Emigration and Wages: The EU Enlargement Experiment

Suggested Citation: Elsner, Benjamin (2011) : Emigration and Wages: The EU Enlargement Experiment, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2011: Die Ordnung der Weltwirtschaft: Lektionen aus der Krise - Session: Migration, Earnings, and Human Capital, No. F18-V4

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

This Version is available at:
http://hdl.handle.net/10419/48716
Emigration and Wages: The EU Enlargement Experiment

Benjamin Elsner∗†

June 18, 2011

Abstract

While there is a vast literature on the impact of immigration on wages in the receiving countries, little is known about the wage effects of emigration in the source countries. This paper sheds light on the short-run impact of emigration on the wage level and wage distribution in the source countries. The large emigration wave from Central and Eastern Europe following EU enlargement in 2004 serves as an example for the analysis. Using microdata from Lithuania for the calibration of a structural model I show that emigration significantly changes the wage distribution. Following EU enlargement, emigration caused an increase in the real wages of young workers by around 6%, while it led to a decrease in the wages of old workers by around 1.2%.

Preliminary Draft. Please do not cite without permission of the author.

Keywords: Emigration, EU Enlargement, European Integration, Wage Distribution

JEL codes: F22, J31, O15, R23

∗Trinity College Dublin, Department of Economics and I1IS. Email: elsnerb@tcd.ie, Webpage: www.benjaminelsner.com.

†I am particularly grateful to Gaia Narciso for all her support and encouragement. Furthermore, I would like to thank Catia Batista, Karol Borowiecki, Alessandra Casarico, Christian Danne, Tommaso Frattini, Daniel Hamermesh, Julia Anna Matz, Conor O’Toole, Gianmarco Ottaviano, Giovanni Peri, Janis Umbljs, Pedro Vicente, Michael Wycherley and the participants at the 7th ISNE conference, the NORFACE conference at UCL and seminar presentations at Trinity College Dublin, University College Dublin, NUI Maynooth, University of Mainz, Fondazione Eni Enrico Mattei, Bocconi and SSE Riga for helpful suggestions. The help of the Irish Central Statistical Office and the Lithuanian Statistical Office in producing the data is gratefully acknowledged. This work is funded by the Strategic Innovation Fund (SIF) of the Irish Higher Education Authority (HEA). Part of this paper was written during a research visit at Bocconi University. All errors are mine.
1 INTRODUCTION

Migration affects both receiving and sending countries. While there is a vast literature on the effect of migration on the labor markets in the receiving country, little is known about the impact of emigration on the labor markets in the sending country. This paper sheds light on the effect of emigration on wage distribution of in the source country. It studies the remarkable case of the enlargement of the European Union (EU) in 2004, which was followed by substantial migration movements from Central and Eastern Europe (CEE) to Western Europe. From 2004 to 2007, between 5% and 9% of the workforce of Latvia, Lithuania, Poland and Slovakia received a work permit in Ireland and the UK.\(^1\)

Based on data from Lithuania, I find a significant impact of emigration on the wage distribution, which can be summarized by two main findings. First, among those workers who stay in the home country, young workers gain from emigration while old workers lose. Second, the gain for young workers exceeds the losses for old workers. This distributional impact of emigration on wages is driven by two opposing effects. Groups of workers with a high share of emigrants become a more scarce resource in the labor market, which leads to an increase of their wages. As most emigrants were young, this effect dominates for young workers. Moreover, old and young workers are complements in aggregate production, so that the emigration of young workers lowers the labor demand for old workers and causes to a decrease in their wages.

The analysis is based on a factor demand model, which follows Katz & Murphy (1992), Borjas (2003) and Ottaviano & Peri (2011). The workforce consists of skill groups defined by the observable characteristics education and work experience. The model generates a labor demand framework that accounts for differences in substitutability between these skill groups. Using Lithuanian microdata, I estimate the structural parameters that characterize the labor market. To overcome potential simultaneity bias in the estimation of the labor demand curves, birth cohort size and the number of emigrants from Poland serve as instrumental variables. Based on these estimates I calibrate the model and simulate the post-2004 emigration wave on the Lithuanian labor market, which yields a separate wage effect for every skill group. The number of emigrants per skill group is taken from census and work permit data in the the main destination countries, Ireland and the UK. The wages of workers with 10 years or less of work experience increased by 6% to 8%, while the wages of workers with 30 and more years of work experience decreased by around 1%. The wages of workers with a work experience between 11 and

\(^1\) Own calculations based on work permit data from Ireland and the UK. See figure 1.
30 years were not affected by emigration.

These effects are significantly larger than the ones typically found in studies on the wage effect on immigration. The labor markets in sending countries like Poland or Lithuania are fundamentally different from the labor markets in developed receiving countries. Consequently, the wage effect found in the sending country reflects more than a mirror image of the wage effect in the receiving country. It yields additional information on the structure of the labor market in the sending country. For the case of Lithuania the estimates reveal that old and young workers are less substitutable than in Germany or the US, which leads to stronger complementarity effects and higher wage changes for young workers.

Compared to a reduced-form approach, the structural approach used in this study has the advantage that it allows to disentangle the changes in wages caused by migration from all other factors that have an influence on wages. Hence, the typical problems of reduced form approaches, such as endogeneity and omitted variable bias, can be avoided and the causal impact can be identified. This possibility is especially important in the case of EU enlargement, after which accession countries saw increased trade flows and inflows of FDI and EU structural funds, which have an impact on wages but which are not caused by migration. Yet, the identification of the structural parameters of the model is based on assumptions which may over-simplify the true functioning of the labor market. To show the accuracy of the model predictions, I compare these predictions with the results of the reduced-form analysis in Elsner (2010). The difference in the predicted wage effects of both approaches is minor and can be explained by complementarity effects, which can be modelled in the structural model but not in the reduced form.

This paper relates to the literature on the wage effects of migration, as well as to the literature on the economic consequences of European integration. The migration literature focuses in large parts on the side of the receiving countries, whereas the literature on the wage effects of emigration remains scarce. Docquier et al. (2011) analyze jointly the wage effect of immigration and emigration in a simulation-based approach for a sample of developed countries. They find that in the long run emigration decreased the wages of stayers. Mishra (2007) analyzes the long-run impact of emigration on the wages in Mexico and concludes that emigration to the US increased the average wage level in Mexico from 1970 to 2000. Elsner (2010) finds a similar effect of emigration on the overall wage level in the source country. Looking at the case of Lithuania after EU

2 See Kerr & Kerr (2011) for a survey on the wage effect of immigration in general and Barrett et al. (2006) and Blanchflower & Shadforth (2009) for an analysis of the effect of the post-EU enlargement immigration on the labour markets in Ireland and the UK.
enlargement 2004, he finds that emigration increased the average wages of stayers in the short run. Compared to these studies, this current paper contributes to the literature on the wage effects of emigration as it shows that emigration can significantly change the wage distribution in the short run, besides its impact on the overall wage level.

With respect to the literature on the economic impacts of EU enlargement, Batista (2007) analyzes jointly the impact of emigration and FDI on wages in Portugal after the country joined the EU in 1986. She finds that the long-run impact of emigration was small compared to the impact of FDI inflows. For the context of the EU enlargement 2004 and the migration wave that followed, Barrell et al. (2010) use a DSGE model to analyze the macroeconomic effects of the post-2004 migration wave. They conclude that emigration decreases GDP and unemployment in the long run, without making reference to wages. Hazans & Philips (2009) and Fihel et al. (2006) document the migrant flows from the NMS to Western Europe, and the developments of the labor markets in the NMS. In a descriptive analysis they show that after EU accession wages increased and unemployment decreased. In this paper, I show that there exists in fact a causal relationship between emigration and wages. Moreover, I quantify the magnitude of the wage changes for different groups of workers.

The remainder of the paper is structured as follows: section 2 gives a historical overview of the emigration wave following EU enlargement. Sections 3 to 6 describe the structural model, the estimation of the structural parameters and the simulation of the post-2004 emigration wave. In section 7 I conduct a sensitivity analysis. Section 8 concludes.

2 EU ENLARGEMENT, MIGRATION AND WAGES: SOME STYLISTED FACTS

In 2004 eight countries from CEE, alongside with Malta and Cyprus, joined the EU. The existing high wage differentials between Western European countries and the accession countries at that time created a large incentive to emigrate from Eastern Europe.\(^3\) *Freedom of Movement*, one of the basic principles of the EU would guarantee every worker from the NMS the right to migrate to any EU country and seek for employment. However, most countries in Western Europe feared the negative consequences of a large migration

\(^3\) If GDP per capita differentials in purchasing-power-standards can be seen as a proxy for real wages, the average wages in Poland amounted to 40% of UK wages. In Lithuania, this share was 37%. Source: Eurostat.
wave on their labor markets as well as on the welfare state and restricted the access to the labor markets for workers from the NMS for a period of up to 7 years. Only Ireland, the UK and Sweden opened their labor markets in 2004 and welcomed a large number of immigrant workers. Around 1.2 million workers migrated between 2004 and 2007 to the UK (770,000), Ireland (416,000) and Sweden (19,000) and received a work permit in these countries. The majority of migrants went to Ireland and the UK, because both countries were experiencing an economic boom at the time and the language barrier was lower than in Sweden.

Most migrant workers came from Poland, Latvia, Lithuania and Slovakia. Figure 1 illustrates the magnitude of the emigration wave relative to the workforce of the source country. Although Poland was the country with the highest number of emigrants, Lithuania and Latvia had the highest share of emigrants, relative to the workforce of these small countries. Around 9% of all Lithuanian workers and 6% of all Latvian workers received a work permit in Ireland or the UK between 2004 and 2007, which is a significant share of the country’s workforce. Some of the workers only migrated for a short period, while the majority stayed in the destination country for longer. Evidence from the Irish Central Statistics Office (2009) suggests that around 60% of migrants from the NMS stayed for at least two years after having received a work permit.

This study uses data from Lithuania, which was the country with the highest share of emigrants among the NMS. Nevertheless, the impact of emigration on the labor market in Lithuania should be comparable to the one in Latvia, Slovakia and Poland. The number of work permits per year given to Lithuanian workers jumped from around 6,400 in 2003 to 40,000 after EU enlargement in 2006.\(^5\) Most emigrant workers were young, with a work experience of 10 years or less. In the time around EU enlargement Lithuania experienced a phase of high GDP growth, between 7\% in 2002 and 10.7\% in 2005. Average wages increased considerably between 2002 and 2006. Figure 2 displays the average wage changes for workers in different skill groups.

\[\text{Figure 2 – Wage Changes 2002-2006 by Education and Work Experience.}\]

Note: A skill group is defined by education and work experience.

Source: Own calculations from the Lithuanian HBS.

Wage changes were highest for workers with lower secondary education and lowest for workers with a third-level degree. In the education groups *lower secondary* and *upper secondary* the wage changes were highest for young workers, while for workers with a third-level education no such pattern is visible. Given the variation across skill groups in wage changes and emigration rates, the question arises how these two variables are related. Intuitively, we should expect a positive correlation. The more workers emigrate, the more scarce become stayers of the same skill group and the higher their wage increase. Indeed, as figure 3 shows, the correlation between emigration and wage changes is positive.

However, wage changes may be caused by numerous factors, and emigration is only one of them. Using the same dataset, Elsner (2010) determines the average impact of

\(^5\) See table 1c).
emigration on wages in a reduced-form approach. In individual-level wage regressions, he controls for confounding factors like unemployment, FDI and internal migration and finds that an increase in the emigration rate of ten percentage points leads to an increase in real wages by 6.6%.

In the structural model in this study I impose an economic structure on the data in order to determine, how this average wage effect is distributed among different groups of workers.

3 Structural Model

The structural model explains how a change in labor supply affects the wages of workers who differ in their observable skills. To model this heterogeneity in skills, the workforce is divided into 12 skill groups, which are defined by education and work experience. Each skill group constitutes a separate labor market, but all labor markets are interrelated. Workers with the same observable characteristics compete in the same labor market and are assumed to be perfect substitutes. Across skill groups, workers with similar skills are closer substitutes than workers with fundamentally different skills. Emigration of workers of a particular skill group shifts the labor supply and, given a downward-sloping labor demand curve, increases the wages of the stayers in this skill group. However, due to the interdependency of labor markets, a change in the labor supply of one skill group affects the wages of all other skill groups through changes in labor demand. The extent of these
general equilibrium effects depends on the degree of substitutability between skill groups and needs to be determined empirically.

Following the works of Katz & Murphy (1992), Borjas (2003) and Ottaviano & Peri (2011), aggregate production in the economy is modelled with a nested CES production function, into which each skill group enters as a distinct labor input. Assuming that labor markets clear and each skill group is paid its marginal product, the model generates a relative labor demand curve for each education and experience group. The model is set up in a way that allows for an econometric identification of the labor demand curves while accounting for the heterogeneity in skills of the workforce. The aggregate production function consists of three building blocks: first, physical capital and labor are combined to produce an aggregate output. As I am interested in the short-run effect of emigration on wages, I assume throughout the study that capital does not adjust to changes in labor supply. This assumption goes against the prediction of neoclassical growth models, but the short time span of this analysis justifies the assumption. According to neoclassical growth models such as Solow (1956), capital adjustment dampens the wage changes caused by an emigration shock, as the capital stock decreases in the long run until the capital-labor ratio is the same as in the initial steady state. However, in the time span of 5 years it is unlikely that firms get rid of their capital, so that it can be assumed as fixed. The second building block is a CES aggregate of three education groups, which reflects the fact that workers with a different education are imperfect substitutes in the labor market. The third building block follows the same logic. Workers within the same education group may differ in their human capital, especially when they have different levels of work experience, which makes them imperfect substitutes as well. To account for differences in work experience, each education group is represented by a CES aggregate of four experience groups.

3.1 Aggregate Production

The notation in this section closely follows Borjas (2003) and Ottaviano & Peri (2011). Aggregate production in the economy is described by the Cobb-Douglas production function

\[Q_t = A_t L_t^\alpha K_t^{1-\alpha}. \] (1)

Aggregate output \(Q_t \) is produced using total factor productivity \(A_t \), physical capital \(K_t \) and labor \(L_t \). \(\alpha \in (0,1) \) is the share of labor in aggregate income, which is constant.
over time. The price of the aggregate output is normalized to one. The labor force L_t consists of three different education groups L_{it} where i denotes lower secondary education (10 years of schooling or less), upper secondary education (11-14 years of schooling) and third-level degree (equivalent to B.Sc degree or higher). The aggregate labor input L_t is represented by the CES aggregate

$$L_t = \left[\sum_i \theta_{it} \left(\frac{\sigma_{ED}^{-1}}{\sigma_{ED}^{-1}} \right)^{\sigma_{ED}^{-1}} \right].$$ (2)

σ_{ED} describes the elasticity of substitution between workers of different education groups. The higher the value of this parameter, the easier it is to substitute groups of workers with different education in the production process. σ_{ED} is time-invariant. The relative productivity parameters θ_{it} have the property $\sum_i \theta_{it} = 1$ and capture the difference in relative productivity between education groups.

Each education group consists of several work experience groups L_{ijt}:

$$L_{ijt} = \left[\sum_j \gamma_{ijt} \left(\frac{\sigma_{EXP}^{-1}}{\sigma_{EXP}^{-1}} \right)^{\sigma_{EXP}^{-1}} \right].$$ (3)

For the division of an education group into experience groups (j) I use intervals of 10 years of work experience, which gives a total of four experience groups: 0-10 years, 11-20 years, 21-30 years and more than 30 years of work experience. The choice of the intervals depends on the characteristics of the dataset. Shorter intervals, e.g. 2 years or 5 years, allow for a more differentiated picture of the labor market, but they come at the cost of a loss in precision. With a given number of observations, a high number of skill groups means that the calculation of the average wage an labor input per skill group are based on a small number of observations, so that these become less precise. Aydemir & Borjas (2011) show that this attenuation bias can have a significant impact on the estimates of the structural parameters. Given the available dataset, the choice of 10-year intervals is a compromise that reduces attenuation bias and yet allows for a differentiated picture of the labor supply and wage changes.

The elasticity of substitution σ_{EXP} is time-invariant and measures the degree of substitutability of workers with the same education but different work experience. γ_{ijt} denotes the relative productivity of workers in experience group j and education group i with $\sum_j \gamma_{ijt} = 1$.

6 Most of the literature, e.g. Borjas (2003), Brücker & Jahn (2011), D’Amuri et al. (2010), Katz &
Figure 4 illustrates the nested structure of the CES production function. From this picture we can see the assumptions the model makes with respect to the elasticities of substitution between any two education and experience groups, σ_{ED} and σ_{EXP}. These may seem restrictive at first glance, but they are necessary to bring together theory and empirics. Ideally, we would like to estimate a separate relative labor demand curve, i.e. a separate σ_{EXP} for every skill group, but the econometric identification of the structural parameters would be impossible. With 12 skill groups the number of parameters to be estimated would amount to $12 \cdot 11 = 132$, which cannot be estimated from a small number of observations that is typically available from aggregate labor market data. The nested CES structure collapses the number of structural parameters that need to be estimated to two elasticities of substitution. Given these elasticities and the variation in the number of emigrants across skill groups, we can nevertheless obtain a differentiated picture of the impact of emigration on the wages of each skill group.

3.2 Labor Market Equilibrium

Labor markets are perfectly competitive and clear in every period. Profit-maximizing firms pay each skill group L_{ijt} a real wage w_{ijt} equal to the group’s marginal product, which is obtained from a partial differentiation of equations (1)-(3),

Murphy (1992), Manacorda et al. (2006), Ottaviano & Peri (2011), uses 5-year experience groups.
\(w_{ijt} = \frac{\partial Q_t}{\partial L_{ijt}}. \) \hspace{1cm} (4)

Equation (4) describes the firms’ labor demand for skill group \(ijt \). The log of this equation gives a labor demand curve that is log-linear in \(L_{ijt} \),

\[
\log w_{ijt} = \log \alpha A_t + (1 - \alpha) \log K_t + (\alpha - 1 + \frac{1}{\sigma_{ED}}) \log L_t + \log \theta_{it} + \frac{1}{\sigma_{EXP}} \left(\log \delta_{it} + 1 \right) \log L_{ijt}, \hspace{1cm} (5)
\]

where \(\frac{1}{\sigma_{EXP}} \) is the slope coefficient of the demand curve, while all other terms on the RHS of equation (5) are intercepts that vary along the dimensions indicated by the indices, i.e. time, education and experience. Any change in one of the factors on the right-hand side of this equation alters the marginal product, which leads to a change in the real wage \(ceteris paribus \). The wage of group \(ij \) depends on its own labor supply, as well as on the labor supply of all other groups of workers through higher nests of the CES production function. Therefore, it is not only the absolute scarcity of group \(ij \) that determines its wage, but also the relative scarcity of this group compared to all other skill groups in the labor market.

From equation (5), it is possible to generate an estimating equation for \(\sigma_{EXP} \), controlling for all other factors that affect the real wage. For the case of Lithuania, these controls are particularly important, as EU accession was accompanied by increased FDI inflows, a deeper trade integration and the inflow of EU structural funds, which may all have an impact on labor demand and ultimately on wages. Controlling for such factors is possible because the variation in all terms on the right-hand side of equation (5) except \(\frac{1}{\sigma_{EXP}} \log L_{ijt} \) can be absorbed by dummies and interaction terms.

\[
\left(\log \alpha A_t + (1 - \alpha) \log K_t + (\alpha - 1 + \frac{1}{\sigma_{ED}}) \log L_t \right) \text{ only varies over time but not across skill groups, so that a set of time dummies } \delta_{it} \text{ absorbs this variation. An interaction of time and education group dummies } \delta_{it} \text{ absorbs } \left(\log \theta_{it} + \frac{1}{\sigma_{EXP}} - \frac{1}{\sigma_{ED}} \right) \log L_{it}, \text{ which varies across education groups and over time. The parameters } \gamma_{ijt} \text{ and the labor input } L_{ijt} \text{ both vary along the dimensions time, education and experience, so that the inclusion of an interaction of the respective dummies would absorb all the variation and the model would be fully saturated. In this case } \frac{1}{\sigma_{EXP}} \text{ could not be identified. To circumvent this problem, I assume that the relative productivity of each experience group is constant over time, so that the variation of } \gamma_{ij} \text{ is absorbed by an interaction of education and}
\]
experience dummies, δ_{ij}. This is a standard assumption in the literature7 and in the time horizon of 5 years it is plausible that the relative productivity of an experience group does not change fundamentally.8

σ_{EXP} can then be consistently estimated from the equation

$$\log w_{ijt} = \delta_t + \delta_\mu + \delta_{ij} - \frac{1}{\sigma_{EXP}} \log L_{ijt}. \quad (6)$$

\section{Data and Descriptive Statistics}

The empirical analysis requires two datasets: one for the estimation of the structural parameters that characterize the Lithuanian labor market in section 5 and one for the quantification of the number of emigrants per skill group, which I will use in the simulations in section 6. For the estimation of the structural parameters of the labor market, I use the Lithuanian Household Budget Survey of the years 2002, 2003, 2005 and 2006.

The number of emigrants per skill group cannot be taken from an already existing dataset, as the statistical offices usually do not keep detailed records about emigrants. An obvious reason for this lack of suitable emigration data is that in most European countries there is no legal obligation for migrants to de-register once they emigrated. The consideration of the case of Lithuanian emigration after EU enlargement in 2004 has the advantage that within the EU Lithuanians were only allowed to migrate to the UK, Ireland and Sweden, while all other EU-15 countries closed their borders for a transitional period up to 2011. Consequently, we can obtain the number of emigrants from the register data of those destination countries. As the numbers of migrants to Sweden were minor9, I will neglect Sweden and only use census and work permit data from Ireland and the UK.

\subsection{Lithuanian Household Budget Survey}

The Lithuanian Household Budget Survey (HBS) is conducted annually by the Lithuanian Statistical Office with a random sample of 7000-8000 households. The sample is representative at the individual level and includes all people aged 18 or older, for which information on their age, education, income from employment, and personal characteris-

7 See Borjas (2003), Ottaviano & Peri (2011).

8 Moreover, in section 5 I add an additional set of time*experience interaction terms to the estimating equation, which turns out not to alter the estimation results.

9 See Wadensjö (2007).
Table 1 - Summary Statistics Lithuanian HBS

a) Lithuanian HBS

<table>
<thead>
<tr>
<th>Survey Year</th>
<th>Number of All Workers</th>
<th>Number of Men</th>
<th>Number of Women</th>
<th>Education</th>
<th>Age</th>
<th>Experience</th>
<th>Monthly Real Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>3950</td>
<td>2322</td>
<td>1628</td>
<td>Lower Sec</td>
<td>42.9</td>
<td>24.5</td>
<td>1084</td>
</tr>
<tr>
<td>2003</td>
<td>4136</td>
<td>2411</td>
<td>1725</td>
<td>Upper Sec</td>
<td>42.5</td>
<td>24.1</td>
<td>1142</td>
</tr>
<tr>
<td>2005</td>
<td>4042</td>
<td>2426</td>
<td>1616</td>
<td>Third-Level</td>
<td>43.1</td>
<td>24.6</td>
<td>1339</td>
</tr>
<tr>
<td>2006</td>
<td>3874</td>
<td>2314</td>
<td>1560</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Irish Census

<table>
<thead>
<tr>
<th>Number of All Workers</th>
<th>Number of Men</th>
<th>Number of Women</th>
<th>Education</th>
<th>Age</th>
<th>Experience</th>
<th>Monthly Real Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1274</td>
<td>671</td>
<td>603</td>
<td>29.5</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29.5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

c) Work Permit Data

<table>
<thead>
<tr>
<th>NINo Numbers (UK)</th>
<th>1430</th>
<th>3140</th>
<th>10710</th>
<th>24200</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS Numbers (Ireland)</td>
<td>2709</td>
<td>2394</td>
<td>18680</td>
<td>16017</td>
</tr>
</tbody>
</table>

d) Aggregate Data, Lithuania

| Number of Men | 1173 | 1227 | 1420 | 1676 |
| Number of Women | 998 | 1020 | 1167 | 1356 |

Unemployment Rate

| 2005-2006 | 13.8% | 12.4% | 8.3% | 5.6% |

Note: Standard errors of average values in parentheses. HBS: Number of private sector workers between 18 and 64 years. Education groups and work experience are determined as described in section 4. Real wages in Litas (LTL) are deflated by the harmonized consumer price index (HCPI).

The Irish census was conducted in 2002 and 2006 only. Data from the Irish census contain all Lithuanian workers who finished their education.

tics such as marital status, number of children and place of residence are available. The HBS does not contain information on the sector the respondents are employed in or their occupation.

To obtain the monthly real wages the variable *income from employment* is deflated using the harmonized consumer price index (HCPI).\(^{10}\) Table 1a) displays the summary statistics for the HBS. Most workers have an upper secondary education. The average real wage increases for all groups between 2002 and 2006. The magnitude of the standard errors of the average wages indicates a considerable variation of wages within each skill group.

Income data are self-reported, which can be subject to a misreporting bias. However, this bias should be negligible. Comparing the average wages for men and women in the HBS in table 1a) with the averages from the average monthly wage for men and women working in the private sector from the Lithuanian live register in table 1d), the difference between the two turns out to be minor, indicating the absence of misreporting bias in the data.

I restrict the sample to private sector workers of working age, i.e. 18-64 years and exclude public sector workers from the sample, as the wage determination in the public sector is usually not based on the market mechanism of supply and demand, but on seniority pay. Additionally, I drop the following observations: if the variable *disposable income* is negative\(^{11}\), if the socioeconomic status is pensioner or other, and if workers are self-employed and/or own a farm, as all these are not part of the workforce.

For each worker, the highest obtained degree counts for her classification into one of the education groups *lower secondary education*, *upper secondary education* and *third-level degree*. Lower secondary education includes all workers with less than a high school degree. Upper secondary school classifies all workers with a high school degree that allows them to go to college as well as workers who obtained a degree that is less than the equivalent of a B.Sc degree, i.e. they cannot apply for an international M.Sc with this degree. Third-level degrees are all degrees that are at least equivalent to a B.Sc and would allow workers to apply for an international M.Sc programme, so it also includes workers with M.Sc or PhD degrees. To make the third-level education comparable I choose the general minimum requirement for graduate admission at the London School of Economics (LSE) as a criterion. Workers with a degree Bakalauras, Magistras or higher are classified as third-level degree. Workers with some college, but a degree that requires less schooling

\(^{10}\) See table 1d) for the HCPI.

\(^{11}\) This is the case with 67 people working in the agricultural sector in 2002.
than the two mentioned above are classified as having an upper secondary education.12 This clustering is fairly broad, given that the Lithuanian education system offers a variety of educational tracks.13 However, these broad categories are necessary to match the characteristics of the stayers with those of the emigrants. The HBS gives 12 education groups, while the data on the emigrants only distinguishes between 5. Furthermore, broad categories ensure that within each group there is a number of observations large enough to allow the calculation of reliable average wages and emigration numbers. Table 6 illustrates in detail the aggregation of the educational tracks into the three education groups.

The HBS does not give direct information about the actual work experience of an individual. Therefore, I calculate the work experience of individual i with the formula $\text{exp}_i = \text{age}_i - \text{education}_i - 6$, where education_i represents the years of schooling it takes to obtain individual i's highest degree, age_i is i's age and 6 is subtracted because the compulsory schooling age in Lithuania is 6 years. education_i equals 10 years for lower secondary education, 12 for upper secondary education and 15 for third-level degree. For the sake of convenience, I use the term work experience throughout the study, although potential work experience or exposure to the labor market would admittedly give a more accurate description of this variable.

4.2 Irish Census

The Irish Census is conducted by the Irish Central Statistics Office (CSO) every 4-5 years and contains all people that living in Ireland and present in the night of the survey. For this study, I use the survey rounds in 2002 and 2006. The CSO provided me with a tabulation of the number of all Polish and Lithuanian immigrants in Ireland by gender, age and education.

The census does not capture all migrants who came to Ireland for work, but only those who are present in the survey night. People who came for a summer job or a time shorter than one year may not be included in the census. Therefore, the census data reflect a lower bound of the number of people who migrated from Lithuania to Ireland.

For the calculation of the number of emigrants, I only use data on migrants whose education is finished, which is 93\% of Lithuanians in the census 2002 and 85\% in 2006.

12 For the admission minimum requirement at the LSE, see \url{http://www2.lse.ac.uk/study/informationForInternationalStudents/countryRegion/europeEU/lithuania.aspx}

13 See \url{www.euroguidance.lt} for a description of the Lithuanian education system.
As we can see in table 1b) the number of workers in the Irish census increased by a factor 10 between 2002 and 2006. Interestingly, the educational distribution and the average age did not change significantly over time. Comparing the Lithuanian migrants in the Irish census with the workers in Lithuania, we can see that the education distribution is similar, although the migrants are on average 13 years younger than the stayers. In 2006 workers with a lower secondary education are slightly overrepresented among the migrants (20% among migrants compared to 10% among stayers), while workers with a third-level education are slightly underrepresented (18% among migrants compared to 23% among stayers). These summary statistics indicate two types of selection behavior: migrants are more likely to be younger than stayers and on average less educated, although the selection across education groups seems mild.

4.3 Work Permit Data: PPS and NINo Numbers

The number of workers who obtained a work permit in Ireland and the UK defines an upper bound to migration from Lithuania to Ireland and the UK. Every worker who moves to Ireland or the UK and wants to start working has to apply for a Personal Public Service (PPS) number in Ireland or a National Insurance Number NINo in the UK. These data capture all workers that emigrated from Lithuania to one of those two countries, regardless how long they stay in the host country. There is no obligation to de-register for workers, so it is not possible to measure, how many people returned to Lithuania and how much time they spent in the host country. Double counts are unlikely as workers keep their PPS and NINo numbers, no matter how often they move back and forth between Lithuania and Ireland or between Lithuania and the UK. The PPS and NINo numbers could undercount the actual number of migrant workers coming to Ireland and the UK as some workers might not have registered when they came to work for a short period of time or wanted to avoid having to pay income taxes. These cases should not be too important for the calculation of emigrant numbers, however. Workers who only migrated for a short period of time and for that reason did not register can hardly be seen as emigrants in the sense that they were part of the Lithuanian workforce for the whole time. Assessing the number of workers who migrated for a longer period without registering is difficult, but it should be small given the high number of migrants who did register. In summary, even if the work permit data may slightly undercount the actual number of migrants, for the simulations this means that the actual labor supply shock is

\[14 \text{ For more information about PPS and NINo, see www.welfare.ie and www.direct.gov.uk} \]
larger so that the calculated wage changes resulting from emigration are lower than the actual changes.

4.4 Calculation of Emigration Rates

To simulate the effect of the migration of different skill groups on wages, the labor supply shock \(\frac{\Delta L_{ij}}{L_{ij}} \) for each skill group has to be quantified. This fraction, which can be interpreted as the emigration rate, i.e. the percentage of workers in skill group \(ij \) who emigrated, consists of the change in labor supply in a given time span \(\Delta L_{ij} \) and the number of workers of the same skill group in Lithuania, \(L_{ij} \).\(^{15}\) \(L_{ij} \) can be directly computed from the HBS. Let the sample of a skill group \(ij \) contain \(l = 1, ..., L \) workers. The number of workers in this skill group in the population is the sum of the sampling weights \(p_{ijl} \).

Thus, \(L_{ij} = \sum_{l=1}^{L} p_{ijl}.^{16} \)

The shift in labor supply \(\Delta L_{ij} \) cannot be taken directly from the data, but needs to be computed from several Irish and UK data sources. This is due to the fact that I have very detailed data on Lithuanian migrants coming to Ireland in 2002 and 2006, but only aggregate figures on the migrants coming to the UK. To compute the labor supply shifts, I use the skill distribution from the Irish census and assume that the number of migrants coming to the UK is proportional to the one of those coming to Ireland. This assumption is justified, as there was little visible sorting behavior of migrants from the NMS between Ireland and the UK. Comparing the studies of Barrett & Duffy (2008) on migration to Ireland and Dustmann et al. (2009) on the UK, we can see that the educational distribution of migrants from the NMS was similar in both countries.\(^{17}\) There may have been a sorting behavior with respect to occupations, for example immigrants in Ireland work more in the construction sector and immigrants in the UK in the service sector, but this study focuses on more broadly defined skill groups, for which the distribution is similar.

\(^{15}\) Note that the supply shifts only consist of emigrants, but leave out migrants who came to Lithuania. As this paper focuses on the impact of emigration and it is possible to isolate this effect in the simulations, I do not consider the potentially offsetting wage impact of immigration.

\(^{16}\) \(L_{ij} \) is the average value of \(L_{ijt} \) in the years \(t = 2002, 2003, 2005, 2006 \).

\(^{17}\) Ireland: lower secondary education 11.1%, upper secondary education 61% and third-level degree 28.2% (see Barrett & Duffy (2008)). The corresponding values for the UK are 11.9%, 56.1% and 32% (see Dustmann et al. (2009)).
Table 2 – Emigration Rates 2002-2006

<table>
<thead>
<tr>
<th>Education</th>
<th>Lower Sec</th>
<th>Upper Sec</th>
<th>Third-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 Years</td>
<td>11%</td>
<td>16%</td>
<td>13%</td>
</tr>
<tr>
<td>11-20 Years</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>21-30 Years</td>
<td>6%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>31+ Years</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Note: The emigration rate per skill group denotes the share of workers in every skill group who emigrated between 2002 and 2006. The average emigration rate, weighted by the size of the skill group, is 5%. The emigration rates are calculated as the number of emigrants to Ireland and the UK divided by the average size of the skill group between 2002 and 2006. Sources: own calculations, as explained in section 4.4.

For the baseline scenario the emigration rate from 2002 to 2006 is calculated as follows:

\[
\Delta L_{ij} = L_{ij}^{IR,2006} \left(1 + \frac{NINO_{2006}}{PPS_{2006}}\right) - L_{ij}^{IR,2002} \left(1 + \frac{NINO_{2002}}{PPS_{2002}}\right)
\]

In this equation, \(NINO_{2006}/PPS_{2006}\) and \(NINO_{2002}/PPS_{2002}\) are weighting factors based on the numbers of work permits, which are a proxy for the total number of Lithuanian migrants coming to Ireland (PPS) and the UK (NINO) in a given year. \(L_{ij}^{IR,2002}\) and \(L_{ij}^{IR,2006}\) denote the number of Lithuanians in the Irish census in 2002 and 2006. The values are \(NINO_{2002}/PPS_{2002} = 0.52\) and \(NINO_{2006}/PPS_{2006} = 1.51\).

Table 2 summarizes the calculated emigration rates per skill group. Most emigrants are young, with a work experience of 10 years and less. Only very few older workers emigrated. The aggregate emigration rate, weighted by the size of the skill groups in the Lithuanian workforce is 5%.

5 Estimation of Structural Parameters

5.1 Identification and Estimation of \(\sigma_{EXP}\)

Using equation (6), I estimate \(\sigma_{EXP}\) with the number of workers per skill group as a labor input \(L_{ij}\).\(^{18}\) An estimation of the demand curve with OLS does not yield consistent estimates as the results suffer from simultaneity bias. The equation is a demand curve, but the observations in the data are equilibrium points in the \((w_{ij}, L_{ij})\) space, which

\(^{18}\) Ottaviano & Peri (2011) use the number of working hours from workers in this skill cell as a measure for labor input, which is more accurate than the number of workers. However, as the HBS does not include data on working hours, the number of workers serves as a proxy.
were determined by an interplay of supply and demand factors. To disentangle the labor demand and supply curves and identify the slope of the demand curve, an exogenous labor supply shifter is needed that does not shift labor demand, i.e., an instrumental variable (IV). Given an appropriate instrument, $\frac{1}{\sigma_{E_X P}}$ can be consistently estimated with a two-stage-least-squares (2SLS) estimator. For the estimation of $\frac{1}{\sigma_{E_X P}}$ I propose two instruments, *birth cohort size* and *emigration from Poland*.

The first instrument, *birth cohort size*, follows the logic that the size of a birth cohort should be highly correlated with labor supply today. For example, if 50 years ago many people were born, we should observe many 50-year-olds in the workforce today. To be valid as an instrument, the size of a birth cohort must not be correlated with labor demand today, other than with deterministic factors that are already controlled for in the first stage. In other words, the size of a birth cohort 50 years ago may well be correlated with contemporaneous demand shifters such as physical capital or total factor productivity but these correlations are absorbed in the first stage with the time dummies δ_t. The only possible violation of the exclusion restriction would be an impact of the birth cohort size on the stochastic part of the estimating equation, the error term ε_{ijt}. However, it is implausible that the size of a birth cohort, which was determined many years ago, leads to a stochastic shift in labor demand today. Note that the youngest cohort in the dataset is 18 years of age, the oldest 64. It appears unlikely that the number of people born at least 18 years ago leads to a stochastic shift of the labor demand curve today.

![Figure 5 - Number of Births per Year in Lithuania.](Note: Total number of people born per year in Lithuania. Source: Statistics Lithuania.)

The Lithuanian Statistical Office provides data on the total number of births per year from 1928 to 2010, excluding the years of the Second World war (1939-1945). Figure 5
shows the number of births per year from 1945 to 1984, the years in which most workers in the sample were born. As we can see there is a large variation in the number of births over time, which can potentially be exploited in the IV regressions. The data in this time series are annual, while the observations in the sample are skill groups that consist of 10 subsequent cohorts, so that the question arises, which measure predicts the number of workers of a skill group today most accurately. There are three candidates: 1) the total number of births, 2) the average number of births and 3) the median number of births per skill group. Take as an example the skill group upper secondary education, 0-10 years of work experience in the HBS of 2002. This skill group consists of 11 birth cohorts, born between 1974 and 1984. In this group the total number of births is the sum over all the people born between 1974 and 1984, the average number of births is the average in this time span and the median number of births is the corresponding median. The choice of the instrument depends on its statistical power, i.e. on the correlation of the instrument with the endogenous regressor. As it turns out in the first-stage regressions, the total number and the average number of births are only weakly correlated with labor supply, so that they cannot be used as instruments.\footnote{The F-Statistics are 0.358 for the average number of births and 0.212 for the total number of births.} The F-Statistic of the median number of births is 16.085, which indicates a high correlation of the instrument with the endogenous regressor. The reason for the weak correlation of the first two instruments is their sensitivity to outliers in the number of births. As we can see in figure 5, the number of births was subject to high fluctuations and the sum and the average are very sensitive to large changes in the number of births. These jumps dilute the ability of the instruments to predict the labor supply of a whole 10-year skill group. The median is not sensitive to these jumps, so that it is a better predictor for labor supply and as such suitable as an instrument.

The second instrument, emigration from Poland, exploits the fact that Poland joined the EU at the same time as Lithuania and experienced a similar emigration wave. The skill distributions of emigrants from Poland and Lithuania are highly correlated, with a correlation coefficient of 0.96. This means that Polish emigration to the UK and Ireland is strongly correlated with the labor supply shift on the Lithuanian labor market. The F-statistic of the instrument in the first stage is around 9, which is less than the commonly used threshold of 10, above which an instrument is seen as sufficiently correlated. However, as Stock et al. (2002) show, estimates with one instrument for one exclusion restriction allow reliable inference at an F-statistic of 8.96 or higher.

The exclusion restriction for the instrument emigration from Poland is that Polish
Table 3 – Regression results for σ_{EXP}

<table>
<thead>
<tr>
<th>Dep. Variable: log Real Wage</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumental Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr Births</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emigration PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_t</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>δ_{it}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>δ_{jt}</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Observations</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>R^2</td>
<td>0.974</td>
<td>0.9416</td>
<td>0.9440</td>
<td>0.9371</td>
<td>0.9398</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>16.085</td>
<td>3.196</td>
<td>9.014</td>
<td>10.100</td>
<td>10.100</td>
</tr>
<tr>
<td>σ_{EXP}</td>
<td>8.77</td>
<td>1.58</td>
<td>1.47</td>
<td>1.50</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in brackets. Significance levels: *** $p<0.01$, ** $p<0.05$, * $p<0.1$. Controls: δ_t: year dummies, δ_{it}: interaction year*education, δ_{ij} interaction education*experience, δ_{jt}: interaction experience*time. σ_{EXP} is calculated as the negative inverse of the estimated coefficients.

Emigration should not be correlated with Lithuanian labor demand, over and above factors that are controlled for in the first stage. A potential criticism of this restriction is that both countries should have the same business cycle, which leads to a correlation in the labor demand of both countries. This correlation, however, is absorbed by the year fixed effects, which means that it would not violate the exclusion restriction. Moreover, given that the first instrument is exogenous, I run an IV regression using both instruments and test for overidentifying restrictions (OIR). If the null hypothesis of OIR had to be rejected, this would mean that emigration from Poland was not a valid instrument because it would violate the exclusion restriction. The F-statistic of the first stage with both instruments is 10.10, the p-value of the test for OIR is 0.838, so that we cannot reject the null hypothesis of OIR, which confirms the validity of Polish emigration as an instrument.

Table 3 reports the estimation results for σ_{EXP}. All regressions are weighted with sampling weights.\(^{20}\) I report the OLS results for comparison but as described before, they are not reliable because of simultaneity bias. The IV estimates are consistently around -0.65, which implies a σ_{EXP} of around 1.5. The fact that the use of different instruments leads to the same estimates gives confidence in the accuracy of the results.

\(^{20}\) A sampling weight is the inverse probability that an observation is included in the sample. The survey contains sampling weights at the individual level. The sampling weight for each skill group is the sum of all the sampling weights of this skill group.
The estimating equation (6) does not contain an interaction \(\text{time}^*\text{experience} \), which could bias the results if the relative productivity of an experience group changes over time. Even though this scenario might not be likely, it is important to eliminate this potential bias. Column (3) of Table 3 displays the estimation results with the inclusion of an interaction of time and experience dummies. Because of the high degree of saturation, the instrument is not as powerful as in the baseline estimates, but the point estimates do not differ substantially from the ones obtained without the inclusion of these variables.

Besides the potential omitted variable bias the results could also be driven by the choice of experience groups. Table 7 in the appendix displays the regression results for 20-year and 5-year experience groups. In the case of 20-year groups there are only 2 experience groups in every survey year, young workers with a work experience of 20 years and less and old workers with a work experience of more than 20 years. The estimated coefficients are smaller in absolute value than in the benchmark model with 10-year groups. This means that old and young workers can be seen as closer substitutes with this specification. In the case of 5-year experience groups the instruments have considerably less power than in the case of 20 or 10-year groups. This is due to the fact that the calculation of average real wages and labor inputs are based on a small number of observations, which increases the noise in the data. The t-test compares the results for the regressions with 5-year and 20-year experience groups with the benchmark case. The difference between the coefficients is statistically significant in most cases. However, economically the difference between the coefficients is minor. The estimates for \(\sigma_{\text{EXP}} \) in the robustness checks lie around 2, which means that old and young workers are more substitutable than predicted by the benchmark model, but in general their degree of substitutability remains low compared to the parameters found in studies on other countries.

The estimates for \(\sigma_{\text{EXP}} \) in the baseline scenario are lower in magnitude than the ones found in studies that previously used a similar model for the United States and Germany. Borjas (2003) and Ottaviano & Peri (2011) estimate \(\sigma_{\text{EXP}} \) at 3.5 for the US taking 5-year experience groups, men only. D’Amuri et al. (2010) find an elasticity of 3.1 for Germany. The fact that the elasticities are lower for Lithuania means that workers who differ in their work experience are less substitutable in Lithuania than they are in Germany or the United States. This is plausible when we look at the history of the country. As Lithuania was part of the Soviet Union until 1990, older workers received their education and gathered their first work experience in a centrally planned economy, whereas younger workers were educated and grew up in the environment of a market
economy. Consequently, the skills of young workers should be immediately applicable to the labor market, whereas older workers may need some time for adjustment and retraining. This can lead to a low degree of substitutability between old and young workers, which is reflected in the low values of σ_{EXP}. A recent paper by Brunello et al. (2011) backes this explanation. They find that in transition countries men who were educated under socialism have lower returns to education than men who were educated under a free market economy.

5.2 Determination of σ_{ED}

The dataset used in this study consists of four survey rounds (2002, 2003, 2005, 2006) and in each year we can observe wages and labor inputs for three education groups. This results in a total of 12 observations, on which the estimations of σ_{ED} can be based. The estimation equation for this parameter is derived in the same way as equation (6),

$$\log \bar{w}_{it} = \delta_t + \delta_{it} - \frac{1}{\sigma_{\text{ED}}} \log \bar{L}_{it} + \varepsilon,$$

where δ_t is a vector of year dummies and δ_{it} is a vector of interactions between education and year dummies. \bar{w}_{it} is the average real wage paid to education group i at time t. \bar{L}_{it} is a labor input calculated from the composite in equation (3). σ_{ED} can only be properly identified when the number of observations is sufficiently large. Otherwise, the model is too saturated and the coefficient $-\frac{1}{\sigma_{\text{ED}}}$ cannot be statistically distinguished from zero. To see this, let n be the number of education groups and t the number of years. Consequently, $n(t - 1) + 1$ parameters need to be estimated from nt observations, so that the number of observation exceeds the degrees of freedom by $n - 1$, which is 2 in this case. The higher n, the more likely it is to obtain an economically meaningful estimate for $-\frac{1}{\sigma_{\text{ED}}}$. However, as n is the number of education groups, there is a natural limit to n, as the number of educational tracks in a country is limited and typically small.

Given that I cannot increase the number of observations, I do not attempt to estimate σ_{ED}. Instead, I choose a value that seems economically reasonable for the simulations in the next section. At a later stage, I will analyze the sensitivity of the results by using different values for σ_{ED}. To choose σ_{ED}, I impose the restriction that $\sigma_{\text{EXP}} > \sigma_{\text{ED}}$ on the parameter. This inequality has a clear economic intuition. It says that it is on average more difficult to substitute two workers with different education than it is to substitute two workers who have the same education but different work experience.
6 SIMULATION OF THE WAGE EFFECTS

6.1 SIMULATION EQUATION

The results from section 5 define the fundamental structure of the labor market. In this section, I simulate the emigration shock that occurred after EU enlargement in this labor market and calculate the new equilibrium wage for each skill group. The calculated wage change is the difference between the equilibrium wages after and before the migration shock. The results of this simulation have a *ceteris paribus* interpretation. The structure of the labor market is held constant, so that the simulations give us the change in wages in absence of other adjustment channels. To obtain the simulation equation I differentiate equation (5)\(^{21}\) and drop the time subscripts

\[
\frac{\Delta w_{ij}}{w_{ij}} = (1 - \alpha) \frac{\Delta K}{K} - (1 - \alpha) \frac{\Delta L}{L} + \frac{1}{\sigma_{ED}} \frac{\Delta L}{L} + \frac{1}{\sigma_{EXP}} \frac{\Delta L_{ij}}{L_{ij}}.
\]

Expressions \(L_t\) and \(L_{ij}\) in equation (9) are labor aggregates and can as such be expressed in terms of \(L_{ijt}\).\(^{22}\) The \(\Delta s\) measure the change in a variable from 2002 to 2006.

6.2 MODEL CALIBRATION AND SIMULATION RESULTS

The magnitude of the impact of the calculated wage changes depends on the parameters \(\alpha, s_i, s_{ij}, \sigma_{ED}\) and \(\sigma_{EXP}\), which need to be determined. I calculate \(\alpha\) from the Lithuanian national accounts data and find that \(\alpha = 0.8\). This value is higher than 0.7, which is commonly used for studies of industrialized countries, but given that Lithuania is more labor-abundant than for example the US, a value of 0.8 is plausible. The income shares \(s_i\) and \(s_{ij}\) are calculated from the sampling weights in the HBS using the information on all men and women in the sample.\(^{23}\) For \(\sigma_{EXP}\) I take the values from the estimations in section 5, \(\sigma_{EXP} = 1.58\) while \(\sigma_{ED}\) is chosen to be smaller than \(\sigma_{EXP}, \sigma_{ED} = 1.2\)

\(^{21}\) \(A_t, \alpha, \theta_{it}\) and \(\gamma_{ij}\) are held constant.

\(^{22}\) Note that \(\frac{\Delta L_{ij}}{L_{ij}} = \sum_j \left(\frac{\gamma_{ij} L_{ij}^\sigma_{EXP-1}}{\sum_j \gamma_{ij} L_{ij}^\sigma_{EXP}} \right) \frac{\Delta L_{ij}}{L_{ij}} = \frac{1}{s_{it}} \sum_j s_{ijt} \frac{\Delta L_{ij}}{L_{ijt}}\) and \(\frac{\Delta L}{L} = \frac{1}{\sigma} \sum i \sum_j s_{ij} \frac{\Delta L_{ij}}{L_{ij}}\). \(s_i\) denotes the income share of education group \(i\) and \(s_{ij}\) denotes the income share of skill group \(ij\).

\(^{23}\) See appendix A for a description of the calculation of \(s_{ij}\) and \(s_i\)
Figure 6 displays the simulated wage changes for the baseline scenario. A general pattern emerges: the wages of older workers decreased by 1.2% to 1.6%. At the same time, the wages of young workers with 10 years of work experience or less increased by 5.2% to 7.7%. Workers in the youngest group gained significantly more than older workers lost. For workers with a work experience between 10 and 30 years the model predicts wage changes close to zero.

To account for the uncertainty in the estimates of the structural parameters I calculate the standard errors of the wage changes using Monte-Carlo simulations. The values of σ_{EXP} and σ_{ED} are drawn independently from a normal distribution, $\frac{1}{\sigma_{\text{EXP}}} \sim N(0.63, 0.03)$ and $\frac{1}{\sigma_{\text{ED}}} \sim N(0.83, 1)$. The simulated standard errors reported in table 3 are the average standard errors of 10000 replications. Comparing the calculated wage changes to the simulated standard errors, we can see that most wage changes are statistically significant at a significance level of 10% or less.

Although most of the wage changes predicted by the structural model are statistically significant, only the wage changes for young workers are of economic significance. This can be seen when we compare the simulated wage changes caused by migration with the

Note: Labels on the y-axis denote education and work experience. The graph displays the simulation results for the baseline scenario, as described in section 6.1.
Table 4 – Decomposition of the Wage Effect of Emigration

<table>
<thead>
<tr>
<th>Education Level</th>
<th>Experience (Years)</th>
<th>Total Wage Change</th>
<th>Standard Error</th>
<th>(1) Own-wage</th>
<th>(2) Cross-wage</th>
<th>(3) Complementarity</th>
<th>(4) Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0-10</td>
<td>5.18</td>
<td>1.15</td>
<td>7.24</td>
<td>1.16</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>1.32</td>
<td>0.59</td>
<td>3.37</td>
<td>1.16</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>1.92</td>
<td>0.59</td>
<td>3.97</td>
<td>1.16</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.21</td>
<td>0.97</td>
<td>0.84</td>
<td>1.16</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td>Upper</td>
<td>0-10</td>
<td>7.68</td>
<td>1.94</td>
<td>9.95</td>
<td>0.95</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>0.71</td>
<td>0.29</td>
<td>2.97</td>
<td>0.95</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>-0.86</td>
<td>0.53</td>
<td>1.40</td>
<td>0.95</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.56</td>
<td>0.70</td>
<td>0.70</td>
<td>0.95</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td>Third</td>
<td>0-10</td>
<td>6.29</td>
<td>1.42</td>
<td>8.35</td>
<td>1.15</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td>Level</td>
<td>11-20</td>
<td>-0.02</td>
<td>0.71</td>
<td>2.04</td>
<td>1.15</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>-0.29</td>
<td>0.76</td>
<td>1.77</td>
<td>1.15</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.13</td>
<td>0.93</td>
<td>0.93</td>
<td>1.15</td>
<td>-4.23</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Note: All changes in %. Standard errors are determined by Monte Carlo simulations with 10000 replications for the parameters \(\sigma_{ED} \) and \(\sigma_{EXP} \). The total wage change can be decomposed in four effects: 1) own-wage effect, 2) cross-wage effect within an education group, 3) cross-wage effect across education groups (complementarity effect), 4) aggregate production effect.

After noting that the predicted wage changes differ considerably between young and old workers, the question arises, which factors drive these results. Due to the nested structure of the production function, there is a variety of channels through which a labor supply shock can affect wages. The total wage effect in equation (9) can be decomposed into four effects. Table 4 displays the magnitude of each effect.

1. **Own-wage effect** \(\left(-1 \cdot \frac{\Delta L_{ij}}{\sigma_{EXP}}\right) \). This effect is a direct consequence of the supply shift. If workers of skill group \(L_{ij} \) emigrate, the stayers of this group become a more scarce resource, which leads to an increase in their wages. As most emigrants were young, the own-wage effect is greatest for young workers.

2. **Cross-wage effect within an education group** \(\left(\frac{1}{\sigma_{EXP}} - \frac{1}{\sigma_{ED}}\right) \Delta L_{i} \). This wage change is caused by a change in the size and composition of the labor aggregate of
the worker’s education group. For example, the emigration of young workers with a lower secondary education increases the demand for older workers with a lower secondary education. Intuitively, the positive sign follows the logic that workers with the same education are substitutes. The cross-wage effect is smaller in magnitude than the own-wage effect, because workers with a different work experience are imperfect substitutes.

3. Complementarity effect $\frac{1}{\sigma_{ED}} \frac{\Delta L}{L}$. With the emigration of a considerable share of the workforce the composition of the workforce changes, which has a negative impact on the wages of all workers. This negative impact is due to the complementarities between workers of different education groups.

4. Aggregate Production Effect $-(1-\alpha) \frac{\Delta L}{L}$. Emigration does not only change the composition of the workforce, it also leads to a decrease in aggregate production. However, the production effect is positive, as the output per worker increases when the number of workers decreases. This effect would disappear if capital could adjust, in which case the wage effects would be 1% less.

Taking all these effects together, we can draw the following conclusions: the post-EU-enlargement emigration wave led to a substantial increase in the wages of young workers, as they have become a more scarce resource. The wage increase, caused by the own-wage effect, outweighed the negative aggregate production effect. Older workers did not emigrate in large numbers but their wages were affected negatively by the complementarity and the aggregate production effect. Thinking about the own-wage effect as a supply effect and the other 3 effects as demand effects, we can conclude that for young workers the positive supply effect exceeded the negative demand effect, whereas for old workers the negative demand effect exceeded the supply effect.

6.3 Comparison of the Structural Estimates with Reduced-Form Results

It is important to note at this point that this study does not aim to explain the change in real wages in its entirety, but only the share of the wage changes that can be attributed to emigration. This interpretation, identifying a causal effect after controlling for all other explanatory variables, is the same as for a reduced-form approach. To assess the quality of the structural model, one has to compare the predicted wage changes from both approaches. Elsner (2010) finds in a reduced-form approach that a 10 percentage-point
Figure 7 — Comparison: Structural Model vs. Reduced Form

Note: Labels on the y-axis denote education and work experience. The graphs display the causal impact of emigration on wages, as predicted by the structural model and the reduced form. In the upper figure the impacts on the highest nest of the CES production function, the complementarity effect and the production effect, are excluded from the structural estimates. In the lower figure, these effects are excluded.

An increase in the emigration rate increases the real wages of stayers on average by 6.6%. The upper graph in figure 7 compares the predicted wage changes from the structural model in this study to the estimates in Elsner (2010). The latter are positive for every skill group,
since the reduced form does not take into account the complementarity effects that arise from the fact that the majority of emigrants was young and that old and young workers are imperfect substitutes in aggregate production. Once the complementarity effect and the aggregate production effect are excluded from the structural estimates, it turns out that the predictions of both approaches are almost identical, as can be seen in the bottom graph of figure 7.

This comparative finding can have two interpretations. First, the reduced form identifies a partial effect and does not account for complementarities between groups of workers. In this case, the reduced form over-predicts the actual wage changes. Second, the general equilibrium effects at higher nests of the aggregate production function, i.e. the complementarity and the aggregate production effect, have no impact on wages, at least in the time span considered. In that case, the structural model under-predicts the actual wage changes, unless the complementarity and aggregate production effects are netted out.

The simulation of the structural model is a counterfactual exercise which only considers two states of the economy, before and after the shock. However, the wage effects captured in the model may come into effect at different times. It is reasonable to think that the own-wage effect has a faster impact than the general equilibrium effects which are the consequences of adjustment of the labor market through shifts in labor demand. In the 5-year period considered in this study these effects may not play a role in the wage determination yet, so that the wage changes predicted by the reduced form and the structural model without complementarity and aggregate production effect are more accurate. In the long run, going beyond the considered period in time, the general equilibrium effects may come into effect, which means that in the long run the predictions of the structural model are more adequate.

The structural model offers insights in the channels through which emigration affects the wages of stayers, but it does so at the cost of the reliance on a number of assumptions. The neoclassical demand framework presented in section 3 is based on the assumption that labor markets clear and thus assumes away unemployment and wage rigidities. These factors could nevertheless play a role in the determination of wages, which would mean that the magnitude of the wage effects resulting from the simulations could be inaccurate. In fact, looking at table 1d), we can see that the unemployment rate decreased substantially from 13.8% in 2002 to 5.6% in 2006, which means that labor markets became tighter over the considered period. Given the absence of information on the unemployment rate by skill group in the data, it is not possible to incorporate unemployment into the simulations. However, in the reduced-form approach Elsner (2010)
controls for unemployment at the regional level and finds very similar results as in the structural model in this study. This indicates that unemployment does not alter the magnitude of the wage effect of emigration.

6.4 Discussion of the Results

The simulations predict that young workers gain significantly from emigration while there is no significant impact on the wages of workers with 10 years or more of work experience. In the structural model I am able to decompose the effect and quantify the contribution of the subcomponents to the overall effect. However, the model cannot explain why these findings are plausible.

One explanation why young workers gain from the possibility of emigration is the increase in bargaining power. In 2004 workers in CEE were granted the possibility to emigrate at virtually no cost. For stayers this means that they should be able to negotiate higher wages under the threat of emigration. Before 2004 this threat was empty due to the high emigration costs. The gain in bargaining power was lower for older workers, since they have higher moving costs and their prospects of finding work in Ireland in the UK are considerably lower than for young workers. Moreover, because of the large number of young emigrants the labor market for young workers became tighter, which means that the same number of firms competes for fewer workers. If the labor markets for old and young workers are very different from each other, a positive wage effect should be visible among young workers but not among old workers. The finding in section 5 that young and old workers are less substitutable in Lithuania than in the US or Germany confirms this hypothesis.

Another explanation could be the sectoral distribution of workers. If young workers tend to work in sectors with a high flexibility of work contracts and a high fluctuation of employees. In case emigration leads to labor shortages in this sector it becomes easier for the workers in this sector to switch to a better-paid job. This possibility should be more likely in the service sector, which in Lithuania only evolved in the last 15-20 years and less likely in the manufacturing sector or in agriculture. If young workers are concentrated in the service sector, they should see higher wage increases. The same logic also applies to occupations. If young workers tend to choose occupations in which it is possible to switch easily to a better-paid job, the wages of young workers should increase. Unfortunately, the HBS does not include data on the occupation and sectors of the workers, so that I cannot model this channel in the empirical analysis. However, figure 8
Figure 8 – Over-/under-representation of Workers Aged 14-34 by Occupation

Note: The graph displays the degree of over- or under-representation of workers aged 34 and less compared to workers aged 35 and more. Source: 2002 Structure of Earnings Survey, conducted by Statistics Lithuania.

gives evidence for the concentration of young workers in certain groups of occupations. Workers aged 35 and less are over-represented in among service workers and technicians, while older workers are more concentrated among legislators, senior officials and managers and elementary occupations, which includes agriculture. These occupations tend to have a higher wage rigidity than occupations related to services, so that the sectoral and occupational composition within an age group could explain part of the wage changes for young workers.

7 Sensitivity Analysis

The simulations in section 6 were based on a number of assumptions about the structural parameters and the number of emigrants per skill group. In this section, I check the robustness of the simulation results to changes in these assumptions. In addition, the structural parameters of the Lithuanian labor market are fundamentally different from the ones found in the literature for industrialized countries such as Germany and the US. This difference is not surprising, given that Lithuania is a transition country. Nevertheless, I re-run the simulations using parameter values from the literature. This exercise may answer
another interesting question: suppose Lithuania had the labor market of Germany or the US, what would be the wage changes resulting from the emigration wave after 2004?

7.1 Irish data only

The calculation of the number of emigrants per skill group was based on the assumption that the distribution of Lithuanian migrants in Ireland is the same as in the UK. I based this assumption on previous studies by Dustmann et al. (2009) and Barrett & Duffy (2008), from which it can be seen that the educational distribution of migrants from the NMS was approximately the same. However, there is some uncertainty about the joint education-experience distribution of Lithuanian migrants in Ireland. If, for example, relatively more younger workers went to the UK than to Ireland, the simulation results from the previous section would underestimate the impact of migration on real wages. Therefore, I re-run the simulations of section 6 with Irish data only. Column (2) in table 5 shows the simulated wage changes based on Irish data only. Compared to the baseline scenario, the magnitude of the wage effects is significantly lower, but the pattern prevails: young workers gain from emigration, while old workers lose. As the emigration rates taken from the Irish census data reflect a lower bound to emigration from Lithuania, this means that the true wage effects from emigration will be at least as large as the ones based on simulations with Irish data only.

7.2 Calibration on Parameters from the Literature

In this section I calibrate the model on parameters that were obtained in the literature for the US and Germany. I use two studies on the effect of immigration on wages in the US, Borjas (2003) ($\sigma_{\text{EXP}} = 3.5$, $\sigma_{\text{ED}} = 1.3$) and Ottaviano & Peri (2011) ($\sigma_{\text{EXP}} = 7$, $\sigma_{\text{ED}} = 2$), as well as 2 studies on the wage effects of immigration in Germany, Brücker & Jahn (2011) ($\sigma_{\text{EXP}} = 30$, $\sigma_{\text{ED}} = 6.5$) and D’Amuri et al. (2010) ($\sigma_{\text{EXP}} = 3.3$, $\sigma_{\text{ED}} = 2.9$). Table 5 compares the baseline results with the results when the model is calibrated on parameters from the literature. As my parameter value for σ_{EXP} is lower than the one used in the literature, the first-order effects, i.e. the direct impact of a labor supply shift of a skill group on the wage of the same group, are greater with the parameter estimated for the Lithuanian labor market. On the other hand, the fact that σ_{ED} found here is smaller than the one in the literature means that the higher-order effects, i.e. the effects of the labor supply shifts of workers from one skill group on the wages of another skill group, are smaller in the Lithuanian case. Consequently, the negative wage effects I find
for workers with more than 30 years of work experience disappear when calibrating the model on parameters from the literature. However, for the ranges of parameter values \(\sigma_{\text{EXP}} \in (3.3, 7) \) and \(\sigma_{\text{ED}} \in (1.3, 2.9) \) the wage changes predicted by the model range between 2% and 4% for young workers and between 0% and 1% for workers with a work experience between 11 and 30 years. Even for the values estimated by Brückler & Jahn (2011), which are a multiple of the elasticities of substitution found in other studies, the model predicts wage increases between 1% and 1.3% for all groups of workers.

Table 5 — Sensitivity Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0-10</td>
<td>6.29</td>
<td>2.35</td>
<td>3.66</td>
<td>2.42</td>
<td>1.37</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>-0.29</td>
<td>-0.03</td>
<td>0.82</td>
<td>0.99</td>
<td>0.10</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>-1.56</td>
<td>-0.59</td>
<td>-0.29</td>
<td>0.32</td>
<td>0.84</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.13</td>
<td>-0.42</td>
<td>0.31</td>
<td>0.74</td>
<td>0.98</td>
<td>-0.05</td>
</tr>
<tr>
<td>Secondary</td>
<td>0-10</td>
<td>5.18</td>
<td>2.01</td>
<td>3.18</td>
<td>2.18</td>
<td>1.31</td>
<td>2.97</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>1.32</td>
<td>0.50</td>
<td>1.43</td>
<td>1.31</td>
<td>1.11</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>1.92</td>
<td>0.74</td>
<td>1.70</td>
<td>1.44</td>
<td>1.14</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.21</td>
<td>-0.44</td>
<td>0.29</td>
<td>0.74</td>
<td>0.98</td>
<td>-0.08</td>
</tr>
<tr>
<td>Upper</td>
<td>0-10</td>
<td>7.68</td>
<td>2.89</td>
<td>3.88</td>
<td>2.41</td>
<td>1.33</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>0.71</td>
<td>0.27</td>
<td>0.74</td>
<td>0.83</td>
<td>0.96</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>-0.86</td>
<td>-0.32</td>
<td>0.03</td>
<td>0.48</td>
<td>0.88</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.56</td>
<td>-0.59</td>
<td>-0.29</td>
<td>0.32</td>
<td>0.84</td>
<td>-0.20</td>
</tr>
<tr>
<td>Third</td>
<td>0-10</td>
<td>6.29</td>
<td>2.35</td>
<td>3.66</td>
<td>2.42</td>
<td>1.37</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>-0.02</td>
<td>-0.03</td>
<td>0.82</td>
<td>0.99</td>
<td>0.10</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>-0.29</td>
<td>-0.10</td>
<td>0.69</td>
<td>0.93</td>
<td>1.02</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>-1.13</td>
<td>-0.42</td>
<td>0.31</td>
<td>0.74</td>
<td>0.98</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Note: Column (1): baseline scenario. (2): same calibration as in baseline scenario, labor supply shock based on Irish data only. These are lower-bound estimates to the impact of emigration on wages. (3)-(6) same labor supply shock as in the baseline scenario, model calibrated on parameters found in the cited studies based on data from the United States and Germany.

8 Conclusion

This study answers the question, which groups of workers gain and which lose from emigration. I show for the case of EU enlargement that emigration can lead to a significant increase in the real wages of young workers and to a slight decrease for older workers.

To show the distributional consequences of the emigration wave that followed EU enlargement, I set up a stylized model of a labor market and estimate its structural
parameters based on Lithuanian microdata. The wage changes for different groups of workers are determined from a counterfactual simulation, in which I compute the impact of emigration on the wages of each group of workers, holding the underlying structure of the labor market constant.

The case study of Lithuania is remarkable, because the country experienced a significant emigration shock in a short period in time, caused by a change in the legal framework. This quasi-natural experiment sheds light on the functioning of the labor markets in a transition country. The results may well carry over to countries that were exposed to a similar shock, for example Poland, Slovakia or Latvia. Furthermore, the findings of this paper can be of importance for countries like Croatia, Serbia, Montenegro or Turkey, which plan to join the European Union and have to evaluate the costs and benefits of doing so.

The magnitude of the effects found in this study is larger than in studies about the impact of immigration on labor markets. This is due to the fact that the structure of the labor market in the sending country is different. In the case of transition countries, old and young workers were educated under different economic systems and are therefore less substitutable. Furthermore, emigrants and stayers are different in their age structure. Emigrants were on average 13 years younger than stayers, which explains why the wage effect was concentrated among young workers.
REFERENCES

BRUNELLO, GIORGIO, CRIVELLARO, ELENA, & ROCCO, LORENZO. 2011. Lost in Transition? The Returns to Education Acquired under Communism 15 Years after the Fall of the Berlin Wall. *IZA Discussion Paper, 5409*.

A **Income Shares by Skill Group**

For the simulations in section 6, I calculate the income shares of each education-experience group, s_{ij}, as well as the one for each education group, s_i, from the sampling weights. Let the each skill group ij in the sample consist of N_{ij} workers, $n = \{1, \ldots, N_{ij}\}$. The N_{ij} are allowed to differ from group to group. The sampling weight of observation n is p_{ijn} and her real wage is w_{ijn}. The wage bill accruing to skill group ij is $W_{ij} = \sum_n p_{ijn} w_{ijn}$.

Adding up the wage bills of all skill groups gives the total wage bill of the population $W = \sum_i \sum_j W_{ij}$. The share of skill group ij in GDP given by

$$s_{ij} = \alpha \left(\frac{W_{ij}}{W} \right).$$

(10)

$\frac{W_{ij}}{W}$ is group ij's share in total labor income. As total labor income is α times GDP, we have to multiply $\frac{W_{ij}}{W}$ with α.

To obtain the income share of education group i, I add up the income shares of all groups s_{ij},

$$s_i = \sum_j s_{ij}.$$

(11)

From the HBS I calculate values of s_{ij} and s_i for every year in 2002, 2003, 2005 and 2006. The values of s_i and s_{ij} that enter the simulations in section 6 are the average of those four years.

B **Emigration from Poland as an Instrument**

In section 5.1 I use emigration from Poland by skill group as an instrument for Lithuanian labor supply. For the calculation of the number of emigrants I use the skill distribution from the Irish census and weight it with the number of work permits in Ireland and the UK measured by PPS and NINo numbers. As the census data are only available for 2002 and 2006, I make the assumption that the skill distribution of emigrants before EU accession was the same for 2003 and 2002. Following the same logic, I assume that the skill distribution of emigrants after EU accession was the same over time, so that the distribution in 2005 is the same as in 2006. As we can see from table 1c), the skill distribution did not change significantly from 2002 to 2006, despite the fact that the number of immigrants was more than ten times higher in 2006. Furthermore, I assume that the skill distribution of migrants who went to Ireland is the same as of those who went to the UK.

This allows me to use the work permit data from the UK as weights in the calculation of migration numbers.

Let PPS_t and $NINO_t$ be the PPS and NINo numbers granted in year $t = \{2002, 2003, 2005, 2006\}$ and let x_{ijt} be the number of workers of skill group ij at time t in the Irish census. Then,
the number of migrants M_{ijt} for the four years under consideration are:

- **2002:** $M_{ij2002} = x_{ij2002} \left(1 + \frac{NINO_{2002}}{PPS_{2002}} \right)$

- **2003:** $M_{ij2003} = x_{ij2002} \left(\frac{PPS_{2003}}{PPS_{2002}} + \frac{NINO_{2003}}{PPS_{2002}} \right)$, where $\frac{PPS_{2003}}{PPS_{2002}}$ accounts for the difference in the number of migrants to Ireland between 2002 and 2003 and $\frac{NINO_{2003}}{PPS_{2002}}$ is a weight accounting for the difference in migrants coming to Ireland and the UK.\(^{25}\) The calculation for the other years follows the same logic.

- **2005:** $M_{ij2005} = x_{ij2006} \left(\frac{PPS_{2005}}{PPS_{2006}} + \frac{NINO_{2005}}{PPS_{2006}} \right)$

- **2006:** $M_{ij2006} = x_{ij2006} \left(1 + \frac{NINO_{2006}}{PPS_{2006}} \right)$

\(^{25}\) The expression $\frac{NINO_{2003}}{PPS_{2002}}$ is derived from $\frac{NINO_{2003}}{PPS_{2003}} \times \frac{PPS_{2003}}{PPS_{2002}}$, where PPS_{2003} cancels out. $\frac{NINO_{2003}}{PPS_{2003}}$ is the number of migrants to the UK relative to the number of migrants to Ireland and $\frac{PPS_{2003}}{PPS_{2002}}$ is the number of migrants to Ireland in 2003 relative to the same number in 2002.
Tables and Figures

Table 6 – Aggregation of Education Groups in the Lithuanian HBS and the Irish Census.

<table>
<thead>
<tr>
<th>This study</th>
<th>HBS 2002</th>
<th>HBS 2003-2006</th>
<th>Irish Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower secondary</td>
<td>under primary (1)</td>
<td>vocational school after basic (7)</td>
<td>primary school and less,</td>
</tr>
<tr>
<td>education</td>
<td>primary (2)</td>
<td>vocational school after primary (8)</td>
<td>lower secondary school,</td>
</tr>
<tr>
<td>duration: 10 years</td>
<td>basic (3)</td>
<td>basic school (9)</td>
<td>literacy skills, but no education (11)</td>
</tr>
<tr>
<td>leaving age: 16</td>
<td></td>
<td>primary school (10)</td>
<td>illiterate (12)</td>
</tr>
<tr>
<td>upper secondary</td>
<td>secondary (4)</td>
<td>professional college and college (2)</td>
<td>upper secondary education, third-level</td>
</tr>
<tr>
<td>education</td>
<td>specialized secondary school (3)</td>
<td>secondary school (4)</td>
<td>third-level</td>
</tr>
<tr>
<td>duration: 12 years</td>
<td>vocational school (after secondary) (5)</td>
<td>vocational school (after basic) (6)</td>
<td>(but no B.Sc equivalent)</td>
</tr>
<tr>
<td>leaving age: 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>third-level</td>
<td>third-level (5)</td>
<td>university (1)</td>
<td>third-level</td>
</tr>
<tr>
<td>degree</td>
<td>highest (6)</td>
<td></td>
<td>(B.Sc equivalent)</td>
</tr>
<tr>
<td>duration: 15 years</td>
<td></td>
<td></td>
<td>and higher</td>
</tr>
<tr>
<td>leaving age: 21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If applicable, variable code of the original dataset in parentheses.
Table 7 - Regression results for σ_{EXP}

<table>
<thead>
<tr>
<th>Dep. Variable: log Real Wage</th>
<th>OLS</th>
<th>Instrumental Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(Nr of Workers)</td>
<td>-0.161</td>
<td>-0.569***</td>
</tr>
<tr>
<td></td>
<td>[0.160]</td>
<td>[0.161]</td>
</tr>
<tr>
<td>Observations</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9884</td>
<td>0.9790</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>7.914</td>
<td>63.54</td>
</tr>
<tr>
<td>Welch t-test</td>
<td>1.50</td>
<td>3.74</td>
</tr>
<tr>
<td>σ_{EXP}</td>
<td>6.21</td>
<td>1.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dep. Variable: log Real Wage</th>
<th>OLS</th>
<th>Instrumental Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(Nr of Workers)</td>
<td>-0.093</td>
<td>-0.287</td>
</tr>
<tr>
<td></td>
<td>[0.060]</td>
<td>[0.064]</td>
</tr>
<tr>
<td>Observations</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9527</td>
<td>0.9466</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>0.456</td>
<td>7.697</td>
</tr>
<tr>
<td>Welch t-test</td>
<td>5.17</td>
<td>3.54</td>
</tr>
<tr>
<td>σ_{EXP}</td>
<td>10.75</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in brackets. Significance levels: *** $p<0.01$, ** $p<0.05$, * $p<0.1$. Controls: δ_t: year dummies, δ_{it}: interaction year*education, δ_{ij}: interaction education*experience. σ_{EXP} is calculated as the negative inverse of the estimated coefficients. The Welch t-tests test, whether the coefficients obtained in the regressions are statistically significantly different from the benchmark case, i.e. the corresponding regressions displayed in table 3, columns (2), (4), (5).