Klingelhöfer, Jan

Conference Paper
Lexicographic Voting

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Klingelhöfer, Jan (2011) : Lexicographic Voting, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2011: Die Ordnung der Weltwirtschaft: Lektionen aus der Krise - Session: Voting and Elections, No. A15-V2, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft

This Version is available at:
http://hdl.handle.net/10419/48701

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Lexicographic Voting

Jan Klingelhöfer*
European University Institute

November 10, 2010

Abstract

"Lexicographic Voting" reconsiders the division of the literature into models with forward-looking voters and models with backward-looking voters by developing a model that incorporates motives from both literatures. As long as there is no uncertainty about preferences and parties can commit in advance to the ideological dimension of policy, but not to a maximal level of rent extraction, voters can constrain the latter to the same extent as in a purely backward-looking model. At the same time, the policy preferred by the median voter is implemented as in a standard forward-looking model of political competition. Voters achieve this outcome by following a simple lexicographic voting strategy. They cast their vote in favor of their favorite policy position whenever parties offer different platforms, but make their vote dependent on the incumbent parties' performance whenever they are indifferent. When uncertainty about the position of the median voter is introduced into the model, voters have to accept higher rent payments, but they still retain some control over rent extraction.

*I thank Philippe Aghion, Ruixue Jia, David Levine, Torsten Persson, Christian Schultz, David Strömberg, Rongrong Sun, Richard van Weelden and seminar participants at the European University Institute, IIES and SUDSWEC 2010 for helpful comments and suggestions and Christina Lönnblad for editorial assistance. I gratefully acknowledge financial support from Handelsbanken’s Research Foundations.
1 Introduction

Do voters reward incumbents for past success and honesty or do they disregard the past and only consider the future when they vote? This is one of the most fundamental questions for a positive theory of electoral competition. However, theoretical models of elections usually assume either backward-looking or forward-looking voting. The voters’ motivation at the ballot box is an assumption of the model rather than an outcome of the equilibrium analysis. In models of pre-election politics, candidates commit to their post-election actions before elections take place. In contrast, in postelection models, politicians are free to decide about their policies when they are in office. However, in the next elections, the voters can condition their vote on the performance of the incumbent party.\(^1\)

Models of preelection politics are especially popular for modeling spatial policy choices in the tradition of Downs (1957) where voters decide between announced policy positions, while models of postelection politics are often, but not exclusively, applied to accountability issues. Politicians are induced to put in more effort (Ferejohn 1986) or to limit rent extraction due to the possibility of losing the elections and office if they do not comply (Barro 1973).\(^2\) Essentially, these accountability models apply a principal-agent framework to elections with the politicians as agents and the voters as their principals.

In this paper, I combine a simple prospective model of Downsian spatial electoral competition with policy choice and a simple retrospective model of electoral accountability with rent extraction. Specifically, parties can commit to a policy position before elections take place as in Downs (1957), but decide on the level of rent extraction once they are in office as in Barro (1973) and the simplified model of political accountability discussed in Persson and Tabellini (2000). I abstract from any details on how rents are extracted and assume that rent payments reduce a given amount of public funds which reduces every voter’s utility in the same way. Voters are fully aware of how much rents are extracted.

In the basic model in Section 2, I show that having voters with divergent policy

\(^1\)For an overview of both types of models, see Persson and Tabellini (2000). For an overview especially of models of accountability, see Besley (2006).

\(^2\)Besides the accountability and preference aggregation function, there are at least two more functions of elections (Persson, Roland, and Tabellini 1997). In addition, elections allow citizens to select the most competent individuals for office and help aggregate information about the correct political decisions.
preferences does not at all restrict the possibility of holding politicians accountable, as long as there is certainty about the position of the median voter. Voters manage to hold politicians accountable as well as they would in a model with backward-looking voters but without the policy dimension. They achieve this by following a straightforward and intuitive lexicographic voting strategy. Specifically, if the parties commit to policy positions that differ in attractiveness for a voter, the voter casts her vote in favor of the party which minimizes her disutility on the policy dimension. However, when a voter is indifferent, she conditions her vote on the rent extraction of the incumbent party. She supports the incumbent party only if the rents have not exceeded a maximum acceptable level. In equilibrium, this level is positive but smaller than the maximum rent the incumbent party could take. I call this voting strategy "lexicographic" because voters cast their votes as if they had lexicographic preferences over policy and rents.

The lexicographic voting strategy forces the parties to converge on the policy dimension, but also allows for control of the incumbent’s party rent extraction. Moreover, it is intuitive that a voter who is indifferent will take past actions of the parties into account, whereas it is impossible for a rational forward-looking voter to consider the past when she is not indifferent with respect to the future.

Lexicographic voting requires sophistication of the voters only with respect to the optimal determination of the acceptable level of per period rent extraction by the incumbent party. Thus, the demands with respect to the voters’ sophistication are not larger than in other models of political accountability.

Generally, the equilibria in backward looking models hinge on the fact that voters are indifferent between the incumbent party and the opposition and can therefore reward or punish past actions while playing undominated strategies. The fact that a simple strategy can solve the accountability problem in a model combining rent extraction with Downsian competition is somewhat surprising, but can be explained by the fact that competition forces both parties to choose the same platform so that voters are indeed indifferent. This is a result of the lack of uncertainty in the basic model. Section 3 of the paper shows that as soon as uncertainty about the preferences of the median voter is introduced, the accountability of politicians is reduced and the voters must accept larger rent extraction by the incumbent party. But it is still optimal for them to follow the lexicographic voting strategy. Because the incumbent party does not know the position of the median bliss point with certainty, the
opposition party now has a chance of winning office by offering a different policy position than the incumbent party, even when the latter complies with voters’ demands on the rent dimension. Nonetheless, the incumbent party has an incentive to accept somewhat reduced rent payments in return for being reelected whenever the voters are indifferent. The reason is that in this way, it can ensure that it will be reelected with positive probability.

In Section 4, I show that if parties are also motivated by policy and not only by rents as in the main model, the inclusion of a policy dimension into the model can even increase the accountability of politicians compared to a pure accountability model. Ideological parties give voters the additional option of threatening the incumbent party to allow the opposition party to win with policies that make the incumbent party worse off than the bliss point of the median voter. However, this requires more coordination among voters than the simple and straightforward lexicographic voting strategy given in Section 2. Therefore, the lexicographic voting strategy from the main model which continues to constitute an equilibrium in the case with ideological parties is the most plausible outcome even in the case of ideological parties. Nonetheless, the result in Section 4 shows that treating accountability and policy determination separately obscures some interesting possibilities.

A crucial assumption in the paper is that commitments to electoral platforms are credible in the policy dimension but lack credibility in the rent dimension. A first justification is that these are widely accepted standard assumptions for both types of models and that it is worth exploring if combining these leads to results that cannot be found by looking at the models separately. Moreover, in the basic model as well as in the extension with uncertainty over the position of the median voter (Sections 2 and 3), parties have no reason to break their electoral promises with regard to policy because it does not enter their utility function. A further justification is that if parties announce policy motivated candidates who run for office, they can indeed credibly commit to policies, but not to limits of rent extraction. Osborne and Slivinski (1996) and Besley and Coate (1997) introduced citizen-candidates into the voting literature. In these models, not parties, but citizens with policy preferences run for election. Commitment to a policy position does not constitute a problem because voters vote for ideological candidates whom they know to implement their favorite policy. As long as there is a candidate with a certain ideology, voters can vote for that candidate. The principal-agent problem of the voters is solved by delegation
to an agent with the right preferences. However, empirically, citizen-candidates who run independent of any parties appear to be the exception rather than the rule. The basic idea that a certain type of candidate will implement a certain kind of policy can be incorporated into models with parties if the parties have the chance of deciding before the elections who the candidate is and achieve office in case of victory and if the choice of potential candidates is sufficiently large. I do not explicitly model such a candidate choice stage, but the fact that parties usually run with candidates who have their own ideology is a good justification for the assumption that parties can commit to a policy. However, as long as there are no candidates with purely altruistic motives without interest in rent payments available, parties cannot credibly commit to refrain from rent seeking.

It is surprising that until now, there seem to have been no attempts to combine models of retrospective voting with aspects of Downsian competition. My model shows that forward-looking and backward-looking motives can be reconciled in a single model. This should be considered in future empirical research because so far, the question seems to have been if voters vote retrospectively or prospectively. If there is not necessarily a contradiction, some empirical results might have to be reevaluated.

Models of political accountability can explain the often observed incumbency advantage, as is pointed out by Austen-Smith and Banks (1989). It is hard to see how a purely policy model could account for this without assuming some asymmetries between parties or candidates. My basic model in Section 2 leads to the implausible result that in equilibrium, the incumbent party is always reelected. In the extended model with uncertainty about the exact position of the median voter in Section 3, I find that the incumbent party always has a chance exceeding 50% of winning the elections and that its advantage depends on a measure of uncertainty about the preferences of the median voter. This result seems to be consistent with election results in many countries. Incumbent parties win more often than not, but their victory is far from certain.

The term lexicographic voting has been used before to describe similar voting strategies, for example in Dutter (1981) and Soberman and Sadoulet (2007). However, in these papers, lexicographic voting follows directly from lexicographic preferences. In my model, lexicographic voting is part of an equilibrium of the voting game although the voters’ preferences are not lexicographic. My model is the first one to show that lexicographic voting can achieve a reconciliation of backward-looking and
forward-looking voting.

The paper proceeds as follows. Section 2 develops the main model with certainty about the position of the median voter and discusses its equilibrium. Section 3 shows that uncertainty over the positions of the median voter leads to less electoral control. Section 4 presents an extension to policy oriented parties and strategies that are not history-independent. An Appendix contains the proofs of the results in Section 3 and the examples from Section 4.

2 The model

I consider a polity with two parties interested in winning office only for rent-seeking purposes, and an odd number N of voters $i = 1, 2, \ldots, n$ interested in policy as well as rent reduction. The ideological policy space is the interval $[0, 1]$. Party $j \in \{x, y\}$ maximizes:

$$U^j_0 = E_0 \sum_{t=0}^{\infty} \beta^t r^j_t,$$

where rents in future periods are discounted by the factor $\beta < 1$. r^j_t is the rent extracted by party j in period t. The party in government (also called the incumbent party) in period t is denoted by $I_t \in \{x, y\}$. The opposition party in period t is denoted by $O_t \in \{x, y\}$, $O_t \neq I_t$. Parties decide how much rent $r_t \in [0, R]$ they extract in a period in which they are in office. R is the total amount of available public funds that is assumed to be constant over time and constitutes the maximum per period rent. Parties out of office cannot acquire any rents. Hence, $r^j_t = r_t$ for $j = I_t$ and $r^j_t = 0$ for $j = O_t$.

Voters $i = 1, 2, \ldots, n$ maximize:

$$U^i_0 = E_0 \sum_{t=0}^{\infty} \beta^t (- (p_t - b^i)^2 + (R - r_t)),$$

where b^i is the policy bliss point for voter i and $r_t = r_t^y + r_t^x$ the rent extraction of the incumbent party in period t. Hence, $R - r_t$ gives the amount of public funds that are used in the voters’ interest. For simplicity, I assume that the utility from public good spending is uncorrelated with the ideological policy position. The variable p_t denotes the policy in period t and the vector $B = (b^1, b^2, \ldots, b^N)$ the policy bliss points of the
voters. $b_m = \text{median}(B)$ is the bliss point of the median voter. For the moment, it is assumed to be constant over time. In Section 3, the more general case of uncertainty about the median voter’s position is discussed. Disutility in policy is quadratic in the distance to the bliss point. This standard functional-form assumption is made for convenience of notation. All the following results only depend on increasing disutility in distance of policy to a voter’s bliss point. Since parties are not interested in policy in the main model, the assumption that they can commit to the policy position while they cannot commit to limit rent extraction is plausible. Parties have no incentive to break their promises on the policy dimension. Another interpretation is that parties have the possibility to let candidates with preferences different from their own (which could, for example, be the preferences of the average party member) run in the elections and in this way, they can commit to a policy. There is no reason to assume that such candidates could commit to low rent payments more credibly than a party, but they have no incentives to implement any policies that are different from their own bliss point.

2.1 The order of moves

The order of moves is the following: In any period t, the policy position p^I_t of the incumbent party $I_t \in \{x, y\}$ is implemented, then rents r^I_t and a new policy position p^I_{t+1} are chosen by the incumbent party. An alternative policy position p^O_{t+1} is chosen by the opposition after observing the policy position of the incumbent party and the rent r_t. Then, elections take place and every voter i casts her vote $v^i_t \in \{x, y\}$.

Abstentions are not possible.

Let $V_t = (v^1_t, v^2_t, ..., v^N_t)$ be the vector containing the votes of all voters. After the elections have taken place, the new period $t + 1$ begins and the party with the majority of votes in period t becomes the incumbent party:

$$I_{t+1} = \text{mod}(V_t).$$

Period 0 is identical to all other periods, only the identity and the policy positions of the incumbent party and the opposition are exogenously given and not determined in a previous period.

The incumbent party is thus assumed to first choose its position instead of the
more standard assumption that policy positions are chosen simultaneously.3 For the basic model, this is of no great importance (however, the best reply of the opposition is no longer unique), but it plays some role when I introduce uncertainty in Section 3, where it is essential for the existence of equilibria in pure strategies. The timing assumption is made to keep the analysis there as simple as possible.

2.2 Strategies

To denote the entire history of a variable z_t up to period t, I use a superscript t such that $z^t = \{z_0, z_1, z_2, \ldots, z_t\}$. Let $h_t = \{p_{y,t}, p_{x,t}, I_t, V^{t-1}, r^{t-1}\}$ be the history of the game up to the beginning of period t. A strategy for a party j is the decision about a policy platform $p_{j,t+1}(h_t) \in [0, 1]$ for all possible histories with $j = I_t$ and $p_{j,t+1}(h_t, p_{I,t+1}, r_t) \in [0, 1]$ for all possible histories with $j = O_t$. In addition, the strategy contains the rent payment $r_{t,j}(h_t)$ for all possible histories with $j = I_t$. Because the opposition can observe the policy position of the incumbent party, the party that is out of office can take the policy position as well as the rent payment to the incumbent party into account when announcing its policy position, while the incumbent party cannot. A strategy for a voter i is a vote $v_{i,t}(h_t, p_{y,t+1}, p_{x,t+1}, r_t) \in \{y, x\}$ for every period t and every possible history up to the time of her voting decision.

\textbf{Definition 1} A strategy is history-independent if all decision by a player in period t only depend on other variables that have been a) determined in the same period and b) before the decision is made.4

Thus, a history independent strategy for the incumbent party implies that its platform and rent extraction do not depend on moves in past periods at all and thus, they must be constant as long as the same party j is holding office (nothing rules out a priori that the parties could play different history-independent strategies): $p_{I,t+1} = p_{I}^I$ and $r_{t} = r_{I}$ as long as $I = j$ for all periods t as long as j is in office. The reply of the opposition party only depends on the policy offer and rent extraction of the incumbent party and the votes only on the policy offers, the identity of the

3This assumption is less common than simultaneous policy announcements, but has been made in many papers, for an early example see Wittman (1973).

4This is often called a stationary strategy in political economics. However, it could be argued that the rent payment r_t should not play any role in a stationary strategy because it is a bygone by the time the voters cast their votes. I therefore avoid the term "stationary".
incumbent party and the rent extraction. If, in addition, both parties are assumed to play the same strategy, policy offers and rent extraction will be the same in all periods. Moreover, if the voters play pure strategies, the incumbent party is either always or never reelected.

2.3 An equilibrium with lexicographic voting

The strategies formulated in Proposition 1 below constitute an interesting equilibrium which has all the essential features of a backward-looking model in the tradition of Barro (1973) and Ferejohn (1986) as well as those of a forward-looking model in the tradition of Downs (1957). Parties converge on the ideological dimension, but voters nonetheless keep the rent payments at some level which they could achieve in a model without policy platforms. This is the result of an intuitive lexicographic voting strategy. A voter casts her ballot in favor of her preferred policy position. Only when she is indifferent in this respect does she decide according to past rent extraction by the incumbent party. It is clear that with such a strategy, she encounters no credibility or time-inconsistency problem. It also seems intuitively plausible that a voter casts her vote in this way and it is moreover consistent with the evidence that voters have prospective as well as retrospective motives.

Proposition 1 An equilibrium of the game is constituted by the following strategies:

The parties play:

\[p_{t+1}^j = b_m \text{ for } j = y, x \text{ in all } t, \]
\[r_t = \bar{r} \text{ in all } t, \]

where \(\bar{r} = (1 - \beta)R. \)

The voters play:

\[v_t^i = \begin{cases}
 y & \text{if } (p_{t+1}^y - b')^2 - (p_{t+1}^x - b')^2 < 0 \\
 x & \text{if } (p_{t+1}^y - b')^2 - (p_{t+1}^x - b')^2 > 0 \\
 I_t & \text{if } (p_{t+1}^y - b')^2 - (p_{t+1}^x - b')^2 = 0 \text{ and } r_t \leq \bar{r} \\
 O_t & \text{if } (p_{t+1}^y - b')^2 - (p_{t+1}^x - b')^2 = 0 \text{ and } r_t > \bar{r}
\end{cases} \text{ in all } t. \]
From the strategies, it follows that in equilibrium:

\[I_t = I_0 \text{ in all } t, \]
\[p_t = b_m \text{ in all } t \geq 1, \]
\[r_t = \bar{r} \text{ in all } t. \] (5)

Proof. Given the voters’ strategy, the median voter is decisive: If \(v_t^m = j \), it follows that \((p^j_{t+1} - b^m)^2 - (p^{\sim j}_{t+1} - b^m)^2 \leq 0\). This implies that \((p^j_{t+1} - b^j)^2 - (p^{\sim j}_{t+1} - b^j)^2 \leq 0\) for all \(b_i \leq b_m \) or all \(b_i \geq b_m \) and therefore for a majority of voters. Thus, the majority of voters cast their vote for the same candidate as the median voter and the party with the support of the median voter wins. Given the equilibrium strategies of the parties, \((p^j_{t+1} - b^j)^2 = (p^{\sim j}_{t+1} - b^j)^2\) in all periods. Because \(r_t = \bar{r} \) in all periods, all voters vote for the incumbent party that remains in office and implements \(p_{t+1}^I = b_m \).

Given the strategies of the parties, a voter neither influences future rents nor future policy with her vote. This is even true in the case with only one voter who is always pivotal. Therefore, a voter has no utility increasing deviation from voting for the party that offers the policy closest to her bliss point. In case a voter is indifferent with respect to policy in the next period, there is no utility increasing deviation from voting according to past performance of the incumbent because, again, it does not influence future policy or rent payments.

The fact that the opposition party cannot be better off by deviating follows from the fact that given the position and rent extraction of the incumbent party, it either wins with certainty or has no possibility to achieve office and, moreover, it cannot influence any election results or rent payments in the future with its choice of policy position. For the incumbent party, any policy position different from \(p_{t+1}^I = b_m \) leads to a loss of office (and therefore rent payments) forever because given the reply of the opposition, the latter is preferred by the median voter. The same is true for the combination of any policy position \(p_{t+1}^I \) with any rent \(r_t > \bar{r} \). Therefore, reelection is only possible with \(r \leq \bar{r} \). Hence, there is no possibility for the incumbent party to increase its utility by deviating with a strategy that leads to its reelection. If it accepts defeat by deviating in an arbitrary period \(s \), the incumbent party can, at most, achieve a rent of \(R \) in the period in which it deviates and then lose office and rents forever. This gives the same utility level that the incumbent party achieves by not deviating and receiving a rent of \(r_t = \bar{r} = (1 - \beta)R \) forever because the present
discounted value of future rent payments in period s is the same:

$$
\sum_{t=0}^{\infty} \beta^t \bar{r} = \sum_{t=0}^{s-1} \beta^t \bar{r} + \sum_{t=s}^{\infty} \beta^t \bar{r} = \sum_{t=0}^{s-1} \beta^t \bar{r} + \sum_{t=s}^{\infty} \beta^t \bar{r} = \sum_{t=0}^{s-1} \beta^t \bar{r} + \beta^s \bar{r} = \sum_{t=0}^{s-1} \beta^t \bar{r} + \beta^s \bar{R}.
$$

Therefore, no deviation from the given strategy increases the utility of the incumbent party.

Which party is the incumbent party in period 0 is exogenously given. This party remains in office forever, as in the standard case of backward looking models without uncertainty. However, this will no longer be the case when I introduce some uncertainty in Section 3.

Corollary 1 There is no equilibrium with a lower present discounted value of future rent payments in any period s than R.

Proof. Suppose that there is an equilibrium with $\sum_{t=s}^{\infty} \beta^{t+s} r_t < R$ in any period s. Then, the incumbent party in period s is better off by deviating and taking a rent of $r_s = R$. This is a contradiction.

Therefore, the equilibrium in Proposition 1 gives voters the maximum control over rents that can be achieved in equilibrium.\(^5\) It is identical to the minimum rent extraction that can be achieved in a model without a policy dimension where the only problem of the voters is to hold the parties accountable for rent extraction.

Voters play as if they were always pivotal. This seems to be a reasonable assumption for a plausible equilibrium and helps to rule out equilibria which require a great deal of coordination of voters when they cast their votes. However, Corollary 1 is valid for all possible equilibria. Therefore, restricting strategies to be history-independent does not reduce electoral control at all.

The intuition is straightforward. Nothing can stop a party in power from taking maximum rent R if this party does not expect to get at least the same present discounted value in rents in later periods. As shown in Section 4, if parties are interested in policy, there are history-dependent strategies that lead to more electoral control.

\(^5\)There are equilibria with a lower rent payment $r_t < \bar{r}$ in period t that are sustainable because the incumbent party expects higher rent payments in the future. However, from Corollary 1, it follows that the present discounted value of rent extraction cannot be smaller than R. Equilibria with increasing rent payments over time seem rather implausible. The opposition party could convince the voters that it actually only demands a constant rent payment of \bar{r} once in office.
and lower rent payments. The reason is that ideological parties can be rewarded and
punished with future policies.

As is also common in models of political accountability, the given equilibrium
is not unique and other equilibria with larger rent payments exist. However, the
outcome with the minimum constant rent payments is generally considered to be
the most interesting outcome of a game of backward-looking voting, as it describes
maximal voter control. In this sense, the equilibrium here is most in line with the
literature. It shows that retrospective and prospective motives in voting are not
inconsistent with each other. Voters have just one instrument, namely their single
vote, but this is sufficient to control policy as well as to hold politicians accountable
to a certain degree.

The following Corollary shows that convergence on the policy dimension is the
rule rather than the exception, but first I derive a useful Lemma:

Definition 2 A voter is pivotal if her vote decides about the winner of the elections
because $\frac{N-1}{2}$ of the other voters vote for party x and $\frac{N-1}{2}$ vote for party y. If a voter
votes as if she was pivotal she votes for a party whose victory maximizes her utility
given the strategies of all players.

Lemma 1 If parties play symmetric history-independent strategies and voters vote
as if they were pivotal even when they are not then: a) A voter votes for a party that
offers the bliss point minimizing her disutility from policy in the next period. b) A
party’s utility only depends on its being the incumbent party in the next period and
the rent extraction in the current period.

Proof. History independence together with symmetry of the parties strategies imply
that from period $t+1$ onwards, policy positions and rent extraction are decided
independently of past periods. The only state variable is incumbency, but voters are
indifferent to which party is in office and which party offers which policy position.
From this, the lemma directly follows. ■

Corollary 2 There is no equilibrium with symmetric history-independent strategies,
voters who vote as if they were pivotal, rent payments $r_t < R$ and policy $p_{t+1} \neq b^m$ in
any period t.

Proof. From Lemma 1, it follows that in any equilibrium with history-independent
symmetric strategies, a party’s policy position influences its utility only in so far as it
determines the winner of the elections and the rent extraction. Suppose that \(r_t < R \). This can only be part of an equilibrium if the incumbent party is reelected with positive probability; if not it would play \(r_t = R \) because a lower rent \(r_t \) could not improve its situation once in opposition. If both parties play symmetric history-independent strategies, the incumbent party can only be reelected with positive probability if it plays \(p_{t+1}^I = b_m \), because all other positions would be beaten by \(p_{t+1}^O = b_m \). To see this, consider the problem of a voter who votes as if pivotal: By definition of \(b_m \), a majority of voters must prefer \(b_m \) to any \(b \neq b_m \) and in equilibrium, the opposition would have to choose a position that wins the elections to maximize its utility. Therefore, if \(r_t < R \) the incumbent party offers \(p_{t+1} = b_m \) and, in equilibrium, a party offering \(b_m \) wins.

There are equilibria with \(r_t = R \) and \(p_{t+1} \neq b_m \). This is due to the unusual timing assumption that the opposition party chooses its policy position after the incumbent party. There are history-independent equilibria where the incumbent party always takes \(R \) and is never reelected. In such equilibria, the incumbent party has no incentive to take the median position. However, if the incumbent party does not take the median position, the opposition party does not have to take it to win because any policy position that is different from \(b_m \) can be beaten by another policy position that is different from \(b_m \), but slightly closer to the bliss point of the median voter. With the standard timing assumption of simultaneous announcement of policy positions, this is not possible. However, a similar equilibrium in which policy does not converge to the median position is possible in a purely Downsian framework with the incumbent party choosing its position first and the result should therefore not be attributed to the combination of prospective and retrospective voting motives. On the contrary, only in combination with the outcome of \(r_t = R \) in all periods can it be sustained in the combined model.

3 Uncertainty about the median bliss point

So far, I have assumed that the identity of the median voter is known when parties decide about their policy platforms. How robust are the results to relaxing this assumption? This section shows that voters retain some control over rent extraction in a straightforward and plausible equilibrium where voters follow the same lexicographic voting strategy as in Section 2.
The assumptions and the order of moves are the same as in Section 2. The only difference is that the favorite position of the median voter is now uncertain at the point when parties announce their policy positions. Voters keep some control over rent extraction, but the control is limited because sometimes the incumbent party loses office even when it does not deviate and therefore can demand higher rents in equilibrium.

For simplicity, I assume from now on that there is only one voter. She can be thought off as representing the decisive median voter.\(^6\) Her expected utility is given by:

\[
U^m_0 = E \sum_{t=0}^{\infty} \beta^t (-(p_t - b_t)^2 + R - r_t),
\]

where \(b_t\) is her bliss point in period \(t\). This bliss point is now a random variable that is only determined after the parties have announced their policy positions for period \(t\). The value of \(b_t\) is distributed identically and independently of past bliss points. The expected utility function of the parties \(j = y, x\) is identical to the expected utility function in Section 2:

\[
U^j_0 = E_0 \sum_{t=0}^{\infty} \beta^t r_{t,j}.
\]

Let there be \(K\) distinct possible policy bliss points \(b_k\) of the voter, all within the policy space \([0, 1]\). They are ordered such that \(b_k < b_l\) if and only if \(k < l\). Let \(q_k\) be the probability that the median voter of period \(t\) has the bliss point \(b_t = b_k\). By assumption, this probability is the same in every period \(t\). Then, \(F(b_k) = \sum_{t=1}^{l=k} q_t\) is the cumulative distribution function of \(b_k\). I define:

\[
b_m = \min_{k \in K} F(b_k) \ s.t. \ F(b_k) \geq 0.5,
\]

so that \(b_m\) is now the median of the possible bliss points of the voter.\(^7\) Moreover, I define for the case \(K \geq 2\):

\(^6\)This avoids complications in finding the distribution of the possible median bliss points by ruling out the possibility that the identity of the median voter changes between periods.

\(^7\)Naturally, \(b_m\) was also the median of the possible median bliss points in Section 2, where the distribution of the median voter was degenerate. Therefore, there is no need to change the notation.
\[
b^*(b_k) = \begin{cases}
b_2 & \text{for } k = 1 \\
b_K - 1 & \text{for } k = K \\
b_{k-1} & \text{if } F(b_{k-1}) \geq 1 - F(b_k) \\
b_{k+1} & \text{if } F(b_{k-1}) < 1 - F(b_k) \\
\end{cases} \quad \text{for } k \in \{2, 3, \ldots, K - 1\}
\]

(7)

\[
\pi^* = \begin{cases}
F(b_m) & \text{if } b^*(b_m) > b_m \\
1 - F(b^*(b_{m-1})) & \text{if } b^*(b_m) < b_m
\end{cases}
\]

(8)

\[
r^* = \frac{(1 - 2\pi^*)\beta + 1}{(1 - \pi^*)\beta + 1} R
\]

(9)

If \(K = 1 \), then \(b^* = b_m = b_1 \) and \(\pi^* = 1 \).

Proposition 2 An equilibrium of the game entails the following strategies:

The parties play:

\[
\begin{align*}
\pi^* & = \begin{cases}
F(b_m) & \text{if } b^*(b_m) > b_m \\
1 - F(b^*(b_{m-1})) & \text{if } b^*(b_m) < b_m
\end{cases} \\
r^* & = \frac{(1 - 2\pi^*)\beta + 1}{(1 - \pi^*)\beta + 1} R
\end{align*}
\]

(10)

The voter plays:

\[
\begin{align*}
v_t = \begin{cases}
y & \text{if } (p^p_{t+1} - b_{t+1})^2 - (p^r_{t+1} - b_{t+1})^2 < 0 \\
x & \text{if } (p^p_{t+1} - b_{t+1})^2 - (p^r_{t+1} - b_{t+1})^2 > 0 \\
I_t & \text{if } (p^p_{t+1} - b_{t+1})^2 - (p^r_{t+1} - b_{t+1})^2 = 0 \text{ and } r_t \leq r^* \\
O_t & \text{if } (p^p_{t+1} - b_{t+1})^2 - (p^r_{t+1} - b_{t+1})^2 = 0 \text{ and } r_t > r^*
\end{cases}
\end{align*}
\]

(11)

In every period, the probability that the incumbent party wins is \(\pi^* \). If the incumbent party wins, \(b_m \) is implemented, if the incumbent party loses, \(b^*(b_m) \) is implemented. If \(K = 1 \), the expected utility of the voter is: \(\frac{R-r^*}{1-\beta} \) because there is no uncertainty and her favorite policy is always implemented. In the case of \(K \geq 2 \), the expected utility
of the voter is:
\[
 u_{rv} = \begin{cases}
 \sum_{t=0}^{\infty} \left(\sum_{k=1}^{m-1} q_k \beta^t \left(-(b_{m-1} - b_k)^2 + R - r^* \right)
 + \sum_{k=m}^{K} q_k \beta^t \left(-(b_m - b_k)^2 + R - r^* \right) \right) & \text{if } b^* = b_{m-1} \\
 \sum_{t=0}^{\infty} \left(\sum_{k=1}^{m} q_k \beta^t \left(-(b_m - b_k)^2 + R - r^* \right)
 + \sum_{k=m+1}^{K} q_k \beta^t \left(-(b_{m+1} - b_k)^2 + R - r^* \right) \right) & \text{if } b^* = b_{m+1}
\end{cases}
\]

(12)

Proof. See the Appendix.

The best position any incumbent party can choose is the median of the possible positions of the voter. The intuition is straightforward. The incumbent party must choose its position first. Because the incumbent party will not be reelected if the voter prefers the opponent even if it constrains itself with respect to rent extraction, the best the incumbent party can do is to choose its position so that the opposition can only achieve less than 50% of the votes. The incumbent party can achieve this by announcing the median bliss point as policy position. The opposition party will then choose a position as close to the median position as possible to ensure the victory whenever the bliss point of the median voter is on the same side of the median position. It chooses the side of the median where this probability is the largest. Therefore, the most useful measure of uncertainty about the election outcome is given by:

\[
\pi^* = \min(F(b_m), 1 - F(b_{m-1})).
\]

It turns out that the larger is \(\pi^* \), the larger is the control of the voter over rent extraction by the parties. In the special case of no uncertainty about the bliss point of the voter, \(\pi^* = 1 \), an incumbent party that does not extract too high rent payments is reelected with certainty. The results of Section 2 are confirmed as a special case of the generalized model.

Restricting strategies of parties to be history-independent and identical (that is, both parties play the same history independent strategy if their situation is identical) and letting the strategy of the voter only depend on the current policy offers and the last rent payment\(^8\) seems intuitively plausible as the model is completely symmetric. Under these conditions, the equilibrium stated in Proposition 2 is the one with the

\(^8\)It is important to note that if the voter also plays a stationary strategy, no control over rent extraction is possible.
lowest rent payment that the voter can achieve, as is shown by the following corollary:

Corollary 3 There is no equilibrium with a rent \(r_t < r^* \) if the voter’s strategy only depends on rent extraction in the last period and policy positions of the parties (that is \(v_t(h_t, p^t_{I+1}, p^t_{O+1}, r_t) = v_t(r_t, I_t, p_y, t+1, p_x, t+1) \)), while both parties play identical history-independent strategies (that is \(p^I_{t+1}(h_t) = p^O_{t+1}(h_t) = r_t = r \) and \(p^O_{t+1}(h_t, r_t, p^I_{t+1}) = p^O_{t+1}(r_t, p^I_{t+1}) \)).

From the voter’s perspective, it would potentially enhance expected welfare if the candidates did not choose policy positions the way they actually do. Competition drives parties "almost" to convergence, but this is not necessarily in the voter’s interest from an ex ante perspective. The reason is that if she has rather extreme preferences, both parties will offer a policy position that is rather centrist and she will suffer from the lack of choice. The expected per period utility of the voter before her preferences are revealed would increase if only one party chose a centrist position and the other an extreme one.

Bernhardt, Duggan, and Squintani (2009) show that such a lack of choice in policy provided by parties uncertain about the position of the median bliss point can make voters worse off. This may not be all that surprising in the light of the literature on spatial competition (Hotelling 1929).

Equilibrium rent extraction \(r^* \) is decreasing in \(\pi^* \). The intuition is straightforward: The larger is \(\pi^* \), the more likely it is that the incumbent party remains in office if it does not deviate. In addition, the incumbent party is also less likely to regain office once it is lost. Therefore, the rent that has to be paid to make the incumbent party willing to forgo the maximum rent \(R \) in favor of reelection decreases.

The voter is essentially playing the same lexicographic strategy as in the model without uncertainty in Section 2. However, she has to accept higher rent payments because there is no longer any guarantee that the incumbent party is reelected. Moreover, an incumbent party which loses office can regain office later, which also makes losing power less costly.

3.1 Two interesting cases

There are two interesting cases with intuitive results. First, there is the case of \(\pi = 1 \), which can only occur if \(K = 1 \); otherwise there would always be at least a
small probability that the incumbent party loses. In this case, we are back to the setup of Section 2 and it indeed turns out that \(r^* = \frac{1-\beta}{1} R = \bar{r} \). The incumbent party once more faces the choice between either remaining in office forever or stealing \(R \) once.

The second case is \(\pi = 0.5 \) which happens if and only if \(F(b_m) = 0.5 \). Because the probability that \(b_t \leq b_m \) is exactly equal to the probability that \(b_t > b_m \), incumbents have no possibility of increasing their chances of reelection to more than 50% even when they accept limited rent extraction. This is also what would happen if there were a continuous function of possible positions of the median voter. In this case, \(r^* = \frac{1}{0.5\beta+1} R \) or \((1 + 0.5\beta)r^* = R \). The reason is that when the incumbent party does extract the maximum amount of rent \(R \), he loses \(0.5\beta r^* \) in the next period, but from then onwards, it has the same chance of being the incumbent party (50%) that it would have without any deviation from its strategy.

3.2 Discussion of the timing assumption

Without the assumption of the incumbent party moving first, a lexicographic strategy by the voters can only be consistent with an equilibrium if the parties randomize over policy. The reason is that the incumbent party would always like to take the same position as the opposition and win with certainty and therefore, the opposition must randomize over its position. A somewhat similar model has been solved by Aragones and Palfrey (2002). In their setup, voters are not indifferent because candidates differ in an exogenously given policy attribute, so that the candidate who is preferred in this dimension wins if he can take the same policy position as the other candidate. It should therefore be possible to solve an alternative model without the timing assumption and derive similar results with respect to accountability. However, finding optimal mixed strategies is not the focus of my paper.

4 Parties with policy preferences

In this section, I go back to a world without uncertainty. The model is the same as in Section 2 with the one difference that the expected utility of the parties \(j \in \{x,y\} \) is from now on:

\[
U_j = E_0 \sum_{t=0}^{\infty} \beta^t (r_{t,j} - (p_t - b_j)^2), \tag{1'}
\]
with \(b_x < b_m < b_y \). In other words, The parties’ utility is now influenced by the policy that is implemented and party \(j \) is better off whenever policy is close to its bliss point \(b_j \) with \(j \in \{x, y\} \). It is easy to check that giving parties policy preferences does not change the fact that the strategies given in Proposition 1 continue to constitute an equilibrium because by deviating and committing to a different policy than that preferred by the median voter, a party can never win the elections.

If parties have policy preferences of their own, the question arises how a party is able to commit to a policy in advance, but not to restrictions in rent seeking.\(^9\)

As indicated before, a plausible answer is that parties commit to certain policies by running with certain candidates who are known to have preferences for the policy. If such a party wins an election, its candidate has no incentive to deviate from his preferred policy (although the average party member might still suffer from disutility from a deviation from his or her own policy bliss point).

However, with parties with policy preferences, there are now equilibria with lower rent payments that are not possible if the principle-agent problem and the electoral competition problem are treated separately. The reason is that a party can now be punished by allowing the other party to win with a position different from the bliss point of the median voter. To demonstrate this point there are three Examples that build on each other given in the Appendix. Example 1 is a special case of lexicographic voting. It is identical to the equilibrium given in Proposition 1 in Section 2 with the one difference that the incumbent is allowed to take the maximum amount of rents and nonetheless reelected whenever the voters are indifferent with respect to policy. Strategies are identical, just \(\bar{r} = R \) instead of \(\bar{r} = (1 - \beta)R \). This example constitutes an equilibrium because the voters have no reason to punish the incumbent party in spite of the fact that it extracts the maximum rent level because the opposition party does not behave better once in office.

Example 1 is not very interesting in itself, but the threat to revert to it gives parties the possibility to win with a position that is different from the bliss point of the median voter \(b_m \) as is shown in Example 2. The idea is that the median voter will accept deviations from the median bliss points if she knows that if she does not the parties will punish her with the high rent equilibrium given in Example 1.

Finally, in Example 3 it is shown that the threat with the equilibrium given in

\(^9\)The fact that partisan parties potentially have a dynamic inconsistency problem with their policy announcements was first pointed out by Alesina (1988).
example 2 makes it possible for voters to reach an equilibrium with a per period rent that is smaller than \(\bar{r} = (1 - \beta)R \). As was shown in Corollary 1, there is no such equilibrium as long as policy does not enter the parties’ utility functions. The reason that this is different with ideological parties is that voters can now punish parties that do not comply with policies that they dislike. Therefore, losing office becomes more costly and lower rent payments have to be accepted. In the example, it is assumed that the parameter values are such that parties refrain from any rent seeking in equilibrium.

The examples show that by separating backward-looking and forward-looking motives, some interesting strategic possibilities for voters might be overlooked. Voters are able to decrease rent payments further from \(\bar{r} \) without accepting a more ideological policy by threatening not only to vote for the opposition party, but to do so even when it does not offer the median voter’s policy bliss point. This punishment is only credible because the voters end up in an even worse situation if they do not implement it.

Example 3 demands a larger degree of coordination among voters than what seems plausible to me. Moreover, even if Example 1 constitutes an equilibrium, it is not clear why voters who are as sophisticated as in Example 3 would not manage to switch to the more attractive equilibrium given in Proposition 1 instead once they are in the "bad" equilibrium of Example 1. There is no intuition how they could coordinate and commit to punish themselves for not punishing a party that deviates from the equilibrium given in Example 3. However, the analysis of this Section nonetheless indicates that modeling accountability issues without any consideration of policy in models with partisan parties that derive utility from implemented policy could potentially lead to wrong conclusions.

5 Conclusion

This paper combines motives from prospective and retrospective voting in a single model. As long as there is certainty about the position of the median voter, I find that on the policy dimension where commitment is possible, the usual median voter results apply, while rent extraction by politicians is limited to the same degree as in a standard model without policy dimension. Voters achieve this by following a straightforward lexicographic voting strategy. All voters cast their ballot in favor of
the party that they prefer in the policy dimension. Only when voters are indifferent between the parties they use the last periods rent extraction as a tiebreaker.

If there is uncertainty about the position of the median voter, voters cannot limit rent extraction to the same degree as in the certainty case, but accountability is not completely lost either. The reason is that even when the incumbent party complies with the voters demands for limited rent extraction, it will still lose office if the opposition party commits to a policy that is more attractive for the majority of voters. Because there is uncertainty which preferences the median voter will have when the parties choose there policy positions, there is no possibility for the incumbent party to avoid losing office with certainty. The best it can do is to choose a position that maximizes the probability that the majority of voters will prefer it. To make the ruling party willing to accept a limit on rents in spite of this, the voters have to allow it to acquire more of them in equilibrium.

Finally, if parties are not only interested in rents but also in policy, voters become new possibilities because they can now punish parties for excessive rent extraction by allowing the other party to win with a position that is worse than the median position. However, such equilibria demand a lot of sophistication by the voters. Lexicographic voting continues to be an equilibrium even with ideological parties and seems a more likely outcome of the game because of its intuitive appeal. The preliminary exploration of this Section nonetheless indicates that modeling accountability issues without any consideration of policy in models with partisan parties that derive utility from implemented policy can potentially lead to precipitant conclusions. It can, so far, not be ruled out that more convincing equilibria than given in Example 3 can be constructed that also lead to rent payments that are lower than in Proposition 1. However, a detailed exploration of this question is left for future research.

Appendix A
Proofs Section 3

Proof Proposition 2. The single deviation principle states that it is sufficient to show that no player can increase his expected utility by a single deviation to prove that the given strategies constitute a subgame perfect Nash Equilibrium. The single deviation principle applies to an infinite game when the overall payoffs are a discounted sum of the per-period payoffs that are uniformly bounded. This applies
to the game in Section 3.\(^{10}\)

First, I show that the incumbent party as well as the opposition party maximize their chances of winning the elections if they follow the given strategies. For the case of \(r_t > r^*\), the opposition party wins with certainty by taking the same policy position as the incumbent party \(p_t^O = p_t^I\) and, in this way, it maximizes its election prospects. In case \(r_t \leq r^*\), if \(p_t^O = p_t^I\) and therefore \((p_t^I - b_{t+1})^2 - (p_t^O - b_{t+1})^2 = 0\), the opposition loses with certainty. If \(-(b_k - b_{t+1})^2 + (b_{k-1} - b_{t+1})^2 < 0\), then \((b_k - b_{t+1})^2 - (b_y - b_{t+1})^2 < 0\) for all \(y \leq k - 1\). Therefore, if \(p_t^I = b_k\) and \(r_t \leq r^*\), the opposition is at least as likely to win with \(p_t^{O} = b_{k-1}\) as with any \(p_t^{O} < b_{k-1}\). Similarly, if \(-(b_k - b_{t+1})^2 + (b_{k+1} - b_{t+1})^2 < 0\), then \((b_k - b_{t+1})^2 - (b_y - b_{t+1})^2 < 0\) for all \(y \geq k+1\) and therefore, the opposition is at least as likely to win with \(p_t^{O} = b_{k+1}\) than with any \(p_t^{O} > b_{k+1}\). It follows that either \(p_t^{I} = b_{k+1}\) or \(p_t^{O} = b_{k-1}\) maximizes the probability of the opposition winning against \(p_t^{I} = b_k\). Therefore, by the definition of \(b^*(b_k)\), a policy that maximizes the probability of the opposition party winning is given by \(p_t^{O} = b^*(p_t^{I})\). It remains to be shown that \(p_t^{I} = b_m\) maximizes the prospects of the incumbent party given the reply \(b^*(p_t^{I})\). By its definition and the voter’s strategy, \(\pi^*\) gives the probability that the incumbent party wins when \(r_t \leq r^*\), \(p_t^{I} = b_m\) and \(p_t^{O} = b^*(p_t^{I})\). By the definition of \(b_m\), \(F(b_{m-1}) < 0.5\) and \(1 - F(b_m) \leq 0.5\). Therefore, \(\pi^* \geq 0.5\). If \(p_t^{I} \neq b_m\), the probability of winning for the opposition by choosing \(b_m\) itself is at least 0.5 and therefore, the probability that the opposition wins with \(p_t^{O} = b^*(p_t^{I})\) for \(p_t^{I} \neq b_m\) cannot be smaller than 0.5. Hence, \(p_t^{I} = b_m\) maximizes the chances of the incumbent party remaining in power, given the strategies of the other players and \(\pi^*\) gives the probability of reelecting the incumbent party in the given equilibrium.

Given the strategies of the other players, the voter will encounter the two policy offers \(b_m\) and \(b^*(b_m)\) and the rent extraction \(r^*\) in all future periods. Therefore, maximizing the current period utility as she does by voting for the party she prefers if she is not indifferent is maximizing her expected utility.

Let \(V\) denote the value of being in office and \(W\) denote the value of being out of office given the strategies. The present expected value of being out of office is determined by the value of being in office and the equilibrium probability of winning

\(^{10}\)See Fudenberg and Tirole (1991) for a formal statement of the single deviation principle.
the next elections, $1 - \pi^*$:

$$W = (1 - \pi^*)\beta V + \pi\beta W \implies W = \frac{\beta(1 - \pi^*)V}{1 - \pi\beta}. \quad (13)$$

It follows that $W < V$ and being in office is better than being out of office. From this, it directly follows that deviating once from the strategy cannot make the opposition that maximizes its chances of becoming the next incumbent party better off because a single deviation cannot change the future values of being in and out of office, respectively. Therefore, maximizing its probability of achieving V instead of W in the next period is optimal. The value of being the incumbent party depends on the equilibrium rent extraction r^* and the probability of being in and out of office, respectively, in the next period:

$$V = r^* + \beta\pi^*V + \beta(1 - \pi^*)W = r^* + \beta\pi V + \beta(1 - \pi^*)\frac{\beta(1 - \pi^*)V}{1 - \pi\beta} \quad (14)$$

$$= \frac{((1 - 2\pi^*)\beta + 1)}{(1 - \pi^*)\beta + 1} R + \beta\pi^*V + \beta(1 - \pi^*)\frac{\beta(1 - \pi^*)V}{1 - \pi\beta}$$

$$\implies V = \frac{\pi^*\beta - 1}{\pi^*\beta + \beta^2 - \pi^*\beta^2 - 1} R.$$

Given that the future value of being an incumbent party and in opposition, respectively, cannot be changed by a one-time deviation, it is clear that the incumbent party should maximize the rent payment for a given probability of reelection. Therefore, any rent payment $r_t < r^*$ cannot make the incumbent party better off, because it decreases the rent as compared to a rent of r^* without changing the reelection probability. From the fact that the incumbent party loses the elections with certainty if $r_t > r^*$ independently of its chosen policy position, the only deviation that needs to be checked is $r_t = R$ in combination with any arbitrary policy position. The reason is that if the party were to be better off with extracting any rent r such that $r^* < r < R$, it must also be better off extracting R. The expected value of deviating in this way and then being in opposition in the next period is given by the sum R and the present...
value in opposition in the next period:

\[
R + \beta W = R + \beta \frac{\beta(1 - \pi^*) V}{1 - \pi^* \beta} = R + \beta \frac{\beta(1 - \pi^*)}{1 - \pi^* \beta} \frac{\pi^* \beta - 1}{\pi^* \beta + \beta^2 - \pi^* \beta^2 - 1} R = V.
\]

This gives the party the same utility \(V \) as following the strategy given in Proposition 2. Therefore, the incumbent party has no reason to deviate. None of the players is better off with a one time deviation and therefore, the given Proposition 2 constitutes a subgame perfect Nash Equilibrium. ■

Proof Corollary 3. Because \(p'_{t+1}(h_t) = p_I, \ r_t(h_t) = r \) and \(p_{t+1}^O(h_t, r_t, p'_{t+1}) = p_{t+1}^O(r, p_I) \) for all \(t \), the voter’s decision can neither change her future policy choice nor future rent extraction. Therefore, in equilibrium, she votes for the party that offers the policy that is closest to her bliss point. Only if both parties offer the same policy position, voting for either party is consistent with an equilibrium. This gives the opposition party the possibility of being elected with a probability of at least \(1 - \pi^* \) for any rent payment \(r_t \) and the policy position of the incumbent party by offering \(p_{O,t+1} = b^*(p_{I,t+1}) \). The opposition party maximizes its utility by maximizing the probability of being voted into office since being in office must be better than being out of office. Only in office is any rent extraction possible and the history-independence of the strategies implies that future rents are given by some constant level \(r \). Let \(r_{\text{min}} \) be the smallest rent payment that is consistent with an equilibrium. The value of being in office is given by \(V(r_{\text{min}}, \pi) = \frac{(1 - \pi^*) r_{\text{min}}}{(1 - \pi^* \beta)^2 - \beta^2 (1 - \pi^*)} \), where \(\pi \) is the probability of reelection of the incumbent party. \(V \) is increasing in \(\pi \), and the maximum \(\pi \) that is consistent with equilibrium is \(\pi^* \). Therefore, the maximum \(V \) that is consistent with \(r_{\text{min}} \) and an equilibrium is given by \(V(r_{\text{min}}, \pi^*) = \frac{(1 - \pi^* \beta) r_{\text{min}}}{(1 - \pi^* \beta)^2 - \beta^2 (1 - \pi^*)} \). The second condition that must hold is \(R \leq r_{\text{min}} + \beta \pi V(r_{\text{min}}, \pi^*) + \beta (1 - \pi) \frac{\beta (1 - \pi) r_{\text{min}} V(\pi^*)}{1 - \pi^* \beta} \), because otherwise the incumbent party would be better off taking \(R \) and losing office. This condition can only hold if \(r_{\text{min}} \geq r^* \), hence it follows that \(r^* = r_{\text{min}} \). ■
Appendix B
Examples Section 4

Example 3 (High rent equilibrium) The candidates play:

\[
\begin{align*}
 p_{t+1}^j &= b_m \text{ for } j \in \{x, y\} \text{ and all } t, \\
 r_t &= R \text{ for all } t.
\end{align*}
\]

The voters play:

\[
v_t^i = \begin{cases}
 x & \text{if } (p_{t+1}^x - b^i)^2 - (p_{t+1}^y - b^i)^2 < 0 \\
 y & \text{if } (p_{t+1}^x - b^i)^2 - (p_{t+1}^y - b^i)^2 > 0 \\
 I_t & \text{if } (p_{t+1}^x - b^i)^2 - (p_{t+1}^y - b^i)^2 = 0
\end{cases} \text{ in all } t.
\]

And therefore in equilibrium:

\[
\begin{align*}
 I_t &= I_0 \text{ in all } t, \\
 p_t &= b_m \text{ in all } t \geq 1, \\
 r_r &= R \text{ in all } t.
\end{align*}
\]

This example constitutes an equilibrium because the voters have no reason to punish the incumbent party in spite of the fact that it extracts the maximum rent level because the opposition does not behave better when in office.

Building on the fact that there is an equilibrium with high rents, an equilibrium with a party deviating from the median position becomes possible, because voters can be "punished" with high rent payments if they do not accept the deviation:

Example 4 (Deviation from median policy equilibrium) Assume that \((b_m - b_j)^2 < R - \bar{r}\) for \(j \in \{x, y\}\). Let \(t_s\) be the period in which the incumbent party \(I_{t_s} \neq I_0\) for the first time (if it never happens \(t_s = \infty\)). Then, the following strategies constitute
an equilibrium:

\[
\begin{align*}
 p_{t+1,I_0} &= b_{I_0} \text{ in all } t < t_S, \\
 p_{t+1,O_0} &= b_m \text{ in all } t < t_S, \\
 r_t &= \bar{r} \text{ in all } t < t_S, \\
 p^j_{t+1} &= b_m \text{ for } j \in \{x,y\} \text{ in all } t \geq t_S, \\
 r_t &= R \text{ in all } t \geq t_S.
\end{align*}
\]

The voters play:

\[
\begin{align*}
 v^i_t &= \begin{cases}
 I_t & \text{if } (p^I_{t+1} - b_i)^2 - (p_{t+1,O_t} - b_i)^2 \leq R - \bar{r} \text{ in } t < t_S, \\
 O_t & \text{if } (p^I_{t+1} - b_i)^2 - (p_{t+1,O_t} - b_i)^2 > R - \bar{r} \text{ in } t < t_S
 \end{cases} \\
 v^i_t &= \begin{cases}
 x & \text{if } (p^x_{t+1} - b_i)^2 - (p^y_{t+1} - b_i)^2 < 0 \text{ in } t \geq t_S, \\
 y & \text{if } (p^x_{t+1} - b_i)^2 - (p^y_{t+1} - b_i)^2 > 0 \text{ in } t \geq t_S, \\
 I_t & \text{if } (p^x_{t+1} - b_i)^2 - (p^y_{t+1} - b_i)^2 = 0
 \end{cases}
\end{align*}
\]

And therefore in equilibrium:

\[
\begin{align*}
 I_t &= I_0 \text{ in all } t, \\
 p_t &= b_{I_0} \text{ in all } t \geq 1, \\
 r_r &= \bar{r} \text{ in all } t.
\end{align*}
\]

This example builds on Example 1. The high rent equilibrium in Example 1 can be used to "punish" the voters for not reelecting the incumbent party. The majority of voters are better off accepting the first incumbent party implementing its favorite policy compared to accepting a higher rent payment forever in combination with the median position as long as the condition \((b_m - b_j)^2 < R - \bar{r}\) for \(j \in \{x,y\}\) holds. If the condition holds, the median voter is better off and so is also either every voter to the left or to the right of the median voter, and therefore the majority of voters.

Building on Equilibrium 2, I can now show that there is also an equilibrium without any rent payments. This is the case because if the incumbent party deviates by appropriating positive rents, he can be punished with policies that make him worse off than the median position by allowing the opposition to win with its own bliss point instead of the median position as in Example 2:
Example 5 (An equilibrium without any rents) Let t_{s1} be the period in which the incumbent party $I_t \neq I_0$ for the first time and t_{s2} when incumbency switches a second time. If incumbency switches at most once, $t_{s2} = \infty$, if it never switches, $t_{s1} = t_{s2} = \infty$. In addition, I assume that $R < \beta^2 (b_y - b_x)^2 - (b_y - b_m)^2$ for $j \in \{x, y\}$ and that $(b_m - b_j)^2 < R - \bar{r}$ for $j \in \{x, y\}$. Then, the following strategies constitute an equilibrium:

\[
\begin{align*}
 p_{t+1,I_0} &= b_m \text{ in all } t < t_{S1}, \\
 p_{t+1,O_0} &= b_m \text{ in all } t < t_{S1}, \\
 r_t &= 0 \text{ in all } t < t_{S1}, \\
 p_{t+1}^I &= b_I \text{ in all } t_{S1} \leq t < t_{S2}, \\
 p_{t+1}^O &= b_m \text{ in all } t_{S1} \leq t < t_{S2}, \\
 r_t &= \bar{r} \text{ in all } t_{S1} \leq t < t_{S2}, \\
 p_{t+1}^j &= b_m \text{ for } j \in \{x, y\} \text{ in all } t \geq t_{S2}, \\
 r_t &= R \text{ in all } t \geq t_{S2}.
\end{align*}
\]

The voters play:

\[
v_t^i = \begin{cases}
 x & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 < 0 \\
 y & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 > 0 \\
 I_t & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 = 0 \text{ and } r_t = 0 \\
 O_t & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 = 0 \text{ and } r_t > 0
\end{cases} \quad \text{in } t < t_{S1}
\]
\[
v_t^i = \begin{cases}
 I_t & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1,O_t} - b_y)^2 \leq R - \bar{r} \\
 O_t & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1,O_t} - b_y)^2 > R - \bar{r}
\end{cases} \quad \text{in } t_{S1} \leq t < t_{S2}
\]
\[
v_t^i = \begin{cases}
 x & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 < 0 \\
 y & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 > 0 \\
 I_{t-1} & \text{if } (p_{t+1}^x - b_x)^2 - (p_{t+1}^y - b_y)^2 = 0
\end{cases} \quad \text{in } t \geq t_{S2}
\]

And therefore in equilibrium:

\[
\begin{align*}
 I_t &= I_0 \text{ in all } t, \quad \text{(24)} \\
 p_t &= b_m \text{ in all } t \geq 1, \\
 r_r &= 0 \text{ in all } t.
\end{align*}
\]
References

