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Abstract

In this paper three issues are pursued. First, a model of capacity constrained price competition is suggested.
The basic feature of this model is that a pure strategy equilibrium exists for all price subgames. Second, this
permits Cournot outcomes in heterogeneous markets to be interpreted as the unique subgame perfect
equilibrium of a two stage game where firms simultaneously set capacities first and then prices. Third, the
capacity constrained price competition game can be used to extend the entry deterrence models of the Dixit-
Stackelberg type in order to analyze the effect of heterogeneity and development of demand. The results
support the view that entry deterrence should be a rare event for growing dynamic markets with ample
opportunities of product differentiation.
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CAPACITY CONSTRAINED PRICE COMPETITION AND

ENTRY DETERRENCE IN HETEROGENEOUS PRODUCT

MARKETS

The contribution of Kreps and Scheinkman (1983) has given a significantly superior

foundation to the Cournot model. It can now be understood as a reduced form of a capacity

constrained price game with no need of some auctioneer. Unfortunately the price stage of

this game has only mixed strategy equilibria for a certain range of capacities. This is quite

annoying, if one wants to employ the model structure not only to simultaneous choices of

capacity but also in a sequential context of some sort as for example in contexts of entry

deterrence. In this paper we abandon the assumption of a homogeneous product market as

analyzed in Kreps and Scheinkman. This allows us to have pure strategy equilibria in the

price stage. In a setting with simultaneous capacity choices the unique equilibrium is again

identical to the Cournot outcome in a heterogeneous product market. Moreover the model

can be used to reconsider the possibility of entry deterrence in such a market. The

respective results support the view that a decreasing degree of substitutability among the

commodities under consideration hampers the possibility of profitable entry deterrence.

They are thus in line with the perspective that entry deterrence as modelled by e.g. Dixit

(1980) is expected to be a rare event.

It should be noted that Yin, X. and Yew-Kwang Ng (1997) have analyzed a similar but not

identical model suggesting that the Kreps/Scheinkman result can be extended to

heterogeneous markets. These authors assume that consumers are fully aware of the

capacities and take them into account when formulating demand. In this form this implies a

strong informational assumption on the part of customers which appears unreasonable in

many circumstances. Alternatively one could view their approach as one where customers

first formulate their unrestricted demand and then visit firms sequentially. If the first firm

visited is capacity constrained given their demand they are rationed and will adjust the

demand at the second firm. If this is the underlying story it is assumed implicitly that going

from one firm to the other is costless. One may object that such costs can be taken into

account when formulating unrestricted demand. This is certainly true if customers are not

rationed by capacities. If they are rationed a customer may visit a firm first where

capacities do not bind. When she finds that she is rationed at the second firm she has to go

back to the first firm because her demand for the first firm’s commodity will have changed
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because of rationing at the second firm. Therefore there will typically be additional

transactions costs if customers are not aware of capacity constraints. Either one must

assume that such costs are negligible or some expectation of rationing must be formed. To

be sure the assumption of zero transactions costs of this kind has a long tradition in

economics for good reasons. Therefore the preceding comments are not intended to

criticize these authors in this respect. They are rather intended to prepare the ground for the

view that is taken in this paper.

In the present paper the view is taken that it is reasonable to assume that customers do not

have full knowledge of the firms capacities. Indeed it is assumed that customers expect that

their demands are met when formulating their demand. This expectation will never be

falsified in equilibrium. In contrast to the Yin/Ng paper the demand structure can be

understood as resulting form a discrete choice situation. Customers have an outside option

yielding some reservation utility level. They know the prices and products on offer because

of advertising or other easily available information. They buy one and only one unit from

one of the firms or stick to their outside option. The increase in utility when buying a unit

from one of the firms rather than using their outside option covers only the cost to visit one

firm. Suppose for example there is an offer of some commodity which is locally available

(the outside option) but there are also the offers from the two firms at least one of which is

a better deal than the outside option. The two firms are located far apart such that because

of e.g. time constraints only the firm with the better deal is worthwhile visiting. Then the

demand system used in the present paper can be seen as the aggregate demand facing the

two firms. For example utility functions of the type xq and some uniform distribution of

income can generate such a system. Here x denotes the quantity of numeraire consumption

and q denotes the perceived quality of the commodity under consideration. Such

formulation of utility functions are common in models of vertical product differentiation

(e.g. Shaked and Sutton (1982). The proof that such a discrete choice model can generate

the demand system presented in the next section is available on request from the author. It

is not included here because it is quite obvious.

To relate this view to the one in Yin/Ng the two distinguishing assumptions in this paper

are: Customers do not know the capacities of the firms and they incur substantial costs

when visiting one firm, while visiting two is prohibitive. Such a setup seems as reasonable

as assuming that there are no transactions costs at all. It implies that demand decisions are

not revised if rationing occurs. A rationed customer at one firm does not transfer his

demand to the competitor but rather sticks to his outside option. This excludes the
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possibility that a firm can set a high price in order to profit from the competitor’s capacity

constraint.

In the framework used here customers never face rationing, as the firms always set prices

which render demand compatible with their capacities. Indeed firms never have an

incentive to set a price which is so low as to generate more demand than available capacity

permits. This would only decrease their revenue per unit without being able to recoup that

loss through increased sales which are after all restricted by available capacities. Thus a

belief on the side of consumers of never facing a rationing constraint and the belief on the

side of firms that consumers are not aware of potential capacity constraints is never

falsified in this game. Both expectations are mutually consistent and have a flavor of self

fullfilling prophecies. It therefore is compatible with rational behavior. The assumption of

heterogeneous products together with the lacking incentive to generate demand exceeding

capacity has obviously the additional advantage of being able to avoid any more or less ad

hoc specification of some rationing scheme as criticized e.g. by Davidson and Deneckere

(1986).

If contrasted with the paper by Yin/Yew-Kwang Ng this assumption buys also a lot of

tractability of the model. It should be mentioned at this point that there is a gap in the proof

contained in that paper. The resulting best response functions for some price subgames are

not continuous any more and more importantly price equilibria in pure strategies fail to

exist for some of these price subgames. This is elaborated in Schulz (1999). In our view

both the compatibility with rational behavior and the increased tractability speak for the

proposed modeling approach. It should be noted, however, that the approach of Yin/Ng is

closer in spirit to the Kreps/Scheinkman paper. The model used in the present paper is not

intended to be a straight generalization of the Kreps/Scheinkman results to differentiated

products.

The paper is organized as follows. The next section presents the model and the analysis of

the price stage subgames. The following section considers simultaneous choices of

capacities and presents the Cournot outcomes. Then we reconsider the possibilites of first

mover advandages of an incumbent including the possibility of entry deterrence in a

fashion similar to Dixit's classical analysis.
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The model and the price stage

Consumer demand is modelled in a linear symmetric way. The system of inverse demand is

given by ( 0 ≤ θ < 1 ):

p a x x1 1 2= − − θ

p a x x2 2 1= − − θ

Equivalently the demand system is given by

x
a p p

1
1

2
2
21 1 1

=
+

−
−

+
−θ θ
θ

θ

x
a p p

2
2

2
1
21 1 1

=
+

−
−

+
−θ θ
θ

θ
.

In this stage the capacities of the two firms are given by K1, K2. Variable production costs

are assumed to be linear. As is well known we do not loose generality by setting these

marginal costs equal to zero. Firms are supposed to maximize profit under their capacity

constraint:

max . .p
a p p

s t
a p p

Ki
i j i j

i1 1 1 1 1 12 2 2 2+
−

−
+

−








+
−

−
+

−
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θ θ

θ

θ θ θ

θ

θ

This modelling approach implies that customers are not aware of potential capacity

constraints and that firms do not consider the possibility that a high price may render their

competitor’s capacity constraint binding which could then change the demand for their own

commodities. I will comment on this assumption at the end of this section.

Consider first capacities that are not binding for both firms. In this case the best response

functions are

p p
a p

i
B

j
j( )

( )
=

− +1

2

θ θ

and the equilibrium prices are the usual (Bertrand) prices for heterogeneous markets:

p ai
B = −

−
1

2

θ
θ

Inserting these values into the demand functions yields
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x p p
a

i i
B

j
B( , )

( )( )
=

+ −1 2θ θ
.

As the profit functions are concave in pi the Bertrand prices are equilibrium prices for

min( , )
( )( )

K K
a

1 2 1 2
≥

+ −θ θ
.

Let us consider now the general case. The capacity constraint can be rewritten as

)()1()1( 2
ij

K
ijii ,Kp:pèpKèaèp =+−−−≥ .

It is straightforward to verify that the best response functions - taking the capacity

constraint into account - is

p p K p p p p Ki j i i
B

j i
K

j i( , ) max( ( ), ( , ))= .

Apparently these best response functions are continuous. From the representation of pi
B and

pi
K it is obvious that a > pi ( pj, Ki ) ≥ (1 - θ) a/2. Hence Brouwer's fixed point theorem

guarantees the existence of a pure strategy equilibrium in these subgames. By inspection of

pi
B and pi

K the slope of the best response function of firm 2 is strictly less than the slope for

the best response function of firm 1 for any θ < 1. This implies that this equilibrium is

unique.

The rest of this section provides a closed form solution for the unique price equilibria of

the subgames characterized by different capacity choices. To this purpose consider first the

case K1 = K2 = K. For K ≥ a /((1+θ)(2-θ)), we have the Bertrand equilibrium pi
B set out

above. For the K < a /((1+θ)(2-θ)), we have equilibrium prices p = a - K - θK, as is easily

verified.

Let us turn now to the case K1 < K2. If K1 ≥ a /((1+θ)(2-θ)) both capacities are large enough

to have an intersection point in the pi
B - part of both best response functions. Hence

equilibrium coincides again with the Bertrand solution pi
B . The interesting case is thus K1

< a /((1+θ)(2-θ)). This implies that the intersection point of both best response functions is

on capacity constrained part of firm 1's function. It remains to be clarified, whether the

intersection point is on the capacity constrained part of firm 2 or on its unconstrained part.

For this purpose it is easiest to use a geometric argument. In the following figure both

response functions are exihibited. If K2 is large enough the solid line represents a best

response function of firm 2 such that the intersection point is on its unconstrained part. For
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smaller choices of K2 the dashed line is part of the best response function of firm 2. In the

exhibited case, the intersection point is on the capacity constrained part. This yields a

simple characterization of the cases with an intersection point an the constrained part: If the

intersection point of p1
K with p2

K is above the intersection point of p1
K with p2

B, than the

intersection point of the best response functions is on the constrained part of p2. Otherwise

it is on the unconstrained part.

best response function
       of firm 2                        best response function
                                                     of firm 1

It is straightforward to calculate the two intersection points of interest. The intersection of

p1
K with p2

K is
p K K a K K1 1 2 1 2( , ) = − − θ
p K K a K K2 1 2 2 1( , ) = − − θ .

The intersection point of p1
K with p2

B is

p K K
a K

1 1 2

2
1

2

2 1 2 1

2
( , )

( )( ) ( )
= + − − −

−
θ θ θ

θ

p K K
a K

2 1 2

2 2
1

2

1 1

2
( , )

( ) ( )
= − − −

−
θ θ θ

θ
.

Hence the first intersection point is relevant iff

a K K
a K− − ≥ − − −

−2 1

2 2
1

2

1 1

2
θ θ θ θ

θ
( ) ( )

,

which is equivalent to

a K K≥ − +( )2 2
2 1θ θ .

Putting these pieces together for K1 ≤ K2, we have the following price equilibria:

If

(I) a K K≥ − +( )2 2
2 1θ θ  and K

a
1 1 2

≤
+ −( )( )θ θ

the equilibrium is
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p K K a K K1 1 2 1 2( , ) = − − θ
p K K a K K2 1 2 2 1( , ) = − − θ .

If

(II) a K K≤ − +( )2 2
2 1θ θ  and K

a
1 1 2

≤
+ −( )( )θ θ

the equilibrium is

p K K
a K

1 1 2

2
1

2

2 1 2 1

2
( , )

( )( ) ( )
= + − − −

−
θ θ θ

θ

p K K
a K

2 1 2

2 2
1

2

1 1

2
( , )

( ) ( )
= − − −

−
θ θ θ

θ
.

If

(IV) K
a

1 1 2
≥

+ −( )( )θ θ
 and K

a
2 1 2

≥
+ −( )( )θ θ

the equilibrium is

p ai
B = −

−
1

2

θ
θ

, i = 1, 2.

The case K1 ≥ K2 is analogous. The type of equilibrium can be summarized conveniently in

the following figure:

       K2

                   II                   IV
a

2 2− θ
                    I
                                                  III

                    

a

( )( )1 2+ −θ θ                       

a

θ       K1

For further reference we note here the resulting profits. In case I, we have the following

profits:

Π1 1 2 1 2 1
I K K a K K K( , ) ( )= − − θ

Π 2 1 2 2 1 2
I K K a K K K( , ) ( )= − − θ .
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In case II, we have the following profits:

Π1 1 2

2
1

2 1

2 1 2 1

2
II K K

a K
K( , )

( )( ) ( )
=

+ − − −
−

θ θ θ
θ

Π 2 1 2

2 2
1

2
1

2

1 1

2 2
II K K

a K a K
( , )

( ) ( )
= − − −

−
−
−

θ θ θ
θ

θ
θ

In case III, which is case II with the roles of firms 1 and 2 exchanged, we have analogous

profits and for case IV, we have the following profits:

Π i
IV K K a( , )

( )( )
1 2 2

21

1 2
= −

+ −
θ

θ θ
 for i = 1, 2.

This concludes the determination of the equilibria of all subgames.

The following sections are devoted to the capacity choices. First the simultaneous choice is

considered and the Cournot outcome generated. Then a form of sequential choices of

capacities is analysed.

Cournot outcomes

Considering the choice of capacity we assume that capacity costs are linear with marginal

costs equal to r. The profit functions relevant for this context are

Π i
k

iK K rK( , )1 2 − , i = 1, 2, k = I, II, III, IV,

where the Πi are those derived in the preceeding section. Let us first consider the best

response functions of firm 1. If we analyze the profit function in each of cases I to IV

separately, it becomes apparent by inspection of Πi that the global maxima within areas III

and IV are at the left boundary of these areas. In case I, it is straightforward to verify that

within this area the best response function is

K K
a r K a K

1 2
2

2
20

2

2
( ) max ,min ,

( )
=

− − − −



















θ θ
θ

,

where the second expression in the min-term reflects the upper boundary line of case I.

This implies that no pair ( K1, K2 ) in the area of case III is part of the best response

function. For further reference it should be noted that both expressions in the paranthesis

above coincide at
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K
a r

1

2

2 2

2 1 2

4 1
= + − − −

− +
( )( ) ( )

( )

θ θ θ
θ θ

,

which is always strictly less than a/((1+θ)(2-θ)). It is obviously positive for

a

r
> −

+ −
2

2 1

2θ
θ θ( )( )

.

For θ close to 1 this inequality cannot hold. Hence in this case the best response function in

the area of I is

K K
a r K

1 2
20

2
( ) max ,=

− −





θ
.

Finally we have to study the profit maxima in the area of case II. Maximizing the relevant

profit function gives

K K
a r

1 2

2

2
0

2 1 2

4 1
( ) max ,

( )( ) ( )

( )
= + − − −

−








θ θ θ
θ

.

This expression is always strictly less than a/((1+θ)(2-θ)). Hence no pair ( K1, K2 ) in the

area of case IV is part of the best response function.

Putting this information together we have the best response function

K K
a r K

1 2
20

2
( ) max ,= − −





θ
,

if

a

r
≤ −

+ −
2

2 1

2θ
θ θ( )( )

.

If this inequality does not hold, the best response function jumps approximately at the

boundary line between the areas relevant for cases I and II. More precisely, there exists a
!K2  in the nondegenerate interval

( )

( )
,

( )

( )

1

2 1

2

4 12 2 2

− +
−

− +
− +









θ θ
θ

θ θ
θ θ

a r a r
,

such that
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K K
a r K

1 2
2

2
( ) = − − θ

 for K2 ≤ !K2

K K
a r

1 2

2

2
0

2 1 2

4 1
( ) max ,

( )( ) ( )

( )
= + − − −

−








θ θ θ
θ

 for K2 ≥ !K2 .

This jump indicates that a proof of existence might be difficult, if more general demand

systems or cost structures are analyzed. In particular it is not sufficient to note that the areas

where some capacities are not fully employed (here cases II, III, and IV) are not relevant for

an equilibrium outcome and then to proceed by studying exclusively those parts of best

response functions which are relevant for fully employed capacities. This is of course

sufficient to characterize an equilibrium outcome but it provides no proof of existence. In

the present linear context the jump does not pose any problems. From the arguments above

it can easily be verified that the best response functions have a unique intersection point at

the usual Cournot outcomes which in turn are such that the potential jump of the best

response functions do not matter. Summarizing:

Proposition 1: In a model with linear demand and costs and a two stage game, where two

identical firms simultaneously set capacities first and then prices as set out in the first

section, the unique subgame perfect equilibrium generates the Cournot outcome for

heterogeneous products:

K
a r

i = −
+2 θ

, i = 1, 2.

Sequential capacity choice and entry deterrence

The fact that all price subgames have pure strategy equlibria makes it possible to easily

extend the usual analysis of entry deterrence to heterogeneous markets. As indicated in the

introduction our focus will be on the facilitating or hampering factors for entry deterrence

due to increased heterogeneity in the product market. A natural starting point is therefore

the case of homogeneous products. We will thus concentrate on values of θ close to 1. This

implies that we do not have to bother about discontinuous best response functions.

We consider a three stage game. In the first stage an incumbent can choose a capacity

which is assumed to be associated with fully sunk costs and free of detoriation. In addition

she can choose a price. In the second stage another firm may enter the market. If this
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happens both firms simultaneously choose their capacities. The incumbent cannot decrease

her capacity below the level chosen in the first stage. The third stage consists in the

capacity constrained price game of both firms. We consider the subgame perfect

equilibrium of this game.

For the third stage nothing remains to be analyzed as for all capacity choices the first

section contains all price equlibria. As for the second stage the resulting best response

function of the entering firm are those analyzed in the preceeding section. For the analysis

of the best response function of the imcumbent firm in the second stage denote the capacity

chosen by the incumbent in the first stage by K1
I. Obviously the incumbent's best response

function in the second stage is

K K K K
a r KI I E I

E

2 1 1 2
( , ) max ,= − −








θ
.

From this the unique equlibrium of the second stage follows immediately:

For K1
I < (a - r)/(2+θ) the equilibrium is

K
a r

K KI E I
2 12

= −
+

= >
θ

 and the incumbent's profit in this stage is

Π 2 1

2

12
I I IK

a r
rK( ) = −

+






+
θ

.

For (a - r)/(2+θ) ≤ K1
I < (a - r)/θ the equilibrium is

K K K
a r KI I E

I

2 1
1

2
= =

− −
,

θ
 and the incumbent's profit in this stage is

( )Π 2 1
2

1 1
1

2
2 2I I I IK a r K K( ) ( ) ( )= − + − −θ θ θ .

For (a - r)/θ ≤ K1
I the equilibrium is

K K KI I E
2 1 0= =,   and the incumbent's profit in this stage is

Π 2 1 1 1
I I I IK a K K( ) ( )= − .
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This sets the stage for the analysis of the first period. In this stage we assume, that demand

may be smaller than in the following stages. We model this by considering a profit function

of the following type:

Π Π1 1 2 1 1
I I I I IK p p a p K rK( , ) ( ) ( )= − + −τ

Here p denotes the price of the incumbent charged in the first stage. τ is a number between

0 and 1. If τ is smaller than 1 this models a growing market. If τ is equal to 1, we have a

stagnating market and as will become clear later on this case gives also the relevant

information for declining markets. In the following we will concentrate on the extreme

cases τ = 0 and  τ = 1. The equilibrium of the first stage is determined by maximizing this

profit function under the constraint τ ( a - p) ≤ K1
I.

To determine the global maximum of this function recall that Π1
I has no single analytical

representation. Rather - as exhibited above - there are three cases to consider : (a) K1
I <

(a - r)/(2+θ), (b) (a - r)/(2+θ) ≤ K1
I < (a - r)/θ, and (c) (a - r)/θ ≤ K1

I.

In case (a) K1
I = (a - r)/(2+θ) is always a global maximum within the reach of this case. If

demand at the sales maxizing price a/2 exceeds the largest capacity of this case

(a - r)/(2+θ), the profit function has a unique global maximum at this largest capacity. This

is obviously the case with τ = 1. Otherwise the profit function will be constant between the

demand at a/2 and the upper boundary of this case. Hence for τ = 0, the profit function is

constant in capacities.

In case (b) note first that the optimal capacity is always larger than (a - r)/(2+θ). Therefore

case (a) can be deleted from further consideration. It is a tedious exercise to check that the

optimal capacity is nondecreasing in τ. This is also very plausible: If τ increases, cost can

be spread over an increased volume of sales, giving an incentive to increase capacity. For

τ = 0, the optimal capacity (within this case)  turns out be

K a rI
1 2

2

2 2
= −

−
−θ

θ( )
( )

which is larger than (a - r)/(2+θ). It is also smaller than (a - r)/θ. Hence for all parameter

constellations the profit maximizing capacity is at least as large as this capacity.

For τ = 1 the optimal capacity (again within this case) is
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K
a rI

1 2

4 2

2 4
= − − −

−
( ) ( )

( )

θ θ
θ

.

This expression is smaller than the upper boundary of this case (a - r)/θ iff

( )( )8 4 2 02− − − − >θ θ θa r r .

The left hand side decreases in θ. For θ = 1 this condition reads 3a > 5r. Hence for

sufficiently profitable markets there is always an interior optimal capacity for case (b).

Otherwise (3a < 5r) the optimal capacity will be at (a - r)/θ (where KE becomes zero) for

sufficiently large θ.

Finally, we have to consider case (c). Not surprizingly, the optimal capacity is

nondecreasing in τ. All questions of interest can therefore be restricted to the two extreme

values of τ. For τ = 0 the lower boundary of the case is the unique optimal capacity of case

(c). For τ = 1, the first order conditions for profit maximization (ignoring the bounds of the

case) yield

K
a rI

1
2

4
= −

.

This is larger than (a - r)/θ iff

( )( )8 4 2 0− − − <θ θa r r .

From this definition we can deduce the following reults:

Proposition 2: For τ = 0, the subgame perfect capacity is K a rI
1 2

2

2 2
= −

−
−θ

θ( )
( ) .

This conforms with the standard result for homogeneous markets and the Dixit-Stackelberg

solution. As in the standard results, entry deterrence is not profitable without some fixed

costs on the part of the entrant. We return to this issue in a moment.

Proposition 3: For τ = 1, the subgame perfect capacity is

(i)  K
a rI

1 2

4 2

2 4
= − − −

−
( ) ( )

( )

θ θ
θ

 for 
a r

r

− >
− −

2

8 4 2

θ
θ θ

(ii)  K
a rI

1 = −
θ

         for 
2

8 4

2

8 4 2

θ
θ

θ
θ θ−

≤ − ≤
− −

a r

r
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(iii)    K
a rI

1
2

4
= −

        for 
a r

r

− <
−
2

8 4

θ
θ

.

Note that case (i) obtains for θ = 1 and a > 5r/3. This case reflects accomodated entry. As

argued above, if this case is relevant for some θ then it is relevant for all smaller θ. In other

words: if entry is accomodated for some degree of substitutability then it is accomodated as

well for any smaller degree of substitutabiliy.

Case (iii) is only feasible, if a < 3r/2. This case reflects blockaded entry. The respective

capacity is the one which would be chosen, if the incumbent were not threatened by entry.

In line with conventional wisdom a lower degree of substitutablity makes blockaded entry

less likely.

Case (ii) reflects deterred entry. An unchallenged incumbent would install a smaller

capacity. But this would invite entry. Here again, it is clear from studying the boundaries of

the case that entry deterrence is less likely for lower values of substitutability. The picture

is thus very clear. The lower the degree of substitutability the more costly is entry

deterrence. This has two parts: a lower degree of substitutability enhances the profitability

of the market, if entry is permitted. And at the same time it takes a larger capacity to deter

entry. This reduces the incentive for entry deterrence.

Note again that for the case τ = 1 we did not assume any fixed costs to make entry

deterrence profitable. Comparing with the case τ = 0, where entry deterrence is never

profitable without fixed costs, leads us to conclude that entry deterrence is easier for τ = 1.

Morever the monotonic dependence of the optimal capacity on the value of τ suggests that

entry deterrence is easier with a high value of τ. As τ smaller than 1 represents growing

markets while τ larger than 1 represents declining markets, we have here another

supporting argument for the common view that entry deterrence is quite difficult in

growing markets but easier in stagnating or declining markets.

As a final point let us consider fixed costs as usually introduced in order to study entry

deterrence. In homogeneous markets the most frequently model uses τ = 0. Therefore we

concentrate on this case. Are any of our findings above modified significantly by this

possibility? To summarize the following arguments: the answer is no. Again lower degrees

of substitutabiliy renders entry deterrence less likely for the same reasons as above:

Lemma 1: For τ = 0 the profit at accomodated entry is
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and this expression decreases in θ.

In other words the more homogeneous the products the less attractive is entry

accomodation.

Lemma 2: For τ = 0 and some fixed costs of the entrant F, the profit at the entry deterring

capacity is

( )( )a r F F a r− − − − − −2 2 1 2( )( )θ θ .

and this expression increases in θ if a r F− > 4 .

The inequality at the end of the lemma reflects the case that entry is not blockaded for

homogeneous markets. Taking these two lemmata together we have the announced result:

The incentive to deter entry decreases when the degree of subsitutability becomes lower.

Summarizing the results of this section: The classical Dixit-Stackelberg treatment of

sequential capacity choice can easily be extended to the context of heterogeneous markets

in the context of a capacity constrained price game. The results support the intuition that

entry is more difficult to deter in growing and heteregeneous markets. An entrant into a

growing market can evade entry deterring measures if she can offer a sufficiently different

product. This also supports the view that entry deterrence in the sense of this model can be

expected to be a rare event.

Concluding remarks

In this paper three issues have been pursued. First a model of capacity constrained price

competition was suggested. The basic feature of this model is that a pure strategy

equilibrium exists for all price subgames as analyzed in the first section. As the following

section has revealed this permits Cournot outcomes in heterogeneous markets to be

interpreted as the unique subgame perfect equilibrium of a two stage game where firms

simultaneously set capacities first and then prices. Thirdly, the capacity constrained price

competition game can be used to extend the entry deterrence models of the Dixit-

Stackelberg type.
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