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1 Introduction

In the last years the economic profession has witnessed a growing interest in
the subject of evolution. Evolutionary economists, when asked for the main
difference between their approach and that of traditional dynamic theory,
first and foremost point to the possible occurrence of novelties in economic
systems (e.g. Witt 2003). In fact, the well-known closed loop dynamic models
achieve strong results – however, at the price of disregarding the occurrence of
novelties. Unfortunately, however, also the open loop evolutionary approach
faces a trade-off. Not surprisingly it is reciprocal to that just mentioned: the
less the possible occurrence of novelties is restricted, the less is naturally the
power as an ex ante theory.

If one agrees, as we do, that the issue of novelty is essential for ade-
quately studying evolving economic systems it appears to be reasonable to
develop alternative approaches to build a bridge over the gap left by the
described trade-offs. Such an alternative approach will be provided in the
present paper. To be more precise, we will first design a general model of an
evolving economic system accounting for novelty, and afterwards explore this
modelling framework for its general properties with respect to coordinating
variables like prices, production coefficients and tax rates.

This model will serve as a base for our general formalization of an evolving
economy. The cornerstone of our conceptualization of evolution is to “ani-
mate” the static functional relationships of this model. To use a metaphor,
our procedure is like the transition from a single frame to a movie. Unlike
cinematic movies our “movie”, however, consists of a continuum of frames.
Speaking in terms of this metaphor any single frame corresponds to a mo-
mentary state economy, and accordingly its equilibria are momentary state
equilibria. Our main analytical instrument for formalizing this idea of evolu-
tion is the intuitively appealing concept of continuous one-parametrizations
(Lehmann-Waffenschmidt 1995) which in different contexts have also been
used by other authors since the eighties (Mas-Colell 1985, Allen 1981).

The economic meaning of a “single frame”, i.e. a momentary state in
the evolution, is immediate. Since here we follow a continuous approach
it is natural to think of all evolving economic variables, i.e consumption,
production, and tax revenues, as continuous flows over time. Consequently,
a momentary state of the evolving system is an infinitesimally short period of
the evolution and thus is completely characterized by the cross section sizes
of these flows. This flow view of demand and supply over time has also been
adopted by traditional growth theory. The reader should note, however, that
this flow-understanding of economic quantities over time is the only analogy
of our present approach to conventional growth theory. This is due to the
fact the growth models employ a closed loop preconception of the evolving
system whereas our approach is open for novelties (see e.g. Balasko/Lang
1998).
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Note that, proceeding this way, we observe and record the evolution of
the economic system on the “phenomenological” level of the endogenously
determined variables, but do not try to explain the evolution causally. In this
respect our approach is essentially different from an approach which strives
for a causal explanation of the economic evolution process. On the other side,
however, it would also not be adequate to consider our approach comparative
static. To see this let us recall that the comparative static method analyzes
the effects of either marginal, or discrete, precisely specified parameter varia-
tions, and essentially requires uniqueness of equilibrium. How arduous it is to
guarantee uniqueness of equilibria in economic models show the results of a
research programme at the University of Bonn (e.g. Hildenbrand 1989, 1994,
1998, 1999). Our approach, in contrast, does not stick to any one of these
requirements. To emphasize this very difference we use the term “kinetic”
which has been picked up from physics, and is used there in the same kind
to analyse evolving systems as just described.

Conceptualizing a theoretical framework of evolution taking novelty into
account only means one half of our task. The second half naturally must be
to develop a notion of equilibrium which properly accounts for novelty. Our
proposal is quite simple: We just extend the idea of a momentary bookkeep-
ing equilibrium of a single state economy to the whole evolution.

Our concept of an “open evolution equilibrium” simultaneously accounts
for two aspects. On the one hand it reflects the openness of the whole ap-
proach. This means particularly that the open evolution equilibrium must
not predetermine the evolving economic system in any respect. On the other
hand it must link the states at different dates of the evolving economic system
in some reasonable way, since it otherwise would loose its temporal charac-
teristic. These two requirements are sufficiently well met by the idea of a
continuous string, or say path, of state equilibria in the space S × [0, 1] (see
Figure A, the intuition of this concept will be given to the reader in Section
2 below). Anyhow, as we will see later, this is even the maximally possible
result in the sense that more regularity requirements on the open evolution
equilibrium concept make existence go lost.

Before we will further discuss the economic achievements of our concept
of an open evolution equilibrium we want to clarify what it does not mean.
Unlike general equilibrium theory we do not pretend that the notion of equi-
librium provides a description of the observed state of real economic systems.
Our understanding of equilibrium is by far less ambitious. We just attribute
an equilibrium the state of a reference point, or of a perfect solution, which is,
nevertheless, a fundamental reference point for economic analysis. In other
words: an equilibrium means a solution of the interdependend economic sys-
tem under consideration which admits overall and simultaneous consistency
of individual plans.

Let us come to further achievements of our concept of an open evolution
equilibrium. To be sure this amounts to the question what is economically
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Figure A

gained by the opportunity to be capable of adjusting all variables perma-
nently in a continuous way in an openly evolving economy – the equilibrium
variables and the state determining variables, i.e., the parameters. Let us
first have a closer look at the nature of the involved variables. As it has been
mentioned above, the equilibrium variables are prices and tax receipts. The
state control parameters are various tax (revenue) rates. As a first answer
let us quote Balasko (1988, p.70, cf also Balasko 1996): “The idea that dis-
continuity is in itself harmful, synonymous of catastrophies, is widespread
. . . from an economic point of view, a continuous evolution path is superior
to any discontinuous one.”

Let us substantiate this general statement starting from analyzing the
advantages of the opportunity to continuously adjust, or tune, the state
control parameters. The pros and cons of a continuous, or say gradualistic,
tuning of tax parameters has intensively been discussed in the tax reform
debate which originated in the late seventies (e.g. Hatta 1977) and is still
discussed in the debate on optimal design of macro policy parameters (see
e.g. Gandolfo/Petit 1988, Marangos 2002 and the cited literature there). In
a metaphoric language the advocates of a gradualistic tuning remind their
opponents of the problems which arise when one tries to put a car into reverse
without stopping it. More specifically they argue that a “bang-bang” policy
switch, or shock therapy, causes political, social, and administrative frictions,
i.e. costs. This is due to the missing opportunity for gradual adaptation by
the agents. The reason for this is the fact that any sudden policy switch
disturbs the intertemporal plans and the expectations of the agents and thus
contributes to uncertainty and instability of the whole system. Actually,
these arguments mutatis mutandis also apply to the issue of a rule-based
monetary policy as opposed to a discretionary policy.

The counterarguments use metaphors like that of the obvious impossi-
bility of a gradual change from driving on the left to driving on the right
in a country. More substantially, the con-arguments stress the risk that a
reform process may not reach its aim since agents may be time inconsistent
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and change their minds during the process. Moreover, a reform process of
formal institutions can hardly be conceived of in a piecemeal way since this
would mean an iterated change of laws and regulations.

After this brief discussion of the gains and losses of a gradualistic policy
parameter change let us finally come to the gains and losses of the opportu-
nity to gradually adjust equilibrium values throughout the evolution of the
economic system. Obviously, the preceding pro arguments equally apply to
this case. But there is a further specific argument: a discontinuous “catas-
trophic” change of commodity prices and tax revenue amounts in general
will also change the economic status of the agents abruptly, i.e. their feasible
activities, and particularly their consumption opportunities. And surely it
is this kind of an unforeseeable discontinuous change of economic conditions
which is largely disliked by real economic agents.

The paper is organized as follows. Section 2 provides further intuition
on the scope of the study to the reader. In Section 3 the kinetic method
is characterized. Section 4 provides the reader with analytical prerequisites,
and Section 5 presents our basic model of a continuously evolving exchange
economy with production and taxes. Section 6 contains the main body of our
mathematical analysis, particularly the proof of existence of open evolution
equilibria. Basing on the results of Section 6, Section 7 then outlines the
frictionless tuning procedure. The concluding remarks in Section 8 resume
the methodological status of our approach in relation to both the evolutionary
and the neoclassical approach, particulary to the approach of temporary
equilibrium theory (see e.g. Grandmont 1983). The Appendices A to D are
found after Section 8.

2 Intuition, Scope, and Aims of the Model

Our analysis starts from the encompassing general equilibrium exchange
framework with an endogenous production sphere and taxes which has been
provided by T. Kehoe (1985b). In this context an equilibrium is a pair (p, r)
of an n-commodity price system p and of total tax revenue r. Intuitively
speaking, an equilibrium means that the whole economy is in balance in that
total tax receipts equal total real-valued tax redisbursals to the agents, and
all exchange markets are simultaneously cleared when the production sector
is run with a suitable scale vector. The reader should bear in mind that
this notion of equilibrium belongs to the ”bookkeeping category”. This means
there is no connotation of a thermodynamic end state equilibrium meaning
a state of rest to which the system finally settles down.

There might be objected that the intuition of our continuous flow mod-
elling would be sophisticated in so far as in reality prices and quantities usu-
ally change discretely. Besides resorting to the theoretical rationale of the
flow conceptualization in traditional growth theory one can object against
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this argument the following: The continuous formalization of an evolving
economy in historical time can readily be viewed as limit case of the periodic
discrete modelling when period lengths approach zero. A great advantage of
the continuous modelling is furthermore the fact that it is no longer subject
to the notoriously annoying unsolvable question which period length would
be the appropriate one. The problem of the ”right” choice of period length
particularly would apply to a model like ours which models a system of mar-
kets. To understand this it is worthwhile to recall that the economic meaning
of a period is that of a planning period of the agents. Indeed, it is hard to
conceive of one common period length which equally well serves as planning
period for agents being active on the markets for eggs, or tissues, and for
agents acting on the markets for nuclear power plants, or TV-satellites, for
instance (cf. Kirzner 1990, or Bosch 1990, for instance).

To make the reader more familiar with our analytical flow conceptualiza-
tion we illustrate it by the following three figures showing the evolution of
the market process for commodity i. Figure B shows the evolution of the
price pi of commodity i during the time interval [t0, t1], Figure C shows the
evolution of market demand di of commodity i during the same time interval,
and Figure D shows the evolution of resulting expenditure pidi. The shaded
areas in Figure C and D show the total amount of the demanded quantity of
commodity i and total expenses during [t0, t1], respectively.

Since the continuity requirement is the only hard assumption for our
formalization of economic evolution we admit a considerably broad class of
admissible model evolutions. Particularly, there is no restriction on the func-
tional form of the model functions and their evolutions. It is in this sense
that our approach accounts for novelties in the course of the evolving of the
economic system. Let us emphasize that in our study we model the open
evolution of an exchange economy with production and tax schemes, but
do not analyse radical system transformations which change the type of the
economy.

Our procedure to formally extend the static idea of a bookkeeping equi-
librium to the evolution setting is the following: Think of an Euclidean space
S where the equilibria of the state model may be situated, replicated as many
times as there are points in the unit time interval, and then think of the ge-
ometrical space (the cylinder) A formed by stringing these copies of S along
the unit interval (see Figure E below which is identical to Figure A). Mathe-
matically this forms the product space of S and the unit interval. Now, in
general the entire equilibrium set E of an evolution will be a subset shaping
a more or less wild and irregular configuration in the space A. To get more
familiar with this equilibrium subspace E let us now consider the equilibrium
set of an arbitrarily chosen momentary state economy of the evolution, say
the t-state economy. Due to the construction it is identical to the t-slice of
the equilibrium set E. One knows that according to the assumptions of the
basic model every t-slice will be non-empty. But, unfortunately, one knows
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Figure B

Figure C

Figure D

nothing about the object which obviously deserves major interest in an evo-
lutionary context, namely the structure of the subsequent s-state equilibrium
sets for s > t. Actually, it is the solution of this question which our study is
devoted to.

We note that uniqueness of momentary equilibria would make the proof
of existence of an open evolution equilibrium in our context an easy exercise.
However, uniqueness notoriously is only achieved by restrictive assumptions
(cf Kehoe 1985a, b). There are more advanced results on this field making
use of empirical distribution characteristics of agents by Hildenbrand and
others. This approach, however, relies on a specific model framework which
is completely different from ours (see e.g. Hildenbrand 1989, 1998, 1999). In
contrast, our aim is to become able to cope with the multiplicity phenomenon
and to establish the existence of an open evolution equilibrium. This will be
accomplished by means of a certain analytical result which has been used in
different contexts for the first time by the author (1983, 1985, see also 1995)
and by Mas-Colell (1985).

Let us finally discuss on the significance of our notion of an open evolu-
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Figure E

tion equilibrium from the economic point of view. At first sight it means that
one can adjust approximate equilibrium values (almost) permanently conti-
nuously while the economic system is evolving in an open, non-predetermined
manner. The restriction ”almost” is due to the weak assumptions we impose
on our model of evolution, and would only be removable by additional and
considerably restrictive assumptions. It means that possibly at some dates
one cannot avoid to discontinuously jump when adapting the changing equi-
librium values over elapsing time. To be sure, in our tax equilibrium frame-
work the concept of an open evolution equilibrium achieves more than that.
At all dates where discontinuous jumps in equilibrium values are necessary
it is possible to re-tune the state parameters of the economy in a completely
continuous way. Thus finally a completely ”frictionless”, or say continuous,
adaptation of equilibrium values is possible. Of course, the latter means
that one has to intervene into the open evolution of the economic system.
But note that the intervention does only apply for a short time period, and,
moreover, it does not involve any states of the economy which did not yet
occur in the evolution up to the date of intervention. Thus, the interventions
amount to repetitions of parts of the evolution of the economy, or to put it
more formally, they amount to a partly backtracking in the path of states
which the economy passes while it is evolving. Let us finally stress again that
it is just the existence of the opportunity to continuously adjust equilibria
what is shown by our result, but we do not analyze the way how this could
be implemented by economic institutions in real economies.

3 The Kinetic Approach

In this Section we will briefly characterize and discuss the methodological
status of the kinetic approach. In theoretical physics “kinetics” means the
“description of the motion of objects without considering the forces that
cause or result from the motions” (Encyclopaedia Britannica 1985). In eco-
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nomic literature the term kinetic has first been used in this meaning at the
beginning of our century by the sociologists F.H. Giddings and F. Oppen-
heimer in 1911, 1916 respectively.

When speaking from kinetic analysis here we mean the following proce-
dure. We conceptualize a formal general model of an open loop evolving
economic system. Having achieved this we see that the model evolution
produces a dependent “co-evolution” of momentary equilibria. It is this de-
pendent co-evolution of equilibria which we are interested in for our further
analysis of the evolution phenomenon. More specifically, we search for struc-
ture, or say regularity properties in this equilibrium co-evolution which are
generally valid, i.e. which do not depend on the special shape of any spec-
ification of our general evolution model. To say it in a nutshell, the aim of
kinetic analysis is not to study the “laws of evolution of the economic sys-
tem”, but to study the “laws of the effects on the endogenous variables”, or
to say it more formally, the “laws of the dependent co-evolution of evolving
economic systems of equilibrium values”.

It might appear natural to ask now for the relationship of the kinetic
method to the conventional comparative static method. Briefly said, con-
ventional comparative statics has a much more restricted scope than kinet-
ics since comparative static analysis usually either analyzes the effects of a
marginal, or of a discrete, change of exogenous parameters. To be sure, there
are very few comparative static results in the literature which do not hinge
to one of these two schemes (see for instance Arrow/Hahn 1971, Chapter
10, Theorem 5, or Quirk/Saposnik 1968, Section 6.4, Theorem 5). However,
according to the traditional understanding of comparative statics also these
results are restricted to well-specified parameter changes, and – what is more
– require uniqueness of equilibrium. Clearly the latter severely limits the
scope of the traditional comparative static approach (Kehoe 1985 a).

In contrast, our kinetic approach does not hinge to any one of these
restricting prerequirements. We analyze whole evolutions of the economic
system under consideration, and not only marginal, or discrete, changes of
certain coefficients. Furthermore, we do not restrict the evolution of the
economic system to well-specified parameter changes, but admit a maximal
variety of possible evolutions which, however, must be continuous. And fi-
nally, we do not stick to the uniqueness requirement of equilibria. Actually,
it is an essential feature of our approach that we are able to cope with mul-
tiplicity of the equilibrium set in that our conception and existence proof of
an open evolution equilibrium do not require any kind of uniqueness.

4 Analytical Prerequisites

In this Section we will provide the reader with some analytical prerequisites
which will turn out to be useful for our conceptualization and analysis of
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evolutions. We do not put this Section into the appendix since it provides
the intuition and the precise definitions of the building blocks of the concepts
used in our paper.

The most important analytical tool for our present study is the concept of
a continuous one-parametrization. Generally, a continuous one-parametriza-
tion is a continuous mapping

F : X × [0, 1] −→ Y

where X and Y are arbitrary (Euclidean sub-) spaces. Obviously, one can
also view the mapping F as a family of continuous mappings (Ft)t∈[0,1] where
the members of the family are continuously connected, too. The space X ×
[0, 1] is called the homotopy space. That the concept of a continuous one-
parametrization naturally suits for formalizing evolutions makes the following
Figure 1 obvious.

Figure 1

Let us now list some further useful notations and concepts. The symbol

∆n−1 means the n-1-dimensional unit simplex in Rn
+. The symbol

◦
Bn

α (x)
means the open ball in Rn with center x and radius α. Another term which
will play a crucial role in our subsequent analysis is that of an “equilibrium-
equivalent self-mapping” g : X −→ X. This concept refers to a given equi-
librium model and means that g is a mapping whose fixed points precisely
equal the set of equilibria of this equilibrium model. Clearly, many equilib-
rium existence proofs in the literature essentially amount to the construction
of an equilibrium equivalent self-mapping.

Making later our notion of an open evolution equilibrium precise we will
involve the analytical concept of topological connectedness. Formally, a con-
nected subset of Rn is a set which cannot be separated into two disjoint open
subsets. A subset X of Rn is furthermore even path connected if any two of its
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points can be linked by a continuous path lying in X. Or formally: for any
two points x and y of X there is a continuous mapping w : [0, 1] −→ X with
w(0) = x and w(1) = y. One has to carefully distinguish between the notion
of a path w and its arc, i.e. its image w[0, 1] in X. The Euclidean length
of a path w : [0, 1] → X is defined as supWk

L(w,Wk) where Wk denotes a
subdivision of [0, 1] by k + 1 points 0 = t0 < t1 < . . . < tk = 1 and

L(w,Wk) :=
k∑

j=1

d(w(tj−1), w(tj)) =
k∑

j=1

‖w(tj)− w(tj−1)‖.

If supWk
L(w, Wk) is finite then one says that w is of finite length, or w is

rectifiable. It is well-known that a path w is rectifiable if and only if each of
its component functions wi, i = 1, . . . , k, is of bounded variation over [0, 1],
that means

sup
Wk

k∑
j=1

‖wi(tj)− wi(tj−1)‖ < ∞.

The everyday connotation of the term ’path’ clearly is ’to be passable’ in
the intuitive geometrical sense. To be sure, this is also our intuition in this
study. Unfortunately, arcs of continuous paths can still have unpleasant
wild shapes as the following example shows: the graph of the continuous
function x · sin 1/x on the domain [−1, 1] has infinite length (one estimates
from below by the divergent harmonic series, see Figure 2). But even if the
arc of a continuous path is of finite length, it still may oscillate, or tremble,
infinitely often, as the function

x 7→
{

x3 sin 1/x, x ∈ [−1, 0[ ∪ ]0, +1]

0, x = 0

shows (‘damped oscillation’). We will come back to this issue at the end of
Section 6 and in Appendix C below.

Figure 2

5 A Continuous Time Model of an Evolving

Exchange Economy with Production and

Taxes

In Kehoe’s first version of an equilibrium model with production and taxes
(1985b, pp. 318–321) an agent can be a consumer, a producer, or the govern-
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ment. Aggregate excess demand on the n commodity markets is given by a
C1 function

ζ : Rn
+\{0n} × R+ → Rn

(p, r) 7→ ζ(p, r)

where r stands for the total tax revenue. ζ is homogeneous of degree zero,
bounded from below, and satisfies the following intuitive boundary assump-
tion∗) :
∗) the function

kζ : R+ → R+

r 7→ inf
p∈Rn

+\{0n}
{‖ζ(p, r)‖}

satisfies lim
r→∞

kζ(r) = ∞.

In words the boundary assumption∗) just means that with the r-argument
growing beyond all finite bounds the absolute value of the excess demand
function ‖ζ(p, r)‖ also grows beyond all finite bounds all over the price space
Rn

+\{0n}. This property of the excess demand function particularly ensures
the intuitive requirement that for any real α > 0 there is a real β > 0
such that for all p ∈ Rn

+\{0} one has: r > β ⇒ ‖ζ(p, r)‖ > α. Later we
will see that this implies that the equilibrium set in fact is contained in a
compactum which later with turn out to be essential for the construction
of an equilibrium equivalent self-mapping (see Kehoe, 1985b, p. 321 first
paragraph). Unfortunately, Kehoe’s original condition

(A.4)

given any p ∈ Rn
+\{0n}

lim
r→∞

‖ζ(p, r)‖ = ∞
is too weak to ensure that. (Actually, it is not hard to find counterexamples.)
However, the following additional requirement to (A.4) obviously makes it
sufficient for the purposes of our later analysis: the family of partial functions
ζ(p,−) : R+ → Rn which is parametrized by the admissible price vectors
p ∈ Rn

+\{0n}, is C0-uniformly convergent on the whole domain R+ for varying
p.

The tax payments generated by consumption and income taxation are
specified by a C1 function
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t : Rn
+\{0n} × R+ → R+

(p, r) 7→ t(p, r)

which is homogeneous of degree one, i.e. t(λp, λr) = λt(p, r) for λ > 0.
Tax payments t(p, r) and tax revenue r are expressed in the same units
of account as expenditures ζ(p, r)p. The function t furthermore satisfies an
appropriately modified version of Walras’ law, namely the aggregate budget
constraint

ζ(p, r)p + t(p, r) = r

for all admissible (p, r). Note that this aggregate budget constraint still does
not indicate how the total tax revenue r is actually generated. The generation
of r will be become clear below when also the production sphere will be
introduced.

To get a better intuition on this set-up let us have a look on Kehoe’s
example (1985b, pp. 318–319) of an economy with h consumers. At price
system p the j-th consumer’s income is given by the value of his initial
endowment bundle

n∑
i=1

piω
j
i

plus his share of tax revenue,

θjr.

Clearly, the vector of share coefficients (θ1, . . . , θh) lies in ∆
h−1

. For instance,
θ1 = . . . = θh−1 = 0 and θh = 1, where agent h is the government. The
endowment income

∑h
i=1 piω

j
i of each consumer j is taxed at a rate ρj ∈ [0, 1[,

and consumer j’s final demand for commodity i is taxed ‘ad valorem’ at a
rate τij ∈ [0, 1[ on its value. Accordingly, the utility maximization problem
of consumer j is the following:

max uj(x
j
1, . . . , x

j
n)

so that
n∑

i=1

pi(1 + τij)x
j
i ≤ (1− ρj)

n∑
i=1

piω
j
i + θjr

xj
i ≥ 0 for all i, j.

uj is a strictly concave and monotonically increasing utility function. Thus,
agent j’s derived excess demand function
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ζj : (Rn
+\{0n})× R+ → Rn

(p, r) 7→




xj
1(p, r)− ωj

1
...

xj
n(p, r)− ωj

n




is continuous and the aggregate excess demand function
∑h

j=1 ζj satisfies
for any p ∈ Rn

+\{0n} the condition ‖ζ(p, rm)‖ → +∞ as rm → +∞. This
condition means that, anything else being equal, if tax revenue becomes
arbitrarily large, then the income of at least one consumer (the government
for instance) becomes arbitrarily large, which in turn implies that excess
demand for some good becomes arbitrarily large (cf. Kehoe, 1985b, p. 319).
Accordingly, the tax payment function t is specified by

t(p, r) =
h∑

j=1

ρj

(
n∑

i=1

piω
j
i

)
+

h∑
j=1

(
n∑

i=1

τijpix
j
i (p, r)

)
.

t is C1 and homogeneous of degree one as long as the xj
i are. Since each

individual demand function satisfies the budget constraint with equality, ζ
and t satisfy the modified Walras’ law. (For a further example which also
allows for tax rates and revenue shares varying with income the reader is
referred to Kehoe (1985b, p. 319, last paragraph). (End of example)

Now let us come back again to the general model. The production sphere
is specified by an n×m activity analysis matrix A = (aij) with the following
properties:

(1) A induces n free disposal activities, one for each commodity. Formally,
this means that the last n columns of A form the negative n-dimensional
unit-matrix.

(2) There is no output without inputs, i.e.

{x ∈ Rn | x = Ay, y ≥ 0n} ∩ Rn
+ = {0n}.

Production taxes are specified by an n × m matrix A∗ = (a∗ij) with
a∗ij = aij − σij |aij| where σij ∈ [0, 1]. This means, input or output of
commodity i in activity j is taxed at a rate of σij ∈ [0, 1]. Thus,

(3) −2|A| ≤ A∗ ≤ A.

Furthermore, there are no taxes at free disposal activities. Accordingly, the
revenue generated by production taxes at prices p and at activity levels y ∈
Rm

+ is

p′(A− A∗)y ≥ 0.

14



Definition:
An economy is now defined as a quadruple (ζ, t, A, A∗). A momentary

equilibrium of an economy is a pair (p0, r0) ∈ ∆n−1 × R+ that satisfies the
following conditions,

(E.1) p0′A∗ ≤ 0m.

(E.2) there is a y0 ∈ Rm
+\{0m} such that ζ(p0, r0) = Ay0.

(E.3) r0 = t(p0, r0) + p0′(A− A∗)y0

Let us briefly comment on these equilibrium conditions. From (E.2) and
Walras’ law follows immediately: (E.3) ⇔ p0′A∗y0 = 0. Actually, it is this
equivalent formulation of equilibrium condition (E.3) which we will use in
our later constructions.

Together with (E.1) the alternative formulation of (E.3) implies that after-
tax profits are maximized at an equilibrium. (E.2) means that excess demand
actually can be supplied by the producers. (E.3) expresses the fact that
in equilibrium the redisbursals of the total tax revenue equal the total tax
receipts t(p0, r0) + p0′(A−A∗)y0. The normalization expressed by p0 ∈ ∆n−1

is obviously permitted by the homogeneity properties of ζ and t.
Our formalization of an evolution of economies with production and taxes

is straightforward:

Definition:
An evolution of economies with production and taxes is a quadruple of four

continuous one-parametrizations (ζs, ts, (aijs), (a
∗
ijs

))s∈[0,1] such that, more-
over, the two component one-parametrizations (ζs)s∈[0,1] and (ts)s∈[0,1] are
C0-uniformly continuous and the one-parametrization (aijs)s∈[0,1] = (As)s∈[0,1]

satisfies the condition that for any w ∈ Rn
+ with ζs(−,−) ≥ −w for all

s ∈ [0, 1] on the whole domain (Rn
+\{0})× R+ the set

{x ∈ Rn | ∃y ≥ 0, ∃s ∈ [0, 1] : x = As(y) and x ≥ −w}

is bounded.
It is noteworthy that the last requirement in this definition is just a

uniformization of assumption (2) above ‘no output without inputs’ on the
production matrix of static economies. Nevertheless, to prove this exactly is
not as easy as it seems to be at the first glance. We will provide the reader
with a proof in Appendix A employing several transformation steps which
turn out to be equivalences.

From our assumptions on an evolution of economies, from the defini-
tion of the equilibrium equivalent self-mapping g (see Appendix B), and
from the considerations above follows directly that any admissible evolution

15



of economies with production and taxes in fact induces a continuous one-
parametrization of equilibrium equivalent self-mappings, as desired.

6 Existence of an Open Evolution Equilib-

rium

We begin this Section with giving our notion of an open evolution equilib-
rium a precise meaning. For this we first need a formalization of the idea of
an ε-approximating equilibrium path:

Definition:
Let be K the domain of equilibrium values. Then for any ε > 0 a connect-

ing ε-near-equilibrium path for the evolution (ζs)s∈[0,1] is a finitely piecewise
linear path, or say a polygonal path,

π : [0, 1] −→ K × [0, 1]

whose arc π[0, 1] lies in the ε-neighborhood of the equilibrium set of (ζs)s∈[0,1]

in K× [0, 1] and joins the bottom K×{0} and the top K×{1} of K× [0, 1] =
∆n−1 × [0, β]× [0, 1].

Definition:
Let any admissible evolution (ζs)s∈[0,1] be given. Formally, an open evo-

lution equilibrium for the given evolution is a connecting ε-near equilibrium
path.

The reader should be well aware that an ε-near equilibrium price path ε-
approximates the equilibrium set of an evolution on the whole. Particularly,
this means that it need not ε-approximate every s-state equilibrium set when
the equilibrium set of the whole evolution decomposes into several path com-
ponents. Figure 3 shows an example for this. Nevertheless, we will see

Figure 3

that for a large class of evolutions any ε-near equilibrium path indeed also
ε-approximates any s-state equilibrium set (see Theorem 2 in Appendix D
below). Now we are ready to state the following result which will be central
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for our study.

Theorem 1:
For any admissible evolution (ζs)s∈[0,1] there is at least one ε-near equilib-

rium path for any given ε > 0.

The reader can find the proof in Appendix C. A general categoriza-
tion of equilibrium proofs in the economic literature can be found in Wein-
traub, Gayer (2001). In his monograph (1985, Proposition 5.8.2) Mas-Colell
presents the analogue of our Theorem 1 for the basic model of an explicit
finite exchange economy defined by preference relations and initial endow-
ments. Actually, Mas-Colell’s method of deriving the result is quite differ-
ent from ours. Other contributions in similar directions have been given
by Allen (1981), Balasko (1988), Balasko/Lang (1998) and Bonnissean and
Rivea-Cayupi (1999), for instance.

To be sure the approximation of an ε-near-equilibrium path is necessary
since in general no well-behaved path can be found in the equilibrium set.
This is proven in Appendix C below.

7 Frictionless Tuning of Tax Parameters and

Equilibrium Variables in an Evolving Eco-

nomy

We now proceed making analytically precise the idea of a frictionless tun-
ing which we have outlined intuitively in the Introduction. Note that in
analytical terms the meaning of ”frictionless” is ”continuous”.

To fix ideas let us start with a formal reformulation of an evolution. It
will turn out to be more convenient for our present purposes. We represent
an evolution as a composite continuous mapping

[0, 1]
z→ C

Φz→ E
s 7→ (c1s , . . . , crs) 7→ E(c1s ,...,crs )

where E denotes the space of admissible momentary state economies and
C denotes the Euclidean space of policy control parameters. The symbol
z means any continuous path in the control parameter space C, and Φz is
a mapping which may be individually chosen in dependence on the control
parameter path z. More specifically, Φz associates an economy E(c1s ,...,crs )

with any admissible control parameter tuple (c1s , . . . , crs) from the path z
in a continuous way. Consequently, any admissible evolution is completely
characterized by the evolution (the path) z of control parameters. Let us
now come back to Kehoe’s example.
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Recall that there are n commodities, m > n production processes, and
h economic agents in this example. There are four vectors of control pa-
rameters: the n · h - vector of individual ad-valorem consumption tax rates
(τij) i=1,...,n

j=1,...,h
∈ [0, 1[n·h, the h-vector of individual endowment income tax rates

(ρj)j=1,...,h ∈ [0, 1[h, the h-vector of individual share rates of tax revenue

(ϑj)i=1,...,h ∈ ∆
h−1

, and the n · m - vector of ad-valorem production tax
rates (σij) i=1,...,n

j=1,...,m
∈ [0, 1]n·m. Clearly, all of these parameters are in principle

amenable to control by some governmental authority. Accordingly, we are
facing the Euclidean control parameter space

C := [0, 1[nh×[0, 1[h×∆
h−1 × [0, 1]n·m ⊂ R(nh+h+h+nm)

+ .

Generally spoken “frictionless” means “without leaps in equilibrium prices
(in an approximating sense)”. Now let us illustrate our frictionless tuning
procedure in this formal context. We can write the vector of control param-
eters (c1s , . . . , crs) on any s-slice of the homotopy space H × [0, 1] as it is
illustrated in Figure 4.

Figure 4

This means we represent the path z which is a one-parametrized subset
of C by the points of the parametrizing interval. A frictionless control for
the example of Figure 4 obviously can be achieved by following the (near-)
equilibrium path π during the part from control parameter tuple (c10 , . . . , cr0)
to (c10,8 , . . . , cr0,8), then running back in the control parameter path from
(c10,8 , . . . , cr0,8) to (c10,3 , . . . , cr0,3), and finally running forward again from
(c10,3 , . . . , cr0,3) to (c11 , . . . , cr1). (Note that r = nh + h + h + nm).

Extending this observation to the general case we can sum up: a friction-
less control of an evolution Φz ◦ z is possible by an appropriate continuous
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re-parametrization z̃ of the control parameter path z. Formally, z̃ is obtained
by projecting the (near-) equilibrium path π on the unit interval [0, 1] of the
homotopy space H× [0, 1], i.e. z̃ = z ◦ pr2 ◦π : [0, 1] → z([0, 1]). Hence, both
paths, the originally chosen path π : [0, 1] → H × [0, 1] of (near-) equilibria
and the appropriately re-parametrized path z̃ : [0, 1] → z([0, 1]) ⊂ C ⊂ Rl,
are even in the intuitive geometrical sense nicely behaved.

Obviously, one has to identify the historical time t with the evolution
parameter of the re-parametrized evolution Φz ◦ z̃. Thus, the vector of control
parameters at time t is z̃(t) = z(pr2(π(t))), and the state of the economy at
time t is Φz(z̃(t)) = Φz(z(pr2(π(t)))). This is completely analogous to the
situation of a movie which is played with several parts backtracked whilst
time is going on as usual. Viewers (economic agents) of course are not getting
younger when the film (the evolution) is backtracking, but the whole movie
is expanded by the length of time the repeated parts require.

Conclusions

Our findings in this Section lead to the following general conclusions. An
evolution of economic states in our conceptualization is completely deter-
mined by the associated evolution of the (nh + h + h + nm) tax control
parameters. If a political-economic agency aims at a frictionless control in
the described sense our results tell that it generally has to move back and
forth appropriately in the evolution of control parameters. This is due to
the general backtracking feature of (near-) equilibrium paths. In other words
this means that in the present set-up in general it is inevitable for an (exoge-
nous) political-economic agency to give the impression of somewhat being
undecided – if it is purposed to ensure a frictionless control.

8 Concluding Remarks and Outlook

In our concluding remarks we want to briefly reconsider the attitude and the
methodological status of our study. First of all, the reader should remem-
ber that our attitude to the notion of equilibrium is not that of traditional
static equilibrium theory as a final state of rest. While the ultimate aim
of traditional static equilibrium theory is to explain realized states of eco-
nomic systems employing the concept of equilibrium, we, instead, merely
think of equilibria as perfect momentary coordination solutions of the evolv-
ing modelled system – are they realized, or not. This particularly overcomes
the awkward dilemma caused by the multiplicity of equilibria in the static
context.

In a nutshell we have learned from our analysis that there are invariant
regularities of the changing equilibrium solutions when the economic sys-
tem evolves in a non-described continuous manner. The general structure
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properties we have found show that ex ante statements are well possible in
our framework even when novelties, i.e. new states of the economic system,
occur.

Let us now conclude with some remarks on the relationship between our
approach and the neoclassical approach. At first glance our approach might
seem to be closely related to the temporary equilibrium approach (see e.g.
Grandmont 1983). To be sure, the two approaches have completely different
scope. The main difference is due to the fact that the temporary equilibrium
approach employs an intertemporal planning procedure by the agents and
accordingly an intertemporal notion of equilibrium which are both closed
loop. Besides that the temporary equilibrium approach is mainly interested
in the money issue. In contrast, we are interested in the performance of an
interdependent market system with endogenous production sphere and gov-
ernmental redistribution adivities employing taxes. Actually, both our notion
of equilibrium and our one-parametrizing conceptualization of economic evo-
lution, prevents us from the reproach of trying to extend the traditional and
notoriously inevolutionary approach of neoclassical economics to the evolu-
tion phenomenon (see e.g. Witt 2003). To repeat it once more, our aim is
not to force the evolutionary approach into the Procrustean bed of neoclas-
sical theory, but to contribute to overcoming the natural weakness of the
open loop approach of evolutionary economics by establishing results of the
kinetic type.

Appendix A

In Appendix A we are going to prove that the last requirement in the de-
finition of an evolution of economies with production and taxes is just a
uniformization of assumption (2) above ‘no output without inputs’ on the
production matrix of static economies. The second equivalence of this chain
expresses the uniformization of assumption (2).

Proposition:
The following chain of equivalences is valid.
∀w∈Rn

+
{x ∈ Rn | x ∈ ⋃

s∈[0,1] As(Rm
+ ) and x ≥ −w} is bounded, i.e. there is

an αw > 0 such that ‖x‖ < αw for all x from this set
⇔ {x ∈ Rn | x ∈ ⋃

s∈[0,1] As(Rm
+ ) and x ≥ (−1, . . . ,−1)} is bounded

⇔ ⋃
s∈[0,1] As(Rm

+ ) ∩ Rn
+ = {0n}

⇔ there is a closed subspace K ⊂ Rn with
⋃

s∈[0,1] As(Rm
+ ) ⊂ K and

K ∩ Rn
+ = {0n}.

Proof. The first and the last equivalence are trivial, whereas the crucial
middle one is not.
“⇒:” Let us abbreviate N :=

⋃
s∈[0,1] As(Rm

+ ) and assume that there is an
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x ∈ N ∩ Rn
+ with x 6= 0. Then there is a sequence xk in N with xk → x.

Without loss of generality we may assume that ‖xk‖ = ‖x‖ = 1 and xk
i ≥ −1

for all k and 1 ≤ i ≤ n. Define

mk := max{
∣∣xk

i

∣∣ | xk
i < 0}.

Note that the right set is non-empty since N ∩ Rn
+ = {0n}. The latter is

due to the assumption ‘no output without inputs’. Since xk → x ∈ Rn
+,

the sequence mk converges to zero. Put yk := xk

mk . Clearly yk ∈ N and
‖yk‖ → ∞ for k →∞. If we can show that yk ≥ (−1, . . . ,−1) for all k, then
the presumption that {x ∈ N | x ≥ (−1, . . . ,−1)} is bounded contradicts
‖yk‖ → ∞. Consequently, the assumption that there is an x ∈ N ∩ Rn

+ with
x 6= 0 is wrong. Now let us choose any j ∈ {1, . . . , n}. Clearly, yk

j < 0. From
∣∣xk

j

∣∣ ≤ mk follows
∣∣yk

j

∣∣ =
|xk

j |
mk ≤ 1. But this means that yk

j ≥ −1, and we are
done.
“⇐”: We begin with the observation that K := N ∩ Sn−1 is compact.

Define:

λ : K → R+

x 7→ min
i with
xi<0

1

|xi| =
1[

max
i with
xi<0

|xi|
] .

Actually, λ is well-defined since K ∩ Rn
+ = ∅ by presumption. Moreover,

λ is continuous. Consequently, there is a λ0 > 0 with

∀x∈K λ(x) ≤ λ0.

Choose now any x ∈ N with 0n 6= x and x ≥ (−1, . . . ,−1). Define z :=
x
‖x‖ ∈ K. There is an ĩ ∈ {1, . . . , n} such that zĩ < 0 and λ(z) = 1

|zĩ| . Clearly,

1

|zĩ| = ‖x‖
|xĩ| ≤ λ0, and from −1 ≤ xĩ ≤ 0 follows

‖x‖ ≤ λ0 |xĩ| ≤ λ0.

This means that any x ∈ N with x ≥ (−1, . . . ,−1) lies in the n-ball Bn
λ0

(0n),
and this completes the proof.

Appendix B

Now we are going to provide an equilibrium equivalent self-mapping for the
presented model. Before reporting on Kehoe’s construction we have to do
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a last preparatory step (cf. Kehoe (1985b), p. 321, first paragraph). We
have to ensure that in equilibrium tax revenues cannot exceed some fixed
upper bound β > 0. This implies that all candidates for equilibria lie in the
compact convex set ∆n−1× [0, β] which will be crucial for our constructions.
The existence of such a β can be seen in the following way: the boundedness
from below of ζ, say by −w, w ∈ Rn

+, and assumption (2) on the production
sphere clearly imply that the production possibility set P := {x ∈ Rn | x ≥
−w, x = Ay for some y ≥ 0m} is bounded, i.e. there is a real α > 0 such

that P ⊂ ◦
B

n

α . Furthermore, due to boundary assumption∗ in Section 5 there
is clearly a real

β > 0 so that ‖ζ(p, r)‖ ≥ α for any pair (p, r) ∈ ∆n−1 × [β,∞[. But this
implies that all equilibria already must lie in ∆n−1 × [0, β].

Kehoe proposes the following mapping which is used in the present study
as an equilibrium equivalent self-mapping (1985b, pp. 321–322):

g : ∆n−1 × [0, β] → ∆n−1 × [0, β]

(p, r) 7→ (x, y)

where (x, y) solves the following program:
min 1/2[(x− p− ζ(p, r))(x− p− ζ(p, r)) + (y − t(p, r))2]
so that

(i) (x, y) ∈ ∆n−1 × [0, β]

(ii) x′A− (1 + y − r)p′(A− A∗) ≤ 0m.

We have to verify four issues:

(1) The constraint set is non-empty. This follows directly from assumption
(2) on the production sphere.

(2) The constraint set is a subset of ∆n−1 × [0, β]. This follows from the
assumption that there are no taxes on free disposal activities.

(3) g(p, r) is continuous.

This follows from the facts that for any pair of arguments (p, r) the
constraint set obviously is closed and convex and varies continuously
as a point-to-set mapping, and the objective function of the program
is strictly convex. The latter follows from the positive definiteness of
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the Hesse matrix of the objective function (recall that (p, r) is fixed):
its gradient is

1/2




2x1 − 2(p1 + ζ1(p, r))
...

2xn − 2(pn + ζn(p, r))
2y − 2t(p, r)


 ,

and consequently the (n + 1)× (n + 1) Hesse matrix becomes

1/2




2 0
. . .

0 2


 =




1 0
. . .

0 1


 .

(4) (p0, r0) is an equilibrium of (ζ, t, A,A∗) if and only if it is a fixed point
of the associated mapping g. This is shown in the proof of Theorem 1
by Kehoe (1985b, p. 322).

Appendix C

The following proof of Theorem 1 will not only provide the reader with the
logical chain of mathematical arguments establishing the statement of the
theorem, but also with a detailed discussion on the meaning of every single
step. Parts of the proof are adopted from Lehmann-Waffenschmidt (1995).

Fortunately, the major part of work has already been done. Actually, from
Section 5, last paragraph, and Appendix B follows that the given evolution
(ζs)s∈[0,1] induces a continuous one-parametrization of equilibrium equivalent
self-mappings

(gs)s∈[0,1] : K × [0, 1] −→ K

with K = ∆n−1 × [0, β]. Let us now look at the properties of K. K is
compact, and, particularly, it is a Euclidean neighborhood retract. Since K
is furthermore contractible, it is also acyclic. Hence, any self-mapping of K
has Lefschetz number +1 (see Brown 1971, II.c).

This means that we have posed ourselves in a situation to which the fol-
lowing result from one-parametrized algebraic topological fixed point theory
applies:

Proposition:
Let K be a compact subset of Rn and a neighbourhood retract. Let

(gs)s∈[0,1] : K × [0, 1] −→ K be a continuous family of maps, and let F be
the union of the fixed-points of the mappings gs, i.e.,

F :=
⋃

s∈[0,1]

Fix (gs) ⊂ K × [0, 1].
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Then the fixed-point index λ of gs equals the Lefschetz number of gs, and is
independent of s. If λ 6= 0, then F has a connected component C which meets
bottom K × {0} and top K × {1} of the homotopy space.

Definition:
We will call a connected component of the equilibrium set of an evolution

of economies which meets bottom and top of the homotopy space a joining
equilibrium component of the evolution.

The Proposition has been proven by Puppe (1979, Corollary 5.6). Appa-
rently, the existence of a joining equilibrium component C for the evolution
(ζs)s∈[0,1] brings us more closely to our goal. However, such a connected join-
ing equilibrium component may still display some geometrically bad features.
Let us come back to this after the proof will be finished.

Now, let us do the last step of our proof of Theorem 1 by demonstrating
that there is a near-equilibrium path in any relatively open ε-neighborhood

[⋃
x∈C

◦
B

n+1

ε (x)

]
∩ [K × [0, 1]] =:

⋃
x∈C

◦
B

n+1

εr
(x) =: Cε

of any joining component C of the equilibrium set of the given evolution

(ζs)s∈[0,1] (note that by definition
◦
B

n+1

εr
(x) =

◦
B

n+1

ε (x) ∩ (K × [0, 1])).

As C is compact, finitely many relatively open εr-balls
◦
B

n+1

εr
(x1),

. . . ,
◦
B

n+1

εr
(xk) of the ε-neighbourhood Cε are sufficient to cover C. Denote

their union by Cf
ε .

Now consider all pairs (xi, xj), i 6= j, of centers of the relative εr-balls
◦
B

n+1

εr
(xi), and consider the graph g′C consisting of all segments xixj which

are contained in Cf
ε . If one adds all segments to g′C which are orthogonal

to Rn
+ × {0} and connect a center xi ∈ {x1, . . . , xk} with Rn

+ × {0} or with

Rn
+ × {1} within

◦
B

n+1

εr
(xi), one obtains a finitely polygonal graph gC in Cf

ε

which contains a near-equilibrium price path as desired.

Appendix D

We now proceed by pointing out the reasons why it is generally necessary
to approximate a joining equilibrium component by near-equilibrium paths
in order to get a nicely behaved path in the homotopy space. Let us use the
notion of a ‘nicely behaved path’ for the moment in the intuitive geometric
sense which means that a particle moving along a nicely behaved path moves
in a highly regular manner. Particularly, there should not occur any com-
plicated movements like oscillations for instance. Thus, a finitely piecewise
linear near-equilibrium path is a prototype of a nicely behaved path.
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Let us now look at the behavior of joining equilibrium components. First
and foremost a joining equilibrium component need not be path connected.
In other words, it may for instance contain parts like the closure of the graph
of sin 1/x. We will give an example of an evolution producing this below.
However, even if a joining equilibrium component is path connected, it may
well happen that some of its points can only be connected by paths with
infinitely long arcs caused by infinitely many oscillations.

Another example of a path whose arc is of finite length though it under-
goes infinitely many oscillations is given by a ”saw tooth path”. It consists
of infinitely many segments whose lengths can be estimated from above by
the terms of a sequence which generates a convergent series (Figure 5).

Unfortunately, any of these complications actually can occur in the equi-
librium set of an evolution. They even cannot be removed by additional
differentiability conditions on the evolution. The following example makes
this intuitive.

Figure 5

ζ0 is a smooth function with a linear part over [y, z] (use the function

x 7→
{

0, x ≤ 0

e−1/x2
, x > 0

at the bends ζ0(y) and ζ0(z)). Actually, the following

movement of ζ0 yields a smooth one-parametrization (ζs)s∈[0,1] : R+× [0, 1] →
R; ζs is linear over [y, z] for any s, and ζs(y) performs a damped oscillation
whose time path looks like x · sin 1

x
. If ζs(z) correspondingly oscillates in

counter-rhythm, this results in a smoothly oscillating movement (ζs)s∈[0,1]

with final state ζ1 as in Figure 6. Thus, the trace (Gs)s∈[0,1] of the oscillating
unique zero in the homotopy space R+ × [0, 1] looks like the closure of the
graph of sin 1

x
.

Figure 6

From the construction of the last part of the proof of Theorem 1 in Ap-
pendix C follows immediately
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Theorem 2:
If at least one joining equilibrium component of an evolution (ζs)s∈[0,1]

is even path connected, then for any ε > 0 there is an ε-near equilibrium
price path for (ζs)s∈[0,1] which particularly also ε-approximates every s-state
equilibrium set.

Proof. Just exclude from the construction of the finitely polygonal graph
gC in the final part of the proof of Theorem 1 all segments xixj with the
following property: the endpoints xi and xj cannot be connected by a path

which lies in C and in
◦
B

n+1

εr
(xi)∪

◦
B

n+1

εr
(xj).

Figure 7 shows an example of a segment which will be excluded.

Figure 7
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