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Describing the Dynamics of Distributions
in Search and Matching Models
by Fokker-Planck Equations

Christian Bayer(® and Klaus Wilde®
(@) University of Vienna and
(%) University of Mainz and CESifo, University of Bristol,
Université catholique de Louvain'

July 2011

The analysis of distributions is central to search and matching models.
Wage distributions are a central concern but distributions of productiv-
ities, firm types, human capital, entitlement to unemployment benefits
and wealth become increasingly important. We present a method - the
Fokker-Planck equations - which allows to describe and analyse the dy-
namics of distributions in a very general way. We illustrate this approach
by analysing optimal saving of risk-averse households in a frictional labour
market. Our Fokker-Planck equations describe the evolution of the joint
distribution of labour market status and wealth. A very intuitive inter-
pretation is provided.

JEL Codes: D91, E24, J63, J64
Keywords:  frictional labour markets, optimal saving, incomplete markets,
Poisson uncertainty, Fokker-Planck equations, general equilibrium

1 Introduction

Everybody searches. We search for jobs, for bars, for good food, ocassionally even
for happiness. We sometimes find what we look for but it always takes time. This is
of course the fundamental insight which the Diamond-Mortensen-Pissarides (DMP)
models have incorporated so successfully in labour economics and beyond.

All of the models in this tradition use stochastic processes as building blocks. The
defining process is the one that moves workers stochastically between employment and

'Large parts of this paper were written while the authors were working at the Royal Institute
of Technology (KTH) in Stockholm and the University of Glasgow, respectively. We are grateful to
these institutions for their stimulating research environment. Christian Bayer: Department of Math-
ematics, University of Vienna, Nordbergstrafie 15, 1090 Wien, Austria, christian.bayer@univie.ac.at.
Klaus Wiilde: University of Mainz, Mainz School of Management and Economics, Jakob-Welder-Weg
4, 55128 Mainz, Germany. klaus@waelde.com, www.waelde.com. We are very grateful to Walter
Schachermayer and Josef Teichmann for comments and guidance, Michael Graber, Leo Kaas, Philipp
Kircher, Jeremy Lise, Giuseppe Moscarini, Fabien Postel-Vinay, Sevi Rodriguez Mora, Carlos Car-
rillo Tudela and seminar participants at numerous institutions and conferences, including the SaM
2011 inaugural conference, for comments and discussions.



unemployment. Some of the DMP-type models largely abstract from distributional
predictions resulting from these processes, some focus explicitly on distributional
properties.

A classic example for the first group is the seminal contribution by Pissarides
(1985) and the work inspired by it. As the assumption of a very large number of
agents allows to employ a law of large numbers, the description of the economy is
basically deterministic. Central variables of interest, e.g. the unemployment rate, can
be described by an ordinary differential equation. More precisely speaking, almost all
matching models focus on the mean of the underlying stochastic process, but abstract
from positive variances which would occur with a finite number of agents. While a
law of large numbers is easily acceptable for economy-wide (un-) employment rates,
this is less obvious for “large” firms. Most real-world firms have so few employees
(especially when taking the heterogeneity of employees into account) that a law of
large numbers seems like a relatively strong assumption.

The seminal contribution where endogenous distributions are explicitly taken into
account is the Burdett and Mortensen (1998) paper. Individuals move up on a wage
ladder, occasionally losing their job and taking an endogenous reservation wage into
account. This stochastic process implies a distribution of wages (which is then sup-
ported by wage-posting of firms). Subsequent work extends this analysis to allow for
structural estimation of the effect of frictions on the distribution of wages (Postel-
Vinay and Robin, 2002) and for competition between firms for workers (Cahuc et
al. 2006). Moscarini and Postel-Vinay (2008, 2010) and Coles and Mortensen (2011)
present variants of the Burdett and Mortensen model to analyse transitional dynamics
allowing, inter alia, to understand the evolution of the firm-size distribution over the
business cycle.? An explicit wage distribution under an uncertain match quality as in
Jovanovic (1984) allowing for Bayesian learning is presented in a Mortensen-Pissarides
(1994) type equilibrium model by Moscarini (2005).?

An additional endogenous distribution arises if some state variable is added. The
accumulation of human capital as in Burdett et al. (2011) or wealth as in Shimer and
Werning (2007, 2008) or Lise (2010) are some examples in this direction. Thinking of
entitlement to unemployment insurance payments and how it is accumulated while
employed and reduced while unemployed would be another (see Bontemps et al., 1999,
for an analysis of exogenous distributions of entitlement).

Most of these examples can be identified to share a common fundamental struc-
ture: There is some fundamental stochastic process (workers moving in and out of
employment or up on a wage ladder) which implies a distribution of the variable un-
der consideration. In the case of additional state variables like wealth, human capital
or entitlement to benefit payments, there is an additional process that also describes
the evolution of some density over time.*

2There is another class of models where distributional aspects play a crucial role as e.g. in the
endogenous job destruction model of Mortensen and Pissarides (1994). In models of this type, the
distribution is explicitly given and not derived from more fundamental processes.

3Wage distributions can also be derived in marriage models e.g. for single females (see Jacquemet
and Robin, 2010).

4This general description should make clear that the method to be presented here can of course



It is the objective of this paper to provide a tool that embeds the analysis of
distributions into a standard mathematical tool - the so-called Fokker-Planck equa-
tions. These equations describe the distributional properties of stochastic processes
in a fairly general but still intuitive way. The advantage of these equations consists in
the fact that one is no longer restricted to specific distributions for which closed-form
solutions can be found. The entire dynamics of distributions is described and not
simply distributions in a “steady-state”. They can also be applied to much more
general processes than has been done so far in the literature. By their nature, all
existing distributions must be special cases of these general equations.’

As a generic example to illustrate this method, we build on the world of the
Diamond-Mortensen-Pissarides models and allow for wealth accumulation. It is stan-
dard practice in this literature to assume strong capital market imperfections imply-
ing that households consume their current income. When households are allowed to
save, however, they self-insure against labour market shocks by wealth accumulation
allowing for consumption smoothing.°

There are various reasons why this particular example of wealth accumulation in
a frictional market context is of importance. One can expect that bargaining and
labour supply choices are affected by personal wealth. Analysing the effects of labour
market policies is probably biased if wealth is not taken into account as wealth should
also affect search intensity. Normative analyses of optimal unemployment benefit
schemes should also take wealth issues into account as social welfare functions or
other optimality criteria neglecting wealth tend to be incomplete from a conceptional
perspective.

The big advantage of this example for illustrating the usefulness of Fokker-Planck
equations, however, consists in the generic nature of the resulting stochastic system.
There will be one fundamental equation that describes the ins into and outs out
of employment. Then, there will be one “dependent” equation that describes the
accumulation of wealth. If wealth is replaced by firm-size, human capital, entitlement
to benefits or duration in employment or unemployment, exactly the same structure
occurs. We will therefore highlight later in the text how other applications can very
easily apply this method.

also be applied to directed search setups as in Moen (1997), Acemoglu and Shimer (1999) or Shi
(2009). Firm size distributions with aggregate shocks in a directed search setup as in Kaas and
Kircher (2011) would be another application where methods presented here promise to simplify the
description and analysis of the dynamics of distributions. As another example, take total factor
productivity to be the fundamental process and capital the corresponding state variable. The only
condition for the applicability is that the model is set in continuous time. In this sense, models
building on Sannikov (2007) or Sannikov and Skrzypacz (2008) could fruitfully use Fokker-Planck
equations as well.

5 As Fokker-Planck equations describe densities, this method would allow for structural maximum
likelihood estimation of models that include additional features to those usually captured in labour
models (see e.g. van den Berg, 1990; Postel-Vinay and Robin, 2002; Flinn, 2006; see also Launov
and Wilde, 2010).

50Qur example used for highlighting the usefulness of Fokker-Planck equations is therefore related
to the precautionary-savings literature (Huggett, 1993, Aiyagari, 1994 and subsequent work). For
savings in a matching framework, see also the work by Lentz and Tranaes (2005), Lentz (2009) and
Krusell et al. (2010).



Before we can derive Fokker-Planck equations, we solve the consumption-saving
problem of an individual. Optimal behaviour is described by a generalized Keynes-
Ramsey rule where the generalization consists in a precautionary savings term. This
term lends itself to intuitive economic interpretation. In a second step, we provide a
phase-diagram analysis of the optimal behaviour of an individual, i.e. of the evolution
of wealth and consumption when labour income jumps between being high and low.
In addition to this illustration, we also provide a formal existence proof for optimal
consumption-wealth profiles for both labour market states.

The third step then provides the main contribution of this paper. It inquires
into the distributional properties of wealth and labour market status. Using the
Dynkin formula, we obtain the Fokker-Planck equations for the wealth-employment
status system. We obtain a two-dimensional partial differential equation system. It
describes the evolution of the density of wealth and employment status over time,
given some initial condition. When we are interested in long-run properties only, we
can set time derivatives equal to zero in the Fokker-Planck equations and obtain an
ordinary two-dimensional non-autonomous differential equation system. Boundary
conditions can be motivated from our phase diagram analysis.”

This paper is related to various strands of the literature. The analysis of optimal
consumption behaviour builds on earlier work of one of the authors (Wiilde, 1999,
2005) who analyzes optimal saving under Poisson uncertainty affecting the return to
capital but not labour income.® We also use the insights of the long literature using
setups with continuous time uncertainty. Starting with Merton (1969), it includes,
inter alia, the work of Turnovsky (see e.g. Turnovsky, 2000), Bentolila and Bertola
(1990), Bertola et al. (2005) and Shimer and Werning, (2007, 2008).

The principles behind and the derivation of the Fokker-Planck equation (FPE)
for Brownian motion are treated e.g. in Friedman (1975, ch. 6.5) or Oksendal (1998,
ch. 8.1). For our case of a stochastic differential equation driven by a Markov chain,
we use the infinitesimal generator as presented e.g. in Protter (1995, ex. V.7). From
general mathematical theory, we know that the density satisfies the corresponding
FPE %p(t,x} = A*p(t,x), where p denotes the density of the process with state
variable z at time t and A* is the adjoint operator of the infinitesimal generator A of
this process. We follow this approach in our framework and obtain the FPE for the
law of the employment-wealth process.

In economics, versions of Fokker-Planck equations (also called Kolmogorov forward
equations) are rarely used or referred to so far. Papers we are aware of are Lo (1988),
Merton (1975), Klette and Kortum (2004), Moscarini (2005), Koeniger and Prat
(2007) and Prat (2007). Lo derives a FPE for a one-dimensional process. Merton
applies the method to analyse distributional properties of a stochastic Solow growth

"Existence and uniqueness of a stationary long-run distribution of wealth and labour market
status and convergence to this long-run distribution is proven in a companion paper (Bayer and
Wilde, 2011).

8Work completed before the present paper includes an unpublished PhD dissertation by Sen-
newald (2006) supervised by one of the authors which contains the Keynes-Ramsey rules. Toche
(2005) considers the saving problem of an individual where job-loss is permanent and unemployment
benefits are zero. Lise (2006) developed a Keynes-Ramsey rule for times between jumps as well.



model. Klette and Kortum employ a method related to FPEs to derive firm-size
distributions. Moscarini uses them to derive the distribution of the belief about the
quality of a match. Koeniger and Prat obtain an employment distribution and Prat
describes the distribution of detrended productivity.

The main difference in our application consists in its considerable generalization,
in the detailed derivation and in the explanations linking the derivation to standard
methods taught in advanced graduate courses. The only new tool we require and
which we introduce intuitively is the Dynkin formula. This approach focusing on the
principles of FPEs in a tractable and accessible way should allow and encourage a
much wider use of this tool for other applications. We would like to move Fokker-
Planck equations much more into the mainstream. In fact, one could argue that
Fokker-Planck equations should become a tool as common as Keynes-Ramsey rules.’

By transforming the FPEs from equations describing densities into equations de-
scribing distribution functions, we obtain a description of densities whose intuitive
interpretation is very similar to derivations of less complex distributions as in Burdett
and Mortensen (1998) or Burdett et al. (2011). In addition, however, our equations
exhibit new “advection” terms that capture the shift of the distribution due to the
evolution of the additional state variable, i.e. due to wealth.

The structure of the paper is as follows. Section 2 presents the model. Section
3 derives implications of optimal behaviour. Section 4 presents the phase diagram
analysis to understand consumption-wealth patterns over time and across labour mar-
ket states. Section 5 describes the joint distribution of the labour market status and
wealth of one individual. The corresponding FPEs for constant relative risk aversion
are derived, its properties and boundary conditions are discussed and an intuitive
interpretation is provided. It also discusses how this approach can be used for other
setups. It is also shown how constant absolute risk aversion changes the description
of densities. Section 6 shows how to obtain the aggregate distribution of wealth and
how to formulate appropriate initial distributions at the aggregate level. This allows
to link macro to micro features of the model and to obtain a general equilibrium
solution. The final section concludes.

2 The model

We consider a model where all aggregate variables are in a steady state. At the micro
level, individuals face idiosyncratic uninsurable risk and variables evolve in a dynamic
and stochastic way.

2.1 Technologies

The production of output requires capital K and labour L. Both the capital stock and
employment are endogenous but constant. The technology is given by Y =Y (K, L)
and Y (.) has the usual neoclassical properties.

9We would like to thank Philipp Kircher for having put this so nicely.



As is common for Mortensen-Pissarides type search and matching models, the
employment status z (¢) of any individual jumps between the state of employment,
w, and unemployment, b, with corresponding labour income w — the net wage — and
unemployment benefits b. As an individual cannot lose her job when she does not
have one and as finding a job makes (in the absence of on-the-job search) no sense
for someone who has a job, both the job arrival rate p(z(¢)) and the separation
rate s (z (t)) are state dependent. As an example, when an individual is employed,
p (w) = 0, when she is unemployed, s (b) = 0.

z (t) w b

p0) 0 #>0
s(z(t)) s>0 0

Table 1 State dependent arrival rates

The process z (t) is a continuous-time Markov chain with state space {w,b}.
Intuitively, it can be described by the following stochastic differential equation,

dz (t) = Adg, — Adg,, A=w-0. (1)

The Poisson process ¢, counts how often our individual moves from employment into
unemployment. The arrival rate of this process is given by s(z (¢)). The Poisson
process related to job finding is denoted by ¢, with an arrival rate 4 (2 (¢)). It counts
how often the individual finds a job.

When the individual is employed, z (t) = w, the employment equation (1) simpli-
fies to dw = — (w — b) dgs. Whenever the process ¢s jumps, i.e. when the individual
loses her job and dg, = 1, the change in labour income is given by —w + b and, given
that the individual earns w before losing the job, earns w — w + b = b afterwards.
Similarly, when unemployed, the employment status follows db = (w — b) dg, and
finding a job, i.e. dg, = 1, means that labour income increases from b to w.

The presentation in (1) is most useful for all “practical purposes”, i.e. for solv-
ing the maximization problem and for the first step required in the derivation of
the Fokker-Planck equations. Formally, we are aware that a continuous-time Markov
chain representation of z (t) is much more stringent. In fact, our companion pa-
per (Bayer and Wilde, 2011) on the existence and stability of a unique stationary
distribution explicitly follows this more rigorous approach.'’

2.2 Households and government

Each individual can save in an asset a (which is capital used by firms). Her budget
constraint reads

da(t) ={ra(t) +z(t) —c(t)}dt. (2)

Per unit of time dt wealth a (t) increases (or decreases) if capital income ra (t) plus
labour income z (t) is larger (or smaller) than consumption ¢ (¢) . Following (1), labour

10Tf one tries to answer existence issues for Fokker-Planck equations, the continuous-time Markov
chain approach is the preferred approach as well.



income z (t) is given either by w or b. Dividing the budget constraint by dt and using
a(t) = da(t)/dt would yield a more standard expression, a(t) = ra(t) + 2 (t) —
c(t). As a(t) is not differentiable with respect to time at moments where individuals
jump between employment and unemployment (or vice versa), we prefer the above
representation. The latter is also more consistent with (1).

The objective function of the individual is a standard intertemporal utility func-
tion,

U (t) = E%Q/f&)ephtht(c(r))dT, (3)

where expectations need to be formed due to the uncertainty of labour income which
in turn makes consumption c¢(7) uncertain. The expectations operator is E; and
conditions on the current state in ¢. The planning horizon starts in ¢ and is infinite.
The time preference rate p is positive.

Even though most of our results should hold for general instantaneous utility
functions with positive but decreasing first derivatives, we will work with a CRRA
specification,

o(r) 7-1 o and o
u@ﬁ»—{_TT_ }hr{ 7 Land 0 >0, (4)

Inc (1) o=1.

When illustrating properties of the wealth distributions, we will also use a CARA
specification,
u(e(r)) ==,y >0, (5)

where 7 is the measure of absolute risk aversion. All formal proofs will use the CRRA
specification for a positive measure of relative risk aversion o # 1.

There is a government who can tax the gross wage w/ (1 — &) using a proportional
tax &. Tax income from employed workers is used to finance unemployment benefits
b. The tax adjusts such that a static government budget constraint

ﬁszZHN—L] (6)

is fulfilled at each point in time. The path of benefits b is determined by some political
process which is exogenous to this model. This process makes sure that benefits are
smaller than the net wage, b < w.

2.3 Endowment

The workforce of this economy has an exogenous and invariant size /N. Individuals
are initially endowed with wealth a; (t) . This can be a fixed number or random (see
sect. 5). The capital stock is defined as the sum over individual wealth holdings,

K=3Na;(t). (7)

Given our steady state setup, the aggregate capital stock K is endogenous but con-
stant. Loosely speaking, there is a very large number of agents i such that all dy-
namics at the individual level wash out at the aggregate level. See our definition of
an equilibrium below — especially (14) — for a precise formulation.

7



Given the job separation and matching setup, it is well-known that in a steady
state, aggregate employment is an increasing function of the matching and a decreas-
ing function of the separation rate,

1

L =
H+s

N. (8)

3 Optimality conditions and equilibrium

3.1 Keynes-Ramsey rules

For our understanding of optimal consumption behaviour, it is useful to derive a
Keynes-Ramsey rule. We extend the approach suggested by Wilde (1999) for the
case of an uncertain interest rate to our case of uncertain labour income. We suppress
the time argument for readability. Consumption ¢ (a,,, w) of an employed individual
with current wealth a,, follows (see app. B.1)

ety oy oo [HemD) Y,

w (¢ (ay,w))

u” (¢ (aw, w))

— ————""Z [ (, b) — ¢ (ay,w)] dgs 9)

u' (¢ (aw, w))
while her wealth evolves according to (2) with z = w, i.e.
day, = [ray +w — ¢ (ay, w)] dt. (10)

Analogously, solving for the optimal consumption of an unemployed individual with
current wealth a; yields

_MdC(ab,b): {T_p_'“ {1_W}}dt

u (¢ (ap, b)) "(c(ap, b))
_—u” (c(ay, b)) clap,w) —c(a
w (C (ab,b>) [ ( bs ) ( bab)] dqu (11)
and her wealth follows
day = [ray + b — ¢ (ap, b)]dt. (12)

Without uncertainty about future labor income, i.e. s = u = dg, = dg, = 0, the
above Keynes-Ramsey rules reduce to the classical deterministic consumption rule,
—Zl,,—((cc))c' = r — p. The additional s[.] term in (9) shows that consumption growth is
faster under the risk of a job loss. Note that the expression [u’ (¢ (ay, b)) /u’ (¢ (ay,w)) — 1]
is positive as consumption ¢ (a,,, b) of an unemployed worker is smaller than consump-
tion of an employed worker ¢ (a,,, w) (see lem. 8 for a proof) and marginal utility is
decreasing, v” < 0. Similarly, the p[.] term in (11) shows that consumption growth
for unemployed workers is smaller.

As the additional term in (9) contains the ratio of marginal utility from con-

sumption when unemployed relative to marginal utility when employed, this suggests

8



that it stands for precautionary savings (Leland, 1968, Aiyagari, 1994, Huggett and
Ospina, 2001). When marginal utility from consumption under unemployment is
much higher than marginal utility from employment, individuals experience a high
drop in consumption when becoming unemployed. If relative consumption shrinks as
wealth rises, i.e. if %% < 0, reducing this gap and smoothing consumption is best
achieved by fast capital accumulation. This fast capital accumulation would go hand
in hand with fast consumption growth as visible in (9).

In the case of unemployment, the x [.] term in (11) suggests that the possibility to
find a new job induces unemployed individuals to increase their current consumption
level. Relative to a situation in which unemployment is an absorbing state (once
unemployed, always unemployed, i.e. p = 0), the prospect of a higher labor income
in the future reduces the willingness to give up today’s consumption. With higher
consumption levels, wealth accumulation is lower and consumption growth is reduced.

The stochastic dg-terms in (9) and (11) (tautologically) represent the discrete
jumps in the level of consumption whenever the employment status changes. We will
understand more about these jumps after the phase-diagram analysis below.

3.2 Factor rewards

There is random matching with arrival rate p of workers to markets characterized
by an infinite supply of jobs. Once a market is found, there is perfect competition
and agents are price takers as in Lucas and Prescott (1974) or Moen (1997). Firms
rent capital on a spot market and choose an amount such that marginal productivity
equals the rental rate. At the aggregate level, this fixes capital returns r and the
gross wage w/ (1 — &) at

_ Y (K, L) w Y (K, L)

oK 1-¢ oL (13)

r

3.3 Equilibrium

Consider one individual with an initial level of wealth of a (¢) and an employment
status z (t). This individual faces an uncertain future labour income stream z (7).
One can ask what the distribution of wealth of this individual for some long-run
stationary state is. Denote the corresponding density by p(a). Employing a law
of large numbers (see below for detailed definitions and analysis), we can use this
definition to define general equilibrium. There is a deterministic macro level where
all variables are constant. All uncertainty and all dynamics take place at the micro
level. The average capital stock (for N approaching infinity) is given by the mean of
the wealth distribution, given a density p (a) of wealth,

%: /ap (a)da. (14)

This provides the link between the micro and macro level. We can now formulate



Definition 1 A competitive stationary equilibrium is described by a constant aggre-
gate capital stock K and employment level L, factor rewards w, r and the tax rate &,
two functions ¢ (a,w) and c(a,b) and a wealth density p (a) such that

1. K satisfies (14) and L is given by (8),

2. given exogenous benefits b, the government budget constraint (6) and the first-
order condition for labour in (13) jointly fix the tax rate & and wage rate w, the
interest rate v satisfies the first-order condition for capital in (13),

3. the consumption functions c(a, z) satisfy the reduced form (21) plus two bound-
ary conditions of def. 2,

4. the density p (a) is the stationary distribution described by Fokker-Planck equa-
tions joint with initial conditions in sect. 5 and 6.

In addition to this macro equilibrium, the dynamics of each individual’s wealth
distribution p (a, z, 7) is described by the solution to the same Fokker-Planck equa-
tions given initial conditions in sect. 5.

4 Consumption and wealth dynamics

Given our aggregate steady state, this section will now characterize optimal consump-
tion and wealth dynamics of individuals in our economy.

4.1 Consumption growth and the interest rate

We first focus on individuals in periods between jumps. The evolution of consumption
is then given by the deterministic part, i.e. the dt-part, in (9) and (11). We then easily
understand

Lemma 1 Individual consumption rises if and only if current consumption relative
to consumption in the other state is sufficiently high.

For the employed worker, consumption rises if and only if ¢ (a,,w) relative to
¢ (aw,b) is sufficiently high,

defanw) 5 g Wlelan) oy rop ) oy, g

dt w (¢ (ay,w)) — s ¢ (ay,b)

¢z<1—r_p>_l/a. (16)

where

S

For the unemployed worker, consumption rises if and only if ¢ (ay,b) relative to
¢ (ap, w) is sufficiently high,

de(ay, b) u' (¢ (ap, w)) r—p _ c(ab) r—p\"’
dt ZO@U’(C(CLb,b)) =1- 0 <:>c(ab,w)2<1_ I > . (17)



Proof. Rearranging (9) and (11) for dgs = dg, = 0 and taking (4) into account
gives the results (see app. B.2). Note that in what follows ¢ will be used only for r
sufficiently small making sure that ¢ is a real number. m

We can now establish our first main findings. As the conditions in lem. 1 show,
consumption and wealth dynamics crucially depend on how high the interest rate is.
We therefore subdivide our discussion into three parts with r lying in the three ranges
given by (0, pl, (p,p+ ), [p + i, 00). For the proofs of propositions 1 to 3, we rely
on one very weak

Assumption 1 Relative consumption c(a,w) /c(a,b) is continuously differentiable
in wealth a. The number of sign changes of its first derivative with respect to wealth
in any interval of finite length is finite.!!

Starting with the third range [p + p, 00), we obtain

Proposition 1 For a high interest rate, i.e. if r > p + u, consumption of employed
and unemployed workers always increases.

Proof. Consumption of the employed worker increases as can be directly seen
from the first expression in (15). As long as r > p and ¢ (a,w) > c(a,b), the latter
is proven in lem. 8, condition (15) is fulfilled: The right-hand side (RHS) is smaller
than one and the left-hand side is larger than one as long as u” < 0 which holds for
(4). The case of the unemployed worker can also most easily be seen from the first
expression in (17). For r = p+pu+e with € > 0, the RHS is given by 1—? = —i <0.

As % >0, (17) holds for r > p+ pu. =

The high interest rate case reminds of the standard optimal saving result in de-
terministic setups. If the interest rate is only high enough, consumption and wealth
increase over time. This is true here as well. The only difference consists in the fact
that the interest rate must be higher than the time preference rate plus the job arrival
rate.

While we leave a quantitative analysis to ongoing numerical work, it is interesting
already at this stage to note that the difference for the interest rate as compared to
deterministic models is quite substantial. In deterministic models, the interest rate
must be larger than the time preference rate. As the job arrival rate is around four
times higher than the time preference rate, the interest rate must be much higher
here to guarantee wealth growth in all employment states.

As in other setups with growing consumption, we need to make sure that con-
sumption does not grow too fast. If it does, utility grows too fast and the expected
value of the integral in the objective function (3) is not finite. Optimization would
then be more involved, which we would like to avoid. We therefore have to impose a

"1The second sentence of this assumption is required to rule out “pathological cases”. One can
construct continuously differentiable functions that change sign infinitly often in a finite neighbor-
hood (think of x sin (1/z) in a neighborhood of zero). None of these functions would be economically
plausible in any way. We employ this assumption neither for our other proofs in this nor for the
proofs in the companion paper.
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boundedness condition which implies an upper limit on the interest rate. This con-
dition can easily be derived for the limiting case where a is very large, i.e. where the
difference between w and b can be neglected. The boundedness condition then reads
(1—0)r<pt?

The second result is summarized in

Proposition 2 If the interest rate is at an intermediate level, i.e. p <r < p+ p,
(i) consumption of employed workers always increases.
(ii) consumption of an unemployed worker increases only if she is sufficiently
wealthy, i.e. if her wealth a exceeds the threshold level a;, where the threshold level is
implicitly given by

u' (c(af,w r—
u (C (abv b)) 2
Consumption decreases for a < aj.
(7ii) At the threshold level aff, consumption of employed workers exceeds consump-
tion of unemployed workers.

Proof. The proof is in complete analogy to the proof of the following prop. 3 for
the low interest rate. As prop. 3 is more important for our purposes, we will prove
prop. 3 but not this one. m

This proposition points to the central new insight for optimal consumption. For
the employed worker, the result from deterministic worlds survives: If the interest
rate is higher than the time preference rate, consumption and wealth rise. For the
unemployed worker, however, this is not true. Consumption and wealth rise only if
the unemployed worker is sufficiently rich. In a way, this is a “dramatic” result. If
a worker loses a job, consumption continues to rise only if the worker is sufficiently
rich at the moment of the job loss. If, by contrast, a worker losing a job is below the
threshold level aj, consumption and wealth is reduced.

Finally, we have

Proposition 3 Consider a low interest rate, i.e. 0 < r < p. Define a threshold level

ay, by
/ * _
Wielb) _ r—p 9
u' (¢ (ay,, w)) s
For our instantaneous utility function (4), this definition reads
¢ (ay,; b) = ve(ay, w) (20)

where 1 is from (16).

(i) Consumption of employed workers increases if the worker owns a sufficiently
low wealth level, a < a},. Employed workers with a > a, choose falling consumption
paths.

12 An interest rate r can satisfy both this boundedness condition and the condition 7 > p + u for
the high-interest-rate case if 4 < $%-p. This condition on p needs to be taken into account in any
quantitative analysis.
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(ii) Consumption of unemployed workers always decreases.
(#ii) Consumption of employed workers exceeds consumption of unemployed work-
ers at the threshold af,, i.e. v <1 in (20) forr < p.

Proof. see app. A.1 m

We are now in a position to intuitively understand all three propositions. In deter-
ministic setups, an interest rate exceeding the time preference rate is enough to imply
positive consumption growth. In a world with precautionary saving, only employed
workers will experience rising consumption for sure when r > p. Unemployed workers
experience rising consumption only for a high interest rate » > p+ u or for r close to
but larger than p only if they are sufficiently rich. The reason for these results is the
“optimism” of unemployed workers that they will find a job in the future. Anticipat-
ing higher future income, they choose a higher consumption level than in a situation
where the state of unemployment is permanent. Due to this higher consumption level,
consumption and wealth growth is reduced. Only if the interest rate exceeds p+ p or
if an unemployed worker is sufficiently rich, this higher consumption does still allow
for consumption growth.

Similarly for employed workers: In deterministic worlds, an interest rate below
the time preference rate implies falling consumption and wealth levels. Here, as there
is precautionary saving of the employed worker, a situation of r < p still implies
growing consumption and wealth.

These propositions also clearly show that if we are interested in a general equi-
librium result with stationary properties, the interest rate cannot be larger than the
time preference rate. If the interest rate exceeded the time preference rate, consump-
tion would grow without bound — at least for some employment states and levels
of wealth. Only for » < p there are consumption dynamics which indicate that a
stationary distribution of consumption can exist.

4.2 The reduced form

Before we can derive further properties of optimal behaviour, we need a “reduced
form” for optimal behaviour of individuals. A reduced form is a system of equations
with as few equations as possible which determines an identical number of endogenous
variables and which allow us to derive all other endogenous variables subsequently.
When searching for such a reduced form, we can exploit the fact that Poisson uncer-
tainty allows to divide the analysis of a system into what happens between jumps and
what happens at jumps. Between jumps, the system evolves in a deterministic way —
but does of course take the possibility of a jump into account as is clearly visible in
the precautionary savings terms in the Keynes-Ramsey rules (9) and (11)."3

130ne could be tempted to think of the deterministic parts of the two Keynes-Ramsey rules (9)
and (11), jointly with the budget constraints (10) and (12) to provide such a reduced form. With
an initial condition for wealth and the consumption levels in the different states, one could think
of the evolution between jumps as being described by four ordinary differential equations. When
solving these equations (conceptionally or numerically), the solution in ¢ for consumption of, say,
the unemployed, ¢ (ap,b) from (11) would not correspond to consumption ¢ (a,,b) as required in
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We obtain such a reduced form by focusing on the evolution between jumps and
by eliminating time as exogenous variable. Computing the derivatives of consump-
tion with respect to wealth in both states and considering wealth as the exogenous
variable, we obtain a two-dimensional system of non-autonomous ordinary differential
equations (ODE). As wealth is now the argument for these two differential equations,
there is no longer a need to distinguish between wealth of employed and unemployed
workers (i.e. between a,, and a,). We simply ask how wealth changes in one or the
other state given a certain wealth level a. Between jumps, the reduced form therefore
reads

u/(c(a,b))
' (c(a,w))dec(a,w) TP s |:u’(c(a,w)) - 1} (21a)
u' (c(a,w)) da  ra+w-—c(a,w)
w'(c(a,w))
_u'(e(a,b)defa,b) TP TH ez (21b)
u (c(a,b)) da ra+b—c(a,b) '

With two boundary conditions, this system provides a unique solution for ¢ (a,w)
and ¢ (a,b). Once solved, the effect of a jump is then simply the effect of a jump of
consumption from, say, ¢ (a,w) to c(a,b).

4.3 Phase diagram and policy functions

Given the findings on consumption in the above propositions and our reduced form
in (21), we can now describe the link between optimal consumption and wealth of
unemployed and employed workers. We will focus on the case of an interest rate below
the time preference rate as this is implies a stationary general equilibrium solution.
We leave general equilibrium analyses of the other cases for future work.

e Natural borrowing limit

The subsequent analysis will be facilitated by noting that there is an endogenous
“natural” borrowing limit. The idea is similar to Aiyagari’s (1994) borrowing limit
resulting from non-negative consumption. This limit is derived in the following

Proposition 4 Any individual with initial wealth a > —b/r will never be able to or
willing to borrow more than —b/r. Consumption of an unemployed worker at a = —b/r
is zero, ¢ (—b/r,b) = 0.

Proof. “willing to”: An employed individual with a > —b/r will increase wealth
for any wealth levels below a! from (19). If a! is larger than —b/r — which we can
safely assume — employed workers with wealth below a}, increase wealth and are not
willing to borrow more than —b/r.

the precautionary savings part in (9) for the employed as wealth levels are accumulated at different
speed, i.e. ap (t) generally differs from a,, (). Equations (9) to (12) do therefore not constitute a
system of ODEs and cannot be used as a reduced form.
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“able to”: Imagine an unemployed worker had wealth lower than —b/r. Even if
consumption is equal to zero, wealth would further fall, given that a = ra+b < 0 <
a < —b/r. If an individual could commit to zero consumption when employed and
if the separation rate was zero, the maximum debt an individual could pay back is
—w/r. Imagine an unemployed worker succeeded in convincing someone to lend her
“money” even though current wealth is below —b/r. Then, with a strictly positive
probability, wealth will fall below —w /r within a finite period of time. Hence, anyone
lending to an unemployed worker with wealth below —b/r knows that not all of this
loan will be paid back with positive probability. This cannot be the case in our setup
with one riskless asset. Hence, the maximum debt level is b/r and consumption is
zero at a = —b/r for an unemployed worker. m

e Laws of motion and policy functions

The following fig. 1 plots wealth on the horizontal and consumption ¢ (a, z) on
the vertical axis. It plots dashed zero-motion lines for a,, and ¢ (a,w) and a solid
zero-motion line for a; following from (10), (19) and (12), respectively. We assume
for this figure that the threshold level a?, is positive.!* The intersection point of the
zero-motion lines for ¢ (a, w) and a,, is the temporary steady state (TSS),

© = (a,,c(a;,w)). (22)

w?

We call this point temporary steady state for two reasons. On the one hand, employed
workers experience no change in wealth, consumption or any other variable when at
this point (as in a standard steady state of a deterministic system). On the other hand,
the expected spell in employment is finite and a random transition into unemployment
will eventually occur. Hence, the state in © is steady only temporarily.

c(a,b)
-b/r

Figure 1 Policy functions for employed and unemployed workers (low interest rate)

14This is of course a quantitative issue. In ongoing numerical work, the threshold is positive for
reasonable parameter values. It approaches infinity for r approaching p.
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As we know from prop. 3 that consumption for the unemployed always falls, both
consumption and wealth fall above the zero-motion line for a,. The arrow-pairs for
the employed workers are also added. They show that one can draw a saddle-path
through the TSS. To the left of the T'SS, wealth and consumption of employed workers
rise, to the right, they fall.

Relative consumption when the employed worker is in the T'SS is given by (20). A
trajectory going through (a*, c(a¥,b)) and hitting the zero-motion line of a, at —b/r
is in accordance with laws of motions for the unemployed worker.

e Properties of optimal behaviour

The case of a low interest rate is particularly useful as the range of wealth a worker
can hold is bounded. Whatever the initial wealth level, there is a positive probability
that the wealth level will be in the range [—b/r, a}] after some finite length of time.
For an illustration, consider the policy functions in fig. 1: Wealth decreases both
for employed and unemployed workers for a > a;. The transition into the range
[—b/r,a’] will take place only in the state of unemployment which, however, occurs
with positive probability.

When wealth of an individual is within the range [—b/r,a’ ], consumption and
wealth will rise while employed and fall while unemployed. While employed, precau-
tionary saving motives drive the worker to accumulate wealth. While unemployed,
the worker runs down current wealth as higher income for the future is anticipated —
“postcautionary dissaving” takes place. When a worker loses a job at a wealth level
of, say, a¥ /2, his consumption level will drop from ¢ (a¥ /2, w) to c(af/2,b). Con-
versely, if an unemployed worker finds a job at, say, a = 0, her consumption increases
from ¢ (0,0) to ¢(0,w). A worker will therefore be in a permanent consumption and
wealth cycle. Given these dynamics, one can easily imagine a distribution of wealth
over the range [—b/r, a].

4.4 Existence of an optimal consumption path

All steps undertaken so far were explorative. We now turn to a proof for the existence
of a path ¢ (a, z) as depicted in fig. 1.

In fig. 1, we implicitly considered solutions of our system in the set Q = {a > —b/r}N
{c(a,w) <ra+w}n{c(a,b) >ra+b}n{c(a,b) > 0}{c(a,w) > c¢(a,b)}. In words,
wealth is at least as large as the maximum debt level b/r, consumption of the employed
worker is below the zero-motion line for her wealth, consumption of the unemployed
worker is above her zero-motion line for wealth, consumption of the unemployed
worker is non-negative and consumption of employed workers always exceeds con-
sumption of unemployed workers (see lem. 8).

For the proofs we restrict this set in two ways. First, we consider the domain

Q. = {(a,c(a,w),c(a,b)) € R? (a,c(a,w),c(a,b)) € Q,c(a,w) <ratw—v}, (23)

where v is the small positive constant, as an approximation to our “full” set (). As
Qo = Q, Q, simply excludes the zero-motion line for wealth of the employed workers.
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We need to do this as the fraction on the right-hand side of our differential equation
(21a) is not defined for the TSS.!> As v is small, however, we can get arbitrarily close
to this zero-motion line and (), approximates () arbitrarily well.

Second, we consider

Ryo = {(a,c(a,w),c(a,b)) € R? (a,c(a,w),c(a,b)) € Qu, (24)
c(a,w) <V < oo, a<(cla,w) —w+v)/r},

where ¥ is a finite large constant.'® This additional restriction makes the set R, w
bounded. This is a purely technical necessity.

We now introduce an auxiliary TSS (aT'SS) in order to capture v. In analogy to
the T'SS © from (22), this point is defined by

0, = (a), ¢y (a,w)),

i.e. the wealth level a is unchanged but the consumption level is “a bit lower” than in
the T'SS. In the T'SS, the consumption level is on the zero-motion line, i.e. ¢ (af, w) =
ra;, + w. In the aTSS, the consumption level is on the line ra + w — v and therefore
given by ¢, (af,, w) = ra’ + w — v. Let us now consider the following

Definition 2 (Optimal consumption path) A consumption path is a solution (a, c (a,w),c(a,b))
of the ODE-system (21) for the range —b/r < a < al, in R,y with terminal condition
(ak, c, (ak,w), ¢, (ak,b)). In analogy to the aTSS and to (20), the terminal condi-
tion satisfies ¢, (al,w) = ral, +w — v and ¢, (al,,b) = e, (ak,w) for an arbitrary
a¥ > —b/r. An optimal consumption path is a consumption path which in addition

satisfies ¢ (—b/r,b) = 0.
App. A.2 then proves
Theorem 1 There is an optimal consumption path.

This establishes that we can continue in our analysis by taking the existence of
a path c¢(a,z) as given. Intuitively speaking, i.e. looking at v as very small con-
stant close to zero, we know that there are paths ¢ (a,w) and c¢(a,b) as drawn in
fig. 1. The approximation implied by the auxiliary TSS is very small compared to
any measurement error in the data. Values of v = 1072 worked perfectly in numerical
solutions.

15While this is a standard property of many steady states, the standard solutions (e.g. linearization
around the steady state) do not work in our case. This is in part due to the fact that the original
stochastic differential equation system (9) to (12) - even when stripped of its stochastic part - is not
an ordinary differential equation system.

6The constant ¥ on