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Abstract

We generalize the score test for time-varying copula parameters proposed by

[Abegaz & Naik-Nimbalkar, 2008] to a setting where more than one-parametric copulas can

be tested for time variation in at least one parameter. In a next step we model the daily

log returns of the Commerzbank stock using copula-based Markov chain models. We found

evidence that compared to usual GARCH models the copula-based Markov chain models

perform worse when daily stock returns are estimated. Thus we do not see any advantage

of this model type when daily returns from �nancial data are modeled.
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1 Introduction

Since the works of [Embrechts et al., 2002], [McNeil et al., 2005], [Patton, 2002] and [Patton, 2006]

among others, copulas are now common tools in investigating con-temporal dependency

between assets like in portfolio or in quantitative risk management. [Joe, 1997] proposed

to model the inter-temporal dependency of Markov time series models using copulas. As

economic theory often does not tell us which kind of dependency to expect, the two ques-

tions naturally arising are: �rst, which copula to choose and second, how to model the

parameter(s) of the copula. For instance, there is some empirical evidence that corre-

lation between di�erent assets varies over time, see [McNeil et al., 2005] p.123. Another

stylized fact is that especially �nancial times series tend to so-called �volatility cluster-

ing� meaning that the conditional volatility, often measured by the conditional standard

deviation, varies over time. Thus having answered question one in a way such we do not

have evidence against the copula model chosen, the questions arises whether time variation

of certain conditional moments of our observed time series lead to time varying param-

eters in our copula. [Abegaz & Naik-Nimbalkar, 2008] suggested a score test under the

Null that there is no time variation in an one-parametric copula. They proved the stan-

dard χ2 asymptotic under the Null and mixing conditions on the process. The test has

reasonable power but has the shortfall of being applicable only to one parametric copula

families. This leaves out several interesting interesting copula families like the student-t

or Joe-Clayton copula. Thus, we focus on the question how to generalize the score test

of [Abegaz & Naik-Nimbalkar, 2008] to copulas with more than just one parameter. We

propose a transformation for the Joe-Clayton copula, as a bivariate extension of the uni-

variate transformation for the Clayton copula used by [Abegaz & Naik-Nimbalkar, 2008].

The paper is organized as follows: section 2 reviews the idea of copula-based Markov

chains, section 3 generalize the score test of [Abegaz & Naik-Nimbalkar, 2008], section 4

investigates the power of our test in �nite samples by Monte-Carlo simulation. Section

5 shows the potentials of dynamic copula-based Markov chains for modeling log returns.

We compare the models with a broadly used GARCH(1,1)-model. It will be seen that

after some residual analysis, the standard GARCH(1,1)-model outperforms the dynamic

copula-based Markov chain models and Section 6 concludes. The proofs can be found in

the appendix.

2 Copula-based Markov chain models

Throughout the rest of the paper we write ∇δδ = ∇′δ(∇δ),∇θδ = ∇′θ(∇δ),∇θθ = ∇′θ(∇θ),
where ∇ denotes the partial derivative of function with respect to the parameter(-vector)

δ or θ. Moreover, vectors or matrices are shown in bold typeface.
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This section will brie�y review copula-based Markov models. For a deeper understand-

ing of copula models we refer to the textbooks of [Nelsen, 2006], [McNeil et al., 2005] and

[Joe, 1997]. A nice overview article of [Härdle & Okhrin, 2010] gives some possible appli-

cations of copula models for risk management. First, we give some de�nitions and restrict

ourselves to the two dimensional case. The general case is straightforward.

De�nition 1 A copula is a function C : [0, 1]× [0, 1]→ [0, 1], such that:

1. for every u, v ∈ [0, 1]
C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u, and C(1, v) = v.

2. for every u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2, v1 ≤ v2 there is

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The second property will be often called the two-increasing property. To sum it up, a copula

is a distribution function with uniformly distributed margins. By Sklar's theorem we are

able to separate the distribution function into its copula and the marginal distributions.

Theorem 1 Let FX and FY be the marginal distributions of some real valued, continuous

random variables X and Y and G the joint distribution function of (X,Y ). Then there

exists a copula C such that, for all (x, y) ∈ R2:

G(x, y) = C(FX(x), FY (y)). (1)

Moreover, if FX and FY are continuous, then C is unique.

Conversely, if FX and FY are the distributions of X and Y , respectively, the function G
de�ned by (1) is a joint distribution function with marginal distributions FX and FY .

Especially part two of the theorem is interesting for simulation or generating new dis-

tribution functions by simply combining some univariate distribution functions through

copulas. To establish the main result of this section we need the concept of conditional

copula functions.

De�nition 2 The conditional copula of V given U = u is de�ned as:

C2|1(v|u) = P (V ≤ v|U = u) =
∂C(u, v)

∂u
. (2)

A stationary �rst order Markov chain can be constructed as proposed by [Joe, 1997] p.245.

We summarize his explanation in the following theorem.
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Theorem 2 Let (Xt)t∈N be a stochastic process with absolutely continuous distribution

function (cdf from now on) F , i.e. F has density function f . Then F (x, y) = C(F (x), F (y)).
Let C2|1(v, u) the conditional Copula de�ned as in (2). Then the conditional cdf is given

by:

F (xt|xt−1) = C2|1(F (xt)|F (xt−1)). (3)

We now give some examples for constructing �rst order Markov chains from a given copula

and a given marginal distribution.

2.1 Examples of copula-based Markov models

2.1.1 Clayton copula

The cdf of the bivariate Clayton copula is given for 0 ≤ δ <∞ by

C(u, v; δ) = (u−δ + v−δ − 1)−1/δ

and the conditional copula by

C2|1(u|v; δ) = (1 + uδ(v−δ − 1))−1−1/δ.

Kendall's τ can be derived by τ = δ
δ+2 and the lower tail dependence coe�cient by λL =

2−1δ, which is increasing in δ. The upper tail coe�cient is zero.

2.1.2 Gumbel copula

The bivariate Gumbel copula is de�ned by

C(u, v; δ) = exp(−[(− lnu)−δ + (− ln v)−δ]1/δ),

and the conditional copula by

C2|1(u|v; δ) = u−1 exp{[(− lnu)δ + (− ln v)δ]1/δ}

(
1 +

(
lnu

ln v

)δ)−1+1/δ

.

Kendall's τ is given by τ = 1−1/δ and contrary to the Clayton copula, the Gumbel copula

has λL = 0 and the upper tail coe�cient is λU = 2− 21/δ.
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2.1.3 Joe-Clayton copula

For asymmetric modeling of both lower and upper tail dependence one may use the Joe-

Clayton copula, which is de�ned by:

C(u, v; δ1, δ2) = 1− (1− ((1− ūδ1)−δ2 + (1− v̄δ1)−δ2 − 1)−1/δ2)1/δ1 ,

for δ1 ≥ 0, δ2 > 0 and ū = 1− u, v̄ = 1− v. The conditional copula is given by

C2|1(v|u; δ1, δ2) = (1− w−1/δ2)1/δ1−1w−1/δ2−1(1− ūδ1)−δ2−1ūδ1−1

and w = ((1 − ūδ1)−δ2 + (1 − v̄δ1)−δ2 − 1). The tail dependence coe�cients are given by

λU = 2 − 21/δ1 and λL = 2−1/δ1 . Therefore, λU 6= λL in general and in contrast to the

above mentioned copulas, the Joe-Clayton copula is able to model the asymmetric tail

behavior of �nancial data that is often observed.

2.2 Estimation of copula-based Markov models

We focuss on the IFM method proposed by [Joe, 1997] p.299 �. for estimating the unknown

parameters when we observe an iid sample. Given a parametric, copula-based model for

the d-dimensional random variable X with absolutely continuous distribution function F ,

such that:

F (x;θ, δ) = C(F1(x1, θ1), ..., Fd(xd, θd); δ).

The parameters of interest are θ = (θ1, ..., θd) ⊂ Ωd1, a d1-dimensional parameter space.

Note that θ1, θ2, ... need not to have the same dimension nor need F1, ...Fd be distribution

functions of the same type. Let c denote the pdf corresponding to C, then the density of

X can be written as:

f(x;θ, δ) = c(F1(x1, θ1), ..., Fd(xd, θd); δ)
d∏
j=1

fj(xj ; θj).

Denote

Ln =
n∏
t=1

ft(x;θ, δ) =
n∏
t=1

ct(F1(x1, θ1), ..., Fd(xd, θd); δ)
d∏
j=1

fj(xj ; θj).

Taking logarithm on both sides, we have

LLn =

n∑
t=1

log ct(F1(x1, θ1), ..., Fd(xd, θd); δ)︸ ︷︷ ︸
=: L2n

+

n∑
t=1

n∑
j=1

log fj(xt,j ; θj)︸ ︷︷ ︸
=: L1n
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or in a short hand notation:

LLn = L1n + L2n.

The two-stage maximum likelihood estimator can be found the following way: Let θ̂ be

solution of the maximization problem

max
θ∈Ωd1

L1n(Xt,θ). (4)

Then denote δ̂ the solution of the second step

max
δ∈Ωd2

L2n(Xt, θ̂, δ). (5)

For consistency see [White, 1994] theorem 3.10 and theorem 6.11 for the asymptotic dis-

tribution of this two-stage estimator. In the context of conditional copula models we refer

to [Patton, 2002] p.77 �.

3 The general score-test for time varying parameters

The score test for testing for time varying parameters in our copula model is based on the

score test in [Rao, 1973] p.415 �. which is actually a LM-Test. We restrict us for reasons

of clarity to the case where the copula is speci�ed by two-parameters. An extension to the

n-variate parameter vector is straightforward.

Consider the following model for the copula parameter δ ∈ R2 :

δt = δ + εt =

(
δ1

δ2

)
+

(
εt,1

εt,2

)
, (6)

where εt
iid∼ G(0,Σ), where G is some distribution function, with EG[εt] = 0 and Σ =(

σε1 0

0 σε2

)
. We test under H0 whether σε1,1 = σε2,1 = 0 against the alternative that

at least one σ is greater than zero. The test statistic of the score-test is based on the

score-function:

Z0 =
1√
n
S(θ, δ)

∣∣∣∣
H0

, (7)

where

S(θ, δ) =

(
∇σ2

ε1
LL(θ, δ)

∇σ2
ε2
LL(θ, δ)

)
.

The log-likelihood function LL(θ, δ) can be derived like in the previous section.
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Wemay derive the test statistics using the standard LM-testing approach, like in [White, 2001]

p.77 �. Under validity of the null hypothesis, Z0 should be near zero. Using the argu-

ments given in [White, 2001] and the assumptions listed in appendix A, we get the following

result:

Theorem 3 Under the null hypothesis and the assumptions A1-A6 listed in appendix A,

the following result holds:

n−1/2S(θ̂, δ̂)
d→ N(0,Σ), (8)

and

n−1S(θ̂, δ̂)′
(
Σ1/2Σ1/2

)−1
S(θ̂, δ̂)

d→ χ2(2), (9)

where

S(θ̂, δ̂) = ∇σ2
ε1
LL(θ, δ)|θ̂,δ̂

and

Σ =
1

4
σ2 − σδI−1

δδσ
′
δ + (σθ + σδIδθI

−1
δδ )Σ−1

θ (σθ + σδIδθI
−1
δδ )′.

In addition we set:

σ2 = E[Wt(θ, δ)Wt(θ, δ)′],

Σ−1
θ = (D−1)V (D−1)′, with

D = E [∇θθ log f(xt; θ)] and

V = E
[
∇θ log f(xt;θ)∇′θ log f(xt;θ)

]
+ 2

∞∑
k=1

E
[
∇θ log f(x1;θ)∇′θ log f(x1+k;θ)

]
,

Iδδ = −E [∇δδc(F (xt−1,θ), F (xt;θ); δ)]

Iδθ = E [∇δθ log c(Ft−1(xt−1;θ), Ft(xt;θ);θ)]

σθ = E

[
1

2
Wt(θ, δ)∇′θ log c(F (xt−1;θ), F (xt;θ); δ)

]
σδ = E

[
1

2
Wt(θ, δ)∇′δ log c(F (xt−1;θ), F (xt;θ); δ)

]
.

Even though the formulas in theorem 3 are quite oblongly and may be confusing, one should

have a detailed look at the di�erent parts of Σ. Like in the common LM-test setting, we

actually test whether the constraints σε1 = σε2 = 0 are binding or not by testing if the

Lagrange multiplier λ from the constrained estimation of the model is large enough to

reject the null hypothesis of no time variation in the copula-parameter. Thus the �rst part

is just the variance of λ̂, the estimated Langrangian. Assuming that the parameter vector

of interest Θ = (θ, δ) is separable, the information matrix has a block form say

I(Θ) =

(
I11 I12

I21 I22

)
,
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Thus the variance of λ̂ that corresponds to the restriction σε1 = σε2 = 0 is given by

inverting I:

V ar(λ̂) = I22(δ)− I21(δ)I−1
11 (δ)I12(δ).

Therefore, 1
4σ

2−σδI−1
δδσ

′
δ corresponds to the variance of λ̂. The second part is due to the

two-stage estimation procedure employed and can be derived using arguments of theorem

6.11 in [White, 1994]. Thus the test proposed by [Abegaz & Naik-Nimbalkar, 2008] and its

test statistics can be treated as in the LM-test context, we �just� have to be more careful

about the assumptions and restrictions we impose, as we are not dealing with the usual

iid sample setting, but with Markov processes. Based on the assumptions proposed in

appendix A the standard χ2 asymptotic will hold.

To prove theorem 3, we will proceed in several di�erent steps by making a �rst order taylor
series expansion of S(θ̂, δ̂) around the true vector (θ0, δ0):

n−1/2S(θ̂, δ̂) = n−1/2S(θ0, δ0) + n−1/2∇′θS(θ0, δ0)(θ̂ − θ0) + n−1/2∇′δS(θ0, δ0)(δ̂ − δ0) + oP (1)

∼= n−1/2S(θ, δ)︸ ︷︷ ︸
Lemma 1

+n−1∇′θS(θ0, δ0)︸ ︷︷ ︸
Lemma 4

n1/2(θ̂ − θ0)︸ ︷︷ ︸
Lemma 2

+n−1∇′δS(θ0, δ0)︸ ︷︷ ︸
Lemma 4

n1/2(δ̂ − δ0).︸ ︷︷ ︸
Lemma 3

∼= means asymptotic equivalent, see for instance lemma 4.7. in [White, 2001]. The proof

of theorem 3 will be split up into the following four lemmas following standard arguments:

�rst we show that n−1∇′θS(θ0, δ0) converges in probability to its expectation (which is

a constant) using some suitable law of large numbers, then we prove that the two-stage

maximum likelihood estimator n−1/2(θ̂−θ0) will converge in distribution to a normal limit.

Combining these results we make use of Slutzky's theorem to establish the asymptotic

normality of the score test S(θ̂, δ̂)

Lemma 1 Under the assumptions A1, A3 and A5 in appendix A we have:

n−1/2S(θ, δ)
d→ N(0, 1/4σ2), (10)

with σ as in theorem 3.

The proof can be found in appendix B. Note that lemma 1 provides the convergence law

and the asymptotic variance of the actual score function. Whereas the convergence of the

next two parts is due to the two-stage maximum likelihood estimation used to calibrate

the model.

Lemma 2 Under the assumptions A1-A4 in appendix A we have:

√
n(θ̂ − θ0)

d→ N(0,Σ−1
θ ), (11)

where Σ−1
θ is just as in theorem 3.
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Next we establish the asymptotic distribution of the two-stage maximum likelihood esti-

mator for δ:

Lemma 3 Under the assumptions A1-A4 in appendix A we have:

√
n(δ̂ − δ0)

d→ N(0,Σ−1
δ ), (12)

where Σ−1
δ = I−1

δδ + I−1
δδ IδθΣ

−1′

θ IδθI
−1′

δδ .

The last lemma provides that n−1∇θS(θ, δ) and n−1∇δS(θ, δ) will converge a.s. to the

expectation of the hessian evaluated at the true parameter vector (θ0, δ0):

Lemma 4 Under the assumptions A1 and A3 in appendix A we have:

1. n−1∇θS(θ, δ)
a.s.→ −σθ

2. n−1∇δS(θ, δ)
a.s.→ −σδ

Combining these results yields the proof of theorem 3.

4 Simulation study

To investigate the asymptotic power of the proposed test we carried out a simulation

study with di�erent copulas and parameter constellations. In this paper we focus on

the two-parametric Joe-Clayton copula. For conclusions on the score-test with a one-

parametric copula we refer to [Abegaz & Naik-Nimbalkar, 2008]. To generate observations

{xt : t = 1, . . . , n} following a �rst order Markov chain with a given copula C(ut−1, ut; δ)

and margins F (xt; θ) we used the algorithm in [Abegaz & Naik-Nimbalkar, 2008].

After estimating the parameters θ̂ and δ̂ from the obtained observations, the test statis-

tic can be computed. We estimated each component of the variance-covariance ma-

trix Σ in theorem 3 consistently. For the estimation of the component V we follow

[Abegaz & Naik-Nimbalkar, 2008] by taking the following window estimator:

V =
1

n

[
n∑
t=1

∇θ log f(xt; θ̂)∇′θ log f(xt; θ̂) +
bn∑

t=k+1

dn(k)

(
n∑

t=k+1

∇θ log f(xt; θ̂)∇′θ log f(xt−k; θ̂)

)]
.

dn is a weight function with the Bartlett kernel dn(k) = 1 − (k/bn + 1), k = 1, 2, . . . , bn.

Where bn is a sequence of real, positive numbers, with bn →∞ and bn/n
1/4 → 0 if n→∞.

We generated 500, 1000 and 1500 observations from the Joe-Clayton copula with nor-

mal margins and did 1000 replications to investigate the �nite sample properties of the
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test, especially the test power, i.e. 1-β, where β is frequency how often the null hypothesis

of no dynamic is not rejected given the alternative is true. θ = (µ, σ) = (−3, 0.5) and (1, 2)

are chosen for the parameter of the normal distribution. The copula parameter δ follows

(6) and εt is bivariate log-normal distributed with mean 0 and variance-covariance matrix

Σ. We chose δ = (δ1, δ2) = (1, 0.5) and (1.5, 1). To include the strength of variation in

δt we increased σε step by step, that is σε1 ∈ (0, 2) and σε2 ∈ (0, 1). Note that this type

of variation is much smaller than in the article of [Abegaz & Naik-Nimbalkar, 2008] where

σε = (0, 25). A variation that is that big may be seen with pure looks, so we follow the

question whether the test is also able to detect very small deviation from the constancy hy-

pothesis. For σε1 = 0 and σε2 = 0 the α error (type I error) is obtained, because then δt is

constant. The results are presented in table 4 and for one parameter constellation in �gure

1. As can be seen the asymptotic power is a�ected by the number of observations and the

variation of δt. The α error lies between 5% and 7%. We see, that the signi�cance level is

achieved even in small samples (n=500). The test power increases with more observations

and higher variation in the dynamic model. For small sample size (n=500) the selectivity

of the test is only acceptable for σε1 = 2 and σε2 = 1 with a β error of 13% to 26%. For

n = 1000 instead, the asymptotic distribution of the test seems to hold, even when the

σs are smaller. When variations are small, e.g. σε1 = 0.25 and σε2 = 0.125 then the test

doesn't detect this deviation from constancy of the copula parameter. We conclude, that

the test holds the signi�cance level and has reasonable power at least when sample size is

large (n=1000) and the variation is not too small (σε1 ≈ 1.25 and σε2 ≈ 0.5).

5 Empirical analysis

In this section we investigate the potential of the dynamic copula-based Markov model for

�nancial data compared to a usual GARCH(1,1) model.

5.1 Preliminary analysis

We chose daily log returns of Commerzbank from 18th April 2001 to 31th March 2010.

To get an overview of the data we did some descriptive statistics and the KPSS test on

stationarity and Jarque-Bera test for normality. As can be seen in table 1 the observations

are skewed, leptokurtic, stationary and not normally distributed.

Table 1: Descriptive statistics of Commerzbank daily log returns

n mean std.dev. skewness kurtosis p-value of KPSS p-value of JB

1877 −10−5 0.0320 −0.3939 13.1125 0.07688 10−16
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Since we are modeling dependence structures we computed some common dependence

measures: the linear correlation ρ, Spearman's Rho ρS and Kendall's Tau τ . Following

[Cont, 2001] we use ρ[α] = ρ[|Xt−1|α, |Xt|α] as a measure of nonlinear dependence. For

α = 2 volatility clustering, already mentioned in the introduction, can be measured. The

results are presented in table 2.

Table 2: Intertemporal dependence in Commerzbank daily log returns

ρ ρS τ ρ[1] ρ[2]

0.0791 0.0216 0.0134 0.3936 0.2475

The log returns show a slight slight positive correlation regarding rho ρS and τ . The

nonlinear measures show a higher amount and especially for α = 2 we can assume volatility

clustering. This is not surprising because �gure 2 pictures this phenomenon. Because

GARCH models take the volatility clustering into account, our approach to compare the

copula-based Markov model with a GARCH(1,1) model is supported.

5.2 Parameter estimation

We assumed the IFM method, thus the parameters are estimated in two steps.

First, we �t the marginal distribution and follow two approaches:

Parametric and empirical distribution

We �t a hyperbolic distribution

f(x) =
ψ2 − η2

2ψσK1(σ
√
ψ2 − η2)

exp
(
−ψ
√
σ2 + (x− µ)2 + η(x− µ)

)
with ψ > 0 , 0 ≤ |η| < ψ , µ ∈ R , σ ≥ 0 and K1 is the modi�ed bessel function of 2nd

order. As benchmark we use the gaussian distribution. The reason for choosing the hyper-

bolic distribution is due its ability in modeling skewness as well as heavy tails, which is a

well-known so-called stylized fact of �nancial returns. The hyperbolic distribution has been

investigated in �nancial market models as by [Jaschke, 2000],[Eberlein & Keller, 1995] or

[Reimann, 2005] among others. Moreover, [Eberlein & Keller, 1995] found evidence for

stock returns to follow a hyperbolic distribution. In addition to the full parametric ap-

proach, a semi-parametric is chosen, where the marginal distributions are estimated using

the empirical distribution Fn(x) = 1
n

∑n
t=1 1(−∞,x](Xt) can be applied. This encompasses

the approach of [Genest et al., 1995].

GARCH

A very well documented stylized fact for �nancial returns are volatility clusters. [Engle, 1982]
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and [Bollerslev, 1986] suggested ARCH resp. GARCH models to capture this phenom-

ena. Therefore, we adapt a standard GARCH(1,1) with gaussian innovations to the

data and compare its performance with the copula-based Markov approach. Note that

a GARCH(1,1) is clearly not Markovian, but a martingale di�erence. So we compare en

passant two di�erent types of stochastic processes, namely Markov chains and martingale

di�erences.

The GARCH(1,1) process can be de�ned by xt|Ft−1 ∼ N (0, σ2
t ) with σ2

t = ω + αx2
t−1 +

βσ2
t−1 and ω > 0, α, β ≥ 0.

The residuals ut = σ−1
t xt with ut ∼ N (0, 1) are then GARCH-�ltered log returns.

We proceed with the estimation of the copula parameters. For the hyperbolic margins

and the margins estimated with the empirical distribution function the score test for dy-

namic copula parameters is performed. For the GARCH �ltered innovations we also �t

our copula-based Markov model and we test whether there is still some dynamics in the

dependence structure. If this were the case, we would have evidence that there is time-

variation not only in the conditional variances but also in other moments. If instead the

null cannot be rejected, we can conclude that all sort of time variation is already captured

by the GARCH(1,1)-model. The only way a copula may now help in modeling the �ltered

GARCH(1,1)-residuals is just due to the fact, that we have assumed gaussian innovations,

which is usually not convenient. Instead other distributions like skewed t-distributions as

proposed in [Hansen, 1994] or [Chen, 2007] would be preferable. But the focus lies not on

modeling the conditional distribution as exact as possible, but to elaborate the bene�t of

dynamic copula-based Markov models over the standard GARCH(1,1) models.

If the null hypothesis of constant copula parameters is rejected, we model a dynamic copula

parameter. For the score-test we assumed the variation in 6. The aim was to expose any

kind of variation. In a next step we model δt as a modi�ed ARMA(1,k) process, as proposed

in [Abegaz & Naik-Nimbalkar, 2008]:

δt = exp

(
ω +α log(δt−1) + β

1

k

k∑
i=1

|ut−1 − ut−i−1|

)
.

This approach includes an autoregressive term δt−1 and an error term for the mean absolute

di�erence between ut and ut−1, which captures variation in the dependence structure. The

uts are estimated by ût = F (xt; θ̂). δ1 is assumed to be constant.

5.3 Results

The results for Commerzbank daily stock returns are summarized in table 5. Regarding

to the Bayesian Information Criterion (BIC) for the marginal distributions it can be seen

that the hyperbolic distribution performs better than the gaussian one. The GARCH(1,1)

12



model achieves the best �t due to BIC.

For the GARCH residuals we did some further investigation and tested them for autocorre-

lation with a Ljung-Box test and for normality with a Jarque-Bera test (see table 3). If we

had signi�cance against the Null of no serial correlation, we would still have some relevant

information in our model, and thus we just re-identify our GARCH-model, by taking higher

orders or an AR(p)-process for the conditional mean. But this would contradict economic

theory, where the e�cient market and the rational expectations hypothesis of the �nancial

actors contains that the conditional return of an asset should be zero, i.e. E[Rt|Ft−1] = 0,

because otherwise there is a systematic information about the behavior of the stock return

and everyone will buy (if we had positive trend) or sell the asset. The null hypothesis

of no correlation can be rejected for assuming di�erent lags. As our times series includes

2363 observations we report the results of the Ljung-Box test of order 20 in table 3. Also

the residuals are not normal distributed, the main focuss lies on the non-presence of auto-

correlation in the residuals, the absolute values of the residuals and the squared residuals.

Thus we can assume that the �ltered residuals are not following a gaussian white noise

process, but they are white noise and that the conditional distribution of the GARCH(1,1)

model is misspec�ed. The �t could have been improved by assuming student-t distributed

residuals or a higher order GARCH process. To simplify matters we will not follow this.

Table 3: Tests of the GARCH residuals

p-value of Ljung-Box test p-value of Jarque-Bera test
ut |ut| u2

t ut

0.3353 0.392 0.7927 0.0001

Next, we estimated the parameters of the copulas, proposed in section 2.1. For the gaus-

sian and the �ltered GARCH innovations the clayton and for the hyperbolic and empirical

distribution the Joe-Clayton copula performs best, regarding BIC. So our generalization

of the score-test to two-parametric copulas seems to be helpful. The Gumbel copula per-

forms worst and is inappropriate for our data set. We also computed Kendall's Tau from

the estimated copula parameters δ. Next we applied the generalized score-test for the Joe-

Clayton copula and the Clayton copula. The null hypothesis of constant copula parameters

is rejected for all marginal distributions except the gaussian and the �ltered GARCH in-

novations. Modeling dynamic copulas improves the �t in both other cases. To sum up we

compare the dynamic Joe-Clayton copula with hyperbolic margins and 10 parameters, with

an added up BIC of −8, 139.4, to a simple GARCH(1,1) model with three parameters and

a BIC of −8, 497.6. It gets clear that there is no advantage of the (dynamic) copula-based

Markov chain model for the log returns. Our approach to improve the usual GARCH(1,1)

model by applying the copula-based Markov model on the residuals, brings few improve-

ment of the �t. Note that the choice of the Clayton copula corresponds to the stylized fact,
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that (extreme) negative returns are more likely then positives. As the Clayton copula cov-

ers negative tail dependence, it can be concluded that the �ltered GARCH residuals still

exhibits signi�cant lower tail dependence which encompasses the aforementioned stylized

fact. Note that this phenomena could have been captured by taking a skewed conditional

distribution in our GARCH model.

6 Conclusion

In our paper we gave a short review on dynamic copula-based Markov models and general-

ized the score-test proposed by [Abegaz & Naik-Nimbalkar, 2008]. The null hypothesis of

no time variation in the parameters of our copula models is extended to variation in at least

one of the possible multidimensional parameter sets. The signi�cance level is maintained

when a Joe-Clayton copula, which has two parameters, is investigated. The test power

increases with more observations, but it is general lower than in one-dimensional parameter

case. This result is not astonishing as we would reject the null, when there is time varia-

tion in at least one parameter. To show that the generalization is useful, we modeled the

daily returns of the Commerzbank stock using di�erent copulas. We found evidence that

the very �exible Joe-Clayton copula outperforms the other one parametric copula models.

After estimating the margins with hyperbolic distribution as well as the gaussian and the

empirical distribution, the possible dynamics in the parameter is investigated. We see that

the null is rejected for all copulas except for the gaussian and the. In a next step we set

up as a benchmark model a standard GARCH(1,1) model with gaussian innovations. An-

alyzing the residuals, we found no evidence against white noise, but the distribution still

exhibits skewness. This may be captured by adapting a more realistic distribution like a

skewed-t or hyperbolic. The main advantage of the standard GARCH(1,1) lies in the fact

that it is numerical preferable as it is fast and quite easy to estimate, has less parame-

ters compared with dynamic copula-based Markov models. Moreover, it is able to capture

volatility clusters and its easy applicability to VaR calculations, portfolio optimization and

option-pricing. Therefore, the question may arise, whether Markov chains are suitable

models for stock returns at all or that martingale di�erence equation like GARCH(1,1) are

more able to capture stylized facts that stock returns exhibit.

Mathematical appendix

A: Assumptions

Following [Abegaz & Naik-Nimbalkar, 2008] and [White, 1994], resp. [Patton, 2002] p.112

�. we post the following assumptions:
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A1. The process (Xt)t∈N is stationary and α-mixing, with mixing coe�cient α(n), such

that
∑∞

n=1 α(n)
β

2(2+β) <∞, for β > 0.

A2. (θ̂, δ̂) is the two-stage maximum likelihood estimator and thus solution of the maxi-

mization problem (4) resp. (5).

A3. (a) f(xt|xt−1; Θ) > 0 P-a.s. independent of Θ, and twice continuously di�erentiable

on Ω.

(b) The copula densities are twice continuously di�erentiable on Ωd2.

(c) There exists neighborhoods Uθ and Uδ such that we have for all θ ∈ Uθ ⊂ Ωd1

and δ ∈ UδΩd2:

i. E

[
sup
θ
|∇θf(xt;θ)|

]
<∞, E

[
sup
δ
|∇δc(ut, ut−1; δ)|

]
<∞

ii. E

[
sup
θ
|∇θθf(xt;θ)|

]
<∞, E

[
sup
δ
|∇δδc(ut, ut−1; δ)|

]
<∞

iii. E

[
sup
θ
|∇θθ log f(xt;θ)|

]
<∞, E

[
sup
δ
|∇δδ log c(ut, ut−1; δ)|

]
<∞

A4. For all θ ∈ Uθ ⊂ Ωd1 and δ ∈ Uδ ⊂ Ωd2 we have, that −E[∇θθ log f(xt;θ)],

V ar(∇θ log f(xt;θ)), −E[∇δδ log c(ut, ut−1; δ)], V ar(∇δ log c(ut, ut−1; δ)) are O(1)

and uniformly positive de�nite.

A5. E[|Wt,j(θ, δ)|2+β] <∞ for β > 0, j = 1, 2 and all t ≥ 1 and

lim
n→∞

1

n

n∑
t=1

E[W 2
t,j(θ, δ)|Ft−1] = σ2

j > 0, a.s.

Note the minor modi�cation compared to [Abegaz & Naik-Nimbalkar, 2008], especially the

assumptions in A3 that are needed to ensure consistency of the the two-stage maximum-

likelihood estimator are less strong than in for instance [Joe, 1997] p.318. To obtain locally

asymptotic normally distributed estimators the twice continuously di�erentiability assump-

tion on the densities is su�cient, see [Ferguson, 1996] p.119 �. The uniformly integrability

for the score functions and the densities are needed, on the one hand side to make use of

the weak law of large numbers for α- mixing processes, see for instance [White, 1984], and

to interchange di�erentiation and integration, see [Ferguson, 1996] p.124.

B: Proofs

Proof of lemma 1 First note that S(θ, δ) is a martingale under A1 and A3 and that

S(θ, δ) = 1
2

∑n
t=2Wt(θ, δ). With A5 we employ the central limit theorem for stationary
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martingales in [Basawa & Rao, 1980] p.388 to conclude, that

n−1/2
n∑
t=2

Wt(θ, δ)
d→ N(0,σ2),

where σ2 = E[Wt(θ, δ)Wt(θ, δ)′]. Finally we have:

S(θ, δ) =
1

2

n∑
t=2

Wt(θ, δ)
d→ N(0, 1/4σ2).

�

Proof of lemma 2 Denote the maximum likelihood estimator by θ̂ obtained in a �rst

step by maximizing (4) as the solution of the corresponding score equation Sθ(θ) = 0.

Then we have under the conditions A3, that 1
nSθ(θ̂)

a.s.→ E[Sθ(θ̂)] = 0d1×1, where 0d1×1

is a vector of zeros with length d1. Making a �rst order Taylor series expansion of S(θ̂)

around the true parameter vector S(θ0) we get:

Sθ(θ̂) = Sθ(θ0) +∇θSθ(θ0)(θ̂ − θ0) + oP (1)

1

n
Sθ(θ̂) ∼=

1

n
Sθ(θ0) +

1

n
∇θSθ(θ0)(θ̂ − θ0)

Rearranging leads to:

n1/2(θ̂ − θ0) =

(
− 1

n
∇θSθ(θ0)

)−1

n−1/2Sθ(θ0).

For the �rst equation we have(
− 1

n
∇θSθ(θ0)

)−1
a.s.→ E[∇θSθ(θ0)]−1 = D−1,

which is just the inverse of hessian of the the log-likelihood problem (4). Due to assumption

A4 the matrix D is invertible at least in Uθ. The second term n−1/2Sθ(θ0) is just a

continuous function of an α-mixing process and thus is itself α-mixing, see [Davidson, 1994]

theorem 14.1. For completeness we present a result due to [Denker, 1986]:

Theorem 4 Let (Xn)n∈N be strictly stationary α-mixing sequence, i.e. E[X1] = 0 and

E[|X1|2+δ] <∞ with mixing coe�cient α(n), s.t.
∑∞

n=1 α(n)
δ

2(2+δ) <∞ and limn→∞ σ
2
n =

∞. Set Sn =
∑n

i=1Xi, then

n1/2Sn/σn
d→ N(0, σ2),

where σ2 = E[X2
1 ] + 2

∑∞
n=1E[X1X1+n], i� the sequence {S2

n/σ
2
n, n ≥ 1} is uniformly

integrable.
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Under the assumptions imposed on the process (Xt)t∈N we have that

Sθ(θ0) =
n∑
t=1

∇θ log f(xt;θ0)

ful�lls the the assumptions of theorem 4, with E[X2
1 ] = E[∇θ log f(x1;θ0)∇′θ log f(x1;θ0)]

and
∑∞

n=1E[X1X1+n] =
∑∞

k=1E[∇θ log f(x1;θ0)∇′θ log f(x1+k;θ0)]. Summarizing we

have

n−1/2Sθ(θ0)
d→ N(0, V ),

where

V = E[∇θ log f(x1;θ0)∇′θ log f(x1;θ0)] + 2

∞∑
k=1

E[∇θ log f(x1;θ0)∇′θ log f(x1+k;θ0)].

We �nally get the result of lemma 2 by applying Slutzky's theorem.

�

Proof of lemma 3 Lemma 3 can be proven in exactly the same way as lemma 2 or seen

as a direct consequence of theorem 6.11 in [White, 1994], therefore, it is omitted here. For

a detailed proof see [Reichert, 2010] p.46 �. If the model is correctly speci�ed, the result for

the asymptotic variance of the two-stage estimator simpli�es to the form given in lemma

3. Also note that our parameter-vector Θ = (θ, δ) is separable in the sense, that there is

no dependency between θ and δ, therefore, E[SθSδ] = 0.

�

Proof of lemma 4 First we have for i = 1, ..., d1 and j = 1...d2:

1

n

∂S(θ, δ)j
∂θi

=
1

n


n∑
t=2

∂2

∂θi∂ε21,j
log

c(ut−1, ut; δ) +
1

2

d2∑
j=1

∂2c(ut−1, ut; δ)

∂δ2
j

σε1,j


︸ ︷︷ ︸

:= Nt(ut−1, ut; δ)


σ2
ε1

=0

.

We have

E

[
−∂

2Nt(ut−1, ut; δ)

∂δi∂σ2
ε1,j

]
σ2
ε1

=0

= E

[
∂Nt(ut−1, ut; δ)

∂θi

∂Nt(ut−1, ut; δ)

∂σ2
ε1,j

]
σ2
ε1

=0

.

Some calculation yields:

∂Nt(ut−1, ut; δ)

∂σ2
ε1,j

=
1

2
Wt,j(θ, δ)

∂Nt(ut−1, ut; δ)

∂θi
= ∇θi log ct(θ).
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Using the ergodic theorem we can �nally conclude that:

lim
n→∞

1

n

∂S(θ, δ)j
∂θi

= E

[
∂Nt(ut−1, ut; δ)

∂θi

∂Nt(ut−1, ut; δ)

∂σ2
ε1,j

]
σ2
ε1

=0

= E

[
−1

2
Wt,j(θ, δ)∇′θi log ct(θ)

]
σ2
ε1

=0

:= σθ,ij

And thus

lim
n→∞

1

n

∂S(θ, δ)

∂θ
= σθ,

where σθ is just as in theorem 3.

The second assertion of lemma 4 can be proven in exactly the same manner.

�

Proof of theorem 3 We have for n→∞:

n−1/2S(θ̂, δ̂) = n−1/2S(θ0, δ0) +
1

n
∇θS(θ0, δ0)n1/2(θ̂ − θ0) +

1

n
∇δS(θ0, δ0)n1/2(δ̂ − δ0).

With the results from lemma 2-4 we have:

= n−1/2S(θ0, δ0)− σθD−1n−1/2Sθ(θ0)− σδI−1
δδ n

−1/2Sδ(θ0, δ0)− σδI−1
δδ IδθD

−1n−1/2Sθ(θ0)

= n−1/2S(θ0, δ0)− σδI−1
δδ n

−1/2Sδ(θ0, δ0)− (σθ + σδI
−1
δδ Iδθ)D

−1n−1/2Sθ(θ0).

Now we have to calculate the covariances between S(θ0, δ0),Sθ(θ) and Sδ(θ0, δ0). First,

as there is no dependency between δ and θ we have Cov(Sθ,Sδ) = 0. Moreover, we have:

Cov[S(θ0, δ0),Sθ(θ0)] = E[S(θ0, δ0)Sθ(θ0)′]− E[S(θ0, δ0)]E[Sθ0(θ0)′]

=
n∑
t=2

E

[
1

2
W t(θ0, δ0)∇θ log f(xt;θ0)′

]

−
n∑
t=2

E

[
1

2
W t(θ0, δ0)

] n∑
t=2

E
[
∇θ log f(xt;θ0)′

]
= 0.
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Note that E[W t(θ0, δ0)∇′θ log f(xt; θ)] = 0, because for every combination of {r, s, t ∈
0, 1, ...} of E[W r,s(θ0, δ0)∇′θ log f(xt; θ)] = 0 we have:∫
R

∫
R

∫
R

1
c(F (xr;θ),F (xs;θ);δ)

∂2c(F (xr;θ),F (xs;θ);δ)

∂δ2
∂ log f(xt,θ)

∂θ f(xr, xs, xt;θ, δ)dxrdxsdxt

=
∫
R

∫
R

∫
R

1
c(F (xr;θ),F (xs;θ);δ)

∂2c(F (xr;θ),F (xs;θ);δ)

∂δ2
1

f(xt;θ)
∂f(xt;θ)
∂θ

×f(xr;θ)f(xs;θ)f(xt;θ)c(F (xr;θ), F (xs;θ); δ)c(F (xs;θ), F (xt;θ); δ)dxrdxsdxt

=
∫
R

∫
R

∫
R

∂2c(F (xr;θ),F (xs;θ);δ)

∂δ2
∂f(xt,θ)
∂θ f(xr;θ)f(xs;θ)c(F (xs;θ), F (xt;θ); δ)dxrdxsdxt

=
∫
R

∫
R

∫
R

∂f(xt;θ)
∂θ c(F (xs;θ), F (xt;θ); δ)f(xs;θ)

{
∂2c(F (xr;θ),F (xs;θ);δ)f(xr;θ)

∂δ2

}
dxrdxsdxt

=
∫
R

∫
R

∂f(xt;θ)
∂θ c(F (xs;θ), F (xt;θ); δ)f(xs;θ)

{∫
R

∂2c(F (xr;θ),F (xs;θ);δ)f(xr;θ)

∂δ2
dxr

}
dxsdxt

=
∫
R

∫
R

∂f(xt;θ)
∂θ c(F (xs;θ), F (xt;θ); δ)f(xs;θ)

{
∂2

∂δ2

∫
R
f(xr|xs;θ, δ)dxr

}
︸ ︷︷ ︸

=0

dxsdxt

= 0.

Finally we can conclude that

Cov(S(θ, δ),Sδ(θ, δ)) =

n∑
t=2

E

[
1

2
Wt(θ0, δ0)∇′δ log c(ut, ut−1,θ)

]
= (n− 1)σδ.

Putting the results together we get:

 n−1/2S(θ0, δ0)

n−1/2Sδ(θ0, δ0)

n−1/2Sθ(θ0, δ0)

 d→ N


 0

0

0

 ,

 σ/4 σδ/n 0

σδ/n Iδδ 0

0 0 V


 .

Thus we �nally get:

n−1/2S(θ̂, δ̂)
d→ N(0,Σ),

with Σ just as in theorem 3.

�

19



Tables and Figures

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

σ
ε,1

P
ow

er

Joe−Clayton−Copula

 

 

n =  500

n = 1000

n = 1500

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ
ε,2

P
ow

er

Joe−Clayton−Copula

 

 

n =  500

n = 1000

n = 1500

Figure 1: Power of the general score-test
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Figure 2: Daily log returns of Commerzbank
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Table 4: Power of the score-test with Joe-Clayton copula and normal margins

n=500 n=1000 n=1500
µ σ δ1 δ2 σε1 σε2 p-value power p-value power p-value power

−3 0.5 1.0 0.5 0.00 0.000 0.4803 0.0630∗ 0.4811 0.0620∗ 0.4738 0.0530∗

0.25 0.125 0.4739 0.0590 0.4758 0.0520 0.4700 0.0600
0.50 0.250 0.4123 0.0650 0.3317 0.1250 0.2931 0.1800
0.75 0.275 0.2731 0.1880 0.1313 0.4510 0.0673 0.6800
1.00 0.500 0.1532 0.3650 0.0407 0.7930 0.0141 0.9320
1.25 0.625 0.0823 0.5960 0.0130 0.9340 0.0023 0.9920
1.50 0.750 0.0468 0.7600 0.0043 0.9840 0.0011 0.9950
1.75 0.875 0.0317 0.8420 0.0020 0.9920 0.0007 0.9980
2.00 1.000 0.0248 0.8780 0.0030 0.9920 0.0005 1.0000

1.5 1.0 0.00 0.000 0.4937 0.0700∗ 0.4824 0.0690∗ 0.4728 0.0600∗

0.25 0.125 0.4934 0.0440 0.4927 0.0670 0.4726 0.0570
0.50 0.250 0.4737 0.0460 0.4047 0.0690 0.3814 0.0980
0.75 0.275 0.3770 0.0770 0.2507 0.2010 0.1662 0.3780
1.00 0.500 0.2493 0.1790 0.1045 0.5050 0.0438 0.7610
1.25 0.625 0.1528 0.3430 0.0397 0.8090 0.0129 0.9540
1.50 0.750 0.0917 0.5210 0.0133 0.9430 0.0073 0.9790
1.75 0.875 0.0622 0.6610 0.0082 0.9750 0.0049 0.9840
2.00 1.000 0.0540 0.7310 0.0094 0.9700 0.0035 0.9890

1.0 2.0 1.0 0.5 0.00 0.000 0.4583 0.0710∗ 0.4730 0.0650∗ 0.4795 0.0640∗

0.25 0.125 0.4615 0.0460 0.4708 0.0610 0.4763 0.0470
0.50 0.250 0.4299 0.0640 0.3491 0.1360 0.2698 0.2180
0.75 0.275 0.2782 0.1670 0.1279 0.4470 0.0721 0.6720
1.00 0.500 0.1514 0.3670 0.0339 0.8160 0.0096 0.9570
1.25 0.625 0.0820 0.5710 0.0119 0.9440 0.0030 0.9870
1.50 0.750 0.0456 0.7550 0.0051 0.9820 0.0020 0.9970
1.75 0.875 0.0317 0.8360 0.0034 0.9870 0.0006 0.9980
2.00 1.000 0.0278 0.8730 0.0036 0.9870 0.0004 0.9990

1.5 1.0 0.00 0.000 0.4843 0.0680∗ 0.4751 0.0680∗ 0.4872 0.0610∗

0.25 0.125 0.4785 0.0540 0.4863 0.0420 0.4886 0.0430
0.50 0.250 0.4384 0.0420 0.4180 0.0720 0.3922 0.0960
0.75 0.275 0.3711 0.0960 0.2461 0.2140 0.1703 0.3640
1.00 0.500 0.2490 0.1550 0.1000 0.5300 0.0474 0.7810
1.25 0.625 0.1543 0.3380 0.0342 0.8000 0.0138 0.9410
1.50 0.750 0.0951 0.5430 0.0167 0.9290 0.0079 0.9800
1.75 0.875 0.0675 0.6460 0.0106 0.9640 0.0035 0.9890
2.00 1.000 0.0485 0.7400 0.0061 0.9760 0.0051 0.9830

REMARK: The means of 1000 replications of the p-values of the genaral score-test and the power are displayed for
di�erent parameter constellations. The α errors are marked with ∗ and describe how often the null hypothesis is
rejected, although it is true.
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Table 5: Estimates for the daily log returns of Commerzbank

Marginal distribution

gaussian hyperbolic empiric GARCH(1,1)

µ̂ −0.0002 ψ̂ 50.7488∗

(0.0007) (1.1934)
σ̂ 0.0317∗ η̂ −1.4810 ω̂ 0.0001∗

(0.0005) (0.8446) (0.0000)
σ̂ 0.0002∗ α̂ 0.0656∗

(0.00001) (0.0049)

µ̂ 0.0010 β̂ 0.9302∗

(0.00050) (0.0045)

BIC −7312.5067 BIC −8036.1388 BIC −8497.5719

Constant copula GARCH-�ltered

Gauss

δ̂ 0.0762 0.00479 0.0381 0.0429
(0.0333) (0.0226) (0.0235) (0.0239)

τ̂ 0.0504 0.0305 0.0243 0.0273

BIC −11.2744 −4.4591 −2.5736 −3.2651

Clayton

δ̂ 0.0826∗ 0.1180 0.1241 0.0731∗

(0.0151) (0.0200) (0.0275) (0.0249)
τ̂ 0.0397 0.0557 0.0584 0.0344

BIC −58.4801 −41.4359 −27.0222 −8.2544

Gumbel

δ̂ 1.0554∗ 1.0535∗ 1.0001 1.0000
(0.0158) (0.0136) (0.0171) (0.0148)

τ̂ 0.0525 0.0507 0.0000 0.0000

BIC −34.9325 −31.4023 1430.2750 1491.3505

Joe-Clayton

δ̂1 1.0312∗ 1.0442∗ 1.0541∗ 1.0000
(0.0128) (0.0133) (0.0167) (0.0208)

δ̂2 0.0964∗ 0.1066∗ 0.1043∗ 0.0708∗

(0.0182) (0.0293) (0.0273) (0.0343)
τ̂ 0.0621 0.0730 0.0769 0.0342

BIC −13.473 −61.2031 −39.0727 −7.7324

Score-test for

Joe-Clayton p-value 0.0591† 0.0001 0.0001 0.3879†

Dynamic copula

Joe-Clayton

ω̂1
∗∗∗ 0.5860∗ 0.1802∗ ∗∗∗

(0.0007) (0.0107)
ω̂2 −1.4947∗ −1.1684∗

(0.0033) (0.0019)
α̂1 −0.7466∗ −0.1379∗

(0.0002) (0.0330)
α̂2 0.0983∗ 0.8718∗

(0.0023) (0.0035)

β̂1 −1.1579∗ 0.8432∗

(0.0019) (0.0160)

β̂2 −1.7954∗ 0.1368∗

(0.0068) (0.0049)

BIC −103.2394 −90.0195

REMARK: Standard errors are embraced. The parameter estimates marked with ∗ are signi�cant at 5%-level. The
�eld marked with ∗∗∗ indicates that no dynamic copula parameter is estimated because the null hypothesis of the
score-test cannot be rejected. † indicates that the test is performed for the Clayton copula.
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