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This paper offers a comprehensive study on transitional dynamics within R&D-based models 

of endogenous growth. There are two main motivations. First, the complete dynamic system 

for the market solution is derived in general form. Second, using this dynamic system as a 

unifying framework the adjustment process is analysed. In order to answer the question for 

the relative importance of transitional dynamics vis-à-vis balanced-growth dynamics, special 

emphasis is given to the rate of convergence. The investigations show that the models under 

study can reproduce empirically relevant pattern of development including over- and 

undershooting as well as growth cycles. The paper demonstrates an alternative route to 

growth cycles, which does not require complex eigenvalues. 
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1. Introduction 

Do real-world growth processes mainly represent transitional dynamics or, on the contrary, 

balanced-growth dynamics? This question is at the heart of the current debate on the relative 

importance of transitional dynamics vis-à-vis balanced-growth dynamics. The answer to this 

“relative-importance question” is of major significance for two reasons. First, the empirical 

implications along the transition path probably differ from those along the balanced growth 

path. In order to assess the goodness of specific growth models, positive theory accordingly 

requires a judgement about the relative importance of the two types of dynamics. Moreover, 

transitional dynamics might enhance our understanding of macroeconomic dynamics in 

general. At this point there is the chance for a comprehensive theory of macroeconomic 

dynamics, i.e. an integrated theory of business cycle and growth. Second, the policy 

implications might be completely different along the transition path from those along the 

balanced growth path (Jones, 1995a). From a normative point of view it is, therefore, clearly 

desirable to possess an answer to the question raised above.  

Obviously, the answer to the “relative-importance question” under study depends on 

two components. One concerns the frequency and the severity of macroeconomic shocks, 

which push the economy from its balanced growth path (or possibly move it even farer away). 

This is of course a purely empirical issue. The second component concerns the time span 

which is required to adjust once more closely to the balanced growth path (stability 

presupposed). The length of the adjustment process is usually described by the half-life time 

or, equivalently, by the rate of convergence. Of course, a large number of studies have tried to 

determine the speed of convergence empirically. Since there are, however, substantial 

problems with this econometric undertaking an independent check on the results is 

particularly valuable.1 The paper in hand uses a different approach. A fully calibrated growth 

model is used to asses the rate of convergence theoretically. 

                                                 
1 Basically two strands of empirical research can be distinguished. At first, the main flaw of the cross-sectional 
approaches lies in the fact that an average rate of convergence for very different economies included in the 
sample is estimated (Temple, 1999). Since the rate of convergence is an endogenous variable this is theoretically 
unsatisfying. Time-series techniques are more appropriate in this respect. It is well known, however, that the 
underlying vector-error-correction models are risked to misspecifications of the balanced growth path. In 
addition, it is unclear how big shocks are dealt with (Ben-David and Papell, 1995). Even more fundamentally, 
Jones (2002) argues that U.S. economic growth from 1950 to 1993, which is usually identified as balanced 
growth equilibrium, in fact represents a transition process. 
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What do we in fact know about transitional dynamics in modern growth models? There 

are a number of studies dealing with this important issue. At first, the convergence 

implications of the neoclassical model are quite well understood (Mankiw, Romer and Weil, 

1992; Barro and Sala-i-Martin, 1992; King and Rebelo, 1993). In an important contribution, 

Ortigueira and Santos (1997) investigate the speed of convergence in investment-based 

endogenous growth models, which focus on the accumulation of human capital. Moreover, 

Jones (1995a), Eicher and Turnovsky (1999b, 2001) and Perez-Sebastian (2000) examine the 

quantitative convergence implications of different R&D-based models of growth, the 

probably most important strand of endogenous growth theory. More specifically, Jones 

(1995a) analyses the speed of convergence by holding the savings rate and the labour 

allocation variable between the final-output sector and the R&D sector constant. This 

procedure simplifies the analysis but hides important transition mechanisms. Eicher and 

Turnovsky (1999b, 2001) and Perez-Sebastian (2000) investigate the speed at which the 

economy converges to its balanced growth path. These papers exclusively investigate the 

social solution. However, since the political system is far from being perfect (even in 

developed countries) it is clearly indicated to investigate the decentral economy as far as 

positive theory is concerned. 

The paper in hand enhances the literature on transitional dynamics in endogenous 

growth models by focusing on the market solution.2 It highlights both the quantitative and the 

qualitative convergence implications. The quantitative convergence implications, as expressed 

by the rate of convergence, are important in assessing the general meaning of transitional 

dynamics. The qualitative convergence implications concern aspects of monotonic versus 

non-monotonic adjustments and represent empirically relevant pattern of economic 

development. The class of models under study comprises R&D-based endogenous growth 

models of the increasing-variety type. Of course, the Romer (1990a) model appears as the 

natural starting point for this line of research. However, this model is clearly overrestrictive 

since it imposes a double knife-edge restriction on the R&D technology and further constrains 

population to be stationary. More importantly, the model bears the scale-effect implication, 

which can be easily falsified empirically (Jones, 1995a, 1995b). Jones (1995a) generalises the 

Romer model in that the above mentioned restrictions are relaxed and the scale-effect 

implication is removed. Yet, even the Jones model is unnecessarily restrictive since it 

constrains the elasticity of technology to equal the elasticity of labour in the production of 

output. The basic non-scale R&D-based growth model (Eicher and Turnovsky, 1999b) further 
                                                 
2 As far as comparative aspects are concerned, the social solution is investigated as well. 
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relaxes this constraint. This model is therefore used as the general workhorse to analyse 

transitional dynamics within R&D-based endogenous growth models. Moreover, it is clearly 

desirable to know how the results are affected by further generalising the basic set-up. The 

most obvious extension concerns the possibility that capital goods are considered to be 

productive in R&D as well. To answer this question, a generalised non-scale R&D-based 

growth model is additionally employed.  

The analysis proceeds in several steps. First, the complete dynamic system governing 

the evolution of the market solution for a wide class of R&D-based growth models is derived 

in general form. Second, this dynamic system is subsequently reformulated in scale-adjusted 

variables to receive a stationary system. Third, the stationary solution of the scale-adjusted 

system is determined. The eigenvalues of the dynamic system are calculated. At this stage the 

asymptotic rate of convergence can be determined and the stability properties can be checked 

numerically. Extensive sensitivity analyses is conducted to asses whether the results are 

robust with respect to parameter changes. Fourth, the differential equation system is solved by 

backward integration. The characteristic properties of the adjustment processes are illustrated 

by discussing the resulting simulation results. 

The paper is organised as follows. In section  2 a general R&D-based model of the 

increasing variety type is developed. The quantitative and the qualitative convergence 

implications are investigated in section 3. Finally, section 4 offers a summary and conclusion.  

 

2. A general R&D-based model  

2.1. The basic structure 

The market equilibrium for the class of R&D-based growth models of the increasing-variety 

type is developed and the differential equation system governing the dynamics of the 

decentral solution is derived.3 The model is general in two respects. First, general 

formulations are used as far as possible and restrictions on the formal structure of the model 

are only introduced provided that these become necessary. Second, each factor of production 

(labour, capital and technological knowledge) is allowed to be productive in each sector (final 

output, intermediate goods and R&D). 

At first, it is helpful to sketch the structure of the economy under consideration. On the 

production side there are three sectors. First, the final output sector produces a homogenous 
                                                 
3 This section concisely develops a general R&D-based growth model; for details see Steger (2002). 
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good that can be used for consumption or investment purposes. Second, the intermediate 

goods sector produces differentiated intermediate goods that serve as an input in the 

production of final output. Third, the R&D sector searches for ideas (designs), which are the 

technical prerequisite to produce new intermediate goods. Households choose their level of 

consumption and inelastically supply one unit of labour at every point in time.  

Let us now turn to the formal structure of the model. The state variables are the stock of 

physical capital (K ) and the number of designs ( A ). The model comprises three choice 

variables, namely the level of consumption (C ), the share of labour (θ ) and the share of 

capital (φ ) devoted to the production of final output. Finally, since we have three distinct 

goods, there are three prices. Final output serves as the numeraire, its price is set equal to 

unity. The price of the typical intermediate good is denoted by p  and the price of a typical 

design byv  respectively. The order of the dynamic system can be reduced by eliminating the 

price of intermediate goods ( p ).  

 

2.2. Firms 

Final output sector 

The final output sector is assumed competitive and produces a homogenous good that can be 

used universally for consumption or investment purposes. The original production function 

may be expressed as [ ], ( ) ( ),Y F L i x i Aθ φ= , where Y  denotes final output, L  the stock of 

labour and ( )x i  with i  real valued and [0, ]i A∈  denotes the number of differentiated 

intermediate goods of type i . The parameter A  indicates the number of differentiated capital 

goods available at every point in time. A characteristic feature of this class of models is that 

this number is an endogenous variable; the law of motion of A  is described below. The 

allocation variables θ  and ( )iφ  [ 0 , ( ) 1iθ φ≤ ≤ ] represent the shares of labour and 

intermediate goods allocated to final output production respectively. Moreover, the final 

output technology satisfies (.) 0LFθ > , ( ) ( ) (.) 0i x iFφ > , (.) 0AF > , where (.)LFθ  is a short-hand 

symbol for the partial derivative, i.e. (.)(.) :L
FF
Lθ θ

∂
=

∂
. Since it is further assumed that the 

differentiated intermediate goods enter the production function symmetrically (which is a 

simplifying assumption), the index i  can be ignored and the original production function may 

be expressed as ( ), ,Y F L x Aθ φ= . In addition, the production function is required to satisfy 
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three further restrictions: (1) Constant returns to scale in the private inputs ( L  and x ) in order 

to enable a competitive equilibrium in the final-output sector. (2) The differentiated 

intermediate goods substitute imperfectly for each other, i.e. the elasticity of substitution is 

finite. (3) The number of intermediate inputs causes total factor productivity to rise. This 

feature formalises the basic idea of an increasing productivity due to the division of labour 

(Ethier, 1982). 

The production technology of the intermediate good sector (to be described in next 

section) implies that aggregate capital can be sensibly defined as :K q Ax= , where q  

represents a constant technology parameter. By substituting /( )x K q A= , the original 

production function, ( ), ,Y F L x Aθ φ= , can then be transformed to read ( ), ,Y F L K Aθ φ= . 

The reason for the distinction between the original and the transformed production function 

lies in the fact that the former underlies basic relations, which describe the market equilibrium 

(e.g. the demand function for x ). The latter formulation must be used to describe the 

dynamics of the aggregate capital stock given by ( ), , KK F L K A K Cθ φ δ= − − , where 

0Kδ ≥  denotes the constant rate of capital depreciation and C  total consumption. 

 

Intermediate goods sector 

This sector is composed of an infinite number of firms ordered on the interval [0, ]A  who 

manufacture differentiated intermediate goods. Each producer must at first invest in blueprints 

(designs) as the technical prerequisite of production. As a result of an effective patent 

protection, the owner of a blueprint is the only producer of the respective intermediate good. 

The representative intermediate goods producer can convert q  units of final output into one 

unit of the differentiated producer good; of course 0q > . Operating profits of the 

representative intermediate goods producer may then be expressed as [ ]( ) ( )x p x q r xπ = − . 

The gross interest rate is denoted by r , i.e. n Kr r δ= +  with nr  representing the net interest 

rate.  

The typical intermediate good producer faces two demand schedules. One stems from 

final output producers, while the other originates from R&D firms. It is assumed that the 

elasticities of substitution among the intermediate goods are constant for both the final output 

as well as the R&D sector. Furthermore, since there is a large number of firms in both sectors, 

the elasticities of substitution equal the respective price elasticities of demand denoted by 1ε  
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(final output) and 2ε  (R&D). To simplify matters we assume 1 2ε ε ε= = , so that the 

intermediate goods producer has no incentives to differentiate prices. With constant marginal 

costs (q r ) and a price elasticity given by ε , the solution to the underlying monopoly pricing 

problem implies a supply price of 
1Sp q rε

ε
=

−
. At this stage it becomes obvious that 

1 ε< < ∞  is necessary to guarantee positive profits. 

To derive the profit and the interest rate in terms of the state variables, we need to 

specify the demand schedules for intermediate goods. The final output sector is assumed 

competitive and, hence, the typical producer is willing to pay the marginal products for his/ 

her inputs. The inverse (conditional) demand functions for intermediate goods originating 

from the final-output sector are given by [ ]( ) ( )( ) , ( ) ( ),D i x ip i F L i x i Aφ θ φ=  for all i . Since all 

( )x i  enter the production function symmetrically, we can drop the index i  and write the 

demand function as [ ], ,D xp F L x Aφ θ φ= . Moreover, since we wish to express the dynamics 

of the model in terms of aggregate rather than disaggregate capital, we substitute 

/( )x K q A=  into ( , , )xF L x Aφ θ φ  to get ( , , )G L K Aθ φ . This function shows the marginal 

product of one specific variety of the intermediate good in the production of final output in 

terms of K .  

From [ ]( ) ( )x p x q r xπ = − , ( , , )Dp G L K Aθ φ= , 
1Sp q rε

ε
=

−
, ( ) D Sp x p p= =  and 

/( )x K q A=  operating profits can be expressed to read ( ), ,G L K A K
q A

θ φ
π

ε
= . Moreover, 

from equilibrium in the intermediate goods market ( D Sp p= ), we have 

( ), ,
1

G L K A qrεθ φ
ε

=
−

 and hence the interest rate may be expressed as 

( ), ,1 G L K A
r

q
θ φε

ε
−

= .  

 

R&D sector 

There is a large number of R&D firms who search for new ideas (designs). The R&D 

technology is of the following shape [ ] [ ]{ }, (1 ) , (1 ) , 1 ( ) ( ), 1 ( ) ( )A J A L L i x i i x iθ θ φ φ= − − − − . 

This general formulation deserves a thorough explanation. At first, it should be noted that this 
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production function generalises the usual R&D technology in that intermediate goods [ ( )x i ] 

are considered to be productive in R&D as well. Second, it is assumed that (.) 0AJ >  which 

captures two distinct effects. On the one hand, A  indicates the net effect of (intertemporal) 

knowledge spill-overs and “fishing out” effects (Jones and Williams, 2000). On the other 

hand, in case of capital being productive in R&D, A  additionally reflects the specialisation 

effect due to the use of differentiated producer goods. Third, (1 ) (.) 0LJ θ− >  and 

[1 ( )] ( ) (.) 0i x iJ φ− >  denote the private marginal product of labour and differentiated capital goods 

respectively. It is assumed that there are constant returns to scale at the level of the individual 

firm. Fourth, following Jones (1995a) and Jones and Williams (2000) we allow for negative 

externalities associated with the economywide averages of the private resources. The 

economywide averages of private resources are denoted by (1 )Lθ−  and [ ]1 ( ) ( )i x iφ− . The 

negative externalities associated with these averages are indicated by (1 ) (.) 0LJ θ− ≤  and 

[1 ( )] ( ) (.) 0i x iJ φ− ≤ .4 These capture (intratemporal) duplication externalities which may be either 

accidental or intentional (like in the case of R&D races). As before, we assume that the ( )x i  

enter the production function symmetrically. Hence, we can drop the index i  and simplify the 

preceding function by writing , (1 ) , (1 ) , (1 ) , (1 )A J A L L x xθ θ φ φ = − − − −  . Moreover, using 

/( )x K q A=  allows us to transform this function to read 

, (1 ) , (1 ) , (1 ) , (1 )A J A L L K Kθ θ φ φ = − − − −  . Since in equilibrium ( ) ( )1 1L Lθ θ− = −  and 

(1 ) (1 )K Kφ φ− = −  we may express the preceding function as [ ], (1 ) , (1 )A J A L Kθ φ= − − .  

An example should clarify the issue. The specific R&D function may take the form 

( ) ( ) [ ]{ } [ ]{ }
0

(.) 1 1 1 ( ) ( ) 1 ( ) ( )
eep p KLL KSA

A

JJ A L L i x i i x i di
ηηη ηηα θ θ φ φ  = − − − −    ∫ , where p

Lη  

measures the private effect of labour and e
Lη  the external effect associated with the 

economywide average of labour in R&D. Similarly, p
Kη  measures the private effect of capital 

and e
Kη  the external effect associated with the economywide average of capital in R&D. 

Noting the general symmetry among the ( )x i  leads to 

                                                 

4 To clarify notation: (1 ) (.)LJ θ−  means (1 )

(.)(.) :
(1 )L

JJ
Lθ θ−

∂
=
∂ −

. 
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( ) ( ) ( ) ( )(.) 1 1 1 1
e ep pL KL KSA

JJ A L L A x x
η ηη ηηα θ θ φ φ      = − − − −       . Considering /( )x K q A=  

allows us to write ( ) ( ) ( ) ( )(.) 1 1 1 1
e ep pL KL KA K

JJ A L L K K q
η ηη ηη ηα θ θ φ φ −      = − − − −        with 

: 1A SA Kη η η= + − . The exponent Aη  captures the net effect of the positive spill-over effect and 

the fishing out effect ( SAη ) as well as the specialisation effect (1 Kη− ). Since in equilibrium 

( ) ( )1 1L Lθ θ− = −  and (1 ) (1 )K Kφ φ− = −  we may express the preceding function as 

( ) ( )(.) 1 1L KA K
JJ A L K q

η ηη ηα θ φ −   = − −     with : p e
L L Lη η η= +  and : p e

K K Kη η η= + .  

The typical R&D firm sets the price of one design to extract the present value of the 

infinite profit stream accruing at first to the typical intermediate good producer. Hence, this 

price is given by ( )( ) ( ) R t

t
v t e dπ τ τ

∞ −= ∫  with ( ) : ( )nt
R t r u du

τ
= ∫ . The price of one design 

equally shows the value of the representative intermediate goods firm. Here we have the 

second market distortion since only private returns are counted and positive spill-over effects 

are ignored. Differentiating the preceding integral equation with respect to time gives 

nv r v π= − . This equation can be interpreted as the no-arbitrage condition for the two 

financial assets existing in this model. The reward of a consumption loan of size v  amounts to 

nr v , while the reward of an equity (issued by intermediate goods producers) of equal size is 

given by v π+ . Inserting the expressions for π  and r  derived above, one obtains the 

differential equation in v  as ( ) ( ), , , ,1
K

G L K A G L K A K
v v

q q A
θ φ θ φε δ

ε ε
 −

= − − 
 

.  

Let us now turn to the factor allocation conditions. Profit-maximising firms reward the 

factors of production according to their (private) marginal product. Moreover, in equilibrium 

wages are equalised across the two sectors so that (1 )(.) (.)L Lw F v Jθ θ−= = . This intersectoral 

labour allocation condition may be expressed as ( , , , )A K L vθ θ= . As for the differentiated 

capital goods, we have (1 )(.) (.)D x xp F v Jφ φ−= = ; notice that (1 ) (.)xJ φ−  requires to differentiate 

(.)J  with respect to [ ]1 ( ) ( )i x iφ−  and then drop the index i . Substituting /( )x K q A=  into 

the preceding equation gives the allocation condition for intermediate goods in terms of 

(aggregate) capital as ( , , , )A K L vφ φ= .  
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A comment on generality 

It is fairly obvious that only a limited number of specific production functions fit into the 

general framework stated above. In order to clarify this aspect further, the following 

consideration may be instructive. The functions meeting the preceding requirements may be 

expressed as 1 1 2 2[ , ] [ ( ) ( )]Y B L L Z i x iθ θ φ= .5 The subfunction [ ( ) ( )]Z i x iφ  must be CES in the 

( ) ( )i x iφ  with an elasticity of substitution (ε ) satisfying 1 ε< < ∞ . It follows that the 

Cobb-Douglas case is not admissible. The subfunction 1 1 2 2[ , ]B L Lθ θ  could equally be of the 

CES type or, more specifically, Cobb-Douglas in 1 1Lθ  and 2 2Lθ , where 1L  and 2L  could 

represent different types of labour.6  

 

2.3. Households 

The representative household is assumed to inelastically supply one unit of labour during 

every period of time and to maximise his/ her intertemporal utility. The instantaneous utility 

function is of the constant-intertemporal-elasticity-of-substitution type (CIES); a specific 

formulation is used to reduce notational effort. The dynamic optimisation problem reads as 

follows (see also Jones, 1995a, p. 782).  

 

( )1
{ / }

0

/ 1
max

1
t

C L

C L
e dt

γ
ρ

γ

−∞
−−

−∫   

. .s t  nK r K wL A v A Cπ= + + − − ; (0) 0K > , (1) 

 

where 0ρ >  denotes the constant time preference rate, 0γ >  a constant preference 

parameter and w  the wage rate respectively. From the first-order conditions we get the 

Keynes-Ramsey rule describing the optimal consumption profile.7 

 
                                                 
5 The following remarks apply to the production functions in original form. 
6 In an extension to his original approach, Romer (1990b, p. 347) uses the production technology 

0
( , ) ( ) K

A
Y g H L x i diσ= ∫ , where ( , )g H L  denotes a CES function. The same considerations apply to the R&D 

technology. 

7 It is assumed that the sufficiency condition is equally satisfied. In addition, the transversality condition 

demands for the following inequality constraint to be met ˆ ˆlim lim 0t t Kρ λ→∞ →∞− + + < , where λ  denotes the 

current-value shadow price of capital. 
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[ ](1 )n
CC r nρ γ
γ

= − − −  (2) 

 

2.4. The dynamic system  

The preceding discussion can be summarised by the following set of equations. The system 

shown below governs the dynamics of the market solution for a broad class of R&D-based 

endogenous growth models of the increasing-variety type. It should be noted that this is a 

differential-algebraic system of equations. The factor allocation conditions are given in 

integrated form. Moreover, the labour and capital allocation variables in most cases represent 

implicit equations. Since these depend, inter alia, on v , the dynamics of the equity price need 

to be taken into consideration. The price of intermediate goods ( p ) has been eliminated.  

 

[ ], , KK F A L K K Cθ φ δ= − −  (3) 

[ ], (1 ) , (1 )A J A L Kθ φ= − −  (4) 

( ), ,1 (1 )K

G L K ACC n
q

θ φε δ ρ γ
γ ε
 −

= − − − − 
 

 (5) 

( ) ( ), , , ,1
K

G L K A G L K A K
v v

q q A
θ φ θ φε δ

ε ε
 −

= − − 
 

 (6) 

( , , , )A K L vθ θ=  (7) 

( , , , )A K L vφ φ=  (8) 

 

The size of population ( L ) is assumed to grow at exponential rate, i.e. L n L= . The 

function ( , , )G L K Aθ φ  shows the marginal product of one specific variety of intermediate 

goods in the production of final output in terms of K ; formally this function results from the 

substitution of /( )x K q A=  into ( , , )xF L x Aφ θ φ .  

Specific models which are included in this general formulation comprise the 

first-generation of R&D-based models like the original Romer (1990a) model, the non-scale 

models of Jones (1995a) and Eicher and Turnovsky (1999b, 2001). Further examples are the 
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CES-CES technology used in Romer (1990b) as well as models with complementarities 

among intermediate goods (Benhabib and Xie, 1994).  

 

2.5. The balanced growth path 

As usual a balanced growth path is defined by constant, though possibly different, growth 

rates of the endogenous variables. This definition implies that the allocation variables (θ  and 

φ ) must be constant along the balanced growth path. At this point we can apply the procedure 

used in Eicher and Turnovsky (1999a). In accordance with the stylised facts, we use the 

auxiliary assumption stating that ˆ ˆY K=  along the balanced growth path (Romer, 1989). From 

ˆ / /KK Y K C Kδ= − −  it then follows that balanced-growth further requires ˆK̂ C= . The 

balanced growth rates of K  and A  can be derived from (.) 0d F
d t K

=  and (.) 0d J
d t A

=  by 

noting that the allocation variables are constant. Carrying out the preceding instructions 

yields. 

 

ˆˆ ˆ(1 )K A LK A Lσ σ σ− − =  (9) 

ˆ ˆ ˆ(1 )A K LA K Lη η η− − =  (10)

 

The elasticities of production xσ  and xη  are defined by (.):
(.)

x
x

F x
F

σ =  and (.):
(.)

x
x

J x
J

η =  

for , ,x A L K= . These are exogenous constants in the Cobb-Douglas case and a function of 

the input vector in the more general CES case. Provided that ˆ 0L n= >  equations (9) and (10) 

uniquely determine K̂  and Â  given as follows. 

 

ˆ
KK nβ=  with (1 )

(1 )(1 )
L A L A

K
A K K A

σ η η σβ
η σ η σ

− +
=

− − −
 (11)

ˆ
AA nβ=  with (1 )

(1 )(1 )
L K K L

A
A K K A

η σ η σβ
η σ η σ

− +
=

− − −
 (12)

 

Eicher and Turnovsky (1999a, section 2.1) derive the conditions for positive and 

balanced growth applying to the social solution of a general R&D-based growth model. Since 
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the underlying production functions and the resulting balanced growth rates are structurally 

identical for the market and the social solution, these results can be applied here as well. 

According to their proposition 1, (1 )(1 ) 0A K K Aη σ η σ− − − >  and 1Kσ <  is necessary and 

sufficient for positive growth. In proposition 2 they summarise three conditions each of which 

guarantees balanced growth; these are subsequently restated. The production functions in both 

sectors must be either: (1) constant returns to scale; (2) of the Cobb-Douglas type or 

(3) homogenously separable in the exogenously and endogenously growing factors.  

Three points are especially worth being noticed at this stage. First, balanced growth is 

characterised by non-scale growth, i.e. the scale of the economy does not influence the pace 

of growth. Second, the model shows even growth ( ˆK̂ A= ) in the first and the third case and 

uneven growth ( ˆK̂ A≠ ) in the second case. Third, the balanced growth rates of the market 

and the social solution coincide provided that ˆ 0L n= >  and both production functions are of 

the Cobb-Douglas type. This proposition follows from the fact that, first, the production 

functions are identical from the perspective of the individual actors and the social planner 

and, second, in the Cobb-Douglas case the elasticities of production ( xσ  and xη ) are 

exogenous constants. 

 

2.6. The dynamic system in scale-adjusted variables 

We now perform an adjustment of scale to receive a dynamic system which possesses a 

stationary solution and to obtain a convenient expression for the balanced growth path. In 

order to illustrate this procedure, consider a variable ( )X t  which grows in the long run at 

constant rate g , i.e. ( )lim
( )t

X t g
X t→∞ = . By defining a new variable ( )x t , we can then perform 

an adjustment of scale yielding the scale-adjusted variable ( )( ) : g t
X tx t
e

= . By construction, ( )x t  

converges to its stationary value denoted by x  as time approaches infinity, i.e. 

lim ( )t x t x→∞ = . Using the definition above, the growth path of ( )X t  is given by 

( ) ( ) g tX t x t e=  while the balanced growth path reads ( ) g tX t x e= . 

With the balanced-growth rates shown in (11) and (12), the appropriate scale 

adjustments are given by : / Ky Y Lβ= , : / Kk K Lβ= , : / Kc C Lβ= , : / Aa A Lβ= , : / Aj J Lβ=  and 
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: / K A
av v Lβ β−= .8 For the class of models considered in this paper it holds true that 

1(1 )Kε σ −= −  and hence ( 1) / Kε ε σ− = . Moreover, in this case we can make use of 

( ) (.), , K F qG L K A
K

σθ φ
φ

= . The dynamic system in scale-adjusted variables may 

consequently be expressed as follows.  

 

K Kk y c k n kδ β= − − −  (13)

Aa j n aβ= −  (14)

2

(1 )K
K K

ycc n nc
k

σ δ ρ γ β
γ φ
 

= − − − − − 
 

 (15)

( )2 1
( ) K KK

a a K K A

yyv v n
k a

σ σσ δ β β
φ φ

− 
= − − − − 

 
 (16)

1

p
L

L a
jy v ησ

θ θ
=

−
 (17)

1

p
K

K a
jy v ησ

φ φ
=

−
 (18)

 

Three points should be observed at this stage. First, since the adjustment of scale makes 

the output functions in scale-adjusted variables ( y  and j ) independent of L , this procedure 

reduces the dimension of the dynamic system. Second, from the definition (.):
(.)

x
x

f x
f

σ =  we 

can express the derivative of the production function with respect to x  as (.)(.) x
x

ff
x

σ
= . 

Third, p
Lη  and p

Kη  denote the elasticity of private labour and capital respectively.9  

                                                 
8 The scale-adjusted price ( : / K A

av v Lβ β−= ) results from the following consideration. From (6) together with 

(.) K YqG
K

σ
φ

= , the growth rate of v  may be expressed as 1ˆ K K
K

Y q Yv
K A K v

σ σε δ
ε φ ε φ
−

= − − . Along the balanced 

growth path, the first term on the RHS is constant. Hence, v  must grow at a rate equal to ˆˆˆ ( )K Av Y A nβ β= − = −  

along the balanced growth path. 
9 Remember that we allow for negative externalities of the private resources employed in R&D. The elasticity of 

labour in R&D is : p e
L L Lη η η= + , where p

Lη  measures the private effect of labour in R&D and 0e
Lη ≤  measures 
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3. Transitional dynamics 

3.1. Motivation and a basic concept 

What are the causes of transitional dynamics from an economic perspective? There are two 

sources of shocks that give rise to adjustment dynamics. First, suppose that all relevant 

economic parameters are fixed and, for whatever reason, the economy starts with a 

combination of state variables which does not coincide with the stationary solution. A 

reasonable example may be a war or a natural catastrophe that destroys physical, human and 

knowledge capital. Second, one can argue that the economy finds itself in its long-run 

equilibrium initially. A sudden change in technology or preference parameters may occur 

subsequently. As a result, the initial state deviates from the new long-run equilibrium. 

Provided that the system is stable, the economy converges towards the new equilibrium.  

Since the speed of convergence plays a crucial role in this paper this concept is 

described concisely. The speed at which some variable converges to its equilibrium value is 

measured by the rate of convergence. Obviously we are dealing with convergence in the sense 

of the conditional β -convergence hypothesis (Sala-i-Martin, 1996). The rate at which some 

variable ( )x t  converges to its balanced growth path ( )x t  is measured by 

( ) ( )( ) :
( ) ( )x
x t x tt
x t x t

ψ −
= −

−
. If the variable under study converges (diverges), then ( ) 0x tψ >  

[ ( ) 0x tψ < ].10 The (instantaneous) rate of convergence may be variable along the transition. In 

the limit, however, the rate of convergence is constant.  

 

3.2. The basic non-scale model of R&D-based growth 

3.2.1. The model 

Consider now the basic non-scale R&D-based model. The model is characterised by 

Cobb-Douglas technologies in both sectors of production. There are no further restrictions 

which are specific to this model. Of course, the set of general restrictions which are necessary 

                                                                                                                                                         
the external effect associated with the economywide average of labour in R&D. Analogous explanations apply to 

capital in R&D ( : p e
K K Kη η η= + ).  

10 This proposition holds true irrespective of the fact whether ( )x t  converges from below or from above. It 

should also be noted that this definition does not require the balanced-growth equilibrium to be stationary. 
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for the existence of the market solution, internal consistency as well as positive and balanced-

growth apply. The production side of the economy in terms of aggregate capital is given as 

follows.11 

 

(.) ( )A L K
FY F A L Kσ σ σα θ= =     with   , , 0A L Kσ σ σ > ; 1L Kσ σ+ =  (19)

(.) [(1 ) ]A L
JA J A Lη ηα θ= = −      with   , 0A Lη η > ; 1Lη ≤  ( 1p

Lη = , 0e
Lη ≤ ) (20)

L n L=  (21)

 

The balanced-growth rates turn out to read 
( )
( )( )

1ˆˆ ˆ
1 1

A L L A
K

A K

n
K Y C n

η σ η σ
β

η σ
 − + = = = =

− −
 

and ˆ
1

L
A

A

nA nη β
η

= =
−

. Necessary and sufficient conditions for positive per capita growth are 

(1 )(1 ) 0A Kη σ− − >  and 1Kσ < .12  

Let us now turn to the dynamic system in scale-adjusted variables. From (19), (20) 

together with : / Ky Y Lβ= , : / Kk K Lβ= , : / Kc C Lβ= , : / Aa A Lβ= , : / Aj J Lβ= , : / K A
av v Lβ β−=  

and considering ( )
( )( )
1
1 1

A L L A
K

A K

η σ η σ
β

η σ
− +

=
− −

 and 
1

L
A

A

nηβ
η

=
−

 we can derive the production 

functions in scale-adjusted variables to read A L K
Fy a kσ σ σα θ=  and (1 )A L

Jj aη ηα θ= − . 

Inserting these output functions into the general system (13) to (18), the dynamic system in 

scale-adjusted variables may be expressed as follows. 

 
A L K

F K Kk a k c k n kσ σ σα θ δ β= − − −  (22)

(1 )A L
J Aa a naη ηα θ β= − −  (23)

2

(1 )
A L K

K F
K K

a kcc n nc
k

σ σ σσ α θ δ ρ γ β
γ
 

= − − − − − 
 

 (24)

2 (1 )( )
A L K A L K

K F K K F
a a K K A

a k a kv v n
k a

σ σ σ σ σ σσ α θ σ σ α θδ β β
  −

= − − − − 
 

 (25)

                                                 
11 The social formulation of this model was introduced into the literature by Eicher and Turnovsky (1999b). 
12 Since both sectors are characterised by Cobb-Douglas technologies, the preceding conditions are also 
sufficient for balanced growth (Eicher and Turnovsky, 1999a, p. 402 and p. 404). 
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1 1(1 )A L K A Lp
L F a L Ja k v aσ σ σ η ησ α θ η α θ− −= −  (26)

 

3.2.2. Discussion 

3.2.2.1. Rate of convergence and key economic ratios 

The baseline set of parameters underlying the numerical computations performed in this 

section is shown in Table 1. The parameters are essentially identical to those used in previous 

exercises (e.g., Prescott, 1986; Lucas 1988; King and Rebelo, 1993; Ortigueira and Santos, 

1997; Jones 1995b; Eicher and Turnovsky, 2001). The final output sector exhibits constant 

returns to scale in the private inputs (labour and physical capital) but increasing returns to 

scale in all three factors (including technology). Similarly, the R&D sector is subject to 

decreasing returns in labour but shows mildly increasing returns with respect to labour and 

technology.  

 

TABLE 1 
 

TABLE 2 
 

Let us now turn to the quantitative implications resulting from the theoretical 

experiment conducted here. Table 2 reports several growth rates ( /Y L , /A L ), key economic 

ratios ( /Y K , /C Y ), the stationary value of scale-adjusted output ( y ), the labour allocation 

variable (θ ) and the asymptotic rate of convergence of /Y L  ( /Y Lψ ) for the market solution 

and for the social solution. All values lie within highly plausible ranges. Several points are 

especially worth being noted.  

First, the growth rates of /Y L  (which equals the growth rate of /K L ) and /A L  are 

identical for the market and the social solution as suggested above. Since the returns to scale 

in the final output sector exceed those in the R&D sector, the growth rate of /Y L  ( /K L ) lies 

above the growth rate of /A L . The output-capital ratio is significantly higher for the market 

solution compared to the social solution. The economic explanation for this divergence lies in 

the fact that the market economy saves less ( / /M SC Y C Y> ) due to the downward biased 

interest rate. 
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Second, the decentral share of labour devoted to R&D exceeds the socially optimal 

share, i.e. 1 1M Sθ θ− > − . Jones (1995a) shows that there are three effects at work in 

non-scale R&D-based growth models which induce the decentral share to deviate from the 

socially optimal share. (1) If 0Aη > , then the intertemporal spill-over effect of technological 

knowledge causes the economy to underinvestment in R&D; (2) provided that 1Lη < , there 

are negative (intratemporal) externalities due to the duplication of research inducing too much 

resources to be allocated to R&D; (3) the monopoly mark-up over marginal cost in the sale of 

intermediate goods induces too little labour to be devoted to R&D. Since 0.6Lη = , the second 

effect clearly causes the decentral economy to overinvest in R&D. In addition, for the 

baseline set of parameters the second effect seems to dominate the first and the third effect.  

Third, the level of the balanced growth path, as indicated by y , differs drastically 

between the market and the social solution. Since the balanced growth path in terms of per 

capita output is given by ( 1)( ) / ( ) K ntY t L t y e β −=  [where we have set (0) 1L = ], y  immediately 

shows the level of the balanced growth path. Scale-adjusted output amounts to 41 units 

(expressed in units of final output) for the market solution as opposed to 67 units in the case 

of the social solution. Put differently, the level of the socially optimal balanced growth path 

exceeds that of the decentral balanced growth path by 64 %.  

Fourth, Table 2 shows that per capita income asymptotically converges at a rate of 

about 0.7 % in the case of the social solution and at a lower rate of 0.5 % provided that the 

market solution is considered. Both rates are surprisingly low, that is the economy converges 

very slowly. The rates of convergence can be easily transformed into half-life times by use of 

the formula (0.5) /x Log tψ = − . The social solution implies a half-life time of per capita 

income amounting to 102 years, while the market solution shows a half-life time of 

137 years.13 The economic intuition for this difference is as follows. Along the transition, 

preferences (as expressed by the Keynes-Ramsey rule) additionally influence the dynamics of 

the economy. Moreover, it has been stated above that the decentral real interest rate is biased 

downwards due to the market power of intermediate goods producers. Therefore, the 

decentral economy gives weaker incentives to accumulate resources and speed up growth 

along the transition. As a result, the gap between the current state of the economy and the 

balanced growth path is closed more slowly.  

                                                 
13 Not surprisingly, a similar pattern is found for per capita capital and per capita technology (not reported). 
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Altogether, these results provide strong arguments in favour of transitional dynamics 

vis-à-vis balanced-growth dynamics. Since the political system is far from being perfect, even 

in developed countries, positive analyses of the growth process should be based on the market 

economy model. In this respect it is important to notice that the market solution converges 

even slower. 

 

3.2.2.2. Sensitivity analysis 

What about the robustness of the preceding findings? It is clear that the rates of convergence 

shown in Table 2 are calculated for a specific set of parameters and are valid for one point in 

the parameter space only. On the one hand, this procedure appears justified since the rate of 

convergence cannot be derived analytically due to the complexity of the system under study. 

On the other hand, this procedure clearly necessitates a sensitivity analysis.  

The local rate of convergence of per capita income is given by 

1/ ( ) ( 1)A L K KY L ß nψ λ σ σ σ= − + + − − , where 1λ  denotes the dominant of the stable 

eigenvalues (i.e. 2 1 0λ λ< < ) and (1 )
(1 )(1 )

L A L A
K

A K K A

σ η η σβ
η σ η σ

− +
=

− − −
.14 If, for example, Aσ  varies, 

then the rate of convergence changes according to / 1
1

Y L K
A

A A A

nψ λ βσ λ
σ σ σ

∂ ∂ ∂
= − − −

∂ ∂ ∂
. Each of 

the components of the preceding partial derivative is known analytically and small in 

magnitude (i.e. of second order). However, the magnitude of 1

A

λ
σ
∂
∂

 is unknown since we have 

no analytic expression for 1λ .  

In order to assess the sensitivity of 1λ  with respect to parameters changes, we evaluate 

1λ  for successive values of the parameter under consideration. This procedure varies one of 

                                                 
14 At this point it is helpful to realise that the generic form of the stable solution to the linearised problem is 

given by 1 2
11 1 12 2

t tk v B e v B e kλ λ= + + , 1 2
21 1 22 2

t ta v B e v B e aλ λ= + + , 1 2
31 1 32 2

t tv B e v B eλ λθ θ= + + , where 1λ  and 

2λ  denote the stable roots ( 2 1 0λ λ< < ), 1B  and 2B  arbitrary constants (depending on the shock under 

consideration) and ijv  the elements of the eigenvectors associated with the corresponding stable root jλ . 

Moreover, the deviation of y  from y  may be expressed to read ( ) ( ) ( )A L K
Fy y a a k kσ σ σα θ θ− = − − − . Since 

2 1 0λ λ< < , the asymptotic rate of convergence is determined by 1λ . Consequently, in the limit the gap y y−  

evolves according to ( ) ( ) ( ) 1 ( )
11 1 21 1 31 1

K A L A L K t
Fy y v B v B v B eσ σ σ λ σ σ σα + +− = . The asymptotic rate of convergence of 

y  reads 1( )y A L Kψ λ σ σ σ= − + +  and from : / Ky Y Lβ=  we get / 1( ) ( 1)Y L A L K Kß nψ λ σ σ σ= − + + − − . 
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the parameters holding the others fixed, i.e. the baseline set of parameters is used as an 

anchor. This allows us to assess the robustness of the rate of convergence and to reach more 

general conclusions on the speed of convergence. 

The results of this experiment are displayed in Figure 1 to Figure 3, which depict the 

relationship between the smaller of the two negative eigenvalues, in absolute terms, and the 

different parameter values both for the market solution (dashed line) and for the social 

solution (solid line). Notice that the vertical line marks the respective parameter value in the 

baseline set.15 Since the smaller eigenvalue, in absolute terms, dominates the larger one if time 

proceeds, the former is labelled dominant eigenvalue. The parameters have been grouped into 

three categories: (1) Final output technology parameters (Figure 1); (2) R&D technology 

parameters (Figure 2) and (3) preference parameters together with the population growth rate 

(Figure 3). At least three important conclusions can be drawn from this sensitivity analysis.  

 

FIGURE 1 

 

FIGURE 2 

 

FIGURE 3 

 

First, the most important result lies in the fact that the eigenvalues do not vary 

substantially in response to parameter changes; the strongest impact comes from the 

population growth rate displayed in Figure 3 (c). This proposition applies to both the 

decentral and the social dominant eigenvalue. Therefore, the result of slow convergence 

speeds is robust with respect to parameter changes.  

Second, the dominant eigenvalue for the market solution lies strictly below (in absolute 

terms) the corresponding eigenvalue for the social solution. This implies that the asymptotic 

rate of convergence of the market economy is strictly smaller than the asymptotic rate of 

convergence of the social economy. Put differently, the market economy converges slower 

than the socially controlled economy.  

                                                 
15 Parameter restrictions have not been taken into account. As a result, some combinations of parameters might 
lie outside the economically relevant range. This does not, however, limit the results of the sensitivity analysis.  
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Third, Figure 1 to Figure 3 provide information on the relationship between the rate of 

convergence and the different economic parameters. On the one hand, the rate of convergence 

appears independent of total factor productivity in both sectors, i.e. independent of the scale 

factors Fα  and Jα . This finding is in line with the results on the rate of convergence for the 

neoclassical model (Barro and Sala-i-Martin, 1992, pp. 225/226). On the other hand, all other 

parameters of the model seem to affect the rate convergence. In contrast, Ortigueira and 

Santos (1997, p. 386) find that the rate of convergence is independent of preference 

parameters for the investment-based endogenous growth model of the Uzawa-Lucas type. 

Finally, a caveat is clearly indicated. What has been discussed so far is the local speed 

of convergence around the balanced growth path. However, the local rate of convergence 

need not be a valid approximation of the global convergence behaviour. Especially if we are 

interested in out-of-balanced-growth dynamics, we should have a closer look at the global rate 

of convergence. The next section addresses this shortcoming by visually characterising the 

time path of the instantaneous rates of convergence.16 

 

3.2.2.3. Illustration of transitional dynamics 

The qualitative aspects of the transition process are illustrated. Instead of reporting the results 

of numerous simulations, the characteristic properties of the adjustment dynamics are 

discussed. The potential characteristics of the adjustment processes are demonstrated by two 

simulations.17 In the first case, the economy converges from below, while in the second case 

the economy converges from above the stationary solution.  

Figure 4 highlights several interesting aspects of the first adjustment process. The 

source of transitional dynamics is an exogenous permanent technological shock in the 

production of final output. More specifically, Fα  is assumed to increase from 0.5 to 1. 

Plot (a) shows the trajectory in ( ,k a )-space and illustrates that the economy converges 

(globally) from below its stationary equilibrium. Plot (b) depicts the time path of the share of 

labour devoted to the production of final output. It can be observed that this variable initially 

decreases, reaches a minimum and subsequently converges to its long-run level. This pattern 

is largely mirrored by the time path of the growth rate of per capita technology as displayed in 

                                                 
16 Ortigueira and Santos (1997) show that the local rate of convergence is indeed a valid approximation of the 
global convergence behaviour. 
17 The underlying differential equation system is approximated numerically by using backward integration; see 
Brunner and Strulik (2002) for details on this procedure.  
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plot (f). The time paths of the rates of convergence of scale-adjusted output ( yψ , dashed line) 

and of scale-adjusted capital ( kψ , solid line) are portrayed in plot (c). The rates of 

convergence are variable over time. They pass through the positive as well as the negative 

range. More specifically, the time paths exhibit a singularity indicating that point in time at 

which the respective scale-adjusted variable overshoots its long-run equilibrium level.18 In the 

limit the rates of convergence approach their respective long-run equilibrium level given by 

1( )A L Kyψ λ σ σ σ= − + +  and 1kψ λ= − . Plot (d) shows the time paths of the growth rates of 

per capita output (dashed line) and per capita capital (solid line). The plot shows that both 

growth rates decrease monotonically and converge to their long-run value. Since the growth 

rate of per capita output is positive and decreasing this adjustment process implies conditional 

β -convergence. Finally, plot (e) displays the time path of the rate of convergence of 

scale-adjusted technology. This time path obeys a singularity as well, indicating that 

scale-adjusted technology overshoots its long-run level. 

 

FIGURE 4 

 

The second adjustment process is illustrated in Figure 5. The source of transitional 

dynamics in this case is a permanent decrease in Fα  from 1.5 to 1. Plot (a) shows the 

adjustment trajectory in ( ,k a )-space. In this case, the transition path approaches the 

stationary solution from above. It should be noticed that a decrease in scale-adjusted variables 

does not necessarily imply a decrease of the respective variable measured along original scale. 

It merely means that the corresponding original variable grows at a rate which lies below its 

balanced-growth rate. Plot (b) demonstrates that the share of labour devoted to final output 

production decreases significantly and converges to its long-run equilibrium level. The time 

profiles of the rates of convergence of scale-adjusted output ( yψ , dashed line) and of scale-

adjusted capital ( kψ , solid line) are illustrated in Plot (c). The singularities immediately 

indicate an overshooting of the respective variables. Figure 5 (d) shows the time paths of the 

growth rates of per capita output and per capita capital. It can be observed that the growth rate 

of /Y L and /K L  increase along the transition to their balanced growth levels. Since the 

growth rate of /Y L  is positive and increases along the transition, this adjustment path implies 

                                                 
18 In fact, since the state variables overshoot their long-run levels, the trajectory under study locally convergence 
from above its stationary state. Globally, however, the economy converges from below. 
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conditional β -divergence. The time path of the rate of convergence of scale-adjusted 

technology obeys a singularity as well, as displayed in plot (e). Finally, plot (f) shows the 

time path of the growth rate of per capita technology largely mirroring the time path of the 

labour allocation variable. 

 

FIGURE 5 

 

To sum up, the basic non-scale R&D-based model shows a wide range of possible 

adjustment dynamics. Non-monotonic adjustment paths and variable convergence rates seem 

to be an intrinsic element of the out-of-balanced-growth dynamics. Extensive simulation 

exercises have shown that the qualitative features reported above appear robust with respect to 

changes in the underlying parameters. The findings confirm the results of Eicher and 

Turnovsky (1999b, 2001), who found similar characteristics of the transition process for the 

social solution.  
 

3.3. The generalised non-scale model of R&D-based growth 

3.3.1. The model 

The generalised model of R&D-based growth postulates that physical capital is also 

productive in the R&D sector. The production side of the economy in terms of aggregate 

capital is given as follows.19 

 

(.) ( ) ( )A L K
FY F A L Kσ σ σα θ φ= =      with    , , 0A L Kσ σ σ > ; 1L Kσ σ+ =  (27) 

(.) [(1 ) ] [(1 ) ]A L K
JA J A L Kη η ηα θ φ= = − −  

with    , , 0A L Kη η η > ;   1L Kη η+ ≤   ( 1p p
L Kη η+ = , 0e e

L Kη η+ ≤ ) 
(28) 

L n L=  (29) 

 

The balanced-growth rates turn out to read [ ](1 )ˆ
(1 )(1 )

L A L A
K

A K K A

n
K n

σ η η σ
β

η σ η σ
− +

= =
− − −

 and 

[ ](1 )ˆ
(1 )(1 )

L K K L
A

A K K A

n
A n

η σ η σ
β

η σ η σ
− +

= =
− − −

. Necessary and sufficient conditions for positive per 

                                                 
19 The social formulation of this model was introduced into the literature by Eicher and Turnovsky (1999a). 
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capita growth are (1 )(1 ) 0A K K Aη σ η σ− − − >  and 1Kσ < . Since both sectors are characterised 

by Cobb-Douglas technologies, the preceding conditions are also sufficient for balanced 

growth (Eicher and Turnovsky, 1999a, p. 402 and p. 404).  

Let us now turn to the dynamic system in scale-adjusted variables. From (27), (28) 

together with : / Ky Y Lβ= , : / Kk K Lβ= , : / Kc C Lβ= , : / Aa A Lβ= , : / Aj J Lβ= , : / K A
av v Lβ β−=  

and considering (1 )
(1 )(1 )

L A L A
K

A K K A

σ η η σβ
η σ η σ

− +
=

− − −
 and (1 )

(1 )(1 )
L K K L

A
A K K A

η σ η σβ
η σ η σ

− +
=

− − −
 we can 

derive the production functions in scale-adjusted variables to read ( ) KA L
Fy a k σσ σα θ φ=  and 

( ) ( )1 1 KLA
Jj a k

ηηηα θ φ = − −  . Inserting these output functions into the general system (13) 

to (18), the dynamic system in scale-adjusted variables may be expressed as follows. 

 

( ) KA L
F K Kk a k c k n kσσ σα θ φ δ β= − − −  (30)

( ) ( )1 1 KLA
J Aa a k na

ηηηα θ φ β = − − −   (31)

( )2

(1 )
KA L

K F
K K

a kcc n nc
k

σσ σσ α θ φ
δ ρ γ β

γ φ

 
= − − − − − 

  
 (32)

( ) ( ) ( )2 1
( )

K KA L A L
K F K K F

a a K K A

a k a k
v v n

k a

σ σσ σ σ σσ α θ φ σ σ α θ φ
δ β β

φ φ

  −
= − − − − 

  
 (33)

( ) ( ) ( )11 1 1K L KA L A Kp
L F a L Ja k v a kσ η ησ σ η ησ α θ φ η α θ φ−− = − −  (34)

( ) ( ) 11 1 1L KA L K K A Kp
K F a K Ja k v a kη ησ σ σ σ η ησ α θ φ η α θ φ −− = − −  (35)

 

3.3.2. Discussion 

3.3.2.1. Rate of convergence and key economic ratios 

The baseline set of parameters underlying the study of this model is shown in Table 3. This 

set of parameters is similar to the one shown in Table 1. However, there are a number of 

restrictions, which force us to deviate from the initial baseline set of parameters. At first, we 

assume that the elasticities of the private inputs in R&D are 0.5Lη =  and 0.4Kη =  implying 

mildly decreasing returns to scale in R&D in the private inputs. To obtain constant returns to 
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scale at the level of the firm we set 0.06e
Lη = −  and 0.04e

Kη = − ; note that this yields 

1p p
L Kη η+ = . Second, in the course of the derivation of the general dynamic system it has been 

assumed that intermediate goods producers have no incentive to differentiate their supply 

price vis-à-vis their two groups of customers (final output and R&D producers). This 

simplifying assumption requires that p
K Kσ η=  and, hence, we set 0.44Kσ = . In order to 

obtain constant returns to scale in the final output sector we further assume 0.56Lσ = . Third, 

for reasons of comparability we choose 0.12Aσ =  to achieve a growth rate of per capita 

income similar to the one obtained within the previous exercise.  

 

TABLE 3 
 

TABLE 4 
 

Due to the model calibration, the balanced growth rate of per capita income shown in 

Table 4 is nearly identical to the one resulting from the basic non-scale model. The balanced 

growth rate of technology is significantly higher compared to the previous model. This is due 

to the fact that capital is productive in R&D in addition to labour and technology. The 

output-capital ratio along the balanced growth path is significantly lower compared to the 

basic non-scale model. This result is not surprising since more capital is accumulated in this 

economy due to the fact that capital has a second productive use. Similarly, the 

consumption-output ratio is slightly lower along the balanced growth path compared to the 

basic non-scale model. This signifies that a larger ratio of current output is saved and used for 

capital accumulation. Considering the allocation variables θ  and φ  reveals very plausible 

values. These variables indicate that, according to the model under study, 13 % of the labour 

force and the capital stock are allocated to R&D, while the rest is engaged in final output 

production. The fact that both θ  and φ  are identical is not surprising since from (17) and (18) 

it immediately follows that 1 1L K
p p
L K

σ σθ φ
η θ η φ

− −
= . Moreover, since p

K Kσ η=  by assumption and 

p
L Lσ η=  by choice of parameters it follows that θ φ= . This relation holds true along the 

transition path as well as along the balanced growth path. Finally, the (asymptotic) rate of 

convergence of per capita income turns out to be 2.7 %. The implied half-life time is around 
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25 years.20 Two points should be observed. First, the generalised non-scale R&D-based model 

contains one further mechanism of intertemporal consumption substitution, which consists in 

the allocation of capital goods to R&D. It should, therefore, not be surprising that the implied 

rate of convergence is considerably higher. Second, different parameter restrictions applying 

to the specific models, however, restrict comparability. 

 

3.3.2.2. Illustration of transitional dynamics 

Let us now turn to the qualitative convergence implications. As before, the source of 

transitional dynamics is an exogenous permanent technological shock in the production of 

final output. More specifically, Fα  is assumed to decrease from 1.5 to 1. Figure 6 (a) shows 

the adjustment trajectory in ( , )k a -space. The striking feature here is the observation of 

severalfold over- and undershooting, which represents an additional characteristic of the 

adjustment process. This phenomenon can be recognised even more clearly by inspecting the 

time paths of the (instantaneous) rates of convergence. Specifically, each singularity in these 

time paths indicates one over- or undershooting of the underlying variable. Scale-adjusted 

capital and scale-adjusted technology over- and undershoots several times [plot (c) and plot 

(d)]. As a result, scale-adjusted output over- and undershoots several times as well [plot (b)]. 

These plots additionally show that the rate of convergence is variable along the transition 

path. Finally, the labour allocation variable (θ ) and the capital allocation variable (φ ) are 

characterised by highly non-monotonic adjustments as well. Figure 6 (e) and (f) shows the 

time paths of these variables. As before we observe a succession of over- and undershooting. 

In the limit monotonic converges is obtained.  

 

FIGURE 6 
 

Since we cannot observe scale-adjusted variables in the real world it is clearly desirable 

to know how this pattern of adjustment translates into original variables or transformations of 

the original variables, which can be observed empirically. Figure 7 shows the time path of the 

growth rate of per capita output [plot (a)] together with the time path of (logarithmic) per 

capita output [plot (b)]. The dashed line in plot (b) represents the balanced growth path in 

                                                 
20 Observe that from ( ) KA L

Fy a k σσ σα θ φ=  it follows that the rate of convergence of per capita income is given 

by / 1( 2 ) ( 1)Y L A L K Kß nψ λ σ σ σ= − + + − −  (compare to footnote 14).  
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terms of (logarithmic) per capita output and is calculated by using the formula 
( 1)( ) / ( ) K ntY t L t y e β −= , where we have set (0) 1L = . Corresponding plots are displayed for 

capital per capita [plot (c) and (d)] and technology per capita [plot (e) and (f)].  

 

FIGURE 7 
 

The analysis reveals several interesting points. First, the succession of over- and 

undershooting in scale-adjusted variables translates into cyclical movements in the growth 

rates of the respective per capita variable. Similarly, the growth path of the respective per 

capita variables fluctuates around its balanced growth path. It should be noted that we observe 

only some of the fluctuations, while the remaining are to small to be recognised by inspection. 

Again, in the limit monotonic convergence is obtained. Second, since the adjustment process 

takes decades to approach reasonably close to its balanced growth path these fluctuations 

should be interpreted as growth cycles. Third, the cycles result from the comparably high 

dimension and high degree of non-linearity of the underlying dynamic system. It is important 

to stress that the cycles are not caused by complex eigenvalues and trigonometric components 

in the solution. For this reason the cycles finally come to an end and monotonic convergence 

is obtained.21 Therefore, the phenomenon observed here can be labelled as non-complex 

growth cycles. Fourth, the non-monotonic adjustments and the resulting time paths of the 

instantaneous rate of convergence [Figure 7 (b), (c) and (d)] demonstrate that the notion of 

exclusive (conditional) β -convergence or of exclusive (conditional) β -divergence along the 

transition to the balanced growth equilibrium might be too simple. The model studied here 

shows that both phenomena can occur along the transition. In this case, the concept of the rate 

of convergence does not appear useful to determine the speed at which the economy 

converges to its balanced-growth path. A more appropriate concept should measure how fast 

the amplitude of the growth cycles vanishes.22  

What causes the cyclical adjustments that arise along the transition to the balanced 

growth path? At first, consider the technical conditions for non-monotonic adjustment 

dynamics. It is well-known that the (stable) solution to a linearised dynamic system with two 

                                                 
21 In contrast, trigonometric adjustment processes are characterised by never ending fluctuations, although the 
amplitude might tend to zero with time approaching infinity. 
22 In addition, it is unclear whether the standard methods used to estimate the rate of convergence empirically 
produce spurious results in the presence of growth cycles. The findings might be highly sensitive with respect to 
the time period under study. 
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negative roots (describing a two-dimensional stable manifold) can obey non-monotonic 

adjustments. However, the maximum degree of non-monotonicity in this case is one-time 

overshooting (remember that no complex eigenvalues are involved).23 Therefore, the cyclical 

movements shown in Figure 7 can only occur along the non-linear two-dimensional stable 

manifold. In the next place, let us sketch the economic intuition behind this pattern of 

development. This is best described using Figure 8 which shows the time paths of ( )k t , ( )a t , 

( )tθ  and ( )av t . The starting point is a permanent decrease in the exogenous technology 

parameter Fα . As a result, the allocation variables (θ  and φ ) obey a downward jump (not 

shown in Figure 8). This means that private resources (capital and labour) are discontinuously 

reallocated from final output (capital) production to R&D production. In the wake of this 

reallocation scale-adjusted capital falls and scale-adjusted technology rises [Figure 8 (a) 

and (b)]. Observe that the correlation between both variables ( k  and a ) is perfectly negative. 

This is due to the fact that both θ  and φ  move together as can be readily shown analytically 

by eliminating aν  from (34) and (35). As the ratio of k  and a  falls, the relative price of a  in 

terms of k  (given by aν ) decreases as well [Figure 8 (d)]. As a result, resources are 

reallocated from the R&D sector to the final output sector, that is θ  and φ  gradually rise. But 

as long as θ  and φ  are below their long-run values, k  continues to decrease and a  continues 

to increase. At that point in time for which θ θ=  and φ φ= , it holds true that 0k =  and 

0a = . However, the system is not yet in its long-run equilibrium since k k<  and a a> . 

Therefore, the allocation variables must increase further, thereby overshooting their long-run 

levels. At this stage θ θ>  and φ φ>  causes k  to increase and a  to decrease. As a result, the 

price of a  in terms of k  starts to increase. This development at first reduces the increase in 

the allocation variables and finally induces the allocation variables to turn downwards. From 

this point the process continues with the sign of the movements reversed. Taken together the 

cyclical fluctuations result from the interplay between instantaneously adjusting control 

variables and slowly adjusting state variables. An important feedback mechanism is based on 

the adjustment of the relative price of the two state variables. 24 

                                                 
23 This is demonstrated by Eicher and Turnovsky (2001) using a qualitative reasoning and shown analytically by 
Bovenberg and Smulders (1996).  
24 In order to solve the underlying dynamic system numerically the routine NDSolve of Mathematica was 
employed. This routine switches between a non-stiff Adams method and a stiff Gear method. The absolute error 

(AccuracyGoal) as well as the relative error (PrecisionGoal) were set to 1010− . In addition, a Runge-Kutta 
(Fehlberg order 4-5) method was employed. Although the two methods give slightly different numeric solutions, 
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4. Summary and conclusion 

Viewed from a methodological perspective, growth theorists possess three basic approaches 

to explain the diverse growth experiences observable in the real world. First, the 

unique-balanced-growth-equilibrium approach relies on unique balanced growth paths and 

requires parameter heterogeneity to explain diverse growth experiences. Second, the 

multiple-balanced-growth-equilibrium approach emphasises the importance of multiple 

balanced growth paths and assumes different initial conditions to explain diverse growth 

experiences. Both approaches interpret real-world economic growth exclusively as balanced 

growth equilibria. Third, the transitional-dynamics approach considers real-world growth to 

mainly represent transitional dynamics towards (unique) balanced growth paths. This 

approach can be based on different initial conditions as well as on parameter heterogeneity. 

Although there are a number of papers investigating transitional dynamics within endogenous 

growth models in the meantime, this approach appears largely under-utilised. The paper in 

hand takes important steps in this direction. The transitional dynamics implications within the 

probably most important strand of growth models are investigated comprehensively. More 

specifically, the basic non-scale R&D-based model and the generalised non-scale R&D-based 

model of endogenous growth are employed. The focus is on the market solution albeit the 

social solution is also considered. 

The question for the relative importance of transitional vis-à-vis balanced-growth 

dynamics can be answered as follows. If we take R&D-based growth models seriously, then 

we find that transitional dynamics play an important role. The basic non-scale model yields 

surprisingly low rates which range from 0.5 % to 0.7%. These values imply half-life times of 

about 102 years to 137 years.25 In addition, it is shown that the market solution converges 

more slowly compared to the social solution. Extensive sensitivity analyses shows that the 

results are robust with respect to parameter changes. The generalised non-scale model yields a 

considerable higher rate of 2.7 % implying a half-life time of 25 years.26 Even this 

considerably higher speed of convergence indicates that the balanced growth path does not 
                                                                                                                                                         
the qualitative characteristics remained unchanged. In addition, the accuracy of the resulting numeric solution to 
a differential equation ( ) [ ( )]x t G x t=  can be described by the residual defined as ( ) : [ ( )] ( )res t G x t x t= − . Using 

the numeric solution for ( )x t  this residual has been explicitly determined. It turns out that this residual is of 

order 810−  at maximum. Moreover, the qualitative characteristics of the numeric solution remained unchanged 
for different sets of parameters. 
25 It should be noted that Jones (1995a) found even higher half-life times for a very similar model.  
26 A direct comparison between the two kinds of models is difficult due to additional parameter restriction for 
the more general model resulting in a different set of parameters.  
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tell the complete story about economic growth. Moreover, it is very important to notice that 

the results on the speed of convergence are probably biased downwards, i.e. the “true” 

half-life times can be expected to be considerably higher. This is due to the fact that standard 

growth models abstract from resource reallocation costs. The findings, therefore, provide 

strong arguments in favour of transitional dynamics as opposed to balanced-growth dynamics. 

The analyses conducted in this paper reveal a number of important qualitative 

convergence implications. The basic non-scale R&D-based model is able to reproduce an 

overshooting or an undershooting of the state variables. The findings confirm the results of 

Eicher and Turnovsky (1999b, 2001), who found similar characteristics of the transition 

process for the social solution. The generalised non-scale R&D-based model, which 

additionally views capital to be productive in R&D, shows a succession of over- and 

undershootings of the endogenous variables along the transition path. While this observation 

applies to scale-adjusted variables, this phenomenon translates into cyclical movements of the 

original variables. More specifically, the growth path of per capita output turns out to 

fluctuate around its balanced growth path. This pattern of development is accompanied by 

fluctuations in the growth rate of per capita output around its long-run value. Since the 

adjustment process takes decades to approach reasonably close to its balanced growth path, 

these fluctuations should be interpreted as growth cycles. No complex eigenvalues and 

trigonometric solutions are involved and, hence, the analyses shows an alternative route to 

growth cycles. The cyclical adjustments result from the comparably high dimension and high 

degree of non-linearity of the underlying dynamic system. This phenomenon is therefore 

labelled as non-complex growth cycles. Since the real world is most probably best described 

by highly dimensional and highly non-linear dynamic systems, we should learn from the 

theoretical experiments conducted in this paper that cyclical adjustment processes represent 

the norm rather than a special case. Moreover, the analysis demonstrates that the specific 

parameter constellations leading to complex eigenvalues are not necessary to give rise to 

cyclical movements.  

The results presented in this paper further contain some important policy implications. 

First, as Jones (1995a) has demonstrated, non-scale growth models imply that policy is 

ineffective with respect to the balanced growth rate. In addition, policies controlling for the 

balanced growth rate are simply inappropriate since the decentral and the social balanced 

growth rate coincide. Second, as Jones (1995a) and Turnovsky (2000) stress, policy measures 

can nonetheless influence the rate of growth along the transition path. Their accumulated 

effects translate into higher levels of the balanced growth path. In this respect the relative 
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importance of transitional dynamics vis-à-vis balanced growth dynamics is once more of 

crucial importance.  

Finally, the paper points to some interesting questions for future research. The models 

which are employed in growth theory typically assume that resources can be shifted 

instantaneously from one sector to another. On the one hand, this assumption greatly 

simplifies the analyses. On the other hand, however, it should be clear that this assumption 

might be crucial with respect to the relative-importance question under study. The explicit 

consideration of reallocation costs can be expected to significantly increase the time span 

which is required to adjust once more closely to the balanced growth path. Structural changes 

do represent an intrinsic element of real world economic dynamics. In order to analyse the 

process of structural adjustments, resource reallocation costs should therefore be incorporated 

into the analyses of transitional dynamics. 
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5. Appendix 

5.1. The household’s optimisation problem (market economy) 

The dynamic problem together with its solution is summarised by the following set of 

equations; the Hamiltonian is given in present-value form.  

 

( )1
{ / }

0

/ 1
max

1
t

C L

C L
e dt

γ
ρ

γ

−∞
−−

−∫   (A.1)

. .s t  nK r K wL A v A Cπ= + + − − , (0) 0K >  (A.2)

( )
1

/ 1
( / , , ) :

1 n

C L
H C L K r K wL A v A C

γ

λ λ π
γ

−

−
 = + + + − − −

 (A.3)

( )/ / 0C LH C L Lγ λ−= − =   ⇔   1C Lγ γλ− −=  (A.4)

K nH rλ ρ λ λ ρ λ= − + = − +   ⇔   nr
λ ρ
λ
= −  (A.5)

[ ]1 (1 )n
C r n
C

ρ γ
γ

= − − −  (A.6)

lim ( ) ( ) 0t

t
e t K tρ λ−

→∞
= , (A.7)

 

where ( ), ,G L K A K
q A

θ φ
π

ε
= , ( ), ,1 G L K A

r
q

θ φε
ε
−

= , (.)Lw Fθ= , v  is given by (6) 

together with (0) 0v > , A  by (4), A  by (4) together with (0) 0A >  and L  by L n L=  

together with (0) 0L > . Provided that the Hamiltonian is jointly concave in the control and the 

state variable (Mangasarian sufficiency conditions) or that the maximised Hamiltonian is 

concave in the state variable (Arrow sufficiency conditions), the necessary conditions are also 

sufficient.27 The transversality condition demands for the following inequality constraint to be 

met ˆ ˆlim lim 0t t Kρ λ→∞ →∞− + + < . 

 

                                                 
27 For details on sufficiency conditions within optimal control theory see Kamien and Schwartz (1981, part II 
section 3 and section 15). 
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5.2. Balanced growth rates (market economy) 

Following Eicher and Turnovsky (1999a) we employ the auxiliary assumption that ˆ ˆY K=  in 

the long-run, which is in line with empirical evidence (Romer, 1989). From 

ˆ / /KK Y K C Kδ= − −  it then follows that balanced growth further requires ˆK̂ C= . The 

balanced growth rates of K  and A  can be derived from (.) 0d F
d t K

=  and (.) 0d J
d t A

=  by 

noting that the allocation variables are constant.28 

 

2

(.) (.) (.) (.)
0A L KF A F L F K K F K

K

 + + −  =  (A.8) 

 

After some straightforward manipulations the preceding equation can be expressed as 

follows.  

 
ˆ ˆ ˆ ˆ 0A L KA L K Kσ σ σ+ + − =  (A.9) 

 

where (.):
(.)

x
x

F x
F

σ =  for , ,x A K L= . 

Similarly, balanced growth of A  requires (.) 0d J
d t A

= . Carrying out this instruction 

yields.  

 

2

(.) (.) (.) (.)
0A L KJ A J L J K A J A

A

 + + −  =  (A.10)

ˆ ˆˆ ˆ 0A L KA L K Aη η η+ + − =  (A.11)

 

where (.):
(.)

x
x

J x
J

η =  for , ,x A K L= . 

Equations (A.9) and (A.11) yield a system of linear equations in K̂  and Â , which is 

restated in a slightly modified form for the readers convenience. 

                                                 
28 At this point it is appropriate to differentiate (.)F  with respect to the physical stocks of factor inputs. Recall 

that the allocation variables are constant along the balanced-growth path.  
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ˆˆ(1 )K A LK A nσ σ σ− − =  (A.12)

ˆ ˆ(1 )A K LA K nη η η− − =  (A.13)

 

Provided that 0n >  this system of equations is inhomogeneous and uniquely determines 

K̂  and Â  in terms of the underlying parameters ( Xσ  and Xη  are constant in the Cobb-

Douglas case). The solution is given by [ ](1 )ˆ
(1 )(1 )

L A L A

A K K A

n
K

σ η η σ
η σ η σ

− +
=

− − −
 and 

[ ](1 )ˆ
(1 )(1 )

L K K L

A K K A

n
A

η σ η σ
η σ η σ
− +

=
− − −

.  

 

5.3. A general R&D-based growth model: the social solution 

5.3.1. Dynamic problem, first-order conditions and dynamic system 

The social solution for the class of models under study is derived using a general formulation 

(apart from preferences). The social planner’s problem may be expressed as follows (see also 

Eicher and Turnovsky, 1999a). 

 

( )1
{ / , , }

0

/ 1
max

1
t

C L

C L
e dt

γ
ρ

θ φ γ

−∞
−−

−∫   (A.14)

. .s t  ( , , )Y F A L Kθ φ=  (A.15)

KK Y C Kδ= − −  (A.16)

( ) ( ), 1 , 1A J A L Kθ φ= − −    (A.17)

(0) 0K > , (0) 0A >  (A.18)

 

The current-value Hamiltonian together with the (necessary) optimality conditions are 

displayed below. The costate variables of capital and technology are denoted by Kµ  and Aµ , 

respectively. 
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( )
( ) ( ) ( ) ( )

1

/ , , , , , , :

/ 1
, , , 1 , 1

1

K A

K K A

H C L K A

C L
F A L K C K J A L K

γ

θ φ µ µ

µ θ φ δ µ θ φ
γ

−

=

−
+ − − + − −      −

 

 
(A.19)

 

( )/ / 0C L KH C L Lγ µ−= − =   ⇔   1
KC Lγ γµ− −=  (maximum principle 1) (A.20)

1(.) (.) (.) (.) 0K A K AH F J F Jθ θ θ θ θµ µ µ µ −= + = − =  

⇔   1(.) (.)K AF Jθ θµ µ −=     

(maximum principle 2) 

 
(A.21)

1(.) (.) (.) (.) 0K A K AH F J F Jφ φ φ φ φµ µ µ µ −= + = − =  

⇔   1(.) (.)K AF Jφ φµ µ −=  

(maximum principle 3) 
(A.22)

[ ](.) (.)K K K K K K K A K KH F Jµ ρ µ µ µ δ µ ρ µ= − + = − − + +  

⇔   (.) (.)K A
K K K

K K

F Jµ µρ δ
µ µ

= + − −  

(costate equation 1) 
(A.23)

[ ](.) (.)A A A K A A A AH F Jµ ρ µ µ µ ρ µ= − + = − + +  

⇔   (.) (.)A K
A A

A A

J Fµ µρ
µ µ

= − −  

(costate equation 2) 
(A.24)

(.)
K KK H F C Kµ δ= = − −    (state equation 1) (A.25)

(.)
A

A H Jµ= =    (state equation 2) (A.26)

lim 0t
Kt

e Kρ µ−

→∞
= , lim 0t

At
e Aρ µ−

→∞
=  (transversality conditions) (A.27)

 

With respect to “maximum principle 2 and 3” it should be noted that 1(.) (.)F Fθ θ−= −  

and 1(.) (.)J Jθ θ−= − . Moreover, the formulation of the effective amount of factor inputs, Kφ  

for example, requires to differentiate the Hamiltonian with respect to the control variable, φ , 

to apply the respective maximum principle and with respect to the state variable, K , to derive 

the respective costate equation (see also Eicher and Turnovsky, 1999b, p. 424). In evaluating 

these derivatives it should be remembered that ( ), , (.)KF A L K F Kφ φθ φ =  and similarly 

( ), , (.)K KF A L K Fφθ φ φ= . From (A.20) together with (A.23) one can easily derive the 
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differential equation in C : (.) (1 ) (.)A
K K K

K

CC F n Jµδ ρ γ
γ µ
 

= − − − − + 
 

; the last term in 

brackets, (.)A
K

K

Jµ
µ

, is the marginal product of capital in R&D multiplied by φ  [i.e. 

( ). (.)K KJ Jφ φ= ], in units of the final output good. The dynamic system can be summarised 

as follows. 

 
( , , ) KK F A L K K Cθ φ δ= − −  (A.28)

( ) ( ), 1 , 1A J A L Kθ φ= − −    (A.29)

(.) (1 ) (.)A
K K K

K

CC F n Jµδ ρ γ
γ µ
 

= − − − − + 
 

 (A.30)

(.) (.)K A
K K K

K K

F Jµ µρ δ
µ µ

= + − −  (A.31)

(.) (.)A K
A A

A A

J Fµ µρ
µ µ

= − −  (A.32)

1(.) (.)K AF Jθ θµ µ −=  (A.33)

1(.) (.)K AF Jφ φµ µ −=  (A.34)

 

5.3.2. Dynamic system in scale-adjusted variables 

Provided that 0n >  the balanced growth rates are given by ˆˆ ˆ
KY K C nβ= = =  and 

ˆ ˆ
AA J nβ= = . The appropriate scale adjustments read as follows : / Ky Y Lβ= , : / Kk K Lβ= , 

: / Kc C Lβ= , : / Aa A Lβ=  and : / Aj J Lβ= . Furthermore, from (A.32) it follows that 

A K
A A

A A

J Y
A A

µ µρ η σ
µ µ

= − − . Along a balanced growth path, ˆAµ  must be constant. The third 

term on the RHS is a linear transform of Â  and, hence, constant along a balanced growth 

path. Accordingly, the last term on the RHS must be constant either, implying that 

ˆ ˆˆ ˆ ( )K A A Kn A Kµ µ β β− = − = − . We can reduce the order of the system under study by taking 

the ratio of the two costate variables. The appropriate scale-adjustment for this ratio is given 

by :
A K

K

A

s
Lβ β

µ
µ −= . Differentiating this definition with respect to time yields 
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( )ˆ ˆ ˆK A A Ks nµ µ β β= − − − . The next step is derive expressions for ˆKµ  and ˆAµ  in terms of 

scale-adjusted variables and insert these into the preceding equation. Taking the efficiency 

condition 
1

K Ky jsσ η
φ φ

=
−

 into account and noting that /K AA

K

L sβ βµ
µ

−= , ˆKµ  can be expressed 

to read 1ˆ 1K
K K

y
k

σ φµ ρ δ
φ

 −
= + − − 

 
. Similarly, by noting that 

1
L Ly jsσ η
θ θ

=
−

 and 

A KK

A

s Lβ βµ
µ

−= , ˆAµ  can be written as ˆ
1

A L
A A

L

j
a

σ η θµ ρ η
σ θ

 
= − + − 

. The system in 

scale-adjusted variables may then be expressed as follows. 

 

K Kk y c k n kδ β= − − −  (A.35)

Aa j n aβ= −  (A.36)

(1 )K K
K K

c y jc n nc
k s k

σ ηδ ρ γ β
γ
 

= − − − − + − 
 

 (A.37)

11 ( )
1

A L K
A A K K

L

j ys s n
a k

σ η θ σ φη β β δ
σ θ φ

    −
= + − − − − +    −    

 (A.38)

1
L Ly jsσ η
θ θ

=
−

 (A.39)

1
K Ky jsσ η
φ φ

=
−

 (A.40)

 
 

5.3.3. The basic non-scale model  

Using the output functions in scale-adjusted variables [ A L K
Fy a kσ σ σα θ=  and 

(1 )A L
Jj aη ηα θ= − ] together with the general system shown in 6.3.2., the dynamic system in 

scale-adjusted variables for the basic non-scale model turns out to read as follows (compare to 

Eicher and Turnovsky, 1999b, p. 424).  

 
A L K

F K Kk a k c k n kσ σ σα θ δ β= − − −  (A.41)

(1 )A L
J Aa a naη ηα θ β= − −  (A.42)
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1 (1 )A L K
K F K K

cc a k n ncσ σ σσ α θ δ ρ γ β
γ

− = − − − − −   (A.43)

1 1(1 ) ( )
1

A L A L KA L
J A K F A K K

L

s s a a k nη η σ σ σσ η θα θ η σ α θ β β δ
σ θ

− −  
= − + − − − +  −  

 (A.44)

1 1(1 )A L K A L
L F L Js a k aσ σ σ η ησ α θ η α θ− −= −  (A.45)

 

with ( )
( )( )
1

1 1
A L L A

K
A K

η σ η σ
β

η σ
− +

=
− −

 and 
1

L
A

A

ηβ
η

=
−

. 
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Figure 1: Dominant eigenvalue for the social (solid) and decentral (dashed) solution in response to 

variations in final output technology parameters. 

 

 

Figure 2: Dominant eigenvalue for the social (solid) and decentral (dashed) solution in response to 

variations in R&D technology parameters. 
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Figure 3: Dominant eigenvalue for the social (solid) and decentral (dashed) solution in response to 

variations in preference parameters and the population growth rate. 
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Figure 4: Illustration of transitional dynamics (adjustment from below, basic model). 
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Figure 5: Illustration of transitional dynamics (adjustment from above, basic model). 
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Figure 6: Illustration of transitional dynamics (generalised R&D-based model). 
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Figure 7: Transitional dynamics in observable variables (generalised R&D-based model). 
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Figure 8: The economic intuition behind the non-monotonic adjustment (generalised R&D-based model). 
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Table 1: Baseline set of parameters (basic non-scale model). 

FO technology (IO technology):* 1Fα = ; 0.6Lσ = ; 0.4Kσ = ; 0.3Aσ = ; 0.05Kδ = ; 1q =  

R&D technology: 1Jα = ; 0.5Lη =  ( 1p
Lη = , 0.5e

Lη = − ); 0.6Aη =  

Preferences and population growth: 0.04ρ = ; 1γ = ; 0.015n =  

*FO: final output; IO: intermediate output 
 
 
 
Table 2: Growth rates, key economic ratios and rate of convergence (basic non-scale model). 

 /Y L  /A L  /Y K  /C Y  y * θ  /Y Lψ  

Market 
solution: 0.009 0.004 0.71 0.89 41 0.89 0.0050 

Social 
solution: 0.009 0.004 0.29 0.74 67 0.91 0.0067 

*: expressed in units of final output 
 
 
 
Table 3: Baseline set of parameters (generalised non-scale model). 

FO technology (IO technology):* 1Fα = ; 0.56Lσ = ; 0.44Kσ = ; 0.12Aσ = ; 0.05Kδ = ; 1q =  

R&D technology: 1Jα = ; 0.5Lη =  ( 0.56p
Lη = , 0.06e

Lη = − );  

0.4Kη =  ( 0.44p
Kη = , 0.04e

Kη = − ); 0.6Aη =  

Preferences and population growth: 0.04ρ = ; 1γ = ; 0.015n =  

*FO: final output; IO: intermediate output  
 
 
 
Table 4: Growth rates, key economic ratios and rate of convergence (generalised non-scale model, 

market solution). 

/Y L  /A L  /Y K  /C Y  θ  φ  /Y Lψ  

0.009 0.028 0.51 0.85 0.87 0.87 0.027 

 


