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Forecasting under Model Uncertainty
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Abstract

This paper investigates the accuracy of point and densigcésts of four dynamic stochastic
general equilibrium (DSGE) models for output growth, inflatand the interest rate. The model
parameters are estimated and forecasts are derived suebefem historical U.S. data vintages
synchronized with the Fed's Greenbook projections. In tafti | compute weighted forecasts
using simple combination schemes as well as likelihood dasethods. While forecasts from
structural models fail to forecast large recessions andisothey are quite accurate during normal
times. Model forecasts compare particularly well to namsttrral forecasts and to Greenbook
projections for horizons of three quarters ahead and higiferghted forecasts are more precise
than forecasts from single models. A simple average of fwtscyields an accuracy comparable
to the one obtained with state of the art time series methuatscan incorporate large datasets.
Comparing density forecasts of DSGE models with the actisédilution of observations shows
that the models overestimate uncertainty around pointésts.
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1 Introduction

For a long time business cycle models with microeconomia@iations have been calibrated and
used for policy simulations while atheoretical time senmsthods have been used to forecast
macroeconomic variables. Recently, several researclaes shown that estimated DSGE models
can generate forecasts of reasonable accuracy (Smets anergyd2004; Adolfson, Andersson,
Linde, Villani, and Vredin, 2007; Smets and Wouters, 2007; Eddley, and Laforte, 2010; Wang,
2009; Christoffel, Coenen, and Warne, 2010). While theadiss analyse only one model at a
time, Wieland and Wolters (2010) compute forecasts fronesd\theory based models for the five
most recent U.S. recessions. The advantage of using struotodels is that an economically
meaningful interpretation of the forecasts can be givenil&\the forecasting accuracy of structural
models is interesting on its own, it is also a test to whickeekthis class of models explains real
world business cycle dynamics. A thorough assessment fafrelift structural models including a
comparison to forecasts from sophisticated time seriesefaahd to professional forecasts has not
been undertaken yet. Recent comparison studies of state @rt forecasting methods have been
restricted to nonstructural econometric methods (c.f. lsam Watson, 2002; Bernanke and Boivin,
2003; Forni, Hallin, Lippi, and Reichlin, 2003; Marcellin&tock, and Watson, 2003; Faust and
Wright, 2009; Hsiao and Wan, 2010).

In this paper, | carry out a detailed assessment of the fetiecpaccuracy of a suite of structural
models. | use the same sample and real-time dataset as Faug¥right (2009) who assess the
forecasting accuracy of eleven nonstructural models. Thexemy results are directly comparable
to the forecasts from these models. The dataset is perfegtighsonized with the Greenbook
and thus the results can also be compared to a best practichrbhark given by the Greenbook
projections. The Greenbook projections are computed by tderBeReserve’s staff before each
FOMC meeting and have been found to dominate forecasts frber professional forecasters in
terms of forecasting accuracy (Romer and Romer, 2000; Sif@2;Bernanke and Boivin, 2003).
The dataset includes data vintages for 145 FOMC meetings batMarch 1980 and December
2000.

| consider models that cover to some extent the range of @élesenomy DSGE models used in
academia and at policy institutions. The first model is a pufetward looking small-scale New
Keynesian model with sticky prices that is analysed in dlétaMoodford (2003). The second
model by Fuhrer (1997) has a backward looking demand sidde e Phillips curve is derived
from overlapping wage contracts. The third model is a medsgale New Keynesian model as
developed in Christiano, Eichenbaum, and Evans (2005). | hesestimated version by Smets
and Wouters (2007). The fourth model is a version of the DSGEainby Edge, Kiley, and
Laforte (2007) that features two production sectors witlied&nt technology growth rates and is



itself an extension of the Christiano, Eichenbaum & Evans motie determine how much of the
forecasting accuracy of these four models is due to the d¢fieat foundations and what can be
attributed to the parsimonious parametrization of theghzetl models, | also consider a Bayesian
VAR. It is a datadriven nonstructural counterpart to ther iDSGE models with a comparably strict
parametrization.

The parameters of the models are reestimated on three tandieve series - as proposed by the
original authors - for historical data vintages. Given #ssimate, | compute a nowcast and forecasts
up to five quarters into the future that take into accountrimiation that was actually available at the
forecast start. Forecast precision is assessed relatihie tevised data that became available during
the subsequent quarters of the dates to which the foreqadis a

Good forecasts are in general based on good forecastingpdse#md an accurate assessment of the
current state of the economy. The Fed’s great efforts to eteabhe current state of the economy
are reflected in the accuracy of the Greenbook nowcasts. SD@&)3uggests that this accurate
data basis is a main reason for the precise Greenbook pasjectThe Fed’'s nowcasts exploit high
frequency time series with more recent data than quartenky $eries. In principle, there are methods
available that allow the use of such data in combination wfitbctural macroeconomic models (see
Giannone, Monti, and Reichlin, 2009). Employing such meshiscbeyond the scope of this paper.
To approximate the effect of using more information in nositay, | investigate the effect of using
Greenbook nowcasts as a starting point for model-baseddste by appending them to the actually
available data. Thus, the potential informational advamtafiithe Fed about the current state of the
economy is eliminated and a proper comparison of model fstsowith Greenbook projections is
possible.

Timmermann (2006) surveys model averaging methods and fimatswieighted forecasts from
several nonstructural models outperform forecasts frodividual models. Combining several
models provides a hedge against model uncertainty whemdtipossible to identify a single model
that consistently dominates the forecasting accuracylaranodels. Therefore, in addition to the
individual model forecasts, | consider several simple aphssticated model averaging schemes to
compute weighted forecasts. For example, Gerard and Ni22®8) and Bache, Jore, Mitchell,
and Vahey (2009) take into account forecasting uncertalng/to model uncertainty by combining
forecasts from VARs and a single DSGE model. This paper is amsixdn of their approach to a
suite of theory based business cycle models.

The evaluation results of the point forecasts confirm the regtsle forecasting accuracy of
DSGE models found in the above mentioned studies. The foregagiality of the structural models
is in particular competitive to the Greenbook projections fedium term horizons. For output



growth, several models outperform the Greenbook projestand have an accuracy comparable to
the best nonstructural models. Large scale models perfotterlean small scale models. However,
quarterly output growth has little persistence and is thifecdlt to forecast in general. Only one
of the DSGE models gives more accurate forecasts than a simplariate autoregressive process.
The Greenbook inflation forecast is more accurate than all fModecasts. For the interest rate
projections, the structural models perform worse than aeBay VAR probably due to the very
simple monetery policy rules imposed in the models. The fstcfrom the model by Smets and
Wouters (2007) are in many cases more precise than foreftastghe other models. The model
has a rich economic structure and is estimated on more \esidiftan the standard New Keynesian
models. Yet the parameterization is tight enough to yietnleate forecasts.

| find that weighted forecasts have a higher accuracy thamrdsts from individual models. Com-
bined forecasts based on simple weighting schemes thasigingicant weight to several models are
superior to likelihood based weighting schemes that tutnt@identify a single model rather than
giving weight to several models. The forecasts of a simpleameof the forecasts of all models are
in many cases most accurate and otherwise only marginalyydecurate than weighted forecasts
from more sophisticated weighting methods.

While point forecasts are interesting, economists are @meel about the uncertainty surrounding
these. Therefore, | derive density forecasts for the DSGE hdbat take into account parameter
uncertainty and uncertainty about economic shocks in thedu | find that all the model forecasts
overestimate actual uncertainty, i.e. density forecagtwveary wide when compared with the actual
distribution of data. A reason might be the tight restrisidmposed on the data. If the data
rejects these restrictions, large shocks are needed to fintdels to the data resulting in high
shock uncertainty (see also Gerard and Nimark, 2008). Ircanskstep, | take into account model
uncertainty and compute combined density forecasts usiag@ame model averaging methods as
for the point forecasts. This is similar to Gerard and Nim&®08) who combine density forecasts
of a DSGE model, a FAVAR model and a Bayesian VAR. Given the fbpmance of individual
models’ density forecasts, it comes at no surprise that aoedbdenstity forecasts overestimate
uncertainty as well.

The remainder of this paper proceeds as follows. Section ihestthe different macroeconomic
models that are used to compute forecasts. Section 3 giveseaview of the dataset. Section 4
describes the estimation and forecasting methodology.id®estevaluates point forecasts from the
individual models and compares them to Greenbook projesi@md nonstructural forecasts. Section
6 describes several model combination schemes. Sectiorvidesca comparison of the accuracy of
weighted forecasts, individual forecasts, Greenbookgetmns and nonstructural forecasts. Section



8 evaluates density forecasts of individual models and hteiymodels. Section 9 summarizes the
findings and concludes.

2 Forecasting Models

| consider five different models of the U.S. economy. Four tmgctural New Keynesian macroeco-
nomic models and one model is a Bayesian VAR. The latter iesgmtative of simple vector autore-
gression models that are often used to summarize macroedodgnamics without imposing strong
theoretical restrictions. It is thus the unrestricted deypart of the three variables output growth,
inflation and the federal funds rate that are common to the $buctural models. The models are
chosen to broadly reflect the variety of DSGE models used ineawidand at policy institutions.

| briefly describe the main features of the models. All modelgehbeen applied in Wieland and
Wolters (2010) to compute point forecasts during the lastfhS. recessions.

Small New Keynesian Model estimated by Del Negro & Schorfheide () The New Keynesian
model is described, e.g., in Goodfriend and King (1997) anteRberg and Woodford (1997). It
is often referenced to be the workhorse model in modern naopetconomics and a comprehensive
analysis is presented in the monograph of Woodford (2003.riibdel consists of three main equa-
tions: an IS curve, a monetary policy rule and a Phillips curVke expectational IS curve can be
derived from the behavior of optimizing and forward lookiggresentative households that have ra-
tional expectations. Together with a monetary policy ritldetermines aggregate demand. The New
Keynesian Phillips curve determines aggregate supply andealerived from monopolistic firms
that face sticky prices. Del Negro and Schorfheide (2004 Bag@sian estimation to fit the model to
output growth, inflation and interest rate data. The methagois reviewed in An and Schorfheide
(2007). Wang (2009) shows that the small number of frictitsnsufficient to provide reasonable
output growth and inflation forecasts.

Small Model with Overlapping Wage Contracts by Fuhrer & Moore (FM)  This is a small scale
model of the U.S. economy described in Fuhrer (1997). It diffeom the New Keynesian model
with respect to the degree of forward lookingness and theifspegtion of sticky prices. Aggregate
demand is determined by a reduced form backward looking i#edwmgether with a monetary pol-
icy rule. Aggregate supply is modelled via overlapping wagstracts: agents care about real wage
contracts relative to those negotiated in the recent pabktlasse that are expected to be negotiated

1A comparison to large scale econometric models in the tradition of the Covaesn@sion is unfortunately more
burdensome. Fair (2007) compares the forecasting accuracy mfeadeonometric model to a DSGE model by Del Negro,
Schorfheide, Smets, and Wouters (2007).



in the near future (see Fuhrer and Moore, 1995a,b). The aggrpgee level is a constant mark-up
over the aggregate wage rate. The resulting Phillips curverdigpon current and past demand and
expectations about future demand. Fuhrer (1997) uses maxiikelihood estimation to parameter-
ize the model. In contrast to all other models in this papariables are not defined in percentage
deviations from the steady state. While a measurementieguatheeded to link output growth via a
trend growth rate to the data, inflation and the interest nateliaectly defined in the model equations
as in the data.

Medium Scale Model by Smets & Wouters (SW) The small New Keynesian model has been
extended by Christiano et al. (2005) to fit a high fraction o$Ubusiness cycle dynamics. It is
a closed economy model that incorporates physical capitéhé production function and capital
formation is endogenized. Labor supply is modelled expiciNominal frictions include sticky
prices and wages as well as inflation and wage indexation. fRe@ns include consumption habit
formation, investment adjustment costs and variable ahpttlization. Smets and Wouters (2007)
added nonseparable utility and fixed costs in production. Teplaced the Dixit-Stiglitz aggregator
with the aggregator by Kimball (1995) which leads to a nonstant elasticity of demand. The model
includes equations for consumption, investment, pricevaage setting as well as several identities.
Smets and Wouters (2007) used Bayesian estimation with aleterget of structural shocks to fit
the model to seven U.S. time series.

Medium Scale Model by Edge, Kiley & Laforte (FRB/EDO) The so-called FRB/EDO model by
Edge, Kiley, and Laforte (2008) has been developed at the Hedesgrve and also builds on the
work by Christiano et al. (2005). It features two productemcttors, which differ with respect to
the pace of technological progress. This structure can cafte different growth rates and relative
prices observed in the data. Accordingly, the expenditiste is disaggregated as well. It is divided
into business investment and three categories of houseRpihditure: consumption of non-durables
and services, investment in durable goods and residentiasiment. The model is able to capture
different cyclical properties in these four expendituriegaries. As in the Smets & Wouters model all
behavioral equations are derived in a completely condistemner from the optimization problems
of representative households and firms. The model is docuthenEge et al. (2007.To estimate
the model using Bayesian techniques, 14 structural shaekadaled to the equations and the model
is estimated on eleven time series.

Bayesian VAR (BVAR) In addition to the four structural models, | estimate a VAR autput
growth, inflation and the federal funds rate using four lagse VAR is a more general description

2My version is not able to replicate the figures in the documentation exactlis lersonably close.



of the data than the DSGE models as it imposes little resiriston the data generating process. All
variables are treated symmetrically and therefore the \fAd®tiporates no behavioral interpretations
of parameters or equations. Unrestricted VARs are heawiBrparametrized and therefore not
suitable for forecasting. | therefore use a Minnesota fgee Doan, Litterman, and Sims, 1984) to
shrink the parameters towards zero. The Minnesota priomassuhat the vector of time series is
well-described as a collection of independent random walksse growth rates or stationary time
series and therefore put a prior assumption of a zero coefficie the first lag of the dependent
variable instead of a one. Therefore, all parameters areresbto be normally distributed with
mean zero. The prior variance of the parameters decreadetheilag length. While larger Bayesian
VARs and specifications with the level of output and prices patentially increase the accuracy
of foreacsts, | use a version that uses the same variablég &IGE models. This can be helpful
to disentangle the importance of theoretical foundatioms a parsimonious parametrization for
accurate forecasts.

Table 1 summarizes the most important features of the fouctsiral models and the Bayesian
VAR. The number of equations refers to all equations in a mtadeéhg into account shock processes,
measurement equations and identities. For example théathiNew Keynesian model consists of 3
structural equations, 2 shock processes (+1 iid shock) amebE3urement equations. Itis apparent that
the size of the models differs a lot from each other. Furtheenttte number of estimated parameters
per equation are different. The FRB/EDO model includes abogipamameter per equation implying
high cross equation restrictions. The authors added maasuateerrors to the model to fit it to 11
time series. The Fuhrer & Moore model in contrast has two paesi@er equation. The number
of parameters in the Bayesian VAR can vary from 3 shock vagario 39 parameters depending
on the significance of the four lags of each variable in eaclhetliree equations. The method of
estimating the structural parameters also varies acressitidels: | adapt the methodology used by
the original authors and use maximum likelihood estimafmmnthe Fuhrer & Moore model while
Bayesian estimation is used to estimate the other mddels.

For the priors, | use the ones in the original research retew in Table 1. Except for the
model by Fuhrer & Moore, variables are defined in percentagiatiens from steady state and thus
measurement equations that include an output growth traddtfze steady state of inflation, the
interest rate and other observables are needed to link tlaieqs to the data. The FRB/EDO model
is implemented nonlinearly and | derive a first order appration of the solution. All other models

are linearized.

3To be sure, | approximate maximum likelihood estimation by defining wideormifriors for all parameters and use
then the same Bayesian estimation algorithm as for the other models. dieersfactly the same statistics are derived for
all models which is important for the computation of weighted forecastsciiose6



Table 1: Model Overview

Type [ Eq. Par. Est. Par.  Observable Variables [ Reference
Small-scale microfounded forward 8 13 13 3: output growth, inflation, interest Del Negro and
looking New Keynesian Model rate Schorfheide (2004)
Small-scale model with overlapping 10 20 19 3: output growth, inflation, interest Fuhrer (1997)
real wage contracts and a backward rate
looking IS curve
Medium-scale DSGE-model with 27 42 37 7: output growth, consumption Smets and Wouters
many nominal and real frictions as growth, investment growth, inflation| (2007)
used by policy institutions wages, hours, interest rate
Large-scale DSGE-model developed59 71 51 11: output growth, inflation, int Edge et al. (2008)
at the Federal Reserve. Two produg- terest rate, consumption of non-
tion sectors with different technolog durables and services, consumptipn
growth rates. The demand side is dis- of durables, residential investment,
aggregated into four categories business investment, hours, wages,

inflation for consumer nondurables

and services, inflation for consumer

durables
Bayesian VAR with 4 lags; Min-| 3 3-39 39 3: output growth, inflation, interest Doan et al. (1984)
nesota priors rate

Notes: Type: short classification of the models accordingéaain modelling assumptions; Eq.: number of equations inojudi
shock processes, measurement equations and identitiesxdbutliag variable definitions and flexible price allocasorPar.:

total number of parameters in the model file excluding all aamiliparameters; Est. Par.: exact number of estimated parameters
including shock variances and covariances; Observabiablas: the number and names of the observable variables;gReée
original reference that is closest to the implemented veiisidhis paper.

3 Areal-time dataset

| use the real-time dataset described in Faust and Wright9)20 The dataset is prepared by the
Federal Reserve staff to compute the Greenbook forecastsdalthas perfectly synchronized with
the Greenbook and contains historical samples, i.e. datages, of 109 variables as observed at the
time the Greenbook was published. In addition, it contamsaasts and forecasts up to five quarters
for all variables. The dataset contains data vintages for B@MC meetings from March 1980
to December 2000, while the different data series start BD29While some of the nonstructural
forecasting models considered in Faust and Wright (2008) ppr@cess as many data series as
available, the structural models considered in this paperomly a small subset of the available time
series varying from three to eleven variables to estimag@liffierent models. Still some variables for

4The dataset can be downloaded from the website of Jon Faust: http:t/afifustj/papgbts.php?d=n. A detailed data
appendix is available on the same website.

5The dataset ends in 2000 because Greenbook data remains coriffdeBtigears after the forecast date. | don’t update
the data for the additional years that are now available to make the fonecessults directly comparable to Faust and
Wright (2009).



the FRB/EDO model are not available in the data set. Therefodel tlze necessary real-time data
series from the Federal Reserve Bank of St. Louis’ Alfred datalaend also the accordant nowcasts
from the Greenbook. To each data vintage | add only obsensthat would have been available at
the Greenbook publication date.

There is a trade-off between using a long sample to get prpeiseneter estimates and for leaving
out a fraction of past data that might contain structurabkse Therefore, | use a moving window
of the latest eighty quarterly observations of each dattagimto estimate the models. Aside from
structural breaks the high inflation periods of the 70’'s an &tfluence the estimated inflation
steady state which can bias the inflation forecasts of the8laiteand the 90's. Therefore a window
of 80 observations gives at least the chance of a diminishiiiegt on the forecasts. The first sample
for the FOMC meeting of March 1980 starts in 1960Q1 and end919Q4, the second sample for
the FOMC meeting of April 1980 starts in 1960Q2 and ends in {8Gand this goes on until the
last sample for the FOMC meeting of December 2000 that stad980Q4 and ends in 2000Q3.

| forecast annualized quarterly real output growth as meashy the GNP/GDP real growth rate,
annualized quarterly inflation as measured by the GNP/GDP deélatl the federal funds rate. GDP
data is first released about one month after the end of theeguanvhich the data refer, the so-called
advance release. These data series are then revised sewegt the occasion of the preliminary
release, final release, annual revisions and benchmarkamsis| follow Faust and Wright (2009)
and use actual realized data as recorded in the data virltagevas released two quarters after the
quarter to which the data refer to evaluate the forecastiogracy. For example, revised data for
1999Q1 is obtained by selecting the entry for 1999Q1 fromdata vintage released in 1999Q3.
Hence, | do not attempt to forecast annual and benchmarkioed, because the models cannot
predict changes in data definitions. The revised data agahishwhe accuracy of forecasts is judged
will typically correspond to the final NIPA release.

While the models by Del Negro & Schorfheide, Fuhrer & Moore ahd Bayesian VAR are
estimated on the three key variables output growth, infladimehthe federal funds rate, the other two
models are fit to seven and eleven time series, respectivedyStrets & Wouters model is estimated
on the three key variables and a wage time series, hours diodasumption and investment.
The FRB/EDO model is estimated on eleven empirical time seibegput growth, inflation, the
federal funds fate, consumption of non-durables and sesyiconsumption of durables, residential
investment, business investment, hours, wages, inflatioodiesumer nondurables and services and
inflation for consumer durablés.

6Qutput is in real terms available in the data set and growth rates can beitsshgprectly. Consumption, investment
and wages are expressed in real terms as defined in the models tldivisggn with the output deflator. Growth rates
are computed afterwards. Inflation is computed as the first differefite log output deflator. The nominal interest rate
is expressed on a quarterly basis. | compute hours per capita by diadigregate hours with civilian employment (16
years and older). The hours per capita series includes low frequamments in government employment, schooling and



4 Forecasting Methodology

Computing recursive forecasts using structural models@aletime data vintages requires a sequence
of steps that are explained in the following. First, the medwled to be specified, solved and linked

to the empirical data. Second, the data needs to be updategl¢tartrent vintage and parameters have
to be estimated. Third, density and point forecasts are ctedpu

Model specification and solution. Each of the models consists of a number of linear or nonlinear
equations that determine the dynamics of the endogenoiabies. A number of structural shocks is
included in each model. Any of the modeis= 1, ...,4 can be written as follows:

Et [fm(y{n7ym—l7y{n—l7£tmaﬁm)] =0 (1)
E(g) = 0 2)
E(gg") = 2f, )

whereE; [fm(.)] is a system of expectational difference equatigfiss a vector of endogenous vari-
ablesg™ a vector of exogenous stochastic sho¢k8 a vector of parameters aiad' is the variance-
covariance matrix of the exogenous shocks. The parametdrtharvariance-covariance matrix are
either calibrated or estimated or a mixture of both.

A subset of the endogenous variables consists of empiriobBervable variablqz{“"’bs. If variables

in the models are defined in percentage deviations from swathy/then there is a subset of the equa-
tions that are so-called measurement equatiifi¥.). These link the observable variables to the
other endogenous variables through the inclusion of stetalg values or steady state growth rates.
Another possibility is that the observable variables areddly included in the general equations of a
model. The latter is the case in the Fuhrer & Moore model. Infiegiod the interest rate are included
in the model as they appear in the data and are not redefinediasales from steady states. For the
FRB/EDO model, it is assumed that not all observable variadnlesneasured exactly and therefore
a set of nonstructural measurement shocks is added to theuree@ent equations.

The system of equations is solved using a conventional solutiethod for rational expectations
models such as the technique of Blanchard and Kahn. In tleeafdbe FRB/EDO model a first or-
der approximation of the solution is derived. The other medet already linearized before solving

the aging of the population that cannot be captured by the models. | eethese following Francis and Ramey (1995)
by computing deviations of the hours per capita series from its low freédderfiltered trend with a parameter of 16000.
The realtime characteristic of the data remains unaffected by this pnecefr the FRB/EDO model nominal time series
except for output growth are used. Growth rates are computed fsuecgption of non-durables and services, consumption
of durables, residential investment and business investment. Infldtimndurables and services and inflation of durable
goods is computed by dividing the accordant nominal and real timessanigcalculating log first differences.

10



them! Given the solution, the following state space representaif the system is derived:

y{n,obs _ rm)—,m +rmytm +‘Etm,obs’ (4)
o= oy(BMY1 -+ (BT (5)
E(g'g") = ¢ 6)

The first equation summarizes the measurement equations endg ghe link between observable
variables and the endogenous model variables via steagystaes or deterministic treng®. The
matrix '™ might include lots of zero entries as not all variables aredtly linked to observables.
The measurement errogf*® are a subset of the shockS. The second equation constitutes the
transition equations including the solution matriggéndgg‘ that both are nonlinear functions of the
structural parametei8™. The transition equations relate the endogenous variablibeir own lags
and the vector of exogenous shocks. The third equation detlwesariance-covariance matiy'.

Estimation. Having solved the model and linked to the data, one needsdatephe data before
estimating the model. | use for each forecast the 80 moshtedzservations of the respective his-
torical data vintage that was available at the time of thedast start. Estimating DSGE models
using Bayesian estimation has become a popular approadh doe combination of economic the-
ory which is imposed on the priors and data fit summed up in tiséepior estimates. A survey of the
methodology is presented in An and Schorfheide (2007). Thexef only give a short overview of
the algorithm. maximum likelihood estimation is basic@lyesian estimation with uniform or unin-
formative priors. Due to the nonlinearity Bi" the calculation of the likelihood is not straightforward.
The Kalman filter is applied to the state space representatisettup the likelihood function (see
e.g. Hamilton, 1994, chapter 13’?4‘,8ince the models considered are stationary, one can imitidle
Kalman Filter using the unconditional distribution of thatstvariables. Combining the likelihood
with the priors yields the log posterior kernelZ (B™y*, ..., y™***) +-Inp(B™) that is maximized
over B™ using numerical methods to compute the posterior mode. Thepor distribution of the
parameters is a complicated nonlinear function of the siratparameters. The Metropolis-Hastings
algorithm offers an efficient method to derive the posteristribution via simulation. Details are
provided for example in Schorfheide (2000). | compute 5008@@vs from the Metropolis-Hastings
algorithm and use the first 25000 of these to calibrate the stalh that an acceptance ratio of 0.3 is
achieved. Another 25000 draws are disregarded as a burmiplsaThe models are reestimated for
the first data vintage of each year. Reestimating the mode#dlfd45 available data vintages would
be computationally too intensive. Finally, the mean paranmsetan be computed from the posterior
distribution of ™.

7] use the solution procedure of the Dynare software package. Seedymare.org and Juillard (1996) for a description.
8| consider only unique stable solutions. If the Blanchard-Kahn conditiomsiolated | set the likelihood equal to zero.
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Forecast computation. Having estimated the different models, forecasts for thdzbas h
(0,1,2,3,4,5) are derived. First, a density forecast is computed and adireisva point forecast is
calculated as the mean of the density forecast. For eachmpéeaa large number of values are drawn
from the parameter’s posterior distribution. For a randaawds a projection of the observable vari-
ables is derived by iterating over the solution mag{ﬁ(ﬁmvs). At each iteration in addition a vector
of shocksg™® is drawn from a mean zero normal distribution where the vagas itself a random
draw from the posterior distribution of the variance-cisace matrix:

~ h ~ .
ERT = TR ET MY T S g (R (7)
1=

§" ~ N(0.2), (8)

where a hat on the structural parametgf&, the variance covariance matr{"® and the steady
state values of observable variab{f® denotes that they are estimated. The reduced form solution
matricesg]' andgy" are functions of the estimated parameters and change oweas the models are
reestimated. The procedure is repeated 10000 tiswesl(...,10000) and finally the forecast density

is given by the ordered set of forecast dr@@ﬁ;"bs. The point forecast is given by the mean of the
forecast density.

The different steps to compute forecasts are:

1. Model specification: set up a file with the model equationsaatitimeasurement equations that
link the model to the empirical time series.

2. Solution: solve the model and express it in state space form

3. Data update: update the data with the current vintage.

4. Estimation: reestimate the model for the first data vintdgeach year. Otherwise, use the
posterior distribution of the parameters from previousneetion. Add a prior distribution of
the model parameters. Estimate the structural parametersakimizing the posterior kernel.
Afterwards simulate the posterior distribution of the paeters using the Metropolis-Hastings
algorithm.

5. Density forecast: compute forecast draws by iteratirgy dive solution matrices for different
parameter values drawn from the posterior distribution. eAth iteration draw a vector of
shocks from a mean zero normal distribution with the vamanself being a draw from the
posterior distribution. The forecast density is given bydhdered forecast draws.

6. Mean forecast. compute the mean of the forecast dengigttthe point forecast.

7. Repeat steps 3 to 6 for all data vintages.
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8. Repeat steps 1 to 7 for different models, possibly extenttie information set by additional
variables as required by the respective model.

Figure 1 shows as an example forecasts for output growth, iorilaind the federal funds rate
derived from data vintage May 12, 2000. The black line showktime data until the forecast start
and revised data afterwards. | plot the 0.05, 0.15, 0.2%, &8l 0.65, 0.75, 0.85 and 0.95 percentiles
to graphically represent the density forecasts. The diffesbades therefore show for 90%, 70%,
50% and 30% probability bands. The line in the middle of thefidemce bands shows the mean
forecast for each model. The short white line shows the cporedent Greenbook projections. Data
is available until the first quarter of 2000. The current stdtehe economy in the second quarter
of 2000 is estimated using the different models. The econoas/iwa boom in early 2000 and the
models broadly predict the return to average growth ratestbve next quarters. They are not able to
predict the 2001 recession that has been defined by the NBERet@lace between the first and the
fourth quarter of 2001. Inflation is predicted by the Del Ne§Bchorfheide model and the Bayesian
VAR to stay on a similar level as in the first quarter of 2000. TharEu& Moore model predicts
an increase of the inflation rate. The FRB/EDO and the Smets & Wouatedels are able to predict
the inflation decrease in the third quarter of 2000. None ofntloglels is able to predict the short
inflation increase in the first quarter of 2001. The interestisaterecast to increase by the Fuhrer
& Moore model, the FRB/EDO model and the Bayesian VAR. It is pried| to stay constant by the
Del Negro & Schorfheide model and to decrease by the Smets &akootodel. The average of the
five forecasts predicts the interest rate path quite prigcisgil the end of the year. The decrease in
the federal funds rate beginning in 2001 is not captured byfdhecasts. This is consistent with the
output growth forecasts that miss the recession in 2001lighatturn a reason for the interest rate
cuts.
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Figure 1: Structural Forecasts; Data Vintage May 12, 2000
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Notes: the black line shows real-time data until the forecast start an@dedéga afterwards; the shaded areas show
90% 70%, 50% and 30% confidence bands; the line in the middle of the ennédands shows the mean forecast
for horizons 0 to 7; the short white line shows the Greenbook foreocastdrizons 0 to 5. Mean Forecast is the
average of the four model forecasts and the Bayesian VAR forecast.
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Figure 2: Forecast Errors and Output Growth Rates
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Notes: the figure shows observed output growth rates and the comaisg forecast errors of the four DSGE
models and the Bayesian VAR for different forecasting horizons.Hbnzontal lines show the mean output growth
rate and the vertical line the mean forecast errors of all models forleaizon.

| plot a figure like this for the forecasts derived from eachadantage. Unfortunately, it is not
possible to show all these figures in this paper. Howeveresing over all the forecasts for the dif-
ferent historical data vintages reveals some notable gatens. Structural models and the Bayesian
VAR are well suited to forecast during normal times. Giverairar average exogenous shocks the
models give a good view about how the economy will return lackteady state. In contrast, large
recessions or booms and the respective turning points goesisible to forecast with these models.
Figure 2 plots the forecast errors (outcome minus forecdst) anodels on the horizontal axis and
the correponding realized output growth rate on the vdréigs. A clear positive relation is visible.
When output growth is highly negative the models are not &bl®recast such a sharp downturn
and thus the forecast error is negative. The models requige Exogenous shocks to capture large
deviations from the balanced growth path and the steadyisii#ation and interest rate. This is due to
the weak internal propagation mechanism of the models. Tareréor a given shock all the models
including the Bayesian VAR predict a quick return back to steady state growth rate. Even if one
of the models would imply more persistence, it is unlikelycapture the length of recessions accu-
rately as these are rare events with few data points so thiairiplied persistence cannot be captured
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precisely when estimating a model. Each recessions mighaised by different exogenous reasons
and therefore there is no information in previous data sesiblat can be used to forecast the length
of such a recession in the future. While the point forecasitsot predict a recession, the possibility
that a large deviation from steady state values occurs isiEpby the wide confidence bands. Once
the turning point of a recession has been reached, all mpdedict the economic recovery back to
the balanced growth path well. Recoveries in this data sam@ quick with little persistence just
like the internal propagation mechanism of the models uséhis$ paper.

5 Forecast Evaluation

Table 2 reports the root mean squared prediction errors (RM&E)utput growth, inflation and
interest rate forecasts from the Greenbook, the four stractmodels, the Bayesian VAR and the
respective best and worst performing nonstructural modesidered by Faust and Wright (2009).
The first column gives the RMSE for the Greenbook and all othermsok report the RMSE of the
specific models relative to the Greenbook RMSE. Values lessaharshow that a model forecast is
more accurate than the corresponding Greenbook projedtmmlast two columns report the relative
RMSEs of the most and the least accurate nonstructural fanegamodel from Faust and Wright
(2009) for each horizon.

The first six rows in each table show forecasts based on theahiaitlata at the starting point of
the forecast. The current state of the economy is not availalthe data and therefore needs to be
forecast. This nowcast is labeled as a forecast for horizam Zes the data becomes available with
a lag of one quarter, the results are labeled as "jump off td"practice, however, there are many
data series that are available on a monthly, weekly or dadlguency that can be used to improve
current-quarter estimates of GDP. Examples are industgalyzction, sales, unemployment, opinion
surveys, interest rates and other financial prices. This datde used to improve nowcasts and the
Federal Reserve staff and many professional forecastdaesrdgmake use of it. To approximate the
effect of using more information in nowcasting, | investgthe effect of using Greenbook nowcasts
as a starting point for model-based forecasts regardingegiguarters. The results are shown in the
last five rows of each table and are labeled as "jump off 0".

| follow Faust and Wright (2009) in leaving out the periodrfrd 980-1983 from the evaluation as this
period was very volatile and might bias the assessment e€ésting accuracy for the whole sample.
Therefore, the results start in 1984 so that the RMSEs for ogimwtth and inflation are directly
comparable to Table 2 in Faust and Wright (2009). The rep@®M&Es are thus based on 122 fore-
casts from 1984 to 2000. | evaluate whether the differencereénbook RMSEs and model RMSEs
is statistically significant based on the Diebold-Mariaradistic (Diebold and Mariano, 1995) using a
symmetric loss function. Asymptotic p-values are compuisidg Newey-West standard errors with
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a lag-lgenth of 10, covering a bit more than a year, to accfauatserial correlation of forecast errors.

The results for inflation, output growth and the federal furate are very different. For output
growth the Greenbook nowcast is more precise than the madetasts. This was expected as the
Fed can exploit more information about the current state efdébonomy. However, this precise
estimate of the current state of the economy does not ttariata a superior forecasting performance
at higher horizons. The SW, EDO and BVAR models’ forecasts dataithe Greenbook forecast
from horizon 1 onwards. The DS model yields a similar foréngsaccuracy as the Greenbook.
Only the FM model is slightly less accurate than the Greenlio@cast for all horizons. If I include
the Greenbook nowcast in the information set used to confpteeasts the results hardly change as
quarterly output growth is not very persistent. Viewing Gieenbook as a best practice benchmark,
one could be tempted to judge the forecasting ability of thectural models as very good. However,
one should keep in mind that quarterly output growth hake lipersistence and thus is difficult
to forecast in general. The reported RMSEs in Faust and Wrigf@9QRshow that none of their
nonstructural forecasting methods is more accurate thamigariate autoregressive forecédtfind
that only the SW model’s forecasts are more precise than amegmessive forecast from horizon
2 onwards. The forecasting accuracy of the EDO and BVAR modghidar to the autoregressive
forecast and the DS and FM forecasts are less precise. Inaddione of the models RMSEs
differs statistically significant from the Greenbook RMSEmiihe SW model’s forecasts for horizon
3 being the only exception. The difference in the forecastitguracy of the models can be traced to
the different modelling assumptions. The SW and EDO model haishar economic structure than
the DS and FM model. The BVAR also performs very good as the higheaber of lags compared
to the other models can catch important business cycle dgsardespite this richer structure the
SW, EDO and BVAR models are tightly enough parametrized talypeécise forecasts.

The Greenbook inflation forecasts are more accurate tharratitstal as well as all nonstructural
inflation forecasts. The structural forecasts have an acgimdie with the accuracy range of the
nonstructural forecasts. None of models reaches the fetiegaquality of the best nonstructural
forecasts. Among the DSGE models the DS and SW model show a goechbting performance.
They achieve a forecast of similar accuracy as the BVAR. The E@Qeinforecasts are somehow
less precise and the FM forecasts are relatively imprecise. fGitecasting accuracy relative to the
Greenbook forecasts improves with increasing horizonsllomodels. When | add the Greenbook
nowcast to the information set of the models, the forecgsitturacy increases, but does not reach

9Faust and Wright (2009) consider two types of autoregressivedsts. First, a recursive autoregression, where the
h-period ahead forecast is constructed by recursively iterating #nastp ahead forecast forward. Second, they use a direct
forecast from the autoregression by regressing h-period ahéjdt guowth values on the autoregressive process. For both
types they use four lags and get a similar forecasting accuracy.
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Table 2: Greenbook RMSE and relative RMSE of model forecasts:-2080
(a) Output growth

horizon GB DS FM SW EDO BVAR best FW worst FW
jump off -1

0 1.75 1.20 1.13 1.24 1.21 1.11 1.09 1.39

1 2.12 0.95 1.05 0.91 0.91 0.97 0.86 1.20

2 2.01 1.06 1.10 0.93 1.00 0.96 0.95 1.15

3 2.15 0.99 1.09 0.86 0.95 0.97 0.94 1.12

4 2.08 1.01 1.05 0.89 0.94 0.94 0.99 1.11

5 2.08 1.02 1.05 0.90 0.99 1.00 0.97 1.09
jump off 0

1 2.12 0.95 1.03 0.93 0.94 0.94 0.84 1.07

2 2.01 1.06 1.13 0.94 1.00 0.97 0.90 1.12

3 2.15 1.00 1.12 0.87 0.97 0.96 0.95 1.18

4 2.08 1.01 1.08 0.88 0.97 0.97 0.96 1.09

5 2.08 1.03 1.06 0.82 1.01 0.99 0.98 1.11
(b) Inflation

horizon GB DS FM SW EDO BVAR best FW worst FW
jump off -1

0 0.69 1.5 1.86@ 1.48@ 1.65@ 1.47@ 1.34@ 1.63@

1 0.79 1.59® 1.80® 1.44@ 1.508 1.45@ 1.22@ 1.86@

2 0.81 1.3® 1.57@ 1.29@ 1.59@ 1.308 1.15 1.92@

3 0.93 1.1% 1.42 1.20e 1.500 1.14 1.03 1.8

4 0.89 1.28 1.80® 1.29@ 1.46@ 1.35% 1.08 2.1®

5 1.14 1.24 1.62@ 1.24@ 1.33@ 1.30 0.99 1.83@
jump off 0

1 0.79 1.24 1.61@® 1.15 1.17 1.258 1.200 1.588

2 0.81 1.2® 1.500 1.18 1.16 1.25@ 1.18 1.6%®

3 0.93 1.2 1.27 1.22@ 1.27 1.15 1.04 1.6

4 0.89 1.1 1.51@ 1.208 1.26e 1.19 1.05 1.9

5 1.14 1.1 1.47 1.21@ 1.14 1.19 0.97 1.77@

(c) Federal Funds Rate

horizon GB DS FM SW EDO BVAR best FW worst FW
jump off -1

0 0.11 599 4.84@ 4.630® 5.980 3.57@ - -

1 0.49 219 1.88@ 1.89@ 2.390 1.558 - -

2 0.90 1.49 1.46® 1.37 1.75@ 1.18 - -

3 1.25 1.19 1.25 1.10 1.5 1.01 - -

4 1.60 1.05 1.22 0.97 1.408 0.96 - -

5 1.90 0.97 1.23 0.87 1.2% 0.92 - -
jump off 0

1 0.49 1.3% 1.308 1.19 1.66® 1.06 - -

2 0.90 1.18 1.08 1.07 1.98 0.96 - -

3 1.25 1.02 1.01 0.95 1.45® 0.90 - -

4 1.60 0.95 1.03 0.89 1.38® 0.88 - -

5 1.90 0.90 1.08 0.83 1.31@ 0.86 - -

Notes: GB: Greenbook; DS: Del Negro & Schorfheide; FM: FuhreM&ore; SW: Smets & Wouters; EDO:
FRB/EDO Model by Edge, Kiley & Laforte; BVAR: Bayesian VAR; Best FBest performing atheoretical model
for the specific horizon considered by Faust & Wright; Worst FW: Wpesforming atheoretical model for the
specific horizon considered by Faust & Wright. The first column shinvgorecast horizon. The second column
shows the RMSE for the Greenbook. The other columns show RMSHteofative models relative to the Green-
book. Values less than one are in bold and show that a forecast is cwmmate than the one by the Greenbook.
The symbol®, e, ., indicate that the relative RMSE is significantly different from one at the dr 10% level,

respectively.
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the quality of the Greenbook forecasts. While it is not palesto forecast inflation with DSGE
models as precise as the Fed does, the forecasts are reasan#inthe exception of the FM model
they are as good or better than a simple autoregressiveairéom horizon 3 onwards and for all
horizons for the jump of 0 scenario.

The Greenbook projections are conditioned on a hypothegiath of policy. This hypothetical
federal funds rate is not meant to be a forecast. Neverthelswing it as a forecast its accuracy
for short horizons is extremely high. Therefore, the Fed mhghte conditioned the projections
on a policy path that is likely to be implemented in the futarel it is reasonable to view this as
a forecasting benchmark. Faust and Wright (2009) did notpegeninterest rate forecasts, so that
| cannot compare the structural forecasts to forecasts frwir time series models. Due to its
extremely high accuracy in the short term, the structunadasts do much worse than the Greenbook
for horizons 0 to 3. For medium term forecasts, however, thedasting accuracy of the DS, SW
and BVAR models dominates the Greenbook path. For shortéstang horizons it is apparent that
the BVAR forecasts have a much higher accuracy than the DS@&Edsts. The monetary policy
rules in the DSGE models include only few variables and mighblo simple. In contrast, the policy
rule implicit in the BVAR contains four lags of the intereste, output growth and the inflation rate.
Among the DSGE models the EDO forecasts are very impreciseegsutiderestimate the level of
the interest rate many times. Taking the Greenbook nowsagitan, the forecasting accuracy of the
models relative to the Greenbook increases. The resultst imgbensitive to the hypothetical policy
path characteristic of the Greenbook projection. If the Fathff would compute an unconditional
best forecast for the federal funds rate it might as well datd the model forecasts for all horizons.
Del Negro and Schorfheide (2004) propose to use DSGE modetsoas for VARs. They show that
the forecasting accuracy of these so-called DSGE-VARs ingzoelative to a VAR and partly to
a BVAR with Minnesota priors. They advocate to use DSGE-VARSsfdoecasting until structural
models are available that have the same forecasting peafaren The forecasting results in Table
2 show that at least the SW models’ forecasting performanceutput growth, inflation and the
interest rate is already good enough to be considered fecésting exercises on its own.

Faust and Wright (2009) present a table showing the pergerdfforecast periods in which the
time series model forecasts are more accurate than the I@re@lenThis metric is not as sensitive to
outliers as the RMSEs. | compute accordant numbers for thetstel forecasts which are shown
in Table 4 in the Appendix. A value higher than 50% indicatest the specific forecast was more
accurate than the Greenbook forecast for more than haleofample. The results are similar to the
RMSE results: the Greenbook output growth nowcast domirtaeemmodel howcasts. For the other
horizons the model forecasts for output growth are as gotitaGreenbook forecasts or even better.
For inflation the Greenbook forecasts are more accurate thamodel forecasts. The interest rate
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path of the Greenbook is more precise than model forecasshfot horizons, but model forecasts
do as well as the Greenbook for medium forecasts with the ED@eirizeing an exception.

6 Model Averaging

Density forecasts are useful to show uncertainty aroundtpoirecasts. Having estimated the
posterior parameter distribution of a certain model, itiaightforward to compute density forecasts
that include various sources of uncertainty. One compuiescésts for a large number of draws
from the models’ posterior parameter distribution to takéoiaccount parameter uncertainty.
Uncertainty about future realizations of shocks is incosped by repeatedly drawing from their
estimated distribution. However, the largest source oktamty - model uncertainty - is ignored.
Using only one model to forecast is equivalent to a subjecpvior of the forecaster that the
specific model is the best representation of the unknown taia denerating process. Gerard
and Nimark (2008) take into account model uncertainty by lioing forecasts from a Bayesian
VAR, a FAVAR and a DSGE model. | extend their work to combinimgefcasts from four DSGE
models and an unconstrained Bayesian VAR. Computing weigftrecasts is interesting for a
second reason: the results in the empirical literature oectst combination show that combining
multiple forecasts increases the forecasting accuracyeddrone can identify a single model with
superior forecasting performance, forecast combinatamesuseful for diversification reasons as
one does not have to rely on the forecast of a single modelngider several methods to combine
forecasts from the set of models: likelihood based weighaigtive performance weights based
on past RMSEs, a least squares estimator of weights, and mametic combination schemes
(mean forecast, median forecast and weights based on narded reflecting past RMSEs). While
many of these methods have been applied to nonstructuratdsts (see Timmermann, 2006,
for a survey) there are to my knowledge no applications toite saf structural models. From
a theoretical point of view likelihood based weights or wegyestimated by least squares are
appealing. In practice, these estimated weights have faeldantage that they introduce estimation
errors. In the applied literature simple combination scherike equal-weighting of all models
have widely been found to perform better than theoreticafiyimal combination methods (see
e.g. Hsiao and Wan, 2010, for the disconnect of Monte Cambailsition results and empirical results).

Let I™ be the information set of modeh at timet including the model equations, parameter
estimates and the observable time series of the accordenvidéage. A combined point forecast
of modelsm=1,...,M for horizonh denoted a&| tﬁ]ltl, ey I 00, ..., v p] can be written as the
weighted sum of individual density forecasp@yf’_?f,\ltm] with assigend weightsyy,, divided by the
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number of draws.
E% 1, .o 1M ..., v p] Z P25 11M]. (9)

| take 10000 draws from each individual forecast and ordemtin ascending order to get the density
forecast for each model. Afterwards | weight each of the D08faws for each model with the
specific model weights to compute 10000 draws of the combiaosxtést. This is the weighted or
averaged density forecast. The weighted point forecastigpated as the mean of the 10000 draws
of the weighted forecast. In the following, | discuss vasooethods how to choose the weighisgh.

A natural way to weight different models in a Bayesian conigexo use Bayesian Model Aver-
aging. The marginal likelihooML (y3*S|m) - with T denoting all observations of a specific historical
data sample observed in peribdis computed for each modei=1,...,M and posterior probability

weights are given by:
ML (y2*°m)

-1 ML(Y?®m)’
where a flat prior belief about modei being the true model is used so that no prior beliefs show

on = ML(mIy) =

(10)

up in the formula. This weighting scheme is based on the fit of dehiw the observed time series.
Unfortunately posterior probability weights are not comgtde for models that are estimated on a
different number of time series. A second problem of the griat probability weights is that over-
parameterized models that have an extreme good in-sampetfid bad out-of-sample forecasting
accuracy are assigned high weights. To circumvent thes#gms Gerard and Nimark (2008) use an
out-of-sample weighting scheme based on predictive likelds as proposed by Eklund and Karlsson
(2007) and Andersson and Karlsson (2007).

Predictive Likelihood (PL) The available data is split into a training sample used toredé the
models and a hold-out sample used to evaluate each modeksafiing performance. The forecasting
performance is measured by the predictive likelihood, free marginal likelihood of the hold-out
sample conditional on a specific model. | follow the approadaipested by Andersson and Karlsson
(2007) and used by Gerard and Nimark (2008) to compute assargamall hold-out sample predictive
likelihoods for each horizon. Equation (11) shows how to cotapghe predictive likelihoodPL of
modelm for horizonh:

PLY =ML y?loldout ralnlng |_| ML yObS (11)

Starting with an initial trainings sample of lendtrone computes the marginal likelihood for horizon
h using the hold-out sample. The training sample is expandednieyobservation tb+ 1 and a
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second maginal likelihood is computed for the hold-out dantipat is one observation shorter than
the previous one. This continues until the trainings samaédcreased to lengfit— h and the hold-
out sample has shrinked to lendthTo make the results comparable among models, only the three
common variables output growth, inflation and the interets s@e considered for the computation
of the predictive likelihood. Finally, the predictive likkbod weights are computed by replacing the
marginal likelihood in equation (10) with the predictividlihood:
PL
Sme1PLR

The predictive likelihood weighting scheme allows for diffet weights to be assigned to a given

Winh = (12)

model at different forecast horizons.

Ordinary Least Squares Weights (OLS) In model averaging applications of time series models it
is common to assume a linear-in-weights model and estinmadination weights by ordinary least
squares (see Timmermann, 2006). | use the forecasts fronopsevintages for each model and
the accordant data realizations to regress the realimy[ﬁﬁ on the forecastE[)fE?]Htm] from the
different models via constrained OLS separately for eacialvhe:

M
b = CLREVRIE] + - + cm hE VRN + &, st. 3 wmh=1 (13)
m=1

The resulting parameter estimat@gy,, ..., wv n are the combination weights. Therefore, the com-
bination weights differ for different horizons and also tbe three different variables. | omit an
intercept term and restrict the weights to sum to one so tiaiveights can be interpreted as the
fractions the specific models contribute to the weighteddase It also ensures that the combined
forecast lies inside the range of the individual forecasts.

RMSE based weights (RMSE) There are several ways to compute simple relative perforenanc
weights. | consider here weightings based on RMSEs of pastdete and weights based on the rela-
tive past forecast accuracy by ranking the accuracy of tiierent models. For the prior case RMSE
based weights can be computed by taking forecasts fromquewiintages and compute the RMSE
for each model. The weights are then calculated by takingtherse relative RMSE performance:
o= (YRMSED)
>m=1(1/RMSET)

(14)

Rank based weights (Rank) A second possibility to compute relative performance wisgé to
assign rank& from 1 to M according to the past forecasting accuracy meaisby the RMSEs. This
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method is similar to the RMSE based weights while being mobbesbto outliers. The performance
rank based weights are computed as follows:

R
SR 1o

Both methods can assign different weights to forecastsftdrdint variables and the different fore-
casting horizons.

Mean Forecast (Mean) The simplest method to compute a weighted forecast is to giwaleveight
to each model and simply compute the mean forecast of all ImoBBOmM a theoretical point of view
this approach is not preferable as the weights are pureljestid®e prior weights implicitly given
by the choice of models. However, it has often been founddimaple weighting schemes perform
well (see e.g. Hsiao and Wan, 2010). A reason is that theywight to several models instead of
choosing one optimal model and are thus robust.

Median Forecast (Median) Another possibility is choose the median of different mddetcasts.

| compute the median forecast for each of the ordered drawall nfodels. This gives the density of
the median forecast which is used to compute the mean ofedktdraws as a point forecast. The
approach is similar to taking the mean forecast, but is mobeist to outliers. The medians from
the ordered forecast draws need not to come from the same food&ferent slices of the ordered
forecast draws. By counting the fraction that the mediaedast is generated by a specific model
one can compute pseudo weights of the different model feted¢hat show the contribution of each
model to the final point forecast.

Figure 3 shows as an example weighted forecasts computetidadata vintage of May 12,
2000. In comparison with the individual forecasts in Figurthé& forecasts are more robust as no
outliers are visible. All methods predict a slightly lowartput growth path than the Greenbook and
a slight decrease of inflation in the current quarter. Aftedsanflation is predicted to remain about
constant. For the interest rate forecasts all models gradiincrease in the interest rate for the next
three to four quarters. Afterwards the interest rate isipted to remain at roughly six percent. Only
the weighted forecasts based on the predictive likelihawbam ranked past forecasting performance
predict a slight interest rate decrease.
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Figure 3: Weighted Structural Forecasts; Data Vintage May 12, 2000
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7 Forecast Evaluation of combined forecasts

In Table 3, | report the RMSEs for output growth, inflation aneiest rate forecasts from the Green-
book, and RMSEs of the six weighted forecasts relative to treeyook RMSE. The second last
column shows for comparison the relative RMSEs of the beslesimpdel as reported in Table 2
and the last column shows the relative RMSEs of the best namgtall model for each horizon as
computed by Faust and Wright (2009).
For output growth, inflation and the federal funds rate, ipgarent that the weighted forecasts have in
general an accuracy higher than forecasts from most singtiets. For output growth the Greenbook
nowcast is slightly better than all other forecasts, buedbother horizons the weighted model fore-
casts dominate the Greenbook forecast. The PL weighting siseam exception with a forecasting
quality not better, but still comparable to the Greenbooker&hs not much of a difference between
the accuracy of the other combination schemes. The Rank teeidbrecast yields the most precise
forecasts. Most methods give a similar forecasting acguracomparison to the best nonstructural
forecasts and for medium forecasts even dominate those.oféesfsting accuracy of the Mean and
RMSE weighted forecasts is very similar because the weightgpated by inverse RMSEs devi-
ate only slightly from equal weights. Using inverse Ranksdampute weights, differentiates more
between the different models’ past forecasting perforraartdowever, the increase in forecasting
accuracy hardly justifies the increased computational isfimzmpared to the simple mean forecast.
Taking the Greenbook nowcast as given does not translateiote accurate forecasts due to the low
persistence of output growth data. For horizons two and almoost weighted forecasts dominate
RMSEs of a simple autoregressive forecast as reported in BadséVright (2009). In contrast, in
the case of single model forecasts only the Smets & Wouterghimdble to beat the autoregressive
forecast. All the differences in output growth forecastiimguracy are statistically insignificant, with
the Rank weighted horizon 3 forecast being the only exceptio

For the inflation forecast, weighted forecasts increasedtexfsting accuracy compared to most
single model forecasts. However, the performance of thedreok forecasts is still the best. The
weighting schemes can roughly be devided into two groups:Pth and OLS weighted forecasts
are less precise than the Median, Mean, RMSE and Rank weid@irtedasts. The simple Mean
forecast is most accurate. Especially for the medium termchist it improves upon the best single
model forecast. For medium term horizons it is only slightlyrse than the Greenbook forecast and
the best nonstructural forecast. The forecasting accuedayive to the Greenbook increases with
increasing horizons for all weighting schemes. This showas $tructural forecasts are especially
useful for medium term forecasts. An univariate autoregjvesforecast is less precise than the
weighted forecasts from horizon 2 onwards. Appending thee@lbook nowcast to the information
set of the forecasting models increases the forecastirigrpgance of all weighting methods and the

25



Table 3: Greenbook RMSE and relative RMSE of weighted model foreca384-2000

(a) Output growth

horizon GB PL oLS Median Mean RMSE Rank best M best FW
jump off -1

0 1.75 1.17 1.05 1.07 1.06 1.06 1.04 1.11 1.09

1 2.12 0.93 0.90 0.89 0.86 0.86 0.87 0.91 0.86

2 2.01 1.06 0.93 0.92 0.92 0.91 0.90 0.93 0.95

3 2.15 0.99 0.88 0.91 0.90 0.89 085 0.86 0.94

4 2.08 1.00 0.92 0.90 0.89 0.89 0.87 0.89 0.99

5 2.08 1.02 0.92 0.91 0.92 0.92 0.90 0.90 0.97
jump off O

1 2.12 0.96 0.90 0.85 0.85 0.85 0.85 0.93 0.84

2 2.01 1.01 0.94 0.93 0.91 0.91 0.90» 0.94 0.90

3 2.15 1.02 0.94 0.92 0.90 0.90 0.91 0.87 0.95

4 2.08 1.02 0.93 0.92 0.90 0.90 0.89 0.88 0.96

5 2.08 1.03 0.98 0.92 0.92 0.92 0.95 089 0.98
(b) Inflation

horizon GB PL OoLS Median Mean RMSE Rank best M best FW
jump off -1

0 0.69 1.5® 1.600 1.45® 1.44@ 1.44@ 1.45@ 1.47@ 1.34

1 0.79 15® 1540 1.47® 1.43@ 1.44@ 1.47@ 1.44@ 1.22

2 0.81 1.3® 1420 1.25 1.23 1.23 1.25 1.29@ 1.15

3 0.93 1.1% 1.20 1.10 1.06 1.07 1.11 1.14 1.03

4 0.89 1.28 1.32 1.20 1.15 1.17 1.20 1.28 1.08

5 1.14 1.24 1.21 1.19 1.11 1.12 1.16 1.2 0.99
jump off 0

1 0.79 1.29 1.25 1.16e 1.18e 1.17 1.17 1.15 1.208

2 0.81 1.24 1.27@ 1.1% 1.16 1.16 1.17 1.16 1.18

3 0.93 1.2® 129 115 1.09 1.09 1.1% 1.15 1.04

4 0.89 1.1® 1.18 1.10 1.07 1.07 1.24 1.19 1.05

5 1.14 1.1 1.17 1.12 1.06 1.06 1.09 1.14 0.97

(c) Federal Funds Rate

horizon GB PL OoLS Median Mean RMSE Rank best M best FW
jump off -1

0 0.11 599 445 3.77@ 3.560 3.49 3.420 3.57@ -

1 0.49 2.1® 2.13@ 1.65@ 1.47@ 1.47@ 1.45® 1.558@ -

2 0.90 1.49 1.5%e 1.22 1.14 1.14 1.14 1.18 -

3 1.25 1.19 1.38 1.01 0.99 0.99 1.00 1.01 -

4 1.60 1.05 1.2¢ 0.95 0.94 0.94 0.97 0.96 -

5 1.90 0.97 1.1% 0.91 0.92 0.91 0.91 0.87 -
jump off 0

1 0.49 1.3% 1.63®@ 1.08 1.01 1.02 1.07 1.06 -

2 0.90 1.18 1.49 0.99 0.93 0.93 0.97 0.96 -

3 1.25 1.02 1.29 0.89 0.86 0.87 0.94 0.90 -

4 1.60 0.95 1.23 0.88 0.87 0.87 0.92 0.88 -

5 1.90 0.90 1.19 0.86 0.86 0.86 0.89 0.86 -

Notes: PL: Predictive Likelihood; OLS: Ordinay Least Squares; Medidedian forecast; Mean: Mean forecast;
RMSE: weighted by inverse RMSE; Rank: weighted by inverse ranis$;\debest single model forecast; Best FW:
Best performing atheoretical model for the specific horizon consttley Faust & Wright; The first column shows
the forecast horizon. The second column shows the RMSE for then@wek. The other columns show RMSE of
alternative forecasts relative to the Greenbook. Values less than enme laold and show that a forecast is more
accurate than the one by the Greenbook. The sym®¢l®, ., indicate that the relative RMSE is significantly
different from one at the 1, 5, or 10% level, respectively.
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Mean forecast becomes as precise as the best nonstrucgeds$t. For the jump of O scenario all
weighted forecasts are more accurate than an univariatesguéssive forecast.

The interest rate forecast results for individual modelswatb that the Bayesian VAR model
performed better than all other models at least for shorizbns. Nevertheless, combining this
forecast with other less accurate forecasts even impréeefotecasting quality: the Mean, RMSE
and Rank weighted forecasts are more accurate than theagtseitom the Bayesian VAR. While
the Greenbook interest rate path is significantly more atedioa horizons 0 to 2, the Mean, RMSE
and Rank weighted forecasts are more precise for horizoa$3 The relative forecasting accuracy
improves with increasing horizons for all weighting schemdaking the Greenbook nowcast as
given, the accuracy of all weighting schemes increasesalrethigh persistence of the interest rate.
The Mean forecast is as precise as the Greenbook policy pattofizon 1 and dominates it for all
other horizons.

Overall it turns out that model combination methods thaegixeight to several models perform
well. Likelihood based weighting methods are preferablehimoty, but do not work as well in
practice. Differences in predictive likelihoods of diféert models are so high that at most times all
weight is given to a single model. Tables 6 to 8 in the Appemeport as an example model weights
for forecasts derived from data vintage May 12, 2000. Wigland Wolters (2010) report RMSEs
for structural forecasts for five different recessions and fivat there is no model that consistently
outperforms other models. This shows that the forecastinipmmeance of different models relative
to each other varies over time. Therefore, it is importantioose an average of several models
to hedge against inaccurate forecasts of individual mod&®mbining several models gives a
more robust forecast as it prevents against choosing aieoththt produces high forecast errors.
Also estimated weights by least squares do not perform ad gesimpler combination schemes:
restricting the weights to sum to one leads to estimatiolpros so that in many cases weight is
given only to one model. The Median forecast works quite welit@nsures that outliers are not
chosen. The best forecasting performance is achieved by ¢fam Kbrecast and the RMSE and Rank
based weighted forecasts. However, the RMSE weights desidyeslightly from the Mean forecast.
The Rank weights take past forecasting performance moreagtount: this increases the accuracy
of the output growth forecast, but does not improve on therMegecast for inflation and the interest
rate. Therefore, at this stage, one can conclude that a siMga@a forecast is the preferable method.
It is very easy to compute as one needs no forecasts andat&aiiZrom earlier data vintages to
calculate model weights and it yields precise forecasts dha quite robust to outliers. Table 5
shows the percentage of forecast periods in which the wadgforecasts are more accurate than the
Greenbook projections. The results of this robust statsstovery similar to the RMSE results.
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To sum up the point forecast evaluation, the forecasts oSthets & Wouters model are good.
The accuracy of forecasts that give considerable weighterakforecasts is as high as the Smets &
Wouters forecast and in most cases even better. The accurdwy Mean forecast is comparable to
nonstructural forecasting methods that can process lages#ts. All forecasts based on structural
models are especially suited to compute medium term forgecas

8 Density Forecast Evaluation

Assuming a symmetric loss function, the accuracy of poimédasts can be easily compared by
computing RMSEs. Evaluating density forecasts is less stifaigtard. The true density is never
observed. Still one can compare the distribution of obsedagd with density forecasts to check
whether the forecasts provide a realistic description afa@aincertainty. | use the following eval-
uation procedure: | split up the density forecasts into pbility bands that each cover 5% of the
probability mass. This is similar to disaggregating the faarts plotted in Figures 1 and 3 further
into smaller confidence bands. For each data realization tleack into which of the 20 probability
bands of the accordant density forecast it falls. Doing fibWisall realization and the corresponding
density forecasts, 5% of the realizations should be coathim each of the probability bands. Other-
wise the density forecasts are not a good characterizatithrealistribution of the data realizations.
In general, if one divides density forecasts into probgabibiands of equal coverage, data realisations
should be uniformly distributed across all probability danThis is the approach outlined in Diebold,
Gunther, and Tay (1998) and Diebold, Hahn, and Tay (1999)reMarmally, it is based on the re-
lationship between the data generating process and thersegjof density forecasts via probability
integral transforms of the observed data with respect tathmsity forecasts. The probability inte-
gral transform (PIT) is the cumulative density function cepending to the sequence fdensity
forecasts{ p (y?%,)}{_, evaluated at the corresponding observed data péyit§} ;:

Vit
zt:/ p(udu,  for t=1,..n. (16)

The PIT is the probability implied by the density forecast thakalized data point would be
equal or less than what is actually observed. If the sequehckensity forecasts is an accurate
description of actual uncertainty, the sequence of P{Es}' ;, should be distributed uniformly
between zero and one. Figures 4 and 5 presents a visual ass¢sdrthe distribution of realized
data points on the sequence of PITs that is represented a®grarst of 20 probability bands each
covering 5%. There ane= 122 forecasts, so that there should be about 6 observatiaach of the
probability bands if the density forecasts are accurates iBlviepresented by the horizontal line. The
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Figure 4: Evaluation of Structural Density Forecasts; 1984 - 2000
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Notes: The figures show the distribution of realized data points on the démstasts. The density forecasts are
represented as probability bands each covering 5% of the density.affisliow how many of the realized obser-
vations fall in each of the probability bands. If the density forecast iscanrate description of actual uncertainty,
than about six of the 122 observations should fall in each probability.band
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Figure 5: Evaluation of Structural Density Forecasts; 1984 - 2000
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Notes: The figures show the distribution of realized data points on the démstasts. The density forecasts are
represented as probability bands each covering 5% of the density.affisliow how many of the realized obser-
vations fall in each of the probability bands. If the density forecast iscanrate description of actual uncertainty,
than about six of the 122 observations should fall in each probability.band
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bars shaded in different colors reflect PITs for the differergdasting horizons.

The peak in the middle of the histograms of the output growtbdasts shows that these overestimate
actual uncertainty. The histograms for inflation are closer tmiform distribution, especially for
the inflation nowcast. There is only a slight peak in the middi¢he distributions and the his-
togramms for some models cover the entire distributioruidiclg the tails. Higher horizon forecasts
overestimate actual inflation uncertainty. The density faséx are imprecise for the federal funds
rate. The tails are not covered, especially for short hogzand thus uncertainty is overestimated
by the density forecasts. Gerard and Nimark (2008) give asjtée reason for the overestimation
of actual uncertainty by DSGE models. The models impose tigéirictions on the data. If the
data rejects these restrictions, large shocks are needidite models to the data resulting in high
shock uncertainty. As all individual model forecasts ogéireate actual uncertainty it is not possible
that the weighted forecasts yield a more realistic assesafemcertainty. Therefore, the averaged
density forecasts overestimate uncertainty as Well.

9 Conclusion

During the last decade theory based DSGE models that arestemtty derived from microeconomic
optimization problems of households and firms have becomevtrkhorse of modern monetary
economics. Despite their stylized nature and their retame few equations they are widely used
in academics as well as at policy institutions. Computingafisample forecasts is an ultimate test
of the ability of this class of models to explain businessleyc In this paper, | have assessed the
accuracy of point and density forecasts of four DSGE modetgyugal-time data. While point fore-
casts are surprisingly precise, density forecasts have &fe@mvn to overestimate actual uncertainty.
Point forecasts of some models are comparable to the fonegasicuracy of atheoretical forecasting
methods that can process large data sets. Especially thd yo8enets and Wouters (2007) yields
relatively precise inflation, output growth and intereserfirecasts. Combining several forecasts
can increase the forecasting accuracy. Combination mettiad give significant weight to several
models are preferable over methods that aim to identifyglesimest model. The accuracy of a simple
mean of model forecasts is hard to beat by other forecasthieggmethods. DSGE based forecasts
perform particularly well for medium term forecasts in caripon with Greenbook projections and
nonstructural forecasts. Structural forecasts perforrtequéll during normal times, but they are not
able to detect large recessions and turning points due itoikek internal propagation meachanism.

10n principle, there are tests available to formally check for a uniform distioh (Berkowitz, 2001). Unfortunately, the
results have to be treated with high caution (see Elder, Kapetanios, Taytb¥ates, 2005; Gerard and Nimark, 2008). As
the visual assessement has already shown clear evidence agaiifstia distribution of the PITs, | do not use additional
formal tests.
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Large shocks are needed to fit the models to volatile periodseagample. This is also the reason for
their wide confidence bands.
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Appendix: Additional Results

Table 4: Percentage of periods alternative forecast better thantt&@en 984-2000

(a) Output growth

horizon DS FM sSwW EDO BVAR best FW worst FW

jump off -1

0 29 34 37 32 38 43 30

1 52 45 48 48 51 60 39

2 48 47 53 49 53 58 37

3 47 43 59 51 51 57 42

4 44 45 52 48 48 54 36

5 45 43 60 49 42 52 43
jump off 0

1 43 51 49 48 50 59 40

2 48 49 57 43 53 55 41

3 48 47 55 48 52 57 38

4 46 47 53 42 52 57 39

5 43 44 55 43 47 49 43
(b) Inflation

horizon DS FM sSw EDO BVAR best FW worst FW

jump off -1

0 41 30 41 29 38 37 25

1 29 31 44 38 35 40 21

2 41 38 36 35 39 43 25

3 44 36 33 32 40 44 17

4 43 30 36 31 34 43 11

5 37 31 38 35 35 46 16
jump off 0

1 36 35 36 43 36 41 30

2 37 32 40 45 38 40 21

3 42 43 37 38 48 43 20

4 37 26 33 36 38 43 18

5 38 31 31 50 33 48 15

(c) Federal Funds Rate

horizon DS FM SW EDO BVAR best FW worst FW
jump off -1
0 8 13 6 4 13 - -
1 28 27 22 11 25 - -
2 45 33 32 18 38 - -
3 50 34 39 23 45 - -
4 56 31 45 30 48 - -
5 60 34 50 29 56 - -
jump off 0
1 33 31 29 23 38 - -
2 41 35 39 27 50 - -
3 46 42 48 27 53 - -
4 48 40 53 29 57 - -
5 53 42 54 24 59 - -

Notes: GB: Greenbook; DS: Del Negro & Schorfheide; FM: FuhreM&ore; SW: Smets & Wouters; EDO:
FRB/EDO Model by Edge, Kiley & Laforte; BVAR: Bayesian VAR; Best FBest performing atheoretical model
for the specific horizon considered by Faust & Wrig?; Worst FW: Wpesforming atheoretical model for the
specific horizon considered by Faust & Wright. Th&first column shibedorecast horizon. The other columns
show the percentage of forecast periods in which forecast erf@ecific models are smaller in absolute value
than the Greenbook forecast error. Entries greater than 50 pénckcurte that the alternative forecast is better
more than half the time and are in bold.



Table 5: Percentage of periods weighted forecast better than Gaderiti84-2000

(a) Output growth

horizon PL oLs Median Mean RMSE Rank best M best FW
jump off -1
0 36 43 36 40 40 39 38 43
1 52 55 55 55 56 55 52 60
2 45 55 54 57 57 56 53 58
3 47 57 55 57 58 63 59 57
4 44 49 60 54 54 65 52 54
5 45 49 54 56 55 56 60 52
jump off 0
1 44 53 54 57 57 56 51 59
2 46 54 62 58 61 53 57 55
3 44 53 55 55 55 56 55 57
4 46 54 55 53 53 53 53 57
5 43 49 53 53 53 53 55 49
(b) Inflation
horizon PL oLS Median Mean RMSE Rank best M best FW
jump off -1
0 39 32 42 37 38 40 41 37
1 33 34 33 38 38 34 44 40
2 41 40 46 43 44 46 41 43
3 44 43 45 49 48 46 44 44
4 43 42 43 44 45 43 43 43
5 37 38 39 43 44 41 38 46
jump off O
1 38 40 37 37 38 39 43 41
2 38 39 41 43 43 45 45 40
3 42 37 43 47 46 50 48 43
4 37 38 39 44 43 42 38 43
5 38 43 35 40 42 43 50 48
(c) Federal Funds Rate
horizon PL OLS Median Mean RMSE Rank best M best FW
jump off -1
0 10 9 13 12 12 13 13 -
1 29 14 29 29 32 31 28 -
2 43 29 42 41 38 40 45 -
3 50 37 48 51 54 50 49 -
4 56 34 57 56 57 56 56 -
5 60 33 58 61 61 60 60 -
jump off 0
1 31 23 36 38 37 40 38 -
2 43 29 45 48 45 53 50 -
3 45 38 55 58 57 51 50 -
4 48 38 59 56 57 54 57 -
5 53 33 60 63 62 53 59 -

Notes: PL: Predictive Likelihood; OLS: Ordinay Least Squares; Medidedian forecast; Mean: Mean forecast;
RMSE: weighted by inverse RMSE; Rank: weighted by inverse raniss;\debest single model forecast; Best FW:
Best performing atheoretical model for the specific horizon consitlby Faust & Wright; The first column shows
the forecast horizon. The second column shows the RMSE for thenBaek. The other columns show RMSE of
alternative forecasts relative to the Greenbook. Values less than e laold and show that a forecast is more
accurate than the one by the Greenbook.
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Table 6: Combination weights for data vintage May 12, 2000: output growth

model PL oLSs Median Mean RMSE Rank
horizon 0
DS 0.00 0.00 0.01 0.20 0.19 0.09
FM 0.00 1.00 0.33 0.20 0.21 0.22
sSw 0.00 0.00 0.33 0.20 0.19 0.11
EDO 0.00 0.00 0.00 0.20 0.19 0.15
BVAR 1.00 0.00 0.32 0.20 0.22 0.44
horizon 1
DS 0.00 0.00 0.98 0.20 0.19 0.11
FM 0.00 0.00 0.00 0.20 0.18 0.09
sSw 0.00 0.42 0.00 0.20 0.21 0.44
EDO 0.00 0.45 0.02 0.20 0.21 0.22
BVAR 1.00 0.12 0.00 0.20 0.21 0.15
horizon 2
DS 0.00 0.00 0.93 0.20 0.19 0.11
FM 0.00 0.00 0.02 0.20 0.18 0.09
S\ 0.00 0.19 0.00 0.20 0.21 0.22
EDO 0.00 0.44 0.05 0.20 0.21 0.15
BVAR 1.00 0.37 0.00 0.20 0.21 0.44
horizon 3
DS 1.00 0.00 0.78 0.20 0.19 0.11
FM 0.00 0.00 0.06 0.20 0.18 0.09
sSw 0.00 0.19 0.00 0.20 0.21 0.44
EDO 0.00 0.42 0.10 0.20 0.21 0.15
BVAR 0.00 0.38 0.06 0.20 0.21 0.22
horizon 4
DS 1.00 0.00 0.75 0.20 0.19 0.09
FM 0.00 0.00 0.09 0.20 0.19 0.11
sSw 0.00 0.28 0.00 0.20 0.21 0.44
EDO 0.00 0.37 0.12 0.20 0.20 0.15
BVAR 0.00 0.35 0.04 0.20 0.21 0.22
horizon 5
DS 1.00 0.00 0.53 0.20 0.19 0.09
FM 0.00 1.00 0.26 0.20 0.20 0.15
sSw 0.00 0.00 0.00 0.20 0.21 0.44
EDO 0.00 0.00 0.15 0.20 0.19 0.11
BVAR 0.00 0.00 0.06 0.20 0.21 0.22

Notes: PL: Predictive Likelihood; OLS: Ordinay Least Squares; Medidedian forecast; Mean: Mean forecast;
RMSE: weighted by inverse RMSE; Rank: weighted by inverse ranks@6Negro & Schorfheide; FM: Fuhrer
& Moore; SW: Smets & Wouters; EDO: FRB/EDO Model by Edge, Kiley & be€; BVAR: Bayesian VAR; The
first column shows the model name and the rows show the weight ofraadkl for the different combination
schemes. For each horizon, the five model weights sum up to 1.
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Table 7: Combination weights for data vintage May 12, 2000: inflation

model PL oLSs Median Mean RMSE Rank
horizon 0
DS 0.00 0.00 0.00 0.20 0.22 0.15
FM 0.00 0.00 0.11 0.20 0.16 0.09
sSw 0.00 0.62 0.05 0.20 0.23 0.44
EDO 0.00 0.00 0.00 0.20 0.18 0.11
BVAR 1.00 0.38 0.84 0.20 0.22 0.22
horizon 1
DS 0.00 0.00 0.21 0.20 0.20 0.15
FM 0.00 0.00 0.00 0.20 0.17 0.09
sSw 0.00 0.49 0.03 0.20 0.23 0.44
EDO 0.00 0.14 0.00 0.20 0.19 0.11
BVAR 1.00 0.37 0.76 0.20 0.22 0.22
horizon 2
DS 0.00 0.00 0.50 0.20 0.20 0.15
FM 0.00 0.30 0.00 0.20 0.19 0.11
S\ 0.00 0.35 0.07 0.20 0.22 0.44
EDO 0.00 0.23 0.00 0.20 0.17 0.09
BVAR 1.00 0.11 0.44 0.20 0.22 0.22
horizon 3
DS 1.00 0.25 0.44 0.20 0.24 0.44
FM 0.00 0.35 0.00 0.20 0.17 0.09
sSw 0.00 0.00 0.10 0.20 0.22 0.22
EDO 0.00 0.39 0.00 0.20 0.17 0.11
BVAR 0.00 0.00 0.46 0.20 0.20 0.15
horizon 4
DS 1.00 0.00 0.36 0.20 0.22 0.22
FM 0.00 0.31 0.00 0.20 0.16 0.09
sSw 0.00 0.16 0.11 0.20 0.23 0.44
EDO 0.00 0.54 0.00 0.20 0.20 0.15
BVAR 0.00 0.00 0.52 0.20 0.19 0.11
horizon 5
DS 1.00 0.00 0.33 0.20 0.22 0.22
FM 0.00 0.33 0.00 0.20 0.16 0.09
sSw 0.00 0.15 0.13 0.20 0.23 0.44
EDO 0.00 0.52 0.00 0.20 0.20 0.15
BVAR 0.00 0.00 0.54 0.20 0.18 0.11

Notes: PL: Predictive Likelihood; OLS: Ordinay Least Squares; Medidedian forecast; Mean: Mean forecast;
RMSE: weighted by inverse RMSE; Rank: weighted by inverse ranks@6Negro & Schorfheide; FM: Fuhrer
& Moore; SW: Smets & Wouters; EDO: FRB/EDO Model by Edge, Kiley & be€; BVAR: Bayesian VAR; The
first column shows the model name and the rows show the weight ofraadkl for the different combination
schemes. For each horizon, the five model weights sum up to 1.
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Table 8: Combination weights for data vintage May 12, 2000: Federaldiaate

model PL oLSs Median Mean RMSE Rank
horizon 0
DS 0.00 0.00 0.00 0.20 0.18 0.11
FM 0.00 0.00 0.00 0.20 0.21 0.15
sSw 0.00 0.00 0.00 0.20 0.22 0.22
EDO 0.00 1.00 1.00 0.20 0.14 0.09
BVAR 1.00 0.00 0.00 0.20 0.25 0.44
horizon 1
DS 0.00 0.00 0.00 0.20 0.18 0.11
FM 0.00 0.00 0.00 0.20 0.23 0.22
sSw 0.00 0.00 0.00 0.20 0.20 0.15
EDO 0.00 1.00 1.00 0.20 0.14 0.09
BVAR 1.00 0.00 0.00 0.20 0.24 0.44
horizon 2
DS 0.00 0.00 0.03 0.20 0.19 0.11
FM 0.00 0.00 0.00 0.20 0.22 0.22
S\ 0.00 0.00 0.00 0.20 0.20 0.15
EDO 0.00 1.00 0.54 0.20 0.15 0.09
BVAR 1.00 0.00 0.43 0.20 0.25 0.44
horizon 3
DS 1.00 0.00 0.12 0.20 0.19 0.11
FM 0.00 0.00 0.00 0.20 0.20 0.22
sSw 0.00 0.00 0.00 0.20 0.20 0.15
EDO 0.00 1.00 0.38 0.20 0.16 0.09
BVAR 0.00 0.00 0.50 0.20 0.24 0.44
horizon 4
DS 1.00 0.00 0.16 0.20 0.21 0.15
FM 0.00 0.00 0.00 0.20 0.18 0.11
sSw 0.00 0.00 0.00 0.20 0.21 0.22
EDO 0.00 1.00 0.38 0.20 0.16 0.09
BVAR 0.00 0.00 0.46 0.20 0.23 0.44
horizon 5
DS 1.00 0.00 0.22 0.20 0.21 0.15
FM 0.00 0.00 0.00 0.20 0.17 0.09
sSw 0.00 0.00 0.00 0.20 0.22 0.22
EDO 0.00 1.00 0.38 0.20 0.17 0.11
BVAR 0.00 0.00 0.40 0.20 0.23 0.44

Notes: PL: Predictive Likelihood; OLS: Ordinay Least Squares; Medidedian forecast; Mean: Mean forecast;
RMSE: weighted by inverse RMSE; Rank: weighted by inverse ranks@6Negro & Schorfheide; FM: Fuhrer
& Moore; SW: Smets & Wouters; EDO: FRB/EDO Model by Edge, Kiley & be€; BVAR: Bayesian VAR; The
first column shows the model name and the rows show the weight ofraadkl for the different combination
schemes. For each horizon, the five model weights sum up to 1.
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