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Abstract:

Macroeconomic risk assessments play an important role in the forecasts of many

institutions. A risk forecast is related to the potential asymmetry of the forecast

density. In this work, we investigate how the optimality of such risk forecasts can

be tested. We �nd that the Pearson mode skewness outperforms the standard

third-moment-based skewness as a measure of asymmetry. We consider problems

of the tests likely to be encountered in practice and try to o�er remedies where

possible. In general, tests for macroeconomic risk forecast optimality tend to have

at best moderate power given the empirically available small sample sizes.

Keywords: Forecast evaluation; asymmetric densities, skewness

JEL-Classi�cation: E37, C12, C53



Non-technical summary

Many central banks supplement their macroeconomic forecasts with an assess-

ment of future risks, where a risk implies an asymmetry of the forecast density.

Put di�erently, the presence of an upward risk commonly implies that outturns

greater than the point forecast have a probability of more than 50%. Accordingly,

the presence of a downward risk means that outturns less than the point forecast

have a probability of more than 50%.

In this work, we investigate howmacroeconomic risk forecasts can be evaluated.

A typical problem of these evaluations is the small sample size of currently available

risk forecasts. As a start, we �nd that an evaluation should not be based on the

standard measure of asymmetry for probability density functions (the skewness),

because an alternative measure, the Pearson mode skewness, allows a markedly

more precise evaluation in small samples.

We also consider several problems to be encountered in practice and try to

o�er remedies where possible. For example, if the width of the forecast density,

i.e. the dispersion of the forecast errors is systematically over- or underestimated,

a certain test for the optimality of risk forecasts tends to yield misleading results.

However, a modi�cation of this test leads to correct results.

A general conclusion of the investigations presented is that tests for the op-

timality of macroeconomic risk forecasts cannot be expected to be very powerful

given the mostly very small sample sizes which are currently available. So, it is

not unlikely that no statistical evidence against the optimality of risk forecasts can

be found, even if optimality is not present, i.e. if the asymmetry of the forecast

density is not predicted correctly.



Nicht-technische Zusammenfassung

Viele Zentralbanken versehen ihre makroökonomischen Prognosen mit Ein-

schätzungen über zukünftige Risiken, wobei ein Risiko eine Asymmetrie der Prog-

nosedichte impliziert. Das heißt, dass das Vorliegen eines Aufwärtsrisikos das

Auftreten von Werten oberhalb der Punktprognose mit einer Wahrscheinlichkeit

von mehr als 50% bedeutet. Entsprechend liegt ein Abwärtsrisiko vor, wenn das

Auftreten von Werten unterhalb der Punktprognose eine Wahrscheinlichkeit von

mehr als 50% besitzt.

In der vorliegenden Arbeit wird geprüft, wie solche makroökonomischen Risiko-

prognosen evaluiert werden können. Ein typisches Problem solcher Evaluatio-

nen ist durch die kleinen Stichprobenumfänge der derzeit verfügbaren Risikoprog-

nosen gegeben. Es zeigt sich zunächst, dass eine Evaluation von Risikoprognosen

nicht auf Grundlage des Standardmaßes für die Asymmetrie einer Wahrschein-

lichkeitsdichte (der Schiefe) erfolgen sollte, da ein alternatives Maß, die Pear-

sonsche Modusschiefe, in kleinen Stichproben eine deutlich genauere Evaluation

ermöglicht.

Viele der in der Praxis auftretenden Probleme bei der Evaluation von Risiko-

prognosen werden untersucht und, soweit möglich, Lösungsvorschläge unterbreitet.

So kann zum Beispiel das Problem beobachtet werden, dass ein bestimmter Test

für die Optimalität von Risikoprognosen zu falschen Ergebnissen führt, falls die

Breite der Prognosedichte, also die Streuung der zukünftigen Prognosefehler sys-

tematisch über- oder unterschätzt wird. Eine Modi�kation des Tests sorgt jedoch

dafür, dass er wieder korrekte Ergebnisse liefern kann.

Aus den durchgeführten Untersuchungen kann die Schlussfolgerung gezogen



werden, dass von den Optimalitätstests für makroökonomische Risikoprognosen

wegen der derzeit verfügbaren, häu�g nur kleinen Stichprobenumfänge keine beson-

ders hohe Güte erwartet werden kann. Das bedeutet, dass es nicht unwahrschein-

lich ist, dass keine statistische Evidenz gegen die Optimalität einer Risikoprognose

gefunden wird, selbst wenn diese Optimalität nicht vorliegt, wenn also die Asym-

metrie der Prognosedichte nicht korrekt vorhergesagt wird.
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Evaluating Macroeconomic Risk Forecasts1

1 Introduction

Many central banks and other institutions such as the Bank of England or the IMF

complement their macroeconomic forecasts by assessments of risks. In general,

these risk forecasts are related to possible asymmetries of forecast densities, as

described in Knüppel & Schultefrankenfeld (2011). In Figure 1, two examples of

forecast densities implying upside or downside risks to the forecast can be found.2

Both densities are asymmetric, so that mean and mode do not coincide.

As noted by Leeper (2003), it would actually be important to verify whether

macroeconomic risk assessments contain valuable information. Since the forecast

of the central tendency is often a mode forecast3, realizations above [below] the

central tendency should be observed more often in the presence of an upward

[downward] risk. If it turns out that this is not the case, the risk forecasts are not

informative.

In this work, we attempt to identify methods which are suitable for the evalu-

1Authors: Malte Knüppel and Guido Schultefrankenfeld, Deutsche Bundesbank, Research
Centre, Wilhelm-Epstein-Straße 14, D-60431 Frankfurt am Main, Germany. Corresponding au-
thor: malte.knueppel@bundesbank.de. The authors would like to thank Heinz Herrmann and
Karl-Heinz Tödter for very helpful comments and discussions. This paper represents the authors’
personal opinions and does not necessarily re�ect the views of the Deutsche Bundesbank.

2To be more precise, a risk is usually de�ned as an important event which, in case of its
occurrence, would lead to a change of the central forecast. For example, the risk of an oil supply
plunge would constitute an upward risk to the in�ation forecasts. Of course, there might be
several di�erent risks to a forecast. If the upward [downward] risks dominate, it is often said
that the balance of risks is tilted to the upside [downside]. Instead of using the expression
“balance of risks”, in this work we simply speak of upward or downward risks.

3This fact might be surprising, but many central banks and other institutions indeed explicitly
state that their published point forecasts refer to the mode of the forecast density or, equivalently,
to the most likely outcome. See Knüppel & Schultefrankenfeld (2011) for a survey.
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Figure 1: Two of the Bank of England’s density forecasts for in�ation. The forecast
in the left panel implies an upward risk (mean � mode), the one in the right panel
a downward risk (mean � mode).

ation of risk forecasts, focusing on tests for risk forecast optimality. Risk forecasts

can be regarded as point forecasts, because the asymmetry of a density is usually

summarized by a single parameter. While there is a vast literature concerning the

evaluation of point forecasts, we are not aware of any work which focuses on the

speci�c nature of macroeconomic risk forecast evaluation.

Macroeconomic risk forecast evaluation has to deal with several issues. First, a

choice has to be made concerning the parameter which is supposed to measure the

asymmetry of the density forecast. Also, it has to be considered how the corre-

sponding parameter re�ecting the asymmetry of the true forecast density could be

measured. Moreover, evaluations of macroeconomic risk forecasts typically have

to deal with the small sample sizes of risk forecasts. In addition, the risks that are

forecast are usually not very large, either. Finally, many institutions do not quan-

tify the risk, i.e� the asymmetry of the forecast density, but only give the direction

2



of the risk. That is, these institutions state that there is an upward or downward

risk to their forecasts, or that the risks are balanced, but they do not reveal the

magnitude of the forecast risks. Due to small samples and only moderate asym-

metries of the forecast densities, the power of tests for risk forecast optimality can

be expected to be rather low, amplifying the importance of power considerations.

Therefore, this study focuses on a careful analysis of the power properties of these

tests.

In what follows, we are concerned with the partial optimality of forecasts,

where partial optimality is de�ned as in Diebold & Lopez (1996). As mentioned

by Diebold & Lopez (1996), the original concept of partial optimality refers to

optimality conditional on the information set being used by the forecaster and

goes back to Brown & Maital (1981).4 When we speak of optimality in this study,

we always mean partial optimality with respect to the information set that is given

by the independent variable(s) of a certain regression.

2 How to Measure the Forecast Risk?

In principle, the optimality of quantitative risk forecasts can be investigated in

a similar way as the optimality of conditional mean forecasts. That is, in the

regression

�̃ = �+ ��̂ + 	
 (1)

where �̂ is the risk forecast and �̃ is the realized risk, the joint null hypothesis

� = 0
 � = 1 can be tested. If the risk forecasts are not optimal, the null hypothesis

4Therefore, it would actually seem more plausible to speak of conditional optimality instead
of partial optimality.
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should be rejected.

The major question here is how to measure risk. Since, in macroeconomic

forecasting, the balance of risks is related to the skewness of the forecast density,

measures of skewness are natural candidates for the measurement of risk. In what

follows, we consider the third standardized moment (henceforth standard skew-

ness) and the Pearson mode skewness of the density forecast. While the standard

skewness measure is more familiar to statisticians, the Pearson mode skewness

is more directly related to many macroeconomic forecasts by institutions which

quantify risks in terms of the mean-mode di�erence. Interestingly, as described in

Knüppel & Schultefrankenfeld (2011), these institution mostly focus on the mode

as measure of the central tendency of their forecasts. Both measures of skewness

are standardized. This is an advantage if the volatility of the forecast variable

changes over time, or if the risk forecasts for di�erent variables or di�erent fore-

cast horizons are to be analyzed simultaneously, for example in a panel study.

Suppose that the parameters of the forecast density are known. Denote the

expectation of the variable of interest by � and the corresponding mode by ��

Then, using standard skewness as the measure of risk, the forecast risk �̂ for the

random variable �
 henceforth denoted by ̂ 
 is given by

�̂ = ̂ � �
£
(� � �)3

¤
�3




where � denotes the standard deviation of � , the variable to be forecast. The
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realized risk �̃ of observation �5, henceforth denoted by ̃ 
 is then given by

�̃ = ̃ � (� � �)3

�3
�

Employing the de�nition of the Pearson mode skewness gives the forecast risk

�̂
 henceforth denoted by �̂


�̂ = �̂ � � [� ]��

�
=
���

�



and the corresponding realized risk of observation �, henceforth denoted by �̃


�̃ = �̃ � � ��

�
�

Both measures of realized risk depend on a location parameter, just as the usual

measure of the realized forecast error which would be given by (� � �). In addition,

both measures depend on the standard deviation of the forecast variable.

A choice of the risk measure to be employed might be based on the power prop-

erties of tests for the optimality of risk forecasts in small samples. We attempt to

�nd out which risk measure implies a larger power of the tests. To this end, we

conduct a Monte Carlo study using the two-piece normal distribution (henceforth

tpn distribution) as described, among others, by Wallis (2004). We use this type

of distribution because it is employed by several institutions which publish macro-

economic risk forecasts, like the Bank of England or the International Monetary

5We apply the usual notation where upper case letters denote random variables and the
corresponding lower case letters denote their realizations.
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Fund.6 The density of a tpn-distributed variable � is given by

� (�) =

���
��

� exp
³
� (���)2

2�21

´
if � � �

� exp
³
� (���)2

2�22

´
if � � �


with � = 2�
2�(�1+�2)

. Its expectation �, variance �2, and third central moment

equal

� [�] = � = �+

r
2

�
(�2 � �1) (2)

�
£
(� � �)2

¤
= �2 =

μ
1� 2

�

¶
(�2 � �1)

2 + �1�2

�
£
(� � �)3

¤
=

r
2

�
(�2 � �1)

μμ
4

�
� 1
¶
(�2 � �1)

2 + �1�2

¶
�

In what follows, without loss of generality, we will restrict the analyses to the case

of a zero mode, i.e� to the case

� = 0�

We consider tpn-distributed variables which, in addition, ful�ll the restrictions

�2 = 1 (3)

�2 = ��1

where � is varied from 1 to 4.7 A standard normal distribution is obtained when

� equals 1, and the more � di�ers from 1, the more asymmetric is the resulting

6The densities displayed in Figure 1 are densities of the two-piece normal distribution. Yet,
there are of course many other types of distribution that could also be used. Classes of poten-
tially asymmetric distributions can be found inter alia in Ramberg & Schmeiser (1974), Todd
C. Headrick & Sheng (2008) or Knüppel & Tödter (2007).

7In principle, we could also consider values 0 � � � 1.
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density.

For each �
 we simulate � tpn-distributed variables and estimate the parame-

ters �� and �� in the equations

̃ � = �� ̂ � + 	�	� (4)

�̃� = ���̂� + 	�	�

for � = 1
 2
 � � � 
 � by OLS where 	�	� and 	�	� are iid and have an expectation

of zero. So, in contrast to equation (1), we assume that � equals zero, which

simpli�es the following study.

While � is varied from 1 to 4 with increments of 0�25, we assume that the risk

forecaster forecasts � = 2 for all � variables. Using (2) and (3) it can be shown

that � = 2 implies

̂ � =

�
2

(3� � 2) 32
(� + 4) � 0�50

�̂� =

�
2�

3� � 2 � 0�52

for � = 1
 2
 � � � 
 � . For the calculation of ̃ � and �̃�, we use, for each �, the true

values of the mode � = 0
 the mean �, and the variance �2
 so that ̃ � and �̃� are

determined by

̃ � =
(�� � �)3

�
= (�� � �)3

�̃� =
�� ��

�
= ��
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� 1�00 1�25 1�50 1�75 2�00 2�25 2�50 2�75 3�00 3�25 3�50 3�75 4�00

� � = � [�̃ �] 0�00 0�18 0�31 0�42 0�50 0�56 0�62 0�66 0�69 0�72 0�75 0�77 0�79

�� = �
h
�̃�

i
0�00 0�18 0�32 0�43 0�52 0�59 0�66 0�71 0�76 0�80 0�83 0�86 0�89

Table 1: Expected standard skewness and Pearson mode skewness depending on
�.

for � = 1
 2
 � � � 
 � . Thus, for each �, the equations to be estimated become

(�� � �)3 = �� · 0�50 + 	�	�

�� = �� · 0�52 + 	�	��

The null hypotheses for optimal forecasts are given by �� = 1 and �� = 1. The

forecasts are optimal only if � = 2. We use a �-test with a nominal size of 5%.

Of course, the estimators �̂� and �̂� are not �-distributed, because 	�	� and 	�	� as

well as �� are not normally distributed, but the �-test should work well at least

asymptotically. The expected values of ̃ � and �̃�,  � and ��, are shown in Table

1. Interestingly, both measures of skewness are quite similar for given values of �

unless � becomes large.

The power curves of the optimality tests are plotted in Figure 2.8 Obviously,

the optimality test based on standard skewness performs extremely badly for small

sample sizes. The power curve for � = 20 is essentially �at, equalling about 0.15

for all values of � considered. For � = 40 and � = 100
 the curves are downward

sloping also in the range 2 � � � 4. Even for � = 1000, the test appears to

reject slightly more often at � = 2�25 than at � = 2 and only reaches a rejection

probability of about 40% for � = 4. Only for � = 5000 the test seems to be

8They are based on simulations with 10,000 observations for each point of each power curve.
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unbiased, although this conclusion might change if a �ner grid for � was used.

In contrast to that, the optimality test based on the Pearson mode skewness

works reasonably well in small samples. For � = 20, its power is not very large,

reaching up to about 60% if the density is standard normal, i.e� if � = 1. However,

its size is close to 5%, although 	�	� is not normally distributed. For � = 40, the

power at � = 1 increases to about 90%, and for � = 100 to 100%. In both cases

the test has approximately the correct size. For � = 1000 and � = 5000
 the

power is large for all � 6= 2 considered and the empirical size is close to 5%.
These results show that tests for the optimality of risk forecasts based on the

standard skewness are not useful in small samples. Optimality tests based on the

Pearson mode skewness, however, seem to yield fairly satisfactory results even in

small samples. In what follows, skewness will refer to the Pearson mode skewness,

not to the standard measure of skewness based on third moments.

3 Testing the Optimality of Macroeconomic Risk

Forecasts in Practice

The examples given above show that the Pearson mode skewness is a more promis-

ing measure of asymmetry than the standard skewness if risk forecast optimality is

to be tested. However, the examples in the previous section are highly stylized for

several reasons. For example, � and hence the value of the Pearson mode skewness

�̂ does not vary within the sample. Moreover, mode and standard deviation are

known to the forecaster. In addition, the risk forecasts are quantitative, whereas in

practice, many institutions only publish the direction of the forecast risk. There-

9
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Figure 2: Rejection probabilities of two tests for risk forecast optimality with
nominal size equal to 5%� The null hypothesis is � = 2.
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fore, in what follows we will study the size and power of the optimality tests under

more realistic conditions.

Another problem likely to be encountered in practice is given by the serial

correlation of realized risks at least for forecast horizons larger than one. This

problem can be addressed by using Newey & West (1987) standard errors. As this

approach is well-known, we will not elaborate on this issue.

3.1 Varying Asymmetry

Instead of assuming that the true skewness � as well as the forecast skewness �̂ are

�xed for all � = 1
 2
 ���
 � , we will now assume that they are uniformly distributed

over the interval
£��̄
 �̄¤. Given a tpn-distribution, the largest possible value for

�̄ equals 1�32�9 However, such a large value is rather unlikely to be encountered

in practice, since it would imply a folded normal distribution, meaning that the

realization is going to be larger than the mode with certainty. The absolute values

for �̂ found in the sample of risk forecasts by central banks studied in Knüppel

& Schultefrankenfeld (2011) do not exceed 0�5. Moreover, the number of non-zero

risk forecasts in that sample hardly exceeds 30 per forecast horizon, so that we

will focus on samples of that size.

In the following Monte Carlo simulations, we consider two cases. In the �rst

case, the true risks �� are independent of the risk forecasts �̂�, so that the risk

forecasts have no information content. In the second case, the risk forecasts are

optimal, i.e. �� = �̂� holds. For both cases, we simulate � tpn-distributed vari-

9The exact number is given by max
¡
�̄
¢
=
q

2��
1�2�� �
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ables10 and estimate the parameter � in the equation

�̃� = ��̂� + 	�	� (5)

with � = 1
 2
 � � � 
 � as above in equation (4). However, in contrast to the sim-

ulations above, here in general �̂� 6= �̂
 holds for � 6= �. If the risk forecasts are

optimal, �̃� is drawn from a tpn-distribution with skewness equal to �̂� where the

parameter �̂� is drawn from a uniform distribution over the interval
£��̄
 �̄¤ � If

the risk forecasts have no information content, �̃� is drawn from a tpn-distribution

with skewness ��, where �� is drawn from a uniform distribution over the interval£��̄
 �̄¤ 
 and �̂� is drawn independently from the same distribution.11

We test the hypotheses of no information content (� = 0) and of optimal risk

forecasts (� = 1) at a level of signi�cance of 5% and for various values of � , but

focusing on � = 30. We do so for �ve distinct values of �̄
 ranging from 0�25

to 1�32. The rejection probabilities, based on 10,000 simulations12, are displayed

in Table 2. Apparently, the optimality tests have the correct size. Their power,

however, can be quite low if the largest possible value of the true and the forecast

risks is low. When � = 30, with �̂� coming from the interval [�0�25
 0�25]
 (and in
the case � = 0 with �� coming from the same interval,) the wrong null is rejected

only in 12% of all simulations. In case that �̄ equals 0.5, this number increases

to slightly more than 30%. Only if the interval includes more extreme values of

10Given a value for �� and � = 1, the corresponding values of �1 and �2 can be calculated as

�1 =
q¡
1� 3

8�
¢
�2� + 1�

q
1
8��� and �2 =

q¡
1� 3

8�
¢
�2� + 1 +

q
1
8���

11Alternatively, in case of no information content, �� could be drawn from a symmetric dis-
tribution. Using the standard normal distribution, we �nd results which are similar to those
reported below.
12This holds for all following Monte Carlo simulations as well.
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� = 0 � = 1

�̄ � �0: � = 0 �0: � = 1 �0: � = 0 �0: � = 1

0�25 30 0�05 0�12 0�12 0�05
0�50 30 0�05 0�31 0�32 0�05
0�75 30 0�05 0�56 0�63 0�05
1�00 30 0�05 0�74 0�88 0�05
1�32 30 0�05 0�88 0�99 0�05

0�50 50 0�05 0�49 0�52 0�06
0�50 100 0�05 0�78 0�81 0�05
0�50 200 0�05 0�97 0�98 0�05

Table 2: Size and power of tests for optimality of risk forecasts. Skewness is
uniformly distributed over interval

£��̄
 �̄¤. The nominal size of the tests is 5%.
Rejection probabilities are based on 10,000 simulations.

skewness the power of the tests increases to more satisfactory levels, reaching

almost 100% if the forecasts are optimal and �̄ equals 1.32. Given �̄ = 0�5, one

needs about 200 observations to reach a comparable power.

3.2 Unknown Mode and Standard Deviation

In practice, additional complications arise from the fact that the mode � as well

the standard deviation � of the forecast density are potentially time-varying and

unknown. Therefore �� and �� have to be predicted themselves. So a risk forecast

actually consists of three elements: the forecast mode, the di�erence between the

forecast mean and forecast mode, and the forecast standard deviation.

So the question arises how problems with forecasting the mode or the standard

deviation a�ect the results of tests for risk forecast optimality. Suppose, for exam-

ple, that the forecaster optimally forecasts the di�erence between the mode and

the mean as well as the standard deviation, but the mode forecasts are biased. If,

13



in this case, a test for risk forecast optimality would reject the null of optimality

due to the biased mode forecast, its result would be misleading.

Denote the mode forecast by �̂�, the mean forecast by �̂� and the standard

deviation forecast by �̂�. The equation used in order to test for risk forecast

optimality is then given by

�� � �̂�

�̂�
= �+ �

�̂� � �̂�

�̂�
+ 	�� (6)

Assume that the forecast mode and the forecast standard deviation are related to

the true mode �� and standard deviation �� according to

�̂� = �� + �� + ��	� (7)

�̂� = �� +�� + ��	�

where ��	� and ��	� are iid zero-mean error terms with �nite variances ��� and

���.
13 If �� and �� equal zero, the forecasts of mode and standard deviation are

unbiased.

Suppose that the forecast standard deviation �̂� is equal to the true standard

deviation �� and substitute for �̂� on the left-hand side of equation (6). This yields

�� ���

��
� ��

��
= �+ �

�̂� � �̂�

��
+ 	� +

��	�
��

�

Note that we do not need to substitute for �̂� on the right-hand side of equation

(6), because (�̂� � �̂�) ��� = (�̂� � �̂�) ��̂� correctly measures the risk forecast.

Assuming, for the sake of simplicity, that �� = � holds, this equation implies that

13In addition, the support of 	��� must be bounded from below such that min (�̂�) 
 0 holds.
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the estimators for � and � in equation (6) converge to

���� (�̂) = ���
�
+ �

����
³
�̂
´
= ��

Now suppose that the forecast mode �̂� is equal to the true mode�� and substitute

for �̂� on the left-hand side of (6). This gives

�� ���

�� + �� + ��	�
= �+ �

�̂� ���

�̂�
+ 	��

Again, we we do not need to substitute for �̂� on the right-hand side of (6), because

(�̂� ���) ��̂� = (�̂� � �̂�) ��̂� correctly measures the risk forecast. Using the linear

approximation
�� ���

�� + �� + ��	�
� �� ���

��

μ
1� ��

��
� ��	�

��

¶
(8)

and assuming that �� = � holds, it follows that

���� (�̂) � �
³
1� ��

�

´
(9)

����
³
�̂
´
� �

³
1� ��

�

´
�

So if �� � 0, both estimates will be biased towards zero, and if �� � 0, both

estimates will be biased away from zero. Yet, if � is close to zero, the bias will

tend to be negligible for the estimate �̂.

Given these results, a careful analysis of risk forecasts should �rstly check for

bias in the forecasts of mode and standard deviation. Unfortunately, without

further assumptions it is unfeasible to evaluate the bias of mode forecasts. One

15



might assume that the risks are balanced on average, so that �
£�����

�

¤
= 0 holds,

implying � [��] = � [��]. In this case, one could test for the bias of mode forecasts

in the same way as for the bias of mean forecasts.14 If one is unwilling to make the

assumption of balanced risks on average, one might just focus on the bias of the

standard deviation and concentrate on tests of hypotheses about �.15 Of course,

a potential bias of the risk forecasts given by � 6= 0 will remain undetected in this
case.

If the forecasts of mode and standard deviation are unbiased, the main di�er-

ence with respect to the results of the Monte Carlo simulations conducted above is

mostly a loss of power. Results of Monte Carlo simulations where mode and stan-

dard deviation are unknown are presented in Table 3. The parameter �̄� denotes

the limits of the interval (��̄�
 �̄�) of the uniform distribution from which �� is

drawn. �� is drawn from a normal distribution. The true standard deviation is

given by �� = 1 and the true mode by �� = 0. Moreover, as in most simulations

above, � = 30 and �̄ = 0�5.

The results con�rm the considerations from above. Tests about � can su�er

14If the standard deviation can vary, one would need the additional assumption that (�� ���)

and �� are independent, because then �
h
�����

��

i
= 1

	[��]
� [�� ���] holds, so that �

h
�����

��

i
= 0

continues to imply � [�� ���] = 0.

Otherwise, �
h
�����

��

i
= 0 would still imply �

h
��

��

i
= �

h
��
��

i
. So one could test the hypothesis

�
h
��

��

i
= 0� However, note that the standard test for the bias of a mean forecast should actually

be based on the regression 
�
��
� ��

��
=  + �� instead of �� � �� =  + ��. Yet, it is always

the latter equation that is employed. This approach could be justi�ed if �� hardly varies or
if heteroskedasticity-consistent standard errors are used. In any case, it does not seem too
problematic to use the regression �� ��� = + �� as well for testing the bias of mode forecasts
in case of balanced risks.
15Another possible but even more restrictive assumption would be given by the constancy of

the mode, i.e. by � = ��. In this case, kernel density estimation would be needed to estimate
�.
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 = 0� � = 0  = 0� � = 1

�0 is �0 is

�� ��� �� 	̄� ̂ �̂ � = 0 � = 1 ̂ �̂ � = 0 � = 1

0 0 0 0 0�00 �0�01 0�05 0�31 0�00 1�00 0�31 0�04
0�3 0 0 0 �0�30 0�00 0�05 0�31 �0�30 1�01 0�32 0�05
0 0�5 0 0 0�00 0�01 0�05 0�25 0�00 0�99 0�26 0�05
0 0 0�3 0 0�00 0�00 0�05 0�47 0�00 0�77 0�31 0�08
0 0 0 0�25 0�00 �0�01 0�05 0�29 0�00 1�02 0�30 0�05
0�3 0�5 0 0�25 �0�31 0�01 0�05 0�25 �0�31 1�01 0�25 0�05

Table 3: Size and power of test for optimality of risk forecasts if mode and standard
deviation are unknown. Skewness is uniformly distributed over interval [�0�5
 0�5].
Sample size � equals 30. The nominal size of the tests is 5%. Rejection probabil-
ities are based on 10,000 simulations.

from size distortions if �� 6= 0, because then ����
³
�̂
´
6= �.16

3.3 Direction-of-Risk Forecasts

If risk forecasts are only qualitative, i.e. only the direction of the risk is forecast

but not its magnitude, it is nevertheless possible to conduct tests for forecast

optimality. In this case, the realized and the forecast risks are categorical variables.

Even if the risk forecasts are quantitative, a transformation of quantitative risks

(interval variables) to qualitative risks (categorical variables) might be interesting

if the focus rather lies on the direction of the risks.

Actually, in the case of qualitative risk forecasts, there are only two possible

outcomes: success (direction of forecast risk equals direction of realized risk) and

failure (direction of forecast risk di�ers from direction of realized risk). Therefore,

one could use tests based on the binomial distribution. However, in empirical

applications one is most likely going to be confronted with the problem of serial

16Note that �̂ on average equals 0�77, di�ering slightly from the value 0�70 implied by equation
(9), because the latter result is based on an approximation.
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correlation. This problem can be addressed more easily if the categorical variables

are analyzed in a regression context.17

Recode the realized and forecast risks according to

 ̃� =

���
��
1 if �̃� � 0

0 if �̃� � 0

 (10)

and

 ̂� =

���
��
1 if �̂� � 0

0 if �̂� � 0
� (11)

Then tests for forecast optimality can be based on the regression

 ̃� = �+ � ̂� + 		�� (12)

Obviously, if the risk forecasts have no information content, � equals zero. If the

risk forecasts are optimal, � is larger than zero but, in contrast to �
 it is not

equal to one in general. This is due to the fact that, even if the forecast density

is strongly skewed, there is still a positive probability mass on each side of the

mode.18 However, necessary (though not su�cient) conditions for risk forecast

optimality could be tested using one-sided tests. If the risk forecasts are optimal,

the null hypothesis � � 0 should be rejected, whereas the null hypothesis � � 0
should not. Note that optimal forecasts do not imply � = 0�

We use the same Monte Carlo simulation design as for the results in Table 2 in

order to obtain information about the rejection probabilities. That is, we simulate

17See Pesaran & Timmermann (2009).
18Only in the special case of a folded normal distribution, i.e. the case � = ±

q
2��
1�2�� , optimal

risk forecasts would always correctly predict the direction of the realized risk.
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�̃� and �̂� as in Section 3.1, and we construct the variables  ̃� and  ̂� according

to equations (10) and (11). Then we estimate equation (12) and test hypotheses

about �. The results are displayed in Table 4. Here, the sample size � always

equals 30, and the nominal size of the tests is again 5%.

If the risk forecasts have no information content, � equals zero and the null

hypotheses about � (� = 0, � � 0, � � 0) have the correct size. If the

risk forecasts are optimal, � is positive, but can be close to zero if �̄ is small.

Consequently, the null hypothesis � = 0 can hardly be rejected if �̄ is small. The

power of the test only marginally exceeds its nominal size if �̄ = 0�25.

The results show that it is preferable to conduct tests for risk forecast optimality

based on quantitative risk forecasts if available. For example, according to Table 2

the power of the test for � = 0 if � = 1 is 33% if �̄ = 0�5� This is considerably larger

than the 13% attained with qualitative risk forecasts and the test for � = 0.

If � = 1, the one-sided test for � � 0 of course rejects more often than the

test for � = 0, but its power is not very large either. For example, it rejects in

22% of the simulations if �̄ = 0�5. Given � = 1, the one-sided test for � � 0

hardly ever rejects even if �̄ is small.

The 95% con�dence intervals for the estimate of � interestingly include neg-

ative values unless �̄ is very large. This implies that, even if the risk forecasts are

optimal, it is not unlikely to observe more failures than successes of the qualitative

risk forecasts in small samples.

One might expect that the fact that mode and standard deviation are unknown

further reduces the power of the tests if qualitative risk forecasts are analyzed.

This, however, is not always the case. If the realized risks are transformed to
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� = 0 � = 1

�0 is �0 is

�̄ �� �� = 0 �� � 0 �� � 0 �� �� = 0 �� � 0 �� � 0 95% CI for �̂�

0�25 0 0�05 0�05 0�05 0�08 0�06 0�11 0�02 (�0�28� 0�43)
0�50 0 0�05 0�05 0�05 0�16 0�13 0�22 0�01 (�0�20� 0�50)
0�75 0 0�05 0�05 0�05 0�24 0�25 0�38 0�00 (�0�13� 0�59)
1�00 0 0�05 0�05 0�05 0�33 0�43 0�56 0�00 (�0�02� 0�66)
1�32 0 0�05 0�05 0�05 0�45 0�72 0�82 0�00 (0�11� 0�75)

Table 4: Size and power of tests for optimality of risk forecasts. Skewness is
uniformly distributed over interval

£��̄
 �̄¤. Sample size� equals 30. The nominal
size of all tests is 5%. CI stands for con�dence interval.

categorical variables according to

 ̃� =

���
��
1 if ����̂�

�̂�
� 0

0 if ����̂�

�̂�
� 0

and the forecast risks according to equation (11), the fact that the standard devi-

ation is unknown and thus has to be forecast is not problematic. This is because

in the case of categorical variables, only the sign of (�� � �̂�) ��̂� matters. This

sign does obviously not depend on the forecast of �̂�. The mode forecast, however,

can a�ect the size and the power of the tests for forecast optimality.

Several results of Monte Carlo simulations can be found in Table 5. Here �� is

drawn from a normal distribution. The true standard deviation is given by �� = 1

and the true mode by�� = 0. Moreover, � = 30 and �̄ = 0�5. The e�ects of mode

forecast errors on �̂ are non-linear in case of categorical variables.
19 In general,

it seems that only large deviations from �� = 0 and ���= 0 have a noticeable

19For example, with known mode, i.e. �� = 0 and ���= 0, �� in equation (12) equals 0�16.
With �� = 0�6, the estimate of �� hardly changes, decreasing to 0�15� With �� = 1�2, the
estimate of �� drops to 0�11 and with �� = 1�8 to 0�05.
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� = 0
 � = 0 � = 0
 � = 1

� = 0 �0 is � = 0�16 �0 is

�� ��� �̂ � = 0 �̂ � = 0 95% CI for �̂

0 0 0�00 0�05 0�16 0�13 (�0�20
 0�52)
0�3 0 0�00 0�05 0�15 0�14 (�0�20
 0�50)
0�6 0 0�00 0�05 0�15 0�14 (�0�17
 0�47)
1�2 0 0�00 0�03 0�11 0�11 (�0�12
 0�35)
1�8 0 0�00 0�01 0�05 0�02 (�0�08
 0�21)
0 0�5 0�00 0�05 0�15 0�13 (�0�21
 0�50)
0 2�0 0�00 0�05 0�08 0�07 (�0�28
 0�45)
0�3 0�5 0�00 0�05 0�15 0�12 (�0�20
 0�48)

Table 5: Size and power of test for optimality of categorical risk forecasts if modes
and standard deviations are unknown. Skewness is uniformly distributed over the
interval [�0�5
 0�5]. Sample size � equals 30. The nominal size of all tests is 5%.
CI stands for con�dence interval.

e�ect on the size and power of tests for risk forecast optimality if qualitative risk

forecasts are analyzed.20

3.4 An Alternative Test for Risk Forecast Optimality?

One might think that an alternative way of testing the optimality of risk forecasts

would be given by using a standard test for mean forecast optimality, i.e. testing

the null hypothesis � = 0 and � = 1 in the regression �� = �+��̂�+	�, where 	� is

an error term. This alternative test could work, because, if the null hypothesis is

true, this implies that (�� ���) ��� = (�̂� ���) ��� + 	���� holds, independently

of the properties of the forecasts �̂� and �̂�. So this test might seem preferable if

one wants to circumvent problems arising from forecasting �� and ��� However,

20In the most extreme case, �� can deviate so strongly from zero that the dependent variable
becomes a constant, because one would always observe a downward risk if �� is very large or an
upward risk if �� is very small.
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it turns out that strong deviations from risk forecast optimality can easily remain

undetected by standard tests of forecast optimality.

Consider the following case: Suppose that �̂� = �� and that �̂� = ��. Suppose

further that the risk forecasts are given by �̂� � �̂� = ! (�� ���). So if ! � 1, the

magnitude of risk is overestimated, whereas if 0 � ! � 1, the magnitude of risk is

underestimated. This implies that the mean forecast, given by �̂� = �̂�+(�̂� � �̂�),

equals

�̂� = �̂� + ! (�� ���) = (1� !)�� + !���

For the sake of simplicity, also assume that � [��] = � [��] = 0. The condition

� [��] = � [��] implies that the (unscaled) risks are balanced on average.

Even if ! strongly di�ers from 1, i.e if the risk forecasts are strongly non-

optimal, it might be very di�cult to detect that �̂� 6= ��. Firstly, since � [��] =

� [��] holds, � [�̂�] = � [��] holds as well. Secondly, the correlation between

�̂� and �� can be very large even if ! strongly di�ers from 1. Assuming that

"#$ [��
 �� ���] = 0, the correlation equals

� [�̂���]q
�
£
�̂2�
¤
� [�2� ]

=
�2� + !�2���q¡

!2�2��� + �2�
¢ ¡
�2��� + �2�

¢ (13)

where �2� denotes the variance of the mode and �
2
��� denotes the variance of the

unscaled risk, i.e. the variance of the di�erence between mode and mean.21 If

�2��� is small compared to �
2
�, this correlation will be close to 1 even if ! strongly

di�ers from 1.

As an example, consider the in�ation nowcasts of the Bank of England stud-

21See Appendix A for details.
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ied in Knüppel & Schultefrankenfeld (2011).22 The variance of the unscaled risk

forecasts, i.e. of the mean-mode di�erence equals 0�0022, whereas the variance of

the mode forecasts equals 0�4704. Assuming that these values are good estimates

of the true variances of mode and unscaled risk, the variance of the mode is more

than 200 times larger than the variance of the unscaled risk. Even if the risk

forecasts contain no information, so that ! = 0, the correlation between between

�̂� and �� would equal 0�9975� When testing the null hypothesis � = 0 and � = 1

in the regression �� = �+��̂�+�� in such a case, one will need an extremely large

number of observations to obtain an acceptable power of the test. With � = 30,

the power of the test is virtually identical to its size.23

4 Conclusion

In this work, we have investigated several issues arising when evaluating macroeco-

nomic risk forecasts, focusing on tests for the optimality of these forecasts. Such

tests are confronted with the problems of small samples, at best moderate risks

(i.e. asymmetries) and potentially only categorical instead of quantitative risk

forecasts. Although all simulation results presented rest on certain assumptions

like the tpn-distribution of the densities and the uniform distribution for the risks,

they nevertheless clearly show that one should not expect too much power of the

optimality tests for risk forecasts. However, they also give guidance in order for

the tests to have the correct size and as much power as possible under the given

circumstances.
22For these nowcasts, the assumption �̂� = �� might be a good approximation to the more

realistic relation �̂� = ��+	���, because the variance of the mode forecasts is much larger than
the variance of the forecast density. The latter can be thought of as a proxy for �

£
	2���

¤
.

23Results of Monte Carlo simulations are available on request.
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We �nd that the asymmetry of the risk forecasts should not be measured by the

standard coe�cient of skewness, because the power of the test would be extremely

low in this case. Instead, the Pearson mode skewness is preferable yielding much

larger power in small samples. The asymmetry of the true density then has to

be measured using the forecasts of mode and standard deviation. This can cause

problems in terms of power loss if these forecasts are imprecise and in terms of

size distortions if these forecasts are biased.

In order to evaluate the bias of the mode forecasts, potentially problematic

assumptions are required. If these assumptions are to be avoided, tests for risk

forecast optimality can still be conducted if the null hypothesis of the test is modi-

�ed. That is, from the composite null hypothesis about the constant and the slope

parameter, one can exclude the hypothesis about the constant and concentrate

on the slope parameter only, because the estimate of the slope parameter remains

una�ected by a potential bias of the mode forecasts.

If the risk forecasts are available on a categorical basis only, the tests su�er

from a further loss in power. However, they are not a�ected by the potential

impreciseness of the forecast standard deviation.

Considering the relation of standard tests for mean forecast optimality and risk

forecast optimality, one might think that the results of these standard tests contain

information about risk forecast optimality. While this is true in principle, we �nd

that in practice the results of these standard tests should not be interpreted in

terms of risk forecast optimality.

In order to tackle the problem of potentially low power, risk forecasts could pos-

sibly better be evaluated in a panel setup. This may be feasible if the risk forecasts

for a certain variable are, for example, available for several forecast horizons.
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A Appendix: Correlation of �̂� and ��

As stated in the text, suppose that �̂� = �� and that �̂� = ��, and that the risk

forecasts are given by �̂���̂�

��
= ! �����

��
. This implies that the mean forecast, given

by �̂� = �̂� + ��
�̂���̂�

��
, equals

�̂� = �̂� + ! (�� ���) �

Using the de�nition �� =
�����

��
, the true mean is given by

�� = �� + �����

Because of the non-restrictive assumption � [�̂�] = � [��] = 0, the correlation of

�̂� and �� equals

� [�̂���]q
�
£
�̂2�
¤
� [�2� ]

=
� [((1� !)�� + !��)��]q

�
£
((1� !)�� + !��)

2¤� [�2� ]
�

In addition, because of � [��] = � [��] and using the additional assumption

that the (unscaled) risk forecasts are uncorrelated with the mode forecasts, i.e.

"#$ [��
 ����] = "#$ [��
 �� ���] = 0, one obtains the expression

� [�̂���]q
�
£
�̂2�
¤
� [�2� ]

=
�
£
�2
� + ! (�� ���)

2¤q
�
£
!2 (�� ���)

2 +�2
�

¤
�
£
(�� ���)

2 +�2
�

¤ �

Using the de�nitions �2� = � [�2
� ] and �

2
��� = �

£
(�� ���)

2¤ gives equation (13).
The assumption "#$ [��
 �� ���] = 0 could be problematic if, for example,

downwards risks tend to prevail when the mode is above its average. However, ac-
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cording to the Bank of England data used in Knüppel & Schultefrankenfeld (2011),

at least the correlation of the forecast modes and unscaled risks "#�� [�̂�
 �̂� � �̂�]

is close to zero, ranging between�0�18 and 0�15, depending on the forecast horizon.
Moreover, as long as the variance ratio �2���

2
��� is large, the e�ect of a non-zero

covariance "#$ [��
 �� ���] on the correlation of �̂� and �� is very limited.
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