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Abstract

We analyze the provision of a step-level public good in an experiment. Specifically, we inves-

tigate how the order of moves and the introduction of a second step-level affects public-good

provision. We find that the sequential-move game improves public-good provision and pay-

offs. An additional step-level does lead to higher contributions but the effect on public-good

provision is ambiguous and insignificant. Based on an existing data set, we calibrate Fehr and

Schmidt’s (1999) model of inequality aversion and find that actual behavior fits remarkably

well with these predictions in a quantitative sense, but there are also two contradictions to

the model’s predictions.
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1 Introduction

Public goods often have a step-level character, that is, the public good is provided only if some

minimum threshold of contributions (or provision-point) is met. Examples include the building of

a bridge or a dike. Also charities often have properties of step-level public goods (see the examples

in Andreoni, 1998).

Our paper makes two contributions to the step-level public-goods literature. First, we analyze

whether sequential contributions as opposed to simultaneous decisions improve public-good provi-

sion. Second, we analyze if an additional threshold which is not feasible in Nash equilibrium with

standard preferences, where the public good is provided at a higher level, improves public-good

provision.

The issue of sequential versus simultaneous decisions is subject of a substantial and growing

literature. Following Hermalin (1998), researchers have analyzed “leading by example”. A first-

mover may be better informed about the return to contributions allocated to the common endeavor,

and may therefore give an example that is mimicked be the followers. As a result, sequential

contributions to the public good are often superior to simultaneous decisions.1 Erev and Rapoport

(1990) were the first studying simultaneous vs. sequential moves in a step-level public good game.2

To the best of our knowledge, we are the first studying a sequential threshold public good set-

up with two players given the possibility of continuous contributions. At first, one would expect

a sequential-move step-level public-good game seem superior to a simultaneous-move setting. A

threshold public-good game is foremost a coordination game. With simultaneous moves, there are

multiple equilibria and hence coordination failures may occur. Moreover, the public good is not

provided in all equilibria. With sequential moves, there is a unique subgame perfect equilibrium in

which the public good is provided. Hence, coordination and therefore public-good provision should

be more frequent with sequential moves.

There is, however, an aspect of sequential decision making that may reduce its alleged supe-

riority. With symmetric players, the first-mover is actually better off then the follower(s). In

the unique subgame perfect equilibrium, the first-mover contributes the minimum so that a (best

responding) follower just finds it worthwhile to contribute sufficiently high to meet the threshold.

In other words, with selfish and rational players, the first-mover actually gives a bad example by

1See Erev and Rapoport (1990), Potters et al. (2005, 2007), Güth et al. (2007), Gächter et al. (2010a, 2010b),

Figuières et al. (2010). We review this literature below.

2In contrast to our set-up the authors analyze sequential step-level public good provision in groups of five players.

Another difference is the application of the Minimal Contribution Set, i.e. players may either zero contribute or

invest their whole endowment.
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contributing less than the followers.3 In an experiment, this may reduce the alleged superiority of

the sequential-move setting: players who try to exploit this first-mover advantage risk being “pun-

ished” by second-movers who do not best respond but contribute zero to the public good. If such

behavior occurs frequently, the higher efficacy of the sequential-move game will not materialize.

Now consider our second extension, the step-level game with two thresholds. While multiple

step-levels have been analyzed before (see for example Coller et al., 2001), we design our experi-

ments such that the second threshold is not a Nash equilibrium with selfish and rational players.

The second step-level is feasible, but given one player aims at the second threshold by contributing

a high amount, the best response of a second player is to contribute low such that the first level

only is met. With sequential moves, the second threshold introduces a trust-game aspect to the

public-good game. Despite not being a Nash equilibrium, behaviorally, the existence of a second

threshold might make it more likely that the first threshold will bet met. Also, when players have

Fehr and Schmidt (1999) preferences, the second threshold is a Nash equilibrium.

Our findings regarding the two main treatment variables are as follows. Sequential contribu-

tion decisions significantly improve public-good provision, even though first-movers frequently do

contribute less than the followers and even though such behavior is regularly “punished”. Coordi-

nation and hence payoffs are higher whereas contributions are not higher with sequential moves.

The existence of a second threshold causes significantly higher contributions but this does not

result in higher public-good provision. To the contrary, payoffs are even significantly lower when

there are two step-levels.

Our paper also introduces a methodological innovation. We make quantitative predictions for

our experiment based on a fully calibrated Fehr and Schmidt’s (1999) model of inequality aversion.

While Fehr and Schmidt’s (1999) model has frequently been used in the previous literature, the

predictions are almost always of a qualitative nature (“if players are sufficiently inequality averse,

abc is an equilibrium”). We will calibrate Fehr and Schmidt’s (1999) model on an existing (joint)

distribution of the inequality parameters, and we will make exact quantitative predictions (“v

percent of the first-movers will contribute w”; or “given a first-mover contribution of x, the public

good will be provided in y percent of the cases”).4

We find that the calibrated Fehr and Schmidt (1999) model makes several remarkably ac-

curate quantitative predictions but it also fails in two cases. The calibrated Fehr and Schmidt

3For some parameters, this also occurs in the Varian’s (1994) public-good game. See the experiment by Gächter

et al. (2010a).
4Fehr, Kremhelmer and Schmidt (2008) also provide an analysis based on a calibration of Fehr and Schmidt’s

(1999) model. Their calibration is however based on a rather coarse two-type categorization (40 percent fair players

and 60 percent standard players) and is not explicitly derived from existing data. See the discussion below.
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(1999) model predicts second-mover behavior (given first-mover behavior) in the sequential variant

extremely well. Specifically, it predicts accurately the frequency with which second-movers pun-

ish low-contributing first-movers by contributing zero. The prediction regarding the first-movers

fails: first-movers should anticipate (or learn) that second-movers punish low contributions and

thus always make the payoff-equalizing contribution; however, only slightly more than one third

of them do so. The calibrated Fehr and Schmidt (1999) model also predicts well the case with

simultaneous-move contributions where some players contribute whereas others do not. Finally,

the model rather precisely predicts the share of first- movers who trust second-movers by making

a high contribution in the two-threshold case. Here, the prediction regarding the second-movers

fails who exploit first-mover trust significantly more frequently than predicted.

2 Experimental Design

In our experiments, there are two players, player 1 and player 2, who each have a money endowment

e = 10. They can make a voluntary contribution, ci, to the public good, where 0 ≤ ci ≤ e.

In half of our treatments, there is one threshold for the provision of the public good. If the

sum of contributions is at least 12, this yields an additional payoff of 10 to both players. More

formally, if xi denotes player i’s monetary payoff, then

xi =

 e− ci + 10 if c1 + c2 ≥ 12

e− ci if c1 + c2 < 12

The other treatments involve an additional second threshold of 18. If c1 + c2 ≥ 18, both players

receive an additional 15. That is, in these treatments, we have

xi =


e− ci + 15 if 18 ≤ c1 + c2

e− ci + 10 if 12 ≤ c1 + c2 < 18

e− ci if c1 + c2 < 12

Since 2e > 18, both thresholds of the public good are feasible, but, due to e < 12, no player can

meet the threshold on her own. Further, because 2 · 10 > 12 and 2 · 15 > 18, the provision of the

public good at both provision points is collectively rational.

We have four treatments, labeled Sim 1, Sim 2, Seq 1, and Seq 2. The Sim labels refer to

treatments where the two players make their decisions simultaneously whereas decisions are made

sequentially (with player 1 moving first) in the Seq treatments. The second treatment variables

are the number of the thresholds (one or two). Table 1 summarizes our 2× 2 treatments design.
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Order of moves

simultaneous sequential

one Sim 1 Seq 1

Step-levels

two Sim 2 Seq 2

Table 1: Treatments

Subjects play this game over 10 periods. In each period, subjects were endowed with 10 euros

but only one period was paid at the end of the experiment. Subjects were randomly matched

in groups of two players. In the Seq treatments, also the roles of first and second-movers were

random.

We have three independent sessions per treatment. The size of the sessions (matching groups)

varied between 10 and 18 subjects. We control for session size in our data analysis below. The

subject pool consists of students from the University of Frankfurt from various fields. In total,

we had 160 participants who earned on average 11.3 euros. The experiment was programmed in

z-Tree (Fischbacher, 2007).

3 Predictions

3.1 Assumptions

We now derive the one-shot equilibrium predictions for this public-good game. In addition to

standard Nash predictions (selfish players who maximize their own monetary payoff), we will use

Fehr and Schmidt’s (1999) model, henceforth F&S. In their model, players are concerned not only

about their own material payoff but also about the difference between their own payoff and other

players’ payoffs.

Assumption 1. Players’ preferences can be represented by the utility function Ui(xi, xj) = xi −

αi max[xj − xi, 0]− βi max[xi − xj , 0], xi, xj = 1, 2, i 6= j.

Here, xi and xj denote the monetary payoffs to players i and j, and αi and βi denote i’s aver-

sion towards disadvantageous inequality (envy) and advantageous inequality (greed), respectively.

Standard preferences occur for α = β = 0. Following F&S, we assume 0 ≤ βi < 1.
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Using the specific functional forms of the step-level public good game for xi above, we can

write the F&S utilities as a function of contributions Ui(ci, cj) directly. For the treatments with

one step-level, we obtain

Ui(ci, cj) = 10− ci + 10χ1 − αi max[ci − cj , 0]− βi max[cj − ci, 0] (1)

ci, cj = 1, 2; i 6= j whereas, for the two-step-levels treatments, we get

Ui(ci, cj) = 10− ci + 10χ1 + 15χ2 − αi max[ci − cj , 0]− βi max[cj − ci, 0]. (2)

Here, the χk are indicator functions indicating whether a step level has been reached: χ1 = 1 iff

18 > c1 + c2 ≥ 12 and χ2 = 1 iff c1 + c2 ≥ 18.

Using this model, we will make quantitative predictions. We fully calibrate the F&S model using

the joint distribution of the α and β parameters observed in Blanco, Engelmann and Normann

(2010). For each subject, they derive an αi from rejection behavior in the ultimatum game and a βi

from a modified dictator game.5 The use of this joint distribution seems promising as it successfully

predicts outcomes in several games (ultimatum game, sequential-move prisoner’s dilemma, public-

good game) which have a similar complexity as the present game (see Blanco, Engelmann and

Normann 2010).

Assumption 2. Players’ inequality parameters are given by known joint α-β distribution in Table

2. This distribution is common knowledge.

5While Fehr and Schmidt (1999) derive distributions for these parameters based on data from previous ultimatum-

game experiments, here, we need the joint distribution of the parameters. Such a joint distribution of inequality-

aversion parameters for the Fehr and Schmidt model was first elicited by Blanco, Engelmann and Normann (2010).

Fehr, Kremhelmer and Schmidt (2008) make an assumption about the joint distribution; namely that there are 60%

players with α = β = 0 and 40% “fair” types with α = 2 and β = 0.6.
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Subject αi βi Subject αi βi Subject αi βi

1 0 0 22 0 0.875 42 4.5 0.775

2 0 0.025 23 0.026 0 43 0 0.775

3 0.026 0 24 0.409 0.175 44 1.5 0.025

4 0.026 0.175 25 2.833 0.475 45 2.833 0.575

5 0.409 0.175 26 0 0.975 46 0.088 0.625

6 0.409 0.525 27 0 0.625 47 0.269 0.775

7 0.409 0.125 28 0.167 0.825 48 0.409 0.175

8 0.409 0.675 29 0.409 0.625 49 0.611 0.725

9 0.611 0.675 30 0.409 0 50 0.269 0.525

10 0.611 0.275 31 0.409 0.175 51 0 0.525

11 0.611 0.575 32 0.611 0.175 52 0 0.725

12 0.611 0.525 33 1.5 0.375 53 0.269 1

13 1.5 0.525 34 4.5 0.025 54 0.409 0.525

14 1.5 0.975 35 0 0.525 55 0.929 0.025

15 1.5 0.725 36 0.026 0.725 56 1.5 1

16 4.5 0.425 37 0.409 0.325 57 2.833 0.675

17 4.5 0.875 38 0.611 0.375 58 4.5 0.525

18 0.929 0.475 39 0.611 0.725 59 4.5 0

19 0.269 0.475 40 0.611 0.025 60 4.5 0

20 1.5 0.825 41 0.929 0.875 61 4.5 0.625

21 2.833 0.275

Table 2: Blanco et al.’s (2010) joint α and β distribution

3.2 Seq 1

We start with the sequential-move variant with one threshold (Seq 1). In that treatment, a second-

mover (S) with standard preferences will best respond to the first-mover’s (F ) contribution, cF ,

by choosing zero if cF < 2 and by contributing 12− cF if cF ≥ 2. Anticipating this, the first-mover

will choose her payoff maximizing contribution, which is cF = 2.

Next consider players who are consistent with Assumptions 1 and 2. Second-movers with

F&S preferences might choose cS = 0 even if cF ≥ 2 as their utility maximizing action if the

payoff inequality implied by cF becomes too big. For cF ∈ [2, 6] and facing the decision between

contributing 12 − cF and cF = 0, the second-mover either obtains US(12 − cF , cF ) = 8 + cF −
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αi(12− 2cF ) or US(0, cF ) = 10− βicF . We find that US(12− cF , cF ) > US(0, cF ) iff

cF ≥
2(1 + 6α)

1 + 2α+ β
≡ c̃F . (3)

The c̃F in (3) is a minimum acceptable first-mover contribution for a given set of individual

inequality parameters. Any contribution as least as high as c̃F will be met by cS = 12 − cF and

will result in the public good being provided. Any contribution lower than this threshold will be

met by cS = 0. Intuitively, c̃F is increasing in α and decreasing in β.

Based on our Assumption 2 (the joint distribution of the α and β parameters observed in

Blanco, Engelmann and Normann, 2010), we now predict the frequencies of public-good provision

as a function of cF . For each player in that data set (see Table 2), we determine the c̃F as in

(3). For subject 1 with α = β = 0, for example, we obtain c̃F = 2 as the minimum acceptable

first-mover contribution, whereas subject 58 with α = 4.5 and β = 0.525 has c̃F = 5.32 as the

minimum acceptable first-mover contribution and will thus only accept cF = 6. This allows us to

predict how many players in our experiment will (not) provide the public as a function of cF .

Table 3 shows the results of this calibration. In contrast to the game of players with standard

preferences, the likelihood of public-good provision is strictly below 100 percent as long as cF < 6.

Table 3 also reveals that the expected monetary payoff of a risk-neutral first-mover monotonically

increases in cF and is maximized for cF = 6.6 Players with a F&S utility function will a fortiori

choose cF = 6 as it, in addition, minimizes the payoff inequality.

First-mover contribution

Second-mover contribution cFM = 2 cFM = 3 cFM = 4 cFM = 5 cFM = 6

cSM = 12− cFM

(PG level 1 provided)
21.3% 37.7% 67.2% 83.6% 100%

cSM = 0

(PG not provided)
78.7% 62.3% 32.8% 16.4% 0%

expected

first-mover payoff
10.13 10.77 12.72 13.36 14.00

Table 3: Predicted second-mover responses conditional on first-mover choices and the resulting

expected first-mover monetary payoff in Seq 1 and Seq 2

Thus we have
6The expected payoff from choosing cF = 0 is 10; cF > 6 results in a lower likelihood of public-good provision,

lower payoffs, and greater payoff inequality. Thus a selfish first-mover will choose cF = 6.
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Proposition 1. For treatment Seq 1, the standard model predicts cS = 0 if cF < 2, cS = 12− cF
if cF ≥ 2 and cF = 2. The calibrated F&S model predicts the frequencies of second-mover responses

as in Table 3, and cFM = 6 for the first-movers.

3.3 Seq 2

Now consider the sequential-move variant with two thresholds (Seq 2). If the first-mover con-

tributes cF ≤ 6, the analysis is as above. But in the two-level game, the first-mover may also

choose her contribution in the range cF ∈ [8, 10] in order to make the second level feasible.

Players with standard preferences will not provide the public good at the second level in equi-

librium. Given cF ∈ [8, 10], second-movers will respond with cS = 12 − cF (yielding a monetary

payoff of 8+cF ) but not with cS = 18−cF (which would yield only 7+cF ). By backward induction,

first-movers will not choose cF ∈ [8, 10] but cF = 2, as in the game with one step-level. The second

threshold is irrelevant with standard preferences.

First-mover contribution

Second-mover contribution cFM = 8 cFM = 9 cFM = 10

cSM = 18− cFM

(PG level 2 provided)
39.3% 80.3% 80.3%

cSM = 12− cFM

(PG level 1 provided)
60.7% 19.7% 19.7%

cSM = 0

(PG not provided)
0.0% 0.0% 0.0%

expected

first-mover payoff
13.97 15.02 14.02

Table 4: Predicted second-mover responses conditional on first-mover choices between 8 and 10

and expected first-mover monetary payoff in Seq 2

Now consider F&S players and begin with the second-movers. With cF ∈ [8, 10], the second-

mover may chose cSM = 18− cFM , cSM = 12− cFM or cSM = 0. Since US(12− cF , 0) > US(0, cF )

for cF ∈ [8, 10], we can restrict the second-mover choices to cSM = 18− cFM and cSM = 12− cFM .

First suppose cF = 8. If the second-mover chooses cS = 18 − cF , we have χ2 = 1 and thus
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UF (10, 8) = 15 − 2αi. If she chooses cS = 12 − cF , we have χ1 = 1 and UF (4, 8) = 16 − 4βi.

We obtain US(10, 8) < US(4, 8) iff 1 − 4β + 2α > 0. This condition holds for for 60.7 percent of

the subjects. That is, if cF = 8, the public good will be provided at level one with 60.7 percent

probability and with 39.3 percent probability at level two. Then consider cF = 9. If cS = 18− cF ,

we obtain UF (9, 9) = 16, whereas for cS = 12 − cF we get UF (4, 8) = 17 − 6βi. We find that

16 < 17− 6βi iff 1− 6β > 0. In the data of Blanco, Engelmann and Normann (2010), 19.7 percent

of the subjects meet this condition. That is, if cF = 9, the public good will be provided at level

one (two) with 19.7 (80.3) percent probability. Finally, the case cF = 10 turns out to be identical

regarding the second-movers’ incentive. That is, cF = 9 and cF = 10 are equally likely to be

“exploited” by the second-mover, and the predicted frequencies of public good provision are hence

the same. Table 4 summarizes the additional predictions in Seq 2.

Consider next the first-movers. cFM = 10 will never be chosen by first-movers because cF = 9

triggers to the same second-mover response as cF = 10 (in terms of public good provision) but

cF = 9 yields a higher expected payoff and higher F&S utility than cF = 10. As for the choice

between cF = 8 or cF = 9, we find that cF = 8 yields a lower expected monetary payoff than

cF = 6 (see Table 4) and accordingly an even lower F&S utility. Hence, a risk neutral first-mover

will never choose cF = 8. The remaining possibilities are that first-movers will either choose cF = 6

or cF = 9. Contributing cF = 6 yields an expected utility of 14 and cF = 9 gives an expected

utility of 15.015 − 1.182α. Now 15.015 − 1.182α > 14 iff α < 0.859. This is predicted to hold for

36 percent of the Blanco, Engelmann and Normann (2010) subjects.

Proposition 2. For treatment Seq 2, the standard model makes the same predictions as for

Sim 1. The calibrated F&S model predicts the frequencies of second-mover responses as in Tables

3 and 4, and that 64% of all first-movers choose cFM = 6 and 36% choose cFM = 9.

Taking second- and first-mover predictions together, we finally derive the prediction for the

frequencies of public-good provision. We expect the public good to be provided at step-level 1

with a frequency of 0.64 + 0.36 · 0.197 = 0.711 and at step-level 2 in the rest of the cases.

3.4 Sim 1

With simultaneous moves, there are multiple equilibria both in the standard model and in the

F&S model. With standard preferences, both players contributing nothing and all allocations where

c1+c2 = 12 are the pure-strategy equilibria.7 Perhaps somewhat surprisingly, all of these equilibria

7There are also numerous mixed-strategy equilibria.
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are also Nash equilibria with calibrated F& S preferences except for those where (c1 = 2, c2 = 10)

and (c1 = 10, c2 = 2). (Proof available upon request.)

We believe that it is unlikely that entirely symmetric players will coordinate on asymmetric

equilibria and we therefore focus on symmetric pure-strategy equilibria ci = cj = 0 and ci = cj = 6.

For ci = 6 to be a best reply with standard preferences requires that player j chooses cj = 6 with at

least 60 percent. (This implies that there exists a symmetric mixed-strategy equilibrium in which

both players contribute ci = 0 with 40 percent probability and ci = 6 otherwise with standard

preferences.)

With the calibrated F&S model, the symmetric pure strategy equilibria ci = cj = 0 and

ci = cj = 6 are the same but the best response correspondence changes both quantitatively and

qualitatively. Here, player j must choose ci = 6 with at least 64 percent. Hence, the is a small shift

compared to the standard case and, all else equal, coordination on (c1 = 6, c2 = 6) is actually less

likely to be met than with standard preferences. There is, however, also a qualitative difference

to the standard case. With the calibrated F&S model, it is not the case that all players have the

same best response if there are more or less than 64 percent players with ci = 6 in the population.

Learning will be slower and the shape of the best response correspondence differs from the standard

case (see below).

Proposition 3. For treatment Sim 1, there are multiple equilibria both with standard and F&S

preferences. The symmetric pure-strategy Nash equilibria are ci = cj = 0 and ci = cj = 6. For

ci = 6 to be a best reply with standard preferences requires that player j chooses cj = 6 with at

least 60 percent; or 64 percent in the case of F&S preferences.

3.5 Sim 2

We now turn to the variant with simultaneous-move game with two thresholds (Sim 2). As argued

above for Seq 2, meeting the second threshold is not a Nash equilibrium with standard preferences.

As the equilibria derived above for Sim 1 are unaffected by the introduction of the second threshold;

with standard preferences, Sim 2 has the same Nash equilibria as Sim 1.

We look for a Bayesian Nash equilibrium of players with F&S utilities where the second level

public good is provided. A Bayesian Nash Equilibrium is a combination of type-dependent strate-

gies such that every player maximizes her expected utility, given her F&S type and the strategies

of all other players. Suppose that some types choose c = 9. Above, we have seen that, given

ci = 9, 80.3 percent of all types will reply with cj = 9 whereas the rest plays cj = 3. Hence, there
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cannot be a Bayesian Nash equilibrium where all types choose ci = 9. We will therefore look for a

Bayesian Nash equilibrium where p percent of all F&S types choose ci = 9 whereas 1 − p choose

ci = 3.

The expected utility from playing c = 9 is pU(9, 9) + (1− p)U(9, 3) = 16p+ (1− p)(11− 6α),

and the expected utility from playing c = 3 is pU(3, 9) + (1 − p)U(3, 3) = p(17 − 6β) + (1 − p)7.

Contributing 9 yields a higher expected F&S utility than contributing 3 iff

p >
6α− 4

6α+ 6β − 5
.

For F&S players with, for example, α = β = 0, this condition is never met; that is, selfish own

utility maximizers will always choose c = 3. If p is sufficiently large, however, inequality averse

players prefer c = 9. In the Blanco, Engelmann and Normann (2010) data, we find that for

p = 0.72 exactly 72 percent of the players have pU(9, 9) + (1−p)U(9, 3) > pU(3, 9) + (1−p)U(3, 3)

whereas for 28 percent the inequality is reversed. Thus these strategies constitute a Bayesian Nash

equilibrium. It remains to check, though, whether it pays to deviate to any contribution other

than 9 or 3. The only possible deviation is to contribute c = 0 since any other contribution is

not a F&S best reply to either 9 or 3. Contributing c = 0 yields an expected F&S utility of

10−3β−0.72 ·6β. But the equilibrium action c = 3 yields 0.72(17−6β) + (0.28)7 which is strictly

larger for all β ∈ [0, 1].

Thus we have established

Proposition 4. Treatment Sim 2 has the same Bayesian Nash equilibria as Sim 1. With standard

preferences, there are no additional equilibria. With the calibrated F&S model, 72 percent of the

F&S types choosing c = 9 and the rest c = 3 is a Bayesian Nash equilibrium.

3.6 Hypotheses

Based on Propositions 1 to 4, we will now derive two hypotheses regarding the impact of our two

treatment variables. We will return to the propositions and the performance of the F&S model

below.

Comparing the predicted public-good provision in Sim vs. Seq, we note that there are multiple

equilibria in the Sim treatments and that the public good is not provided in all equilibria. By

contrast, in the Seq treatments, the equilibrium is unique and the public good is provided (at

least at level one) in the unique equilibrium. This holds for both the one and the two-threshold

case.
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Hypothesis 1. The public good will be provided more frequently in the Seq treatments compared

to Sim.

Note that this hypothesis does not depend on assuming that players have F&S preferences.

The F&S model makes the point that the cF = 2 predicting with standard preferences in the Seq

treatments will be punished frequently by the second-movers, but it also predicts that this case

will not arise because first-movers anticipate this. Our second hypothesis does depend on assuming

F&S preferences.

Propositions 1 to 4 show that public-good provision can be improved if there is the second

threshold. In the Seq treatments, the public good will always be provided at level one but in

29% of the cases also at step-level two. The case for improved public good provision in the Sim

treatments is as follows. There are multiple equilibria in the Sim treatments anyway but there

exist an equilibrium in which the second level is met with positive probability. For both Seq 2

and Sim 2, we note that even if one player attempts to reach the second level by choosing e.g.

ci = 9 and the other player exploits this with cj = 3, this does not harm payoffs as the first level

of the public good is still provided. Thus the two-level treatments should be weakly superior.

Hypothesis 2. The public good will be provided more frequently in the treatments with two thresh-

old compared to one-threshold treatments.

4 Main treatment effects

We present our results in two parts. Section 4 presents tests of Hypotheses 1 and 2. In addition

to public good provision, we will also analyze contributions and payoffs (or efficiency). The next

section presents a more detailed analysis of the predictive power of the calibrated F&S model.

When we apply regressions analysis, we use Generalized Linear Latent and Mixed Models

(gllamm; see Rabe-Hesketh and Skrondal, 2005) regressions, taking possible dependence of obser-

vations at the level of a (randomly matched) group and at the individual level into account. As

dependent variables we use sequential (a dummy which is equal to one if the move order is sequen-

tial), twolevel (a dummy which is equal to one if there are two levels), seq2 (an interaction term for

the sequential treatment with two levels), furthermore we control for period and the sessionsize.

We typically report three regressions. Regression (1) reports the impact of the treatment

variables sequential and twolevel only. Regressions (2) includes the interaction seq2, and (3) adds

period and sessionsize.

13



4.1 Overview

We start with a summary statistics of our four treatments in Table 5. It shows public good provision

contributions, frequency of coordination, and the resulting payoffs. Note in our treatments with

two threshold levels we also count the cases where the second level has been achieved as successful

provision of PG level 1.

As can be seen, public good provision at the first level is most effective in the treatments with

sequential-move order. PG level 1 is provided most frequently (85.56%) with the sequential-move

order and two thresholds and thus PG level 1 provision is also more effective in Seq 2 compared

to Seq 1 where only 75.24% subjects manage to provide the public good. Only in 6% of Sim 2’s

cases is the public good provided at the second threshold level. However, the second threshold

level does come out better with sequential-move order (16.67% of PG level 2 in Seq 2). The

second threshold level leads to higher contributions in the simultaneous as well as in the sequential

treatment. We define successful coordination as cases without wasteful contributions (that is cases

where c1 + c2 ∈ {0, 12}, or c1 + c2 ∈ {0, 12, 18} in the two step-level cases). Coordination is best in

the environment of sequential moves. Furthermore the sequential-move order also leads to higher

payoffs compared to the simultaneous treatments.

Treatment

Variable Sim 1 Sim 2 Seq 1 Seq 2

PG level 1 provided (in %) 64.29 59.00 75.24 85.56

PG level 2 provided (in %) - 6.00 - 16.67

Contributions 5.22 5.99 4.96 6.07

(2.23) (2.88) (2.36) (2.57)

Coordination (in %) 49.05 17.00 77.62 81.11

Payoff 11.21 10.30 12.56 13.32

(3.86) (4.27) (2.92) (3.18)

Table 5: Summary statistics of our four treatments

A first look at the data in Table 5 thus suggest that we do find tentative support for Hypothesis

1. Regarding Hypothesis 2, the effect is ambiguous as ambiguous since the second level improves

public-good provision (at level one) in the Seq treatments but not in the Sim settings.
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4.2 Public-good provision level 1

We begin with a probit regression regarding our main variables of interest, the provision of the pub-

lic good at level 1. The regression shows that sequential is significant and therefore the sequential-

move order improves the PG provision at the first threshold. This is support for Hypothesis 1. The

implementation of a second threshold does not lead to a higher frequency of public good provision.

The same is true for the sequential treatment with two thresholds. That is, we do not find support

for Hypothesis 2 which predicts that the second threshold leads to more public good provision.

We find that the coefficient of sessionsize is negative and weakly significant. That is, sessions

with a higher numbers of subjects exhibit lower public-good provision. This is consistent with

findings in Botelho et al. (2009). Botelho et al. (2009) compare repeated settings with “random

strangers” and “perfect strangers” matching protocols and find that the assumption that subjects

treat Random Strangers designs as if they were one-shot experiments is false. Our results indicate

that the session size and hence the likelihood of meeting a random stranger once more has an

impact on cooperation. We note, however, that the coefficient of sessionsize is very small. (Recall

that our sessions had a size between 10 and 18.)

(1) (2) (3)

sequential 0.657*** 0.390* 0.395**

(0.184) (0.229) (0.200)

twolevel 0.123 -0.137 -0.151

(0.183) (0.227) (0.199)

seq2 0.541 0.429

(0.330) (0.297)

period -0.00633

(0.0124)

sessionsize -0.0643*

(0.0346)

Constant 0.281* 0.408** 1.342***

(0.154) (0.160) (0.509)

Observations 1,600 1,600 1,600

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Gllamm probit regression: PG provision level 1
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4.3 PG Provision level 2

Table 6 presents a gllamm probit regression of the frequency of PG provision of level 2. Again we

use sequential, period and sessionsize as dependent variables but twolevel cannot be part of the

analysis, of course. The table documents that sequential is again significant, that is, sequential-

move contributions also stimulate the provision of the second level which is additional support for

Hypothesis 1 (which postulates that public good provision will be more effective when a sequential

move order is used). This result holds for the one threshold case as well for the two threshold case.

Furthermore, regression (2) reveals that PG provison level 2 slightly decreases over time. The

dummy sessionsize is not significant here.

(1) (2)

sequential 0.638** 0.550**

(0.300) (0.277)

period -0.0466*

(0.0241)

sessionsize -0.0669

(0.0507)

Constant -1.773*** -0.630

(0.230) (0.716)

Observations 759 759

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Gllamm regression: PG provision level 2

4.4 Contributions

The following table shows a linear regression on players’ contributions. Again we control for the

impacts of the sequential move order and the second threshold. We see that contributions are not

significantly influenced by the order of moves. Interestingly, adding the second threshold leads to

significant higher contributions. The interaction of a sequential move order and two levels does

not lead to further increased contributions.

Over time, contributions get weakly smaller. sessionsize is significant, that is, in sessions with

more participants contributions are slightly lower.
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(1) (2) (3)

sequential -0.00397 -0.126 -0.0959

(0.254) (0.304) (0.315)

twolevel 1.202*** 0.904** 0.684***

(0.257) (0.424) (0.244)

seq2 0.446 0.390

(0.528) (0.436)

period -0.0330*

(0.0175)

sessionsize -0.135***

(0.0434)

Constant 5.039*** 5.076*** 7.151***

(0.169) (0.174) (0.639)

Observations 1,600 1,600 1,600

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Gllamm regression: Contribution

4.5 Payoffs

Next, we present the results of a linear regression analysis of subjects’ payoffs. Firstly, the table

shows that the sequential contribution mechanism significantly improves subjects’ payoffs. This is

due to the fact that public-good provision is improved by the sequential-move order.

The second step-level significantly reduces the payoffs. This can be explained by the fact that,

on the one hand, two thresholds increase contributions but, on the other hand, the second level

is rarely actually achieved. When we add the interaction seq2, we find that it significantly boosts

subjects’ payoff by 1.4 compared to the baseline Sim 1. The difference between Seq 1 and Seq 2

is, however, not significant as follows from a Wald test (p = 0.22). This emphasizes the overall

negative impact of the second threshold on payoffs. Indeed, payoffs are worst in Sim 2.

Furthermore the size of the sessions is weakly significant, but again the coefficient is very small

(< .12). The time trend is insignificant here.
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(1) (2) (3)

sequential 2.140*** 1.390*** 1.389***

(0.379) (0.446) (0.386)

twolevel -0.0103 -0.867** -0.898**

(0.393) (0.439) (0.392)

seq2 1.595*** 1.404**

(0.618) (0.565)

period -0.00250

(0.0310)

sessionsize -0.115*

(0.0671)

Constant 10.84*** 11.21*** 12.83***

(0.254) (0.323) (0.99)

Observations 1,600 1,600 1,600

*** p<0.01, ** p<0.05, * p<0.1

Table 9: Gllamm regression: Payoffs

The payoff variable is the variable a social planner is ultimately interested in. Payoffs reflect

the combined effect of contributions, public-good provision and coordination. The above regression

confirms that the payoff differences reported in our summary statistics are significant. Specifically,

it follows that Seq 2 has the highest payoffs, followed by Seq 1 and Sim 1, and Sim 2 has the

lowest payoffs. Note that this is precisely the ranking of payoffs which are implied by our two

Hypotheses.

5 The predictive power of the calibrated F&S model

We now discuss the quantitative predictions of the F&S model in more detail. While our Hypothesis

2 was based on the F&S model and largely failed, we will see that some of the models predictions

materialize rather well.

We begin with Proposition 1. The F&S model predicts the second-mover responses amazingly

well. Figure 1 contrasts the predictions made in Table 3 to the observed frequencies. Using binomial

tests, we cannot reject that predicted and observed frequencies are the same (all p > 0.5).8 We

8For cF = 6 we cannot apply a binomial test because the predicted frequency is 100 percent. regarding cF = 2,

we only have two observations so we cannot test either (in one case the PG was provided so the provision).
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are confident that both the exact quantitative prediction and the confirmation of the hypothesis

in the data constitute a significant finding in experimental economics.
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First-movers' contributions

Figure 1: Predicted frequencies (based on the calibrated F&S model) and observed frequencies of
second-movers contributing such that the PG at level 1 is provided.

Part of Proposition 1 is that first-movers should choose cF = 6 in order to maximize payoffs

and F&S utilities. This is clearly not the case as cF = 6 is chosen only in 37.1 percent of the cases.

While this rejects the F&S prediction, we note that similar observations have been made before.

For standard ultimatum-game experiments, it can be argued that offering the equal split may

be payoff maximizing (assuming risk neutrality), but about half the proposers offer less than the

equal split.9 Huck, Müller and Normann (2001) show that, in quantity-setting duopoly, Stackelberg

followers are inequality averse but the Stackelberg leaders still choose too high an output (to be

precise, the Stackelberg leader output is below the standard prediction but above what would be

payoff maximizing). Risk-loving behavior can explain the first-mover behavior.

Figure 2 is a bubble plot of first- and second-movers in Seq 1. The modal outcome is (6, 6)

as predicted, and many observations are on the Pareto frontier where cF + cS = 12. However, one

also clearly identifies the “punishing” second-movers on the vertical axis where cS = 0.

9In Blanco, Engelmann and Normann (2010), offering the equal split is actually payoff maximizing, but that

ultimatum game was done with the strategy method which typically induces higher rejection rates.
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Frequencies of contributions

25 Simultaneous vs. Sequential Contributions to a Step-Level Public Good - Normann and Rau, MannheimFigure 2: Bubble plot of first- and second-movers in Seq 1. Bubbles increase with frequency of
outcome of the data

For the first-movers in Seq 2, Proposition 2 predicts that 36 percent contribute cF = 9 and

64 percent should choose cF = 6. In our data, 36.7 percent of the first-movers choose 9—which

seems a remarkable confirmation of the prediction. The remaining 63.3 percent choose cF ∈ [2, 6].

While we do not find that 64 percent choose cF = 6, this only restates the previous finding that

first-movers do not always choose the risk-neutral payoff maximizing action.

Intriguingly, the second-mover prediction of Proposition 2 fails (whereas it was the first-mover

prediction of Proposition 1 that failed). The first-mover in the two-level case is in a trust-game

like situation. If she chooses cF = 9, she can be exploited by second-movers. While the calibrated

F&S model predicts that more than 80.3 percent of the second-movers will be trustworthy, it turns

out only 50.9 are. Predicted and observed share differ significantly (binomial test, p < 0.05).

The failure of the theory seems surprising since the cost of being not trustworthy are higher here:

second-movers gain only one additional euro by exploiting the first-mover, but this costs the first-

mover five euros.

We finally turn to Proposition 3, the Sim 1 case. In Sim 1, we observe that in 81.4 percent

of the cases subjects choose c = 6 and in 13.8 of the cases they choose c = 0. Hence, both the

standard model and the calibrated F&S model would predict that play converges to the pure-

strategy equilibrium where both players choose c = 6. This is, however, not the case. There is

no positive time trend, and some players persistently choose c = 0. Why do subjects not best

respond?
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Figure 3: Best-reply correspondences for standard players, F&S players and Holt-Laury players in
Sim 1.

Figure 3 illustrates what might be going on. It shows the best-reply correspondences for

standard selfish players, for F&S players and also for players with standard preferences but with

a degree of risk aversion according to the findings in Holt and Laury (2002). With selfish and

rational player, the best reply correspondence has a “bang-bang” property. If the belief is that

player j chooses ci = 6 less than 60 percent, all players will best respond with ci = 0, and vice

versa for a belief of more than 60 percent. With the calibrated F&S model, this is not the case.

For beliefs between (roughly) 40 and 80 percent, the best replies of the various F&S types differ.

For example, given a belief that 70 percent of all players choose ci = 6, only 75 percent of the

players will best respond with ci = 6 where 25 percent still choose ci = 0.

As mentioned in Proposition 3, the share of players choosing cF = 6 required such that cF = 6

is a best reply is slightly larger with F&S players. Inequality aversion has an effect similar, in

fact a stronger effect, than risk aversion (on average, players in Holt and Laury are slightly risk

averse). We also see that the best replies differ from the case with standard preferences. Around

the mixed-strategy equilibrium, the best replies are not vertical but somewhat “flat”, implying

that not all players will best reply once the fixed point of the mixed strategy is exceeded. We

believe that this is what we see in the data.

21



6 Conclusion

We analyze the provision of a step-level public good in an experiment. Specifically, we investigate

how the order of moves (simultaneous vs. sequential) and the introduction of a second step-level

(which is not feasible in standard Nash equilibrium) affects public-good provision. We find that

the sequential-move game yields more frequent provision of the public good and higher payoffs.

An additional step-level does lead to higher contributions but the effect on public-good provision

is ambiguous and it lowers payoffs.

Based on the existing experimental data of Blanco, Engelmann and Normann (2010), we fully

calibrate Fehr and Schmidt’s (1999) model of inequality aversion to make ex ante predictions.

We find that actual behavior fits quantitatively well with these predictions. Specifically, the F&S

model predicts the second-mover responses amazingly well. While the predictive power on first-

mover behavior is less impressive, similar findings have been observed before in other sequential

games. The calibrated Fehr and Schmidt (1999) model also predicts behavior well in the sequential

treatment with two step-levels, and in the simultaneous-move case with one level.
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Instructions to the experiment SEQ_2 

 

Welcome to our experiment. By taking part in this experiment, you have the possibility to 

earn money. The amount you earn will depend on your decisions and it will also depend on 

the decisions of another participant, so please follow these instructions carefully. It is 

particularly important that you do not talk to any of the other participants until the experiment 

is over. Furthermore, please switch off your mobile phone. If you have a question, please raise 

your hand; we will come to your desk and answer it privately.  

The experiment consists of exactly 10 rounds. At the end of the ten rounds, one of the ten 

rounds will be randomly selected.  Your payoff in cash at the end will be the income you 

earned in this randomly selected round. There is an even number of participants in this room. 

At the beginning of each round, we will randomly match you with another participant. This 

may be a different participant from round to round. Please note that we will not inform you 

about the participant you are matched with.  

Each round consists of two consecutive parts. In each part, exactly one participant makes a 

decision. Either you decide first or the other participant you are matched with does. The 

second decision is always the decision of the participant who did not make the first decision. 

At the beginning of each round, the computer randomly determines the participant who hast to 

decide first. How you will earn your income is explained below. 

 

The experiment 

In the beginning of every round, you will be given an endowment of 10 Euros. You will have 

to decide about how to divide the 10 Euros into two possible projects.  

One of the two projects is a private project. You are the only person who can contribute to 

this project. The other project is a joint project between you and the person you are matched 

with. 

Every Euro you contribute to the private project will pay you one additional Euro at 

the end of the round. The joint project pays only if the sum of contributions to this 

project is at least 12 Euros. If this target is met, both you and the participant you are 

matched with will get a bonus payment of 10 Euros each at the end of the round. If the 

sum of contributions was at least of 18 Euros, you and the participant you are 



matched with will receive a bonus payment of 15 Euros. Hence your income in each 

round is the sum of Euros contributed to the private project plus, potentially, the bonus 

payment of the joint project. Again, at the end of the ten rounds, we randomly select 

one of the ten rounds. Your income in this randomly selected round determines your 

payment at the end of the experiment. 

To make sure that everybody understands how their earnings are determined, we will provide 

you with examples and additional control questions. Please take note that the contributions in 

Euro in these examples and control questions are entirely arbitrary and for demonstration 

purposes only. In the actual experiment, the payoffs will depend on the participants’ actual 

decisions. 

Example 1: You have to decide in part one of the round and you contribute 5 Euros to the 

joint project. Thus 5 Euros remain in the private project. The participant you are matched with 

is informed about your decision and contributes 7 Euros in the joint project thus 3 Euros 

remain in her private project. Thus there are 12 Euros in the joint project. This leads to a 

bonus payment of 10 Euros to both you and the person you are matched with. At the end of 

the round you receive 5 Euros from your private project plus the bonus payment of 10 Euros. 

Thus you altogether earn 15 Euros. The person you are matched with receives 3 Euros from 

her private project plus the bonus payment of 10 Euros. Thus she altogether earns a payoff of 

13 Euros at the end of the round. 

Example 2: You have to decide in part one of the round and you contribute 9 Euros to the 

joint project. Thus 1 Euro remains in the private project. The participant you are matched with 

is informed about your decision and contributes 9 Euros in the joint project thus 1 Euro 

remains in her private project. Thus there are 18 Euros in the joint project. This leads to a 

bonus payment of 15 Euros to both you and the person you are matched with. At the end of 

the round you receive 1 Euro from your private project plus the bonus payment of 15 Euros. 

Thus you altogether earn 16 Euros. The person you are matched with receives 1 Euro from 

her private project plus the bonus payment of 15 Euros. Thus she altogether earns a payoff of 

16 Euros at the end of the round. 

Example 3: Your matched participant has to decide in part one of the round. She contributes 

6 Euros in the joint project thus 4 Euros remain in her private project. You have to decide in 

part two of the round. You are then informed about your matched participant’s decision. You 

contribute 3 Euros to the joint project. Thus 7 Euros remain in your private project. Thus there 



are 9 Euros in the joint project. This will not lead to a bonus payment due to the fact that the 

sum of contributions to the project is less than 12 Euros. At the end of the round you receive 7 

Euros from your private project without an additional bonus payment. Thus you altogether 

earn 7 Euros. The person you are matched with receives 4 Euros from her private project 

without an additional bonus payment. Thus she altogether earns 4 Euros at the end of the 

round.  

Control questions: Before we continue with the experiment instructions, we want to make 

sure that everybody understands how payoffs can be earned. Please answer the questions 

below. Please raise your hand if you have a question. After some minutes we will check your 

answers.  

1.) 

Assume we randomly determine you to decide in the second part of the round. You are first 

informed that your matched participant has contributed 8 Euros in the joint project. 

a.) Assume you contribute 4 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 

b.) Assume you contribute 2 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 



2.) 

Assume we randomly determine you to decide in the second part of the round. You are now 

being informed that your matched participant has contributed 9 Euros in the joint project. 

a.) Assume you contribute 9 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 

b.) Assume you contribute 8 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 

 

 

 

 

 

 

 

 



3.) 

Assume we randomly determine you to decide in the first part of the round. You contribute 3 

Euros to the joint project in the first part of the round. Your matched participant is then 

informed about your decision.  

a.) Your matched participant contributes 9 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 

b.) Your matched participant  contributes 0 Euros to the joint project 

1. What is the profit from your private project?     ____ 

2. What is the profit from your joint project?     ____ 

3. What is your entire income at the end of the round?    ____ 

 

4. What is your matched participant’s profit from her private project?  ____ 

5. What is your matched participant’s bonus payment from the joint project? ____ 

6. What is your matched participant’s entire income at the end of the round? ____ 

 

 

 

 

 

 

 

 



How you will make your decisions 

 

At the beginning of each round, you have to decide about the number of Euros you want to 

contribute to the joint project. You will do this by entering your chosen number. You have the 

possibility to type in any integer number between 0 and 10. Note that you and the participant 

you are matched with decide at the same time and independently of each other. 

 

After the decisions have been made, both participants will be given an information screen at 

the end of the round. This information screen will show the participants the individually 

chosen contributions to the joint project in that round. Both participants get information about 

their individual returns from their private projects. Furthermore, the amount of the bonus 

payment will be displayed. Additionally, both participants are informed about their individual 

total payoff in that round.  

 

 

Beginning the experiment 

Please take a look at your computer screen and make your decision. If you have a question at 

any time, please raise your hand we will come to your desk to answer it. 

  

 


