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Van Zwet Ordering for Fechner Asymmetry
Ingo Klein1

Department of Statistics and Econometrics
University of Erlangen-Nuremberg, Germany

Abstract
There are several procedures to construct a skewed distribution. One of these pro-
cedures splits the value of a parameter of scale for the two halfs of a symmetric dis-
tribution. Fechner proposed this procedure in his famous book ”Kollektivmaßlehre
(1897), p. 295ff.”. A similar proposal comes from Fernández et al. (1995). We
consider the very general approach from Arellano-Valle et al. (2005) of splitting
a scale parameter and show that this technique of generating skewed distributions
incorporates a well-defined parameter of skewness. It is well-defined in the sense
that the parameter of skewness is compatible with the ordering �2 of van Zwet
(1964) which is the strongest ordering in the hierarchy of orderings discussed by
Oja (1981). For this family of skewed distributions it will be shown that the mea-
sure proposed by Arnold & Groeneveld (1995) is a measure of skewness in the
sense of Oja (1981). In the special case considered by Fechner (1897) this measure
and the skewness parameter coincide.

Keywords: Skewness; skewness to the right; skewness ordering, measure of skew-
ness

1 Introduction
Starting with a symmetric density f Arellano-Valle et al. (2005) introduce an asymmetric dis-
tribution

f(x; γ) =
2

a(γ) + b(γ)

(
f

(
x

a(γ)

)
I(x < 0) + f

(
x

b(γ)

)
I(x ≥ 0)

)
(1)

where a(.), b(.) are known positive functions with domain Γ. In the following we call a(.)
and b(.) skewness functions. This is a general kind of generating skewness by splitting a scale
parameter for the negative and positive half of a distribution that has several well-known special
cases. In the following we call this family the AGQ family of skewed distributions.

Setting a(γ) = γ and b(γ) = 1/γ for Γ = R+ we get an asymmetric density discussed
by Fernández et al. (1995) and Theodossiou (1998). Another choice is a(γ) = 1 + γ and
b(γ) = 1 − γ for γ ∈ Γ = (−1, 1). If f is the normal density we get an asymmetric density
already considered by Fechner (1897), p. 295ff. in his famous book ”Kollektivmaßlehre”.

1Correspondence Author: Ingo Klein, Department of Statistics and Econometrics, University of Erlangen
Nuremberg, D-90403 Nuremberg, Lange Gasse 20, E-Mail: ingo.klein@wiso.uni-erlangen.de
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Arellano-Valle et al. (2005) discuss the statistical properties of (1) for different choices of
a(.), b(.) and f(.). Furthermore, they discuss inferential aspects like parameter estimation by
the method of moments and by maximum likelihood. For (1) Cassart et al. (2008) construct
optimal tests on skewness.

Arellano-Valle et al. (2005, p. 429) or Cassart et al. (2008, p. 2500) call γ an ”asymmetry”
or a ”skewness” parameter. But, due to the work of van Zwet (1964), Oja (1981), Balanda &
McGillivray (1990) and others there exist conditions a parameter has to satisfy to be a skewness
parameter. Especially, a skewness parameter must hold a specified ordering of skewness. This
still has to be proven for the parameter γ in (1).

Klein & Fischer (2006) show for the special choice a(γ) = γ and b(γ) = 1/γ (see
Fernández et al. (1995)) that γ is a skewness parameter. In detail, they show that f(x; γ) is
skewed to the right for γ < 1 and that under some conditions of regularity concerning the sym-
metric density f γ holds the strong ordering of skewness of van Zwet (1964). This ordering
concerns the convexity of

Λ(x; γ1, γ2)) = F−1(F (.; γ1); γ2) x ∈ supp(F (.; γ1)) (2)

with the cumulative distribution function F (.; γ) and the quantile function F−1(.; γ) corre-
sponding to (1).

In this paper we will generalize the results of Klein & Fischer (2006). We show that
Λ(.; γ1, γ2) is convex or concave for positive, monotone increasing functions a(.) and posi-
tive, monotone decreasing functions b(.) with existing derivative a′(.) and b′(.). The conditions
of regularity on f are the same as in Klein & Fischer (2006).

The paper is organized in the following way. In section 2 we derive the distribution function,
the quantile function, the score function and a function φ that is important to show the convexity
of (2). Section 3 contains the central result that the AGQ family is a family of skewed distri-
butions in the sense of van Zwet. In section 4 we show for the AGQ family that the skewness
measure proposed by Arnold & Groeneveld (1995) is a skewness measure in the sense of Oja.
In section 6 we discuss some examples for the skewness functions a(.) and b(.).

2 Some concepts for the measurement of skewness
Oja (1981) p. 7 introduces a location-scale-skewness family of distributions as a family of
distributions such that each pair of distributions is skewness comparable. This means that for
each pair of distributions holds the van Zwet ordering of skewness.

Definition 1 Let F be a family of cumulative distribution functions and F,G ∈ F and G−1 the
quantile function of G.

1. F and G will be called skewness comparable if G−1(F (x)) is either convex or concave
on the support of F .

2. F is not more skewed to the right than G (shortly: F �2 G) if G−1(F (x)) is convex on
the support of F .
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3. F is a locations-scale-skewness family if each pair (F,G) ∈ F is skewness comparable.

Transformations of location and scale do not matter the fact that G−1(F (x)) is convex or con-
cave. This was proven by Klein & Fischer (2006). We summarize the result in the following
lemma.

Lemma 1 Let F , G be cumulative distribution functions with quantile function G−1. Then

G−1(F (x)) convex (concave) on supp(F ) =⇒ c+ dG−1
(
F
(
x−a
b

))
, b, d > 0,

a, c ∈ R convex (concave) on supp(F ).

This lemma allows to discuss only distributions F and G with unimodal densities and common
modus 0.

WhetherG−1(F (.)) is convex or concave can be checked by the sign of its second derivative.
The following lemma proven by Klein & Fischer (2006), p. 1167 or stated by Arnold & Groen-
eveld (1995), p. 35 gives a sufficient and necessary condition for the convexity (concavity) of
G−1(F (.)).

Lemma 2 Let F , G be continuous, cumulative distribution functions with densities f and g.
f and g shall be differentiable on R. Define φf (x) = −f ′(x)/f 2(x), φg(x) = −g′(x)/g(x)2,
x ∈ R. F−1 and G−1 are the quantile functions corresponding to F and G. Then G−1(F (x)) is
convex (concave) on R iff

φf (F
−1(u))− φg(G−1(u)) ≤ (≥)0 for all u, v ∈ (0, 1). (3)

Skewness shall be measured by a functional that maps a set of distributions in the real numbers
and satisfies some requirements that are plausible for the concept of skewness. Oja (1981) gives
the following definition for a measure of skewness. If F ∈ F belongs to the random variable
X , a × F + b denotes the distribution function of the transformed random variable aX + b,
a, b ∈ R.

Definition 2 Let F be a family of distributions. T : F → R is a measure of skewness in F if

1. T (a× F + b) = sgn(a)T (F ) for all a, b ∈ R, F ∈ F .

2. T (F ) ≤ T (G) if F,G ∈ F and F �2 G.

As a consequence of this definition for a measure of skewness holds

T ((−1)× F ) = −T (F ) (4)

This means that reflection of the distribution changes the sign of the measure of skewness.
From the large class of possible measure of skewness we will discuss the proposal of Arnold

& Groeneveld (1995) in more detail. If Y is a random variable with uniquely defined modus
yM they propose

AG = P (Y < yM)− P (Y ≥ yM) = 1− 2P (Y < yM)

as a measure of skewness. AG takes values in [−1, 1]. As Ferreira & Steel (2006) p. 823
pronounce this measure ”is fairly intuitive for unimodal distributions with negative (positive)
values for left (right) skewed distributions and 0 for symmetric distributions”.

To show that the AGQ family is a location-scale-skewness family in the sense of Oja the
functions G−1(F (x)) and φf have to be computed for this special family.
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3 Some functions for the AGQ family
Let F denote the cumulative distribution function of a random variable X and assume that F
is continuous on R and has a density f which itself is differentiable on R \ {0}. Further, we
assume that X is symmetrically distributed. Without restriction of generality we assume that
the median of X is 0. Otherwise, we consider Y = X −median(X). F−1 denotes the quantile
function of X . We also assume that the support of F is R. The results of the paper can be easily
transferred to the case of a random variable X with compact support.

Let Xγ be the random variable with density (1). Then it is easy to verify that Xγ has the
following cumulative distribution function

F (x; γ) =
2a(γ)

a(γ) + b(γ)
F

(
x

a(γ)

)
I(x < 0) (5)

+
a(γ)− b(γ)

a(γ) + b(γ)
+

2b(γ)

a(γ) + b(γ)
F

(
x

b(γ)

)
I(x ≥ 0).

Inverting the cumulative distribution function leads to the quantile function of Xγ:

F−1(u; γ) = a(γ)F−1
(
a(γ) + b(γ)

2a(γ)
u

)
I(A) (6)

+b(γ)F−1
(
a(γ) + b(γ)

2b(γ)

(
u− a(γ)− b(γ)

a(γ) + b(γ)

))
I(Ā)

with A = {u ∈ [0, 1]|u ≤ a(γ)/(a(γ) + b(γ)}.
With this quantile function we derive the median of Xγ as

F−1(0.5; γ) =

 a(γ)F−1
(
a(γ)+b(γ)
a(γ)

)
≤ 0 for a(γ) > b(γ)

b(γ)F−1
(

3b(γ)−a(γ)
4b(γ)

)
≥ 0 for a(γ) < b(γ)

(7)

With the help of the cumulative and the inverse distribution functions we get (2). Γ denotes the
domain of a(.) and b(.). To restrict the number of cases we have to discuss, we assume that a(γ)
is monotone increasing with existing derivative a′(γ) > 0 and b(γ) is monotone decreasing with
existing derivative b′(γ) < 0 for γ ∈ Γ. Then, a(γ)/b(γ) is monotone increasing and b(γ)/a(γ)
monotone decreasing on Γ.

Let γ1, γ2 ∈ Γ with γ2 < γ1 be fixed. Then we get after some tedious calculations

Λ(x; γ1, γ2) =



a(γ2)F
−1
(

1+b(γ2)/a(γ2)
1+b(γ1)/a(γ1)

F
(

x
a(γ1)

))
for x ≤ a(γ1)F

−1
(

1
2
1+b(γ1)/a(γ1)
1+b(γ2)/a(γ2)

)
b(γ2)F

−1
(

1+a(γ2)/b(γ2)
1+b(γ1)/a(γ1)

F
(

x
a(γ1)

)
− a(γ2)−b(γ2)

2b(γ2)

)
for a(γ1)F

−1
(

1
2
1+b(γ1)/a(γ1)
1+b(γ2)/a(γ2)

)
< x ≤ 0

b(γ2)F
−1
(

1+a(γ2)/b(γ2)
1+a(γ1)/b(γ1)

a(γ1)−b(γ1)
2b(γ1)

− a(γ2)−a(γ2)
2b(γ2)

+ 1+a(γ2)/b(γ2)
1+a(γ1)/b(γ1)

F
(

x
b(γ1)

))
for x > 0

(8)
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Whether Λ(.; γ1, γ2) is convex or concave can be checked with the following φ-function: Let
φ(x) = −f ′(x)/f 2(x) and φ(x; γ) = −f ′(x; γ)/f 2(x; γ) for x ∈ R. Then it is easy to show
that

φ(x; γ) =
1

2

(
1 +

b(γ)

a(γ)

)
φ

(
x

a(γ)

)
I(x < 0) (9)

+
1

2

(
1 +

a(γ)

b(γ)

)
φ

(
x

b(γ)

)
I(x ≥ 0).

Let I ⊆ supp(F (.; γ1) such that f ′(x;λ1) and f ′(F−1(F (x;λ1);λ2);λ2) exists for x ∈ I then
Λ(.; γ1, γ2) is convex (concave) on I iff

φ(x; γ1)− φ
(
F−1 (F (x; γ1); γ2) ; γ2

)
≤ (≥)0

for x ∈ I . Obviously, the interval I may not contain x = 0 or x = F−1(a(γ2)/(a(γ2) +
b(γ2)); γ1).

An important property is the monotonicity of φ to show under which conditions Λ(.; γ1, γ2)
is convex or concave. Klein & Fischer (2006) discuss some examples for distributions such
that φ(.) is monotone increasing. To these distributions belong among others the Gaussian and
the t distribution, the Laplace distribution and the generalized secant hyperbolic distribution of
Vaughan (2002). A counterexample is the generalized t distribution of McDonald & Newey
(1988).

4 AGQ family as a location-scale-skewness family
Let F be the AGQ family with densities (1). Then we have to show that F (.; γ1), F (.; γ2)) are
skewness comparable. This means that F−1(F (x; γ1); γ2) is either convex or concave on R.
We will prove this result under some assumptions. The first set of assumptions concerns the
symmetric density f . Especially, φ(x) = −f ′(x)/f(x)2 has to be monotone increasing with
derivative φ′(x) > 0. The second set of assumptions concerns the skewness functions a(.) and
b(.). a(.) and b(.) shall be differentiable on Γ with a′(γ) > 0 and b′(γ) < 0 for γ ∈ Γ. This
means that a(γ)/b(γ) is monotone increasing on the common domain Γ.

Notice that the φ-function of F (.; γ) is only defined for x 6= 0 because f(.; γ) is continuous,
but not differentiable at x = 0. This demands a special treatment at x = 0.

Two lemmata will prepare the main result that the AGQ family is a location-scale-skewness
family in the sense of Oja.

Lemma 3 Let F be a continuous distribution function with unimodal and symmetric density
function f that is continuous on R and differentiable for {R \ 0} such that φ′(x) > 0 for x 6= 0.
Denote F = {F (.; γ)|γ ∈ Γ} the AGQ family of distributions with positive skewness functions
a(.) and b(.). Furthermore, we assume that a(.) an d b(.) are differentiable with a′(γ) > 0 and
b′(γ) < 0 for γ ∈ Γ. Then

∂φ(F−1(u; γ); γ)

∂γ
=
∂φ(x; γ)

∂γ
|x=F−1(u;γ)

∂F−1(u; γ)

∂γ
< 0

5



for u < a(γ)/a(γ) + b(γ)) or u > a(γ)/a(γ) + b(γ)) and u ∈ (0, 1).

Proof:

• Discussion of ∂φ(x; γ)/∂γ for x 6= 0:

Let x < 0:

∂φ(x; γ)

∂γ
= 1/2

∂b(γ)/a(γ)

∂γ
φ

(
x

a(γ)

)
+1/2(1 + b(γ)/a(γ))φ′

(
x

a(γ)

)(
− x

a(γ)2

)
a′(γ) > 0

because a′(γ) > 0, b′(γ) < 0, φ(x) < 0 for x < 0 and φ′(x) > 0 for x ∈ R.

Let x > 0. Then we get

∂φ(x; γ)

∂γ
= 1/2

∂a(γ)/b(γ)

∂γ
φ

(
x

b(γ)

)
+1/2(1 + a(γ)/b(γ))φ′

(
x

b(γ)

)(
− x

b(γ)2

)
b′(γ) > 0

due to φ(x) > 0, x > 0.

• Discussion of ∂F−1(.; γ)/∂γ for u 6= a(γ)/(a(γ) + b(γ):

Moreover, fur u < a(γ)/(a(γ) + b(γ))

∂F−1(u; γ)

∂γ
= a′(γ)F−1 (1/2 (1 + b(γ)/a(γ))u)

+1/2a(γ)
1

f (F−1 (1/2(1 + b(γ)/a(γ))u)

∂b(γ)/a(γ)

∂γ
< 0

because F−1 (1/2 (1 + b(γ)/a(γ))u) < 0 for u < a(γ)/(a(γ) + b(γ)) and ∂b(γ)/a(γ)
∂γ

< 0.

Fur u > a(γ)/(a(γ) + b(γ)) we get

∂F−1(u; γ)

∂γ
= b′(γ)F−1 (1/2 (1 + a(γ)/b(γ))u+ 1− a(γ)/b(γ))

+1/2b(γ)
1

f (F−1 (1/2(1 + b(γ)/a(γ))u+ 1− a(γ)/b(γ))

·∂a(γ)/b(γ)

∂γ
(u− 1) < 0

because F−1 (1/2 (1 + a(γ)/b(γ))u+ 1− a(γ)/b(γ)) > 0 for u > a(γ)/(a(γ) + b(γ)),
∂b(γ)/a(γ)

∂γ
> 0 and u− 1 < 0.
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• Combining these results we get

∂φ(F−1(u; γ); γ)

∂γ
=
∂φ(x; γ)

∂γ
|x=F−1(u;γ)

∂F−1(u; γ)

∂γ
< 0

for u < a(γ)/a(γ) + b(γ)) or u > a(γ)/(a(γ) + b(γ) and u ∈ (0, 1). �

Lemma 4 Let F be a continuous distribution function with unimodal and symmetric density
function f that is positive and continuous on R. Let F (.; γ1), F (.; γ2) be elements of the AGQ
family of distributions. Then

Λ′(x; γ1, γ2) =
∂F−1(F (x; γ1); γ2)

∂x
> 0 for x ∈ R

and continuous on R.

Proof: It holds

Λ′(x; γ1, γ2) =
f(x; γ1)

f(F−1(F (x; γ1); γ2); γ2)
x ∈ R. (10)

f(.; γ) > 0 and F (.; γ) are continuous functions on R. F−1(u; γ) is continuous on (0, 1).
Therefore, Λ′(.; γ1, γ2) > 0 and continuous for x ∈ R. �

Theorem 1 Let F be a continuous distribution function with unimodal and symmetric density
function f that is positive and continuous on R and differentiable for {R\0} such that φ′(x) > 0
for x 6= 0. Denote F = {F (.; γ)|γ ∈ G} the AGQ family of distributions skewness functions
a(.) and b(.). Furthermore, we assume that a(.) and b(.) are differentiable with a′(γ) > 0 and
b′(γ) < 0 for γ ∈ Γ. Then F is a location-scale-skewness family.

Proof: We have to show that all members of F are skewness comparable. This means that
Λ(x; γ1, γ2) is either convex or concave on R for all γ1, γ2 ∈ Γ.

With lemma 3 we know that φ(F−1(u; γ) is monotone decreasing in γ for u 6= a(γ)/(a(γ)+
b(γ).

For γ2 < γ1 it is
a(γ2)

a(γ2) + b(γ2)
<

a(γ1)

a(γ1) + b(γ1)
.

The interval (0, 1) can be divided into three subsets:

I1 =

(
0,

a(γ2)

a(γ2) + b(γ2)

)
, I2 =

(
a(γ2)

a(γ2) + b(γ2)
,

a(γ1)

a(γ1) + b(γ1)

)
, I3 =

(
a(γ1)

a(γ1) + b(γ1)

)
.

φ(F−1(u; γ)) is monotone decreasing in γ for u ∈ I1 ∪ I2 ∪ I3). This means that

φ(F−1(u; γ1), γ1)− φ(F−1(u; γ2); γ2) for u ∈ I1 ∪ I2 ∪ I3.

Therefore, Λ(.; γ1, γ2) is convex on the intervals

J1 =

(
−∞, F−1

(
a(γ2)

(a(γ2) + b(γ2)

))
, J2 =

(
F−1

(
a(γ2)

(a(γ2) + b(γ2)
, 0

))
, J3 = (0,∞)

7



corresponding to I1, I2 and I3. With lemma 4 Λ′(.; γ1, γ2) is continuous on R. Therefore, we
can generalize the convexity of Λ(.; γ1, γ2) from the three subsets J1, J2, J3 to the whole real
line.

A similar discussion for γ2 > γ1 leads to the conclusion that Λ(.; γ1, γ2) is concave on R for
this case. �.

Notice that φ(F−1(u; γ)) is strictly decreasing. Therefore, Λ(.; γ1, γ2) is strictly increasing
and either strictly convex or strictly concave on R.

5 Skewness measure of Arnold & Groeneveld for the AGQ
family

Arnold & Groeneveld (1995) propose

AG = P (Y < yM)− P (Y > yM) = 1− 2P (Y < yM).

as a measure of skewness for a random variable Y with unique modus yM . For a symmetric den-
sity f(.) with modus 0 f(, ; γ) also has modus 0 with F (0; γ) = a(γ)/(a(γ) + b(γ). Therefore,
we get for the skewness measure of Arnold & Groeneveld

AG(F (.; γ)) = 1− 2
a(γ)

a(γ) + b(γ)
=
b(γ)− a(γ)

a(γ) + b(γ)
.

Notice that AG does not depend on the underlying symmetric density f(.). Under the assump-
tion that a(.) ((b(.)) is monotone increasing (decreasing) AG is monotone decreasing in γ. This
means

γ2 < γ1 ⇐⇒ AG(γ1) < AG(γ2).

Now, we want to show for the AGQ family that AG is a measure of skewness in the sense of
Oja.

Corollary 5.1 Let F be a continuous distribution function with unimodal and symmetric den-
sity function f that is continuous on R and differentiable for {R \ 0} such that φ′(x) > 0 for
x 6= 0. Denote F = {F (.; γ)|γ ∈ G} the AGQ family of distributions skewness functions a(.)
and b(.). Further, we assume that a(.) and b(.) are differentiable with a′(γ) > 0 and b′(γ) < 0
for γ ∈ Γ. Then AG is measure of skewness in the sense of Oja.

Proof:

1. Let Xγ be distributed with F (x; γ), γ ∈ Γ. Xγ has modus 0 such that (Xγ − b)/a has
modus −b/a.

Consider a× F (.; γ) + b for a, b ∈ R. Then

AG(a× F (.; γ) + b) = 1− 2P

(
Xγ − b
a

< − b
a

)
.

8



We get

AG(a× F (.; γ) + b) =


1− 2P (Xγ < 0) = AG(F (.; γ) for a > 0
1− 2P (Xγ > 0)
= 1− 2(1− P (Xγ < 0))
= −1 + 2P (Xγ < 0) = −AG(F (.; γ) for a < 0

Hence, AG(a× F (.; γ) + b) = sgn(a)AG(F (.; γ).

2. It remains to show that if F (.; γ1) �2 F (.; γ2) then it holds AG(γ1) ≤ AG(γ2).

From lemma 3 and the proof of theorem 1 we know that φ(F−1(.; γ) is a strictly decreas-
ing function in γ for u ∈ I1 ∪ I2 ∪ I3 if Λ(.; γ1, γ2) is strictly convex on R. Therefore, it
holds for γ1, γ2 ∈ Γ:

φ(F−1(.; γ1))− φ(F−1(.; γ2) =⇒ γ2 < γ1.

AG(.) is strictly decreasing on Γ. This leads to

Λ(.; γ1, γ2) is srictly convex on R =⇒ AG(F (.; γ1)) < AG(F (.; γ2)).

for γ1, γ2 ∈ Γ. �

6 Special cases

6.1 Symmetry for γ = 0 and invariance w.r.t to reflection
For monotone increasing (decreasing) functions a(.) (b(.)) the density (1) is symmetric around
0 if a(γ) = b(γ).

1. For a(γ) = γ and b(γ) = 1/γ we get symmetry for γ = 1.

2. Setting a(γ) = 1 + γ and b(γ) = 1− γ gives symmetry for γ = 0.

After the reparametrization a(γ) = eγ and b(γ) = e−γ in the first case we get also symmetry
for γ = 0. Therefore, we restrict us on functions a(.) and b(.) such that a(γ) = b(γ) for γ = 0.
This means that 0 is in the domain Γ.

Let Xγ the random variable corresponding to the density (1). −Xγ denotes the reflected
random variable with reflected properties of skewness. If Xγ is skewed to the right, −Xγ

should be skewed to the left in the same manner. It is plausible to require that the skewness of
−Xγ should be the same as the skewness of X−γ . This leads to the condition

f(x;−γ) = f(−x; γ) x ∈ R

for γ ∈ Γ. For x = 0 we get

f(0;−γ) =
2

a(−γ) + b(−γ)
f(0) =

2

a(γ) + b(γ)
f(0) = f(0; γ).
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This condition is satisfied if
b(γ) = a(−γ) γ ∈ Γ. (11)

The splitting of scale originally proposed by Fechner gives an example for this special case.
Another example is a(γ) = eγ and b(γ) = e−γ for γ ∈ R.

Under (11) Arnold & Groeneveld’s measure of skewness AG takes the form

AG(γ) =
a(−γ)− a(γ)

a(γ) + a(−γ)
.

6.2 Asymmetric distributions due to Fechner
We follow Cassart et al. (2008) and discuss a slightly more general version of Fechner’s normal
density with different scale parameters for positive and negative arguments. Set

a(γ) = 1 + aγ and b(γ) = 1− bγ, γ ∈ (−1, 1) (12)

with a, b > 0. Obviously, a(γ) is monotone increasing and b(γ) is monotone decreasing for
γ > 0. This proofs the following corollary.

Corollary 6.1 Let F be a continuous distribution function with unimodal and symmetric den-
sity function f that is continuous on R and differentiable for {R \ 0} such that φ′(x) > 0 for
x 6= 0. Consider the special AGQ family of skewed densities

f(x; γ) =
2

2 + (a− b)γ

(
f

(
x

1 + aγ

)
I(x ≤ 0) + f

(
1

1− bγ

)
I(x > 0)

)
x ∈ R

with a, b > 0 and γ ∈ (−1, 1). Then, this family is location-scale-skewness family in the sense
of Oja.

Under the setting (12) we get for the Arnold & Groeneveld’s measure of skewness

AG(F (.; γ)) = − (a+ b)γ

2 + (a− b)γ
.

In the Fechner case with a = b = 1 we get AG(F.; γ) = −γ for γ ∈ [−1, 1]. This means that
Arnold & Groeneveld’s skewness measure and the negative of the skewness parameter γ are
identical.

6.3 Asymmetric distribution due to Fernández et al.
We consider the proposal of Fernández et al. for skewed distributions with the modified choice

a(γ) = eγ and b(γ) = e−γ γ ∈ R. (13)

a(.) is monotone increasing and b(.) monotone decreasing on R and a(γ) > b(γ) for γ > 0.
This proves the following corollary which was already proven by Klein & Fischer (2006).

10



Corollary 6.2 Let F be a continuous distribution function with unimodal and symmetric den-
sity function f that is continuous on R and differentiable for {R \ 0} such that φ′(x) > 0 for
x 6= 0. Consider the special AGQ family of skewed densities

f(x; γ) =
2

eγ + e−γ
(
f
(
xe−γ

)
I(x ≤ 0) + f (xeγ) I(x > 0)

)
x ∈ R

with γ ∈ R. Then, this family is location-scale-skewness family in the sense of Oja.

The calculation of Arnold & Groeneveld’s AG is straightforward.

7 Summary
There are several procedures to construct a skewed distribution. One of these procedures splits
the value of a parameter of scale for the two sides of a symmetric distribution. We show that the
most general form of this technique of generating skewed distributions proposed by Arellano-
Valle et al. (2005) incorporates a well-defined parameter of skewness. It is well-defined in the
sense that the generated distributions are skewed to the right if the parameter of skewness takes
values less than 1. As second property we show that the parameter of skewness is compatible
with the ordering �2 of van Zwet (1964) which is the strongest ordering in the hierarchy of
orderings discussed by Oja (1981). In this sense the generated skewed distributions can be
ordered by the parameter of skewness. We show how the measure of skewness of Arnold &
Groeneveld depends on the skewness parameter.
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