NoT). Based on this list, the average
fitness value of the strategy is determined by the method evaluate of ProfitFunct.
Because there is a certain probability to test a worse strategy against an even worse strategy of
the competitor, we use the median instead of the mean. In this way, we avoid overestimating
the influence of outsiders.

The interplay of the single parts of the processors’ decision making are controlled by the
methods of the AgentProcessor class. In Section 6.1, we briefly introduced the two
methods selectStrat and evalStrat. The latter is not depicted in Figure 5 because we
can decompose the method in applyGO and testStrat. If we reconsider the schedule of a
co-evolutionary GA (as described on page 15) we can classify the task of the methods. Based
on a selected strategy by selectStrat, testStrat is responsible for executing the
tournament within the GA. During this and potentially other test rounds fitness values are
assigned to the strategy and yield an average fitness. Finally, applyGO is responsible for
applying the genetic operators: selection, crossover, and mutation.

The structure as illustrated in Figure 5 shows the components required for the processor’s
decision making. The outcome of this process is a price offer that in turn is available to

The Spatial Agent-based Competition Model (SpAbCoM)

23

suppliers. However, neither the process nor the outcome is pictured. Basically, the interaction
of both, the producers’ and processors’ decisions, yields the market allocation and finally the
optimal strategy of the processors. Before we present this process we summarize the static
structure of SpAbCoM by uniting the introduced parts and add some additional important
components.

6.3 Summarizing Overview
We can summarize the structure of the model with a simplified UML class diagram. For
clarity reasons, Figure 6 shows only the class names and the most important relations between
the objects. We recognize the agents’ hierarchy (although in slightly different order) in the
centre of the picture as well as the structure of the decision making of both the processors on
the right side and the producers on the lower left side, respectively. Additional classes are
required to manage the run of a simulation. For instance, the object LocateAgents is
responsible for the initial location of the agents at the start of a simulation. Throughout this
work we use a uniform distribution of suppliers, i.e., exactly one producer occupies a cell of
the grid representing the artificial region. Processors, however, might relocate during the
simulation. The location of the processors at the beginning of the simulation is either
predefined or randomly initialized.9

With respect to additional relations between classes we recognize the labelled aggregations
between AgentProducer and AgentProcessor. The two relations take into account the
decisive differentiation of potential and actual suppliers. The difference within the simulation
model is implemented by two lists containing the actual and potential suppliers of each
processor.

The major component of the simulation model not yet discussed is the Market class. One
instance of this class is created for each simulation. MainSim, which only contains the main
method as required to start any computer program, is responsible for that. All of the
parameters that are necessary for the simulation as well as the sequence of actions are defined
in Market. In fact, Market is the major object to control the execution of the simulation.
Important variables that are set and can be changed between simulations are listed in Table 2.

The table highlights the parameters directly related to a spatial competition problem. Because
the individual variables are introduced and defined in the single applications (cf.
GRAUBNER et al., 2011a,b) we do not explain them again here. Except for the price of the
finished good (the marginal revenue product of the processors), different values of the
variables (within the listed domains or states) are used to conduct simulations. For instance, in
GRAUBNER et al. (2011a) a line market of size (x, y) = (300, 1) serves to identify the optimal
spatial price strategy in a duopsonistic framework. While the number of processors as well as
the number of suppliers was constant (2 and 300, respectively), we conducted simulations
over the relevant range of transport costs, namely a transport rate of 0 ≤ t ≤ 2.

Once these parameters are defined and initialized by the Market object, the actual
simulation process starts. The dynamics of this procedure are described in the following
section.

9 In fact, in the case of a game including the location decision of firms, the initial location is just a illustrative

device at the start of each simulation. The location variables are immediately overwritten once the processor
selects a strategy.

Marten Graubner

24

Figure 6: The static class structure of SpAbCoM

Table 2: Selected parameters of the simulation model

Parameter Value

Size of the region (x, y)= ({300, 20}, {1, 20})

Number of suppliers {300, 400}

Number of suppliers {2, … , 6}

Transport rate [0, 5]

Supply elasticity [0, 1]

Arbitrage of suppliers {true, false}

Relocation of processors {true, false}

Two-dimensional space {true, false}

Border effects {true, false}

The Spatial Agent-based Competition Model (SpAbCoM)

25

7 DYNAMICS OF THE SIMULATION

The sequences of actions within the simulation can be decomposed in an initialization and
running phase. The first is responsible for creating the simulation’s environment: the space,
agents, and some control objects. The running phase consists of three steps which can be
further subdivided. Figure 7 shows a simplified scheme of the simulation in terms of a UML
activity diagram. A single run of the simulation starts at the black point in the upper left
corner of the picture. The upper part of it represents the initialization of the simulation. The
running phase of a simulation starts with the PreStep activity. The difference between the
two levels is that each simulation has only one initialization but multiple running phases. The
number of loops, composed of PreStep, Step, and PostStep, corresponds to the number
of generations of the GA.

Figure 7: Activity diagram of the simulation’s schedule

7.1 Initialization of the Simulation

We describe the dynamics of the simulation in more detail, starting from the upper left corner
of Figure 7. First, three objects are initialized by the main method of MainSim: the control
panel of the simulation, the market, and the artificial region. The first is provided by Repast
and allows control of the simulation via a graphical interface. In this respect, a good comparison
is, e.g., the Windows Media Player. As such, the control panel of Repast provides the option
to load a file, start and run the program, or stop or pause it. Additionally, it is feasible to
directly set the parameters from Table 2 through the interface. For an illustration, Figure 8
shows a screenshot of Repast’s graphical interface while SpAbCoM is active. An important
option of the control panel is to load an input file. In this way, values of one or several
parameters can be defined, and a number of simulations can be performed over these values.
In particular, the input file specifies the start and stop value of a particular parameter. For
example, we can specify that the number of processors should vary between two and four, and
the number of repetitions should be 50. Hence, there are 50 runs of the simulations for two,
three, and four processors and 150 simulations in total.

Marten Graubner

26

As mentioned in the previous section, most of the environmental variables of the simulation
are defined in the Market class. Either the values of the parameters depicted in Table 2 are
directly defined within an instance of this class or they are set via the Repast interface. Once
the parameters are set, the agents can be initialized. The number of processors is predefined
by the corresponding parameter, whereas the number of producers depends on the market
size. Two integers (the x and y coordinates) measure the extent of the market, and the
multiplication of both yields the number of producers.

Figure 8: Screenshot of the Repast interface during an active simulation of SpAbCoM

Note: A = control panel, B = parameter settings, C = live output, D = market region of the processor with ID =
0, E = other processors, F = unserved locations. The artificial region is constructed as torus and the location of
the first processor (ID = 0) is fixed at L0 = (x0, ymax) = (0, 20).

Values are assigned to the individual features of processors and producers by initializing the
agents. For instance, each producer gets a unique location, or each processor’s GA is set. As
one result, the processor’s individual chromosome population is created.

At this stage of the initialization phase, there are two lists of agents, producers and processors.
The next step is to locate the agents into the artificial region. Therefore, the already
introduced LocateAgent class is deployed. The region is a grid of cells. The corresponding
object is provided by Repast and initialized at the start of the simulation. After the agents are
located, the distances and transport costs between them are calculated. The object
DistanceMatrix provides the corresponding functions. Predefined parameters, such as
the transport rate or whether the region features border effects or not, are considered. To
model space without border effects, we use a torus, i.e., cells at the edges are direct
neighbours of cells which are at the opposite edge. This is the case in Figure 8. To calculate
the distance between two locations LA and LB of agents A and B, we use:

(6) () ()
⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−−+−−

Δ

Δ

= otherwise,,min

existbordersif

22

22

,

,

yx
yyyxxx

d

d

LL BABA
BA

BA

BA

where () () .22

22

, yx
yyxxd BABA

BA +
−+−

=Δ

The Spatial Agent-based Competition Model (SpAbCoM)

27

A distance vector is assigned to each cell and can be assessed by the processor after a
potential relocation. Once the distance matrix is built, the initialization phase is finished, and
the core simulation of the spatial competition starts.

7.2 Running Phase of the Simulation

The running phase of the simulation can be subdivided into three steps: PreStep, Step,
and PostStep. A passage through these steps corresponds to a single generation of a GA.
The first step sets parameters, which were potentially changed during previous generations,
back to the default values. The activities of Step, in turn, can be subdivided into PreTest,
Test, and PostTest. The differentiation is caused by the co-evolutionary concept of the
GA.

As noted in Section 4.3, the important feature is a tournament of strategies among agents.
Step represents this tournament of co-evolutionary GAs. As PreStep, PreTest sets
parameters potentially changed during previous test rounds back to the default values. Test
and PostTest correspond to the strategy selection and evaluation, respectively. The basic
concept of the tournament is to test random strategies of all the processors against each other.
Each processor selects the first chromosome of its strategy list in Test. This chromosome
represents the active strategy, and the processor’s decision variables are set according to its
values. The active strategy is replaced from the first to the last position of the list such that the
second place chromosome is selected in the next round. Suppose there are n strategies
available to each firm; in order to test all n strategies a minimum number of times, say five,
we impose a total of 5n test rounds. To avoid testing strategies (five times) in the same
combination, we randomize the order of chromosomes of a player’s strategy list after n test
rounds.

Besides the randomized pairing of the strategies, the major activity of Test is the
determination of the set of potential suppliers, i.e., suppliers at locations where the processor
earns positive local profits subject to the selected strategy. Due to the uniform distribution of
the suppliers within the region, we can represent the set of potential suppliers over the market
radius R̂ as derived in GRAUBNER et al. (2011a):

(7)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

=
<> 10)1(

1,minˆ
αα αα t

m
t
mR .

This market radius depends on the individual strategy of the processor: the mill price m, the
degree of transport cost transfer α, and the distance to the suppliers dependent on the
processor’s location (x, y) as well as on the transport costs t. Accordingly, if the distance

BALL between processor A and producer B, as calculated by (6), is smaller than R̂ , B is an
element of the set of potential suppliers. 10 Based on the selected strategy, the processor sets a
local price at the locations of the potential suppliers. Hence, these producers are addressees of
the processor’s price offer. Whether an offer is answered with the producer’s supply hinges on
the decision making of the suppliers, particularly whether the offered price represents the
highest price at the producer’s location. The producers’ decision takes place in PostTest.

Because it is most likely that more than one processor sets a price at a particular location,
each producer exhibits an offer collection (see Figure 4). The producer first sorts its list of
price offers in ascending order to determine the highest price at its location. If we allow the
suppliers to take advantage of arbitrage, as described in Section 6.2, each producer compares

10 For a more technical definition of potential suppliers see also GRAUBNER et al. (2011b).

Marten Graubner

28

this price with the price of other locations. If there is a positive difference from another local
price considering the transport costs to this location, the supplier identifies the location with
the highest difference and the corresponding price as optimal choice. Otherwise, the highest
price at the own location is selected. The producer determines the local supply based on the
local price and its supply function.

From Section 6.2 we know that the object PriceOffer has a field LocalProfit. If the
producer selects the price from a price offer at its location, the value of LocalProfit is
determined by this price and the local supply. However, the value of LocalProfit is zero
if it is profitable for the producer to deliver the input to another location due to sufficiently
positive price differences. In this case, it is feasible to show that the destination of the delivery
is always a market border of a processor’s potential market area. According to (7), this
location is characterized by zero profits for the processing firm. Although the location of a
price offer and the location of an accepting producer do not necessarily have to coincide, we
can identify the relation between a producer and processor over PriceOffer if the former
delivers the input to the latter without being a potential supplier.

Based on the decision of the suppliers, the processor can evaluate the performance of the
chromosome, which is determined by the sum of the local profits realized by this strategy.
Unlike potential suppliers, only actual suppliers contribute positive local profits. In this
respect, the set of actual suppliers is an outcome of the spatial interaction among the
processors driven by their price strategies. Because a producer can deliver only to one
processor, the set of actual suppliers represents the market allocation.

The calculation of the profit is the last step of each test round. A new round starts with Step if
the number of desired test rounds is not reached. Otherwise, there is a predefined number of
profit values assigned to each processor’s strategy. The median of the values represents the
average performance of a strategy. Once this is determined, the GA optimization continues
with the PreTest. The activities of this step are the application of the genetic operators as
described in Section 4.3. After the selection of successful strategies but before mutation and
crossover, the best strategy of each player, i.e., the chromosome with the highest average
profit during the test rounds, is used to determine the market allocation. The outcome is
reported through an output file. The last step of the loop is to check whether the termination
rule of the GA is fulfilled, i.e., if the desired number of generations is reached. If not, the next
generation of the co-evolutionary GA simulation starts with PreStep, or the simulation is
terminated.

8 SUMMARY AND POSSIBLE EXTENSIONS

The aim of this paper is to provide a detailed description of the Spatial Agent-based
Competition Model (SpAbCoM). SpAbCoM was developed to analyse spatial competition
because even restrictive assumptions in theoretical models or often analytically intractable.
The advantage of the presented computational framework is its flexibility to introduce relaxed
conditions regarding pricing, location, and market structure. For instance, SpAbCoM is used
to study firms’ choices of spatial pricing policy by GRAUBNER et al. (2011a), who showed that
price discrimination but no FOB pricing emerges as equilibrium strategy in the spatially
differentiated duopsony. GRAUBNER et al. (2011b) extended the theoretical framework and
analysed pricing and location within a two-dimensional, oligopsony model. The authors
highlight that the relation of price discrimination and (spatial) differentiation among firms
hinges on specific model assumptions as the number of competitors or the nature of supply or
demand functions. Both studies helped to deepen our understanding of driving forces and
mechanisms behind pricing and competition in spatial markets.

The Spatial Agent-based Competition Model (SpAbCoM)

29

However, the presented simulation model does not exploit the potential of agent-based
modelling in many aspects. We may extend SpAbCoM, e.g., regarding differentiated
producers or processors. Producers, i.e., suppliers of the agricultural input, may feature
individual production functions that differ from production functions of other producers in the
market, e.g., in terms of the produced quantity or quality of the agricultural good. Conversely,
processors could differ with respect to marketing possibilities or transport technologies and
thus there is a heterogeneous output price or cost structure across processing firms.

It would also be feasible to incorporate some degree of bounded rationality. For instance, if
suppliers are not able to distinguish marginally different local prices or processing firms are
unable to determine the exact location of the marginal supplier and thus set a too large/small
market area. However, the potentially most interesting option to extend the simulation rests in
the co-evolutionary Genetic Algorithm. Because each processing firm exhibits an individual
GA, we could differentiate the decision rule of these agents. This may be interesting in the
case of mixed markets as the German raw milk market, where processors are organized either
as cooperatives or investor-owned firms. This may have an impact on the (profit-maximizing)
strategy used by these firms and most likely will influence the market allocation.

Further possible applications for SpAbCoM are consumer markets. We can readily relate
spatial competition to a more general framework of horizontal product differentiation. While
price discrimination may play a crucial role in such settings, again the analysis is hampered
by a number of analytical difficulties, particularly in the case oligopoly and multi-
characteristic space. The input market framework showed that SpAbCoM is able to deal with
these complex market situations and thus it seems promising for the investigation of a number
of research questions regarding consumer markets.

In general, all these extensions seek to introduce more realistic assumptions into a spatial
competition model to relate the model to real world observations (on particular markets).
Therefore, a consequent research agenda could consist of the incorporation of statistical data
and/or empirical tests of hypotheses derived from the simulation model. In both cases, the
presented simulation framework SpAbCoM can serve as point of departure.

The Spatial Agent-based Competition Model (SpAbCoM)

31

REFERENCES

ALEMDAR, N., SIRAKAYA, S. (2003): On-line Computation of Stackelberg Equilibria with
synchronous Parallel Genetic Algorithms. Journal of Economic Dynamics and Control
27(8), pp. 1503-1515.

ARIFOVIC, J. (1994): Genetic Algorithm Learning and the Cobweb Model. Journal of Economic
Dynamics and Control 18(1), pp. 3-28.

ARIFOVIC, J., LEDYARD, J. (2004): Scaling up Learning Models in Public Good Games. Journal
of Public Economic Theory 6(2), pp. 203-238.

AXELROD, R. (1987): The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In DAVIS, L.
(ed): Genetic Algorithms and Simulated Annealing. Pitman, London.

AXELROD, R. (1997): The Complexity of Cooperation. Princeton University Press, Princeton (NJ).

BALMANN, A., HAPPE, K. (2001): Applying Parallel Genetic Algorithms to Economic Problems:
The case of Agricultural Land Markets. In JOHNSTON, R., SHRIVER, A. (eds.): Microbehavior
and Macroresults. Proceedings of IIFET 2000. International Institute of Fisheries
Economics and Trade, Oregon State University, Corvallis (OR).

BIRCHENHALL, C.R. (1995): Genetic Algorithms, Classifier Systems and Genetic Programming and
their Use in the Models of Adaptive Behaviour and Learning. Economic Journal 105(430),
pp. 788-795.

BOOCH, G., RUMBAUGH, J., JACOBSON, I. (2005): The Unified Modeling Language User Guide.
Addison-Wesley, Amsterdam.

BRENNER, T. (2006): Agent Learning Representation: Advice on Modelling Economic Learning.
In TESFATSION, L., JUDD, K. L. (eds.): Handbook of Computational Economics, Vol. 2.
Elsevier Science, Amsterdam.

COLLIER, N., HOWE, T. NORTH, M. (2003): The Transition to Repast 2.0. In Proceedings of the
First Annual North American Association for Computational Social and Organizational
Science Conference.

DAWID, H. (1999): Adaptive Learning by Genetic Algorithms, Springer, Berlin.

DAWID, H., KOPEL, M. (1998): On Economic Applications of the Genetic Algorithm: A Model
of the Cobweb Type. Journal of Evolutionary Economics 8(3), pp. 297-315.

FOGEL, D. B. (1963): Biotechnology: Concepts and Applications. Prentice Hall, Englewood
Cliffs (NJ).

FOGEL, D. B., OWENS, A. J., WALSH, M. J. (1966): Artificial Intelligence through Simulated
Evolution. John Wiley, New York (NY).

FOSTER, J.A. (2001): Evolutionary Computation. Nature: Reviews Genetics 2(6), pp. 428-436.

GOLDBERG, D. E. (1989): Genetic Algorithm in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (MA).

GRAUBNER, M., BALMANN, A., SEXTON, R. J. (2011a): Spatial Price Discrimination in Agricultural
Product Procurement Markets: A Computational Economics Approach. American Journal
of Agricultural Economics (forthcoming).

GRAUBNER, M., BALMANN, A., SEXTON, R.J. (2011b): Price Discrimination and the Location of
Firms under a General Spatial Input Market Framework. Working Paper.

Marten Graubner

32

HARUVY, E., ROTH, A. E., ÜNVER, M. U. (2006). The Dynamics of Law Clerk Matching: An
Experimental and Computational Investigation of Proposals for Reform of the Market.
Journal of Economic Dynamics and Control 30(3), pp. 457-486.

HOLLAND, J. H. (1975): Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (MI).

JUDD, K. L. (1998): Numerical Methods in Economics. MIT Press, Cambridge (MA).

MITCHELL, M. (1996): An Introduction to Genetic Algorithm. MIT Press, Cambridge (MA).

MEFFERT, KLAUS et al.: JGAP – Java Genetic Algorithms and Genetic Programming Package.
URL: http://jgap.sf.net.

NORTH, M., COLLIER, N. VOS, J. R. (2006): Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer
Simulations 16(1), pp. 1-25.

PRICE, T. C. (1997): Using Co-Evolutionary Programming to Simulate Strategic Behaviour in
Markets. Journal of Evolutionary Economics 7(3), pp. 219-254.

RECHENBERG, I. (1973): Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Holzboog Verlag, Stuttgart.

REEVES, C.R., ROWE, J.E. (2003): Genetic Algorithms – Principles and Perspectives. Kluwer
Academic Publisher, Norwell (MA).

RIECHMANN, T. (1999): Learning and Behavioral Stability – An Economic Interpretation of
Genetic Algorithms. Journal of Evolutionary Economics 9(2), pp. 225-242.

RIECHMANN, T. (2001): Genetic Algorithm Learning and Evolutionary Games. Journal of
Economic Dynamics and Control 25(6/7), pp. 1019-1037.

SALLACH, D. (2004): Repast for Oz/Mozart. M. North, Argonne (IL).

SCHWEFEL, H. P. (1977): Numerische Optimierung von Computermodellen mittels der
Evolutionsstrategie. Birkhäuser Verlag, Basel.

SON, Y. S., BALDICK, R. (2004): Hybrid Coevolutionary Programming for Nash Equilibrium
Search in Games with Local Optima. IEEE Transactions on Evolutionary Computation
8(4), pp. 305-315.

TESFATSION, L. (2006): Agent-based Computational Economics: A Constructive Approach to
Economic Theory. In TESFATSION, L., JUDD, K. L. (eds.): Handbook of Computational
Economics, Vol. 2. Elsevier Science, Amsterdam.

TIROLE, J. (2003): The Theory of Industrial Organization. MIT Press, Cambridge (MA).

VALLÉE, T., BAŞAR, T. (1999): Off-line Computation of Stackelberg Solutions with the Genetic
Algorithm. Computational Economics 13(3), pp. 201-209.

VRIEND, N. J. (2000): An Illustration of the Essential Difference Between Individual and Social
Learning, and its Consequences for Computational Analyses. Journal of Economic
Dynamics and Control 24(1), pp. 1-19.

YANG, X. (2006): Improving Portfolio Efficiency: A Genetic Algorithm Approach.
Computational Economics 28(1), pp. 1-14.

DISCUSSION PAPERS
DES LEIBNIZ-INSTITUTS FÜR AGRARENTWICKLUNG

IN MITTEL- UND OSTEUROPA (IAMO)

DISCUSSION PAPERS
OF THE LEIBNIZ INSTITUTE OF AGRICULTURAL DEVELOPMENT

IN CENTRAL AND EASTERN EUROPE (IAMO)

No. 111 МАКАРЧУК, O., ХОКМАНН, Х., ЛИССИТСА, A. (2007):
Экономический анализ биоэнергетики, как источника доходов аграрных
предприятий

No. 112 SCHNICKE, H., HAPPE, K., SAHRBACHER, C. (2007):
Structural change and farm labour adjustments in a dualistic farm structure:
A simulation study for the Region Nitra in southwest Slovakia

No. 113 BUCHENRIEDER, G., MÖLLERS, J., HAPPE, K., DAVIDOVA, S., FREDRIKSSON, L.,
BAILEY, A., GORTON, M., KANCS, D'A., SWINNEN, J., VRANKEN, L., HUBBARD, C.,
WARD, N., JUVANČIČ, L., MILCZAREK, D., MISHEV, P. (2007):
Conceptual framework for analysing structural change in agriculture and rural
livelihoods

No. 114 ЛЕВКОВИЧ, И., ХОКМАНН, Х. (2007):
Международная торговля и трансформационный процесс в
агропродовольственном секторе Украины

No. 115 ČECHURA, L. (2008):
Investment, credit constraints and public policy in a neoclassical adjustment
cost framework

No. 116 FRITZSCH, J. (2008):
Applying fuzzy theory concepts to the analysis of employment diversification
of farm households: Methodological considerations

No. 117 PETRICK, M. (2008):
Landwirtschaft in Moldova

No. 118 SROKA, W., PIENIĄDZ, A. (2008):
Rolnictwo obszarów górskich Bawarii przykładem dla Karpat polskich?
Studium porównawcze

No. 120 WEITZEL, E.-B., KESKIN, G., BROSIG, S. (2008):
Der türkische Tomatensektor – Regionale Gesichtspunkte und räumliche
Marktintegration

No. 121 SALASAN, C., FRITZSCH, J. (2008):
The role of agriculture for overcoming rural poverty in Romania

No. 122 SROKA, W., HAPPE, K. (2009):
Vergleich der Berglandwirtschaft in Polen und Deutschland

No. 119 MEYER, W., MÖLLERS, J., BUCHENRIEDER, G:. (2008):
Does non-farm income diversification in northern Albania offer an escape from
rural poverty?

No. 123 SROKA, W., HAPPE, K. (2009):
Förderung der Entwicklung des Ländlichen Raumes in Polen und Bayern

No. 124 MÖSER, N. (2009):
Untersuchung der Präferenzen russischer Fachbesucher für ausgewählte
Messeleistungen

No. 125 PAVLIASHVILI, J. (2009):
Servicekooperativen – Ein Modell für die georgische Landwirtschaft?

No. 126 WANDEL, J. (2009):
Agroholdings and clusters in Kazakhstan’s agro-food sector

No. 127 ШАЙКИН, В. В., ВАНДЕЛЬ, Ю. (2009):
Развитие учения о сельскохозяйственных рынках в России в ХVIII-ХХ
веках

No. 128 WANDEL, J., ВАНДЕЛЬ, Ю. (2010):
The cluster-based development strategy in Kazakhstan’s agro-food sector:
A critical assessment from an "Austrian" perspective

No. 129 MÖLLER, L., HENTER, S. H., KELLERMANN, K., RÖDER, N., SAHRBACHER, C.,
ZIRNBAUER, M. (2010):
Impact of the introduction of decoupled payments on functioning of the German
land market. Country report of the EU tender: "Study on the functioning of land
markets in those EU member states influenced by measures applied under the
common agricultural policy"

No. 130 WOLZ, A., BUCHENRIEDEDER, G., MARKUS, R. (2010):
Renewable energy and its impact on agricultural and rural development:
Findings of a comparative study in Central, Eastern and Southern Europe

No. 131 KOESTER, U., PETRICK, M. (2010)
Embedded institutions and the persistence of large farms in Russia

No. 132 PETRICK, M. (2010)
Zur institutionellen Steuerbarkeit von produktivem Unternehmertum im
Transformationsprozess Russlands

No. 133 MARQUARDT, D. (2010): Rural networks in the funding period 2007-2013:
A critical review of the EU policy instrument

No. 134 FRITZSCH, J., MÖLLERS, J., BUCHENRIEDER, G. (2011):
DELIVERABLE 7.5 "Employment diversification of farm households and
structural change in the rural economy of the New Member States"

No. 135 GRAUPNER, M. (2011):
The Spatial Agent-Based Competition Model (SpAbCoM)

Die Discussion Papers sind erhältlich beim Leibniz-Institut für Agrarentwicklung in Mittel-
und Osteuropa (IAMO) oder im Internet unter http://www.iamo.de.

The Discussion Papers can be ordered from the Leibniz Institute of Agricultural Development
in Central and Eastern Europe (IAMO). Use our download facility at http://www.iamo.de.

