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1 Introduction

That assets cannot be liquidated as previously thought seems to frequently come

as surprise in crises situations. The discussion always �ourishes after stock market

crashes. But liquidity is a continuous problem of �nancial institutions. Trading

strategies and investments that yield high pro�ts, often invest in less liquid assets like

private equity, emerging markets or low capitalization stocks. In crash situations,

those asset positions can often not be traded anywhere close to fair prices, because

scarce liquidity is consumed by the concerted sales of many market participants. Yet,

market liquidity risk often remains unattended in many risk management systems.

Several liquidity risk models have already been proposed in the literature. While

overarching theoretical discussions and summaries already exist,1 empirical testing

is indispensable. All models must necessarily use simplifying assumption, but which

are most distorting for the overall result? Only the empirical evaluation of model

preciseness and relative performance will clarify which simpli�cation is most detri-

mental. So far, comparative tests have not been conducted.

In this paper, we provide a comprehensive overview on existing, traceable models

and conduct extensive back-tests in a large stock data set of daily data. We exam-

ine Bangia et al. (1999), Berkowitz (2000a), Cosandey (2001), Francois-Heude and

Van Wynendaele (2001), Giot and Grammig (2005), Stange and Kaserer (2008c)

and Ernst et al. (2008). We provide recommendations which model is most suitable

in practice. Theoretical models without obvious empirical speci�cations as well as

models requiring intraday data generally remained outside the scope of this analysis.

We proceed as follows: Section 2 de�nes liquidity risk in a general framework,

outlines liquidity risk models in detail and sketches our implementation approach.

In section 3, we evaluate and compare all liquidity risk models based on the precision

of their risk forecasts. Section 4 summarizes and concludes.

2 Model descriptions and implementation

2.1 General remarks

2.1.1 De�nition of market liquidity risk

We de�ne market liquidity as the cost of trading an asset relative to its fair value.2

Fair value is de�ned as the mid-price Pmid,t, the middle of the bid-ask-spread, which

1Cp. Mahadevan (2001); Erzegovesi (2002); Loebnitz (2006); Bervas (2006); Jorion (2007); Stange
and Kaserer (2008b, 2009).

2Cp. also discussion in Stange and Kaserer (2008b).
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is least subjective. Relative liquidity costs Lt(q) in percent of the mid-price for an

order of quantity q at time t can be split into three components

Lt(q) = T (q) + PIt(q) +Dt(q) (1)

T (q) are constant direct trading costs including exchange fees, brokerage commis-

sions, and transaction taxes, PIt(q) are price impact costs of order quantity q at

time t as the di�erence between the transaction price and the fair price, Dt(q) are

delay costs if a position cannot be instantly traded. For this analysis, direct trading

costs T (q) and delay costs Dt(q) are neglected. The former is negligible for most

institutional investors, the latter is negligible in fairly liquid markets.3 Price impact

costs PIt(q) amount to the bid-ask-spread for small positions, but can rise with

position size, if positions larger than the spread depth are traded.

In this framework, liquidity risk is de�ned as the potential loss due to time-varying

liquidity costs. In the following we describe di�erent approaches to measure these

liquidity costs and di�erent assumption with respect to their distribution.

2.1.2 Selection of models

We sort liquidity risk models into two broad categories: Traceable and theoreti-

cal. A large stream of literature has developed theoretical modeling approaches,

where implementation procedures are still missing and not obvious. These include

Lawrence and Robinson (1995), Almgren and Chriss (2000) and Almgren (2003),

Subramanian and Jarrow (2001), Hisata and Yamai (2000), Dubil (2003) and Engle

and Ferstenberg (2007).4 These models generally use optimal trading strategies to

minimize the Value-at-Risk of a position including liquidity. However, empirical

estimation techniques for the large range of parameters of these models still need to

be developed.

Among those liquidity risk models that are empirically traceable, several work on

intraday or transaction data only. Berkowitz (2000a), Jarrow and Protter (2005)

and Angelidis and Benos (2006) belong to this class. In order not to completely

neglect these, we choose Berkowitz (2000a), which seemed most promising to adapt

for daily data. We include all traceable models available for daily data: Bangia

et al. (1999), Cosandey (2001), Francois-Heude and Van Wynendaele (2001), Giot

and Grammig (2005), Stange and Kaserer (2008c) and Ernst et al. (2008). For all

models we choose a straight forward implementation for daily stock data. We group

3Liquidity risk models explicitly treating delay are still under development, cp. discussion in Stange
and Kaserer (2008b).

4For a more detailed discussion please refer to Stange and Kaserer (2008b).
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the chosen models by the type of data required for their estimation: bid-ask-spread

models, transaction or volume data models, and models requiring limit order book

data.

2.1.3 General implementation speci�cations

For all models, we calculate a standard, daily, relative Value-at-Risk (VaR) at a

99 % con�dence level. In general, we tried to keep the implementation procedure as

straight-forward as possible to allow for best comparisons.

Means, including those of liquidity costs, are generally calculated with a 20-

day rolling procedure. If mid-price return is separately estimated in a normal-

distribution framework, we set its mean to zero, as is common practice. We account

for volatility clustering with the standard exponential weighted average (EWMA)

model over 20 days by JP Morgan (1996) using a weight δ of 0.94 de�ned as

σ2
t = (1− δ)

20∑
i=1

δi−1r2
t−i + δ20r2

t−20 (2)

Where applicable we estimate skewness and excess-kurtosis with a simple non-

weighted rolling procedure. The skewness of y is computed from historical data

rolling over the last 500 days as γ = 1
500

∑500
t=1(yt − µy)

3/σ3
y with µy and σy as mean

and volatility of y. The excess kurtosis for y is κ = 1
500

∑500
t=1(yt − µy)

4/σ4
y − 3.5

To allow for best comparison, we use ten standardized order size classes to calcu-

late the the liquidity risk for a stock position of a speci�c size. In the following, we

describe the individual risk models and any additional implementation speci�cation

required.

2.2 Models based on bid-ask-spread data

2.2.1 Add-on model with bid-ask-spread: Bangia et al. (1999)

Bangia, Diebold, Schuermann and Stroughair (1998, 1999) developed a simple liq-

uidity adjustment of a VaR-measure based on bid-ask-spread. Liquidity cost is

measured with the bid-ask-spread. To determine risk as the worst achievable trans-

action price, the worst bid-ask-spread is added to the worst mid-price. Bangia et al.

de�ne relative, liquidity-adjusted total risk as

L− V aR = 1− exp(zσr) + (µS + ẑSσS) (3)

5To keep the sample as large as possible, we reduced the rolling window up to 20 days at the
beginning of the sample, in order to also include the �rst two years into the results period. This
discriminates models using skewness and kurtosis, but they nevertheless show superior perfor-
mance as will be shown in section 3.
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where σr is the variance of the continuous mid-price return over the appropriate

horizon and µS and σS are the mean and variance of the bid-ask-spread, z is the

percentile of the normal distribution for the given con�dence.6 ẑS is the empiri-

cal percentile of the spread distribution in order to account for non-normality in

spreads.7

The Bangia et al. (1999)-approach acknowledges that spreads can rise over time,

especially in crises, but neglects that liquidity costs rise with order size beyond

the bid-ask-spread. The latter underestimates liquidity risk. The add-on approach

also assumes perfect liquidity-return correlation, which is not observed in reality.8

Overall, the approach is simple and easy to implement, also because data is available

in many markets.

2.2.2 Modi�ed add-on model with bid-ask-spread: Ernst et al. (2008)

Ernst, Stange and Kaserer (2008) suggest a di�erent way to account for future time

variation of prices and spreads. While Bangia et al. assume a normal distribution

for future prices and take the historical distribution for future spreads, Ernst et al.

use non-normal distributions for prices and spreads, which account for skewness and

kurtosis. The non-normal distribution is estimated with a Cornish-Fisher approxi-

mation. This alternative parametric speci�cation de�nes relative, liquidity-adjusted

total risk as

L− V aR = 1− exp(µr + z̃rσr)×
(

1− 1

2
(µS + z̃SσS)

)
(4)

where µ and σ are mean and variance of mid-price return and spread respectively.

z̃ is the non-normal-distribution percentile adjusted for skewness and kurtosis ac-

cording to the Cornish-Fisher expansion

z̃ = z +
1

6
(z2 − 1) ∗ γ +

1

24
(z3 − 3z) ∗ κ− 1

36
(2z3 − 5z) ∗ γ2 (5)

where z is the appropriate percentile of the normal distribution, γ is the skewness,

and κ the excess-kurtosis of the respective distribution. Ernst et al. (2008) show,

that this approach yields more precise risk forecasts than the original speci�cation

of Bangia et al. (1999).

6The critique of Loebnitz (2006) that worst spread need to be deducted from worst, not from
current mid-prices, performs worse than the original speci�cation. Cp. table 8 on page 19 in the
appendix.

7The empirical percentile is calculated as α̂S = (Ŝα − µS)/σS , where Ŝα is the percentile spread
of the past 20-day historical distribution.

8Cp. analysis of Stange and Kaserer (2008c).
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Table 1: Estimates of the liquidity measure θ
Table shows cross-sectional statistics of the estimated liquidity coe�cient θ. The All-column con-

tains the average over all indices. Signi�cant fraction shows percentage of stocks with statistically

signi�cant theta at con�dence level of 95 % and 99 % respectively.

2.3 Models based on transactions or volume

2.3.1 Transaction regression model: Berkowitz (2000)

Berkowitz (2000a,b) determines liquidity price impact from a regression of past

trades while controlling for other risk factors. From this point of view, future price

is driven by risk factor changes and the liquidity impact of trading Nt number of

shares as follows

Pmid,t+1 − Pmid,t = C + θNt + xt+1 + εt (6)

where θ is the regression coe�cient, xt+1 is the e�ect of risk factor changes on

the mid-price, C is a constant and εt the error term of the regression. θ can be

understood as absolute liquidity cost per share traded. Although the original model

is constructed on the basis of transaction data, we have tried to tune it as best

as possible for the use in daily risk forecasts. Therefore, we approximated the

transaction price with Pmid,t+1.

As the author does not go into implementation detail, we choose to estimate

market risk e�ects as

xt+1 = β × rM,t × Pmid,t (7)

where β = Cov(r, rM)/σrmarket
is the beta factor for each individual stock return on

the 160-stock, value-weighted market portfolio return rM over the sample period.9

Table 1 presents the regression estimates of the liquidity measure θ̂ for the sample

period. The regression produces positive and negative estimates, which is slightly

counter-intuitive as the liquidation of a position should always induce a price dis-

count. θ̂ also varies strongly as indicated by standard deviation, minimum and

9Although this proceeding leads to a conceptually doubtful overlap between estimation and forecast
period, this overlap generates a bias in favor of the model. Nevertheless, even positively biased
estimates for this model provide poor results as will become apparent in section 3.
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maximum. In general, average liquidity costs per share are very small, in the order

of one Euro per million shares. Only about half of the stocks have θ̂-values that

are statistically signi�cant di�erent from zero. Therefore, we already doubt at this

stage, that the liquidity measure implemented in daily data will produce accurate

results.

We now calculate continuous, liquidity-adjusted net return as

rnett(q) = ln

(
1 +

[
β × rM,t − θ̂ ×

Nt + n

Pmid,t

])
(8)

for each standard-volume number of shares n = q/Pmid,t to allow for later comparison

with other liquidity risk models. The optimal trading strategy of the original model

requires 1/h'th of the position to be liquidated each day of the h-day horizon. For

our daily horizon, the full position will be liquidated at once. We then de�ne relative,

liquidity-adjusted total risk as

L− V aR(q) = 1− exp
(
µrnet(q) + ẑσrnet(q)

)
(9)

where µrnet(q) is the 20-day rolling net return mean and σrnet(q) is the EWMA-

estimated net return variance. ẑ is the empirical percentile of the net return distri-

bution.

While the liquidity measure of Berkowitz (2000a) seems to be quite noisy, the

approach has the general advantage to be based on transaction data only, which

makes it a valid alternative in markets where liquidity cost data are not available.

2.3.2 Volume-based price impact: Cosandey (2001)

Cosandey (2001) introduces another simple framework to estimate price impact from

volume data. He assumes, that total value traded in the market is constant and is

split over the number of traded shares Nt. If an additional position of n = q/Pmid,t

is liquidated, total value will then be split over Nt + n shares. Thus, net return is

calculated as

rnett+1(q) = ln

(
rt+1 ×

Nt

Nt + n

)
(10)

This implicitly assumes zero liquidity elasticity and no future time-variation of liq-

uidity modeled by Nt.
10

10Equation 10 is much simpler, but equivalent to the formula in the original paper.
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Their relative, liquidity-adjusted VaR is then implemented similar to the

Berkowitz (2000a) approach described above as

L− V aR(q) = 1− exp
(
µrnet(q) + ẑσrnet(q)

)
(11)

where µrnet(q) is the 20-day rolling net return mean and σrnet(q) is the EWMA-

estimated net return variance. ẑ is the empirical percentile of the net return distri-

bution.11

The framework of Cosandey (2001) is easy and straightforward to implement and

also has the merit to be based on market volume data only, which are available for

many assets. If the simplifying assumptions signi�cantly distort reality remains to

be seen.

2.4 Models based on weighted spread data

In this section, we present models, that account for the fact that liquidity cost in-

crease with order size by using limit order book data. We use the liquidity cost mea-

sure 'weighted spread', which calculates the liquidity costs compared with the fair

price when liquidating a position quantity q against the limit order book. Weighted

spread WS can be calculated as follows

WSt(q) :=
at(v)− bt(v)

Pmid,t

(12)

at(v) is the volume-weighted ask price of trading v shares calculated as at(v) =∑
i ai,tvi,t/v with ai,t being the ask-price and vi,t the ask-volume of individual limit

orders. An order of size q is executed against several limit orders until individual

limit order sizes add-up to q, i.e. q/Pmid = v =
∑

i vi. bt(v) is de�ned analogously.

Weighted spread - similar to the bid-ask-spread - is the cost of a round-trip for

position q.12 In the following, weighted spread is used in liquidity risk models

suggested in the literature.

11We deviate from the original simulation approach, because, in our view, the key feature of this
approach is new liquidity measure. Using a parametrization keeps approaches as comparable as
possible. We also work with smoother continuous rather than discrete returns.

12For more detail on this liquidity measure cp. Stange and Kaserer (2008a,c).
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2.4.1 Limit order model: Francois-Heude and van Wynendaele (2001)

Francois-Heude and Van Wynendaele (2001) propose to calculate relative, liquidity-

adjusted total risk as

L− V aR(q) = 1− exp(−zσr)

(
1− µ(q)WS

2

)
+

1

2
(WSt(q)− µ(q)WS) (13)

where z is the normal percentile and σr the standard deviation of the mid-price

return distribution. µ(q)WS is the average spread for a security for order quantity q,

andWSt(q) is the spread at time t. In the second term, the average weighted spread

is subtracted from worst mid-prices. However, as average spread might be di�erent

from the actual spread in time t, a correction term for the di�erence is added as a

third term. The correction term is calculated on current not on worst mid-prices

which can lead to misestimation.

In the original paper, Francois-Heude and Van Wynendaele interpolate the liq-

uidity cost function only from the best �ve limit-order-quotes made available by the

Paris Stock Exchange. In favor of their approach, we use the liquidity cost function

estimated as weighted spread from the whole limit order book as described at the

beginning of this section.

While the add-on of the correction term is conceptually doubtful and time-

variation of liquidity is neglected, Francois-Heude and Van Wynendaele (2001) pro-

vide an interesting venue to use limit order book information as liquidity measure.

2.4.2 T-distributed net return model with weighted spread: Giot and

Gramming (2005)

Giot and Grammig (2005) de�ne a net return based on the weighted spread as

rnett(q) = rt ×
(

1− WSt(q)

2

)
(14)

and then compute relative, liquidity-adjusted total risk as

L− V aR(q) = 1− exp
(
µrnet(q) + zSTσrnet(q)

)
(15)

where zST is the chosen percentile of the student t-distribution.13 In order to ensure

comparability, we stay with the EWMA-modeling of volatility and do not replicate

their approach accounting for conditional heteroskedasticity. Because we implement

13We take percentiles from the student distribution with 19 degrees of freedom due to the 20-day
rolling window.

8



their approach to daily instead of intraday data, we ignore their adjustment for

diurnal variation in weighted spread.

The approach by Giot and Grammig (2005) is a simple parametric alternative,

but the validity of the t-distribution assumption remains to be tested.

2.4.3 Empirical net-return model with weighted spread: Stange and

Kaserer (2008)

Stange and Kaserer (2008c) calculate liquidity risk with weighted spread based on

empirical percentiles as

L− V aR(q) = 1− exp
(
µrnet(q) + ẑ(q)× σrnet(q)

)
(16)

where ẑ denotes the empirical percentile of the net return distribution. This cir-

cumvents the assumption of t-distributed net returns.

2.4.4 Modi�ed risk models with weighted spread

a. Modi�ed add-on model with weighted spread In an analogous application of

Ernst et al. (2008), it is also possible to use Cornish-Fisher approximated percentiles

of the return and spread distribution separately and calculate risk as

L− V aR(q) = 1− exp(µr + z̃rσr)×
(

1− 1

2

(
µWS(q) + z̃WS(q)σWS(q)

))
(17)

where z̃ denote the percentiles estimated with the Cornish-Fisher approximation

(5) of the respective distribution. While assuming perfect correlation between mid-

price returns and liquidity, this parametrization allows to account for liquidity risk

as add-on. Also, forecasting of two parameters separately might prove to be more

precise.

b. Modi�ed net-return model with weighted spread In another analogous ap-

plication of Ernst et al. (2008), it is also possible to use Cornish-Fisher approximated

percentiles of the net return distribution and calculate risk as

L− V aR(q) = 1− exp
(
µrnet(q) + z̃(q)× σrnet(q)

)
(18)

where z̃ is the percentile estimated with the Cornish-Fisher approximation (5). This

alternative parametrization does not rely on the assumption of t-distributed net

returns or perfect return-liquidity correlation.

9



Table 2: Market conditions during sample period
Table shows the for our investigation most interesting market statistics over the sample period.

All values show per-stock averages. a. annualized; b. Including dividend returns due to price

series being adjusted for corporate capital actions; c. Annualized volatility with
√

250; All values
equal-weighted.

3 Empirical comparison

3.1 Description of data

For our empirical analysis we used daily data for the 160 stocks in the major Ger-

man indices DAX, MDAX, SDAX and TecDAX, for the period 7/2002 to 12/2007.

Price, volume and spread data were taken from Thomson Financial Datastream.

Weighted spread data were obtained directly from Deutsche Börse AG. Deutsche

Börse AG calculates weighted spread under the name of Xetra Liquidity Measure

(XLM) as daily averages of the limit order book for each stock in the index.

Table 2 summarizes market conditions during the sample period. Except for the

downturn in the second half of 2002, markets were bullish over the sample period.

Due to the market decline at the beginning of the sample period, average period

return is 14 %. Volatility exhibits a reversed pattern compared to returns. Daily

transaction volume signi�cantly increased during the sample period.

Table 3 shows descriptive statistics for the liquidity cost measures bid-ask-spread

and weighted spread. Across all order sizes and indices, liquidity costs are 2.16 %.

DAX shows the lowest liquidity costs, followed by MDAX, TECDAX and SDAX.

10



Table 3: Descriptive statistics of liquidity cost measures
Table shows cross sectional statistics of liquidity costs for a round-trip of a speci�c size during the

sample period. The Min.-column shows statistics for the bid-ask-spread, whereas the remaining

columns show the weighted spread measure for standardized order sizes. All column contains the

average over standardized order sizes excluding the Min.-column

Naturally, liquidity costs rise with rising order size, mounting up to 9.12 % on

average for the largest order size of the most illiquid index SDAX.

3.2 Backtesting framework

We test the validity of risk forecasts for each model by comparing predicted risk

with actual returns. Actual daily returns when liquidating a position of quantity

q are calculated under the assumption that the position has to be immediately

liquidated against the limit order book

rnett(q) = rt + ln

(
1− 1

2
WSt(q)

)
(19)

That this assumption is valid in a large range of risk-related situations has been

shown in Stange and Kaserer (2008c).

We calculate a L-VaR for all models at 1 − α = 99% con�dence. If the L-VaR

model correctly predicts risk, actual return should exceed VaR in only 1 % of all

cases. We denote the number of actual exceedances with N and the number of days

in the sample with T ; the actual exceedance frequency follows as N/T . If the actual

exceedance frequency, N/T , deviates from the predicted exceedance frequency, α,

on a statistically signi�cant basis is determined with the Kupiec (1995)-statistic.
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Kupiec (1995) de�nes a likelihood ratio (LR) test statistic as

LRuc = −2ln
[
(1− α)T−NαN

]
+ 2ln

[
(1−N/T )T−N(N/T )N

]
(20)

which is chi-squared distributed with one degree of freedom under the null hypothesis

that α = N/T . Taking a con�dence interval of 95 %, the null hypothesis, that pre-

dicted and actual exceedance frequencies equal, would be rejected for LRuc < 3.84.14

The test statistic will reject an L-VaR model if the actual exceedance frequency is

signi�cantly below 1 % (model overestimates risk) or signi�cantly above 1 % (model

underestimates risk).

For each model, we calculated the percentage of stocks, where the predicted loss

frequency did not deviate from the realized loss frequency on a statistically signif-

icant basis. For these stocks, the model correctly predicts risk. The percentage of

stocks with correct risk estimation is called acceptance rate. If acceptance rates

are averaged over all order sizes, we excluded bid-ask-spread rates to avoid double

counting.15 For stocks, where the deviation between predicted and real loss rates

was signi�cant, we determined if the violation occurred because risk was overesti-

mated (fewer actual losses than predicted) or underestimated (more actual losses

than predicted). These respective stock fractions were also determined.

When comparing models, we used a common sample. Our large period of 5.5

years, i.e. 1.423 days, allows for very robust results of the Kupiec-statistic.

3.3 Backtesting results and comparison

3.3.1 Overall model ranking

Figure 1 shows the overall ranking of the tested liquidity risk models.16 Liquidity

risk models are ranked by the overall average percentage of stocks, for which risk was

correctly estimated according to the Kupiec-statistic. In general, models based on

the larger data set, limit order data, show superior performance with an acceptance

rate of above 70 %. Best performing with 74 % is the Cornish-Fisher modi�ed add-

on approach with weighted spread by Ernst et al. (2008) (2.4.4a) and the empirical

net return model based on weighted spread by Stange and Kaserer (2008c) (2.4.3).

This is closely followed by modi�ed weighted spread net return (2.4.4b) and the

t-distributed net-return approach by Giot and Grammig (2005) (2.4.2) with a 71 %

acceptance rate.

14The choice of the con�dence region for the test statistic is independent of the con�dence level
selected for the L-VaR-calculation.

15As bid-ask-spreads are reported for non-standardized order sizes only, there is potential overlap
with weighted spread of small sizes.

16Detailed individual model statistics can be found in the appendix.

12



Figure 1: Ranking of liquidity risk models by overall acceptance rate
Figure shows overall acceptance rate averaged over all stocks and order sizes for each model.

Acceptance rate is the percentage of stocks with statistically signi�cant precise risk estimation

according to Kupiec (1995).

We would have expected the net-return Cornish-Fisher approach (2.4.4b) to be

higher ranked than if return and liquidity percentiles are separately estimated

(2.4.4a), because correlation between return and liquidity are correctly accounted

for. We hypothesize that forecasting of return and liquidity costs are more pre-

cise because the dynamics of both components are modeled separately. This com-

pensates for the neglect of correlation. The t-distribution approach by Giot and

Grammig (2005) (2.4.2) seems to only partially account for the non-normality. The

limit-order-book approach by Francois-Heude and Van Wynendaele (2001) (2.4.1)

is far behind on the second last place. We believe this is caused by the conceptual

weakness of this model as described above.

Although the model of Ernst et al. (2008) (2.2.2) does not account for the price im-

pact via weighted spread data, it surpasses with 44 % acceptance rate the Cosandey

(2001) with 32 % acceptance. Bangia et al. (1999) (2.2.1) is with 16 % overall accep-

tance better than Francois-Heude and Van Wynendaele (2001) (2.4.1) and Berkowitz

(2000a) (2.3.1). Our implementation attempt of the latter in daily data does not

provide satisfactory results.
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Table 4: Acceptance rate of liquidity risk models by order size
Table shows acceptance rate by order size averaged over all stocks for each model. Acceptance rate
is the percentage of stocks with statistically signi�cant precise risk estimation according to Kupiec
(1995).

3.3.2 The impact of order size on model performance

The overall rank calculated as order-size average is in�uenced by the selection of

size classes included. We therefore also calculated averages by individual order

sizes. Table 4 shows the acceptance rate of the tested liquidity risk models by order

size. The modi�ed add-on model with weighted spread (2.4.4a) performs best in

small to medium order sizes, while the best performing model in larger order sizes

is Giot and Grammig (2005) (2.4.2). The t-distribution seems to capture liquidity

risk in larger order sizes very e�ciently. The relatively low performance of the

modi�ed risk models with weighted spread (2.4.4a/b) in larger sizes is probably due

to rising skewness and kurtosis for weighted spread in larger sizes caused by single

outliers which leads to imprecise Cornish-Fisher estimates.17 Also, the assumption

of perfect correlation leads to an overestimation of risk which has a signi�cant impact

in larger order sizes.18 Our hypothesis that the lower performance of the modi�ed

net return model with weighted spread (2.4.4b) is driven by the low forecastability

of net return dynamics is substantiated. In lower order sizes performance is more

acceptable, because dynamics are mainly driven by mid-price return and liquidity is

neglectable. In larger order sizes performance drops as liquidity dynamics are lost

in the compounding of the net return.

Models based on bid-ask-spreads (2.2.1 and 2.2.2) - not accounting for order size

- show expectedly declining performance with rising order size, while Ernst et al.

(2008) (2.2.2) consistently dominates. Cosandey (2001) (2.3.2) shows a quite good

performance for medium sizes, but very low at large order sizes. The assumption of

linear price impact probably distorts results at order size extremes.

The discussion shows that overall ranking results remain valid with one exception.

The rank of the top-performing limit order models is not �xed and - depending on the

17Cp. Jaeger (2004), p.16. and Zangari (1996), p.10.
18Cp. Stange and Kaserer (2008a).
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Table 5: Over- and underestimation rate by order size
Tables show over- and underestimation rate by order size averaged over all stocks for each model.

Over- and underestimation rate is percentage of stocks with statistically signi�cant deviating risk

estimation according to Kupiec (1995).

order size in question, the modi�ed add-on model (2.4.4a), the Stange and Kaserer

(2008c) model (2.4.3) and the Giot and Grammig (2005) model (2.4.2) are probably

all good choices in practice.

3.3.3 Type of misestimation

To allow a more detailed analysis of the reasons behind the individual model per-

formance, table 5 shows the over- and underestimation rate of the tested liquidity

risk models by order size. The �rst four limit order models (2.4.2 to 2.4.4) are

quite balanced and show underestimation as well as overestimation. Stange and

Kaserer (2008c) (2.4.3), for example, overestimates the risk of 14 % of the stocks

and underestimates the risk for 13 % of the stocks. As mentioned earlier, the severe

underestimation of bid-ask-spread models (2.2.x) in large order sizes is expected

due to their design. The strong general underestimation of the Francois-Heude and

Van Wynendaele (2001) can probably be traced to the neglect of time variation,

because the crises increase of liquidity cost has not been incorporated. The failure

of the implementation of the Berkowitz (2000a)-model in daily data, probably lies

in the fact that we had to use mid-price instead of transaction prices, which seems

to smooth and therefore underestimate any liquidity e�ects. Based on these argu-

ments, these two models (2.4.1 and 2.3.1) should probably be ruled out for practical

implementation.
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Table 6: Acceptance rate of liquidity risk models by index
Table shows acceptance rate by index sub-sample averaged over all order sizes and all stocks for
each model. Acceptance rate is the percentage of stocks with statistically signi�cant precise risk
estimation according to Kupiec (1995).

3.3.4 Robustness of model rank

As natural sub-samples, we used the four indices in our sample to check for the

robustness of the model rank. Figure 6 shows the acceptance rate of the tested

liquidity risk models by index. The performance in the least liquid SDAX where

liquidity e�ects are largest, is of particular importance. The �rst four models based

on limit order data (2.4.2 to 2.4.4) keep their superior performance, but switch ranks

in some sub-samples. The modi�ed add-on models (2.4.4a) delivers high acceptance

rates more consistently than other models with acceptance rates never below 70 %.

Therefore, the modi�ed add-on model is recommendable when limit order book data

are available.

Ernst et al. (2008) based on bid-ask-spread data (2.2.2) consistently outperforms

all other non-limit order data models as well as Francois-Heude and Van Wynendaele

(2001) (2.4.1). Our adaptation of Berkowitz (2000a) has particular low acceptance

rates in the less liquid indices. Its performance is best in the DAX, where liquidity

is of minor importance. Hence, it cannot be recommended for daily risk forecasts.

Above results are therefore generally con�rmed.

Although a shortening of the period length reduces the reliability of the Kupiec-

statistic, we split the period into two sub-periods and calculated separate results

for each sub-period as another robustness test. The acceptance rate by sub-period

is presented in table 7. As the sub-period is signi�cantly shorter than the full

period, results of the Kupiec statistic are not directly comparable to the full period

statistic. Levels can therefore not be compared across tables. We will look at the

relative model rank only. In the �rst sub-period (II/2002 to I/2005), the model

ranking is slightly di�erent. The model of Stange and Kaserer (2008c) (2.4.3) and

Giot and Grammig (2005) (2.4.2) now dominate the modi�ed risk models. We
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Table 7: Acceptance rate of liquidity risk models by sub-period
Table shows acceptance rate by sub-period averaged over all order sizes and all stocks for each

model. Acceptance rate is the percentage of stocks with statistically signi�cant precise risk esti-

mation according to Kupiec (1995).

hypothesize that this e�ect is driven by ine�cient skewness and kurtosis estimates

which are themselves caused by outliers during the turbulent �rst sub-period. An

improved estimation technique for higher moments might help improve results in

this particular situation, a point which is, however, left to future research. The

ranking of the second sub-period (II/2005 to II/2007) is preserved.

The �rst four limit-order models therefore switch ranks in some sub-periods but

keep their superiority as a group. The remaining ranking is preserved.

4 Conclusion

In this paper, we have put a large selection of traceable liquidity risk models to

the test in order to �nd out which is most suitable for daily risk estimation. We

implemented Bangia et al. (1999), Berkowitz (2000a), Cosandey (2001), Francois-

Heude and Van Wynendaele (2001), Giot and Grammig (2005), Stange and Kaserer

(2008c) and Ernst et al. (2008) in a large sample of daily stock data over 5.5 years.

We used a standard Kupiec (1995)-statistic to determine if models provide precise

risk forecasts on a statistically signi�cant basis.

We �nd, that available data is the main driver of the preciseness of risk forecasts.

Models based on limit order data generally outperform models based on bid-ask-

spread or volume data. The latter (Cosandey (2001) and Berkowitz (2000a)) are

highly approximate and should only be used if no other data are available. If limit or-

der book data available, an approach based on empirical or t-distributed net returns

(Stange and Kaserer (2008c) or Giot and Grammig (2005)) as well as the modi�ed

add-on model adapted from Ernst et al. (2008) all show satisfactory results. Ernst
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et al. (2008) with limit order data shows slightly more consistent outperformance.

If only bid-ask-spread data can be obtained, the modi�ed add-on model with bid-

ask-spreads by Ernst et al. (2008) is recommendable. On the basis of volume data,

Cosandey (2001) provides suitable results for daily forecasts.

Several issues are open to future research. An analogous empirical comparison

in intraday data would complement our daily-data analysis. Implementation solu-

tions for theoretical models would allow to include those in comparative, empirical

analysis. Also models for less liquid markets still need to be developed and should

then be tested accordingly. We also hypothesize that a model explicitly integrating

a return-liquidity correlation estimate could further improve results. Overall, our

paper provides indications, which of the tested models is most suitable for practical

daily risk forecasts.
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5 Appendix

Table 8: Acceptance rate of Bangia et al. (1999)-approach (2.2.1) by index and order
size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.

Table 9: Acceptance rate of Bangia et al. (1999)-approach (2.2.1) with Loebnitz
correction by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

L-VaR is calculated as L−V aR = 1−exp(ασr)×(1−1/2(µS+ α̂SσS)). The min-column measures
the acceptance rate for the minimum spread level, i.e. the bid-ask-spread. The All-column measures

the average over all standardized order sizes, i.e. without the min-column.

Table 10: Acceptance rate of Ernst et al. (2008)-approach with bid-ask-spread (2.2.2)
by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.
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Table 11: Acceptance rate of Berkowitz (2000a)-approach (2.3.1) by index and order
size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.

Table 12: Acceptance rate of Cosandey (2001)-approach (2.3.2) by index and order
size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.

Table 13: Acceptance rate of Francois-Heude and Van Wynendaele (2001)-approach
(2.4.1) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.
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Table 14: Acceptance rate of Giot and Grammig (2005)-approach with weighted
spread (2.4.2) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.

Table 15: Acceptance rate of Stange and Kaserer (2008c)-approach with weighted
spread (2.4.3a) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.

Table 16: Acceptance rate of modi�ed add-on approach with weighted spread
(2.4.3b) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.
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Table 17: Acceptance rate of modi�ed net return approach with weighted spread
(2.4.3c) by index and order size

Table shows the fraction of stocks, where the L-VaR-model has been accepted by Kupiec-statistics.

The min-column measures the acceptance rate for the minimum spread level, i.e. the bid-ask-

spread. The All-column measures the average over all standardized order sizes, i.e. without the

min-column.
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