Rivalry and innovation races

Tübinger Diskussionsbeiträge, No. 236

Provided in Cooperation with:
University of Tübingen, School of Business and Economics

Suggested Citation: Kukuk, Martin; Stadler, Manfred (2002) : Rivalry and innovation races, Tübinger Diskussionsbeiträge, No. 236, Eberhard Karls Universität Tübingen, Wirtschaftswissenschaftliche Fakultät, Tübingen, http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-19210

This Version is available at:
http://hdl.handle.net/10419/47548

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Rivalry and Innovation Races

Martin Kukuk and Manfred Stadler

Tübinger Diskussionsbeitrag Nr. 236
März 2002
Rivalry and Innovation Races

Martin Kukuka) and Manfred Stadlera)b)

Abstract

Based on an extended game-theoretic innovation-race model, we derive some Schumpeterian hypotheses of the impact of technological rivalry, market power, technological opportunities and market size on the timing of product and process innovations. Using innovation data at the firm level in the German industrial sector, we estimate various versions of an econometric specification of the model with dichotomous innovation data by using a univariate binary probit model with qualitative regressor variables. Our empirical results are consistent with the derived hypotheses that intense rivalry, favorable technological opportunities and high demand expectations spur innovative activity, while the effect of market power is ambiguous.

Keywords: Innovation Races, Market Structure, Indirect Inference Estimation

JEL classification: O31, L13, C42

a) University of Tübingen, Department of Economics, Mohlstraße 36, D-72074 Tübingen, Germany. E-mail: martin.kukuk@uni-tuebingen.de and manfred.stadler@uni-tuebingen.de

Homepage: http://www.uni-tuebingen.de/vwl5/index_en.html

b) Corresponding author: Tel. ++49-7071-2972122, Fax ++49-7071-295563
1 Introduction

Since Schumpeter’s seminal conjectures about the importance of technological rivalry and market power for the dynamics of innovation processes, the relationship between market structure and innovative activity has attracted a great deal of theoretical and empirical research. Modern game-theoretic models in the Industrial Organization literature treat innovative competition as a dynamic stochastic process. Firms are assumed to invest in R&D projects over time without being certain whether, or when, the projects will be completed.

One of the most successful attempts of modeling the innovation process is the game-theoretic innovation-race approach as originally introduced by Loury (1979), Dasgupta and Stiglitz (1980) and Lee and Wilde (1980). Especially the Lee and Wilde model is heavily used as a basic concept for multi-dimensional extensions in the Industrial Organization literature as well as in macroeconomic analyses of endogenous growth and trade. The model assumes that identical firms compete for a given innovation that, due to perfect patent protection, only yields profits to the first firm that introduces the new product or the new technology. While the winner of the race takes all, the losers get nothing and therefore suffer a loss given by the invested R&D expenditures which are cancelled as soon as the race is finished. As Delbono and Denicolo (1991) have pointed out, the standard innovation race relies on at least two inappropriate assumptions. Firstly, no firm participating in the race realizes flow profits in the pre-innovation market. Secondly, since innovations are considered as being drastic, the prize for the winner is not only exogenously given, but also independent of the post-innovation number of firms in the market. For the same reason, the losers cannot reap any profits which again implies that the number of firms does not influence profits in the post-innovation market.

For empirical reasons, we follow Delbono and Denicolo (1991) in assuming that firms realize flow profits during and after each innovation race where, of course, the profits of the winner will increase and the profits of the losers will decrease. Hence, at any point in time, oligopoly profits will depend on the number of firms in the relevant market. In their model with quantity-setting Cournot firms, Delbono and Denicolo (1991) show that the essential result derived by Lee and Wilde (1980), that an increase in the number of identical firms increases the Nash-equilibrium R&D activity, does not generally hold anymore. Instead, they derive conditions under
which R&D efforts will decrease with a rising number of firms. To a certain extent, this theoretical ambiguity coincides with the empirical evidence on the relationship between market power and innovative activity. As the empirical surveys by Baldwin and Scott (1987), Cohen and Levin (1989) and Cohen (1995) show, the influence of rivalry on innovative activity is, more than 60 years after Schumpeter’s conjectures, still an open question.

The objective of this paper is to theoretically and empirically reexamine the influence of technological rivalry, market power, technological opportunities, demand expectations and further possible explanation factors on the timing of innovations. Using an available innovation data set at the firm level, we are able to provide some new insights about the importance of these variables in explaining the dynamics of innovations. We therefore develop an empirically motivated version of the standard innovation race model which departs from the Delbono and Denicolo (1991) scenario in three important ways and, hence, yields some novel theoretical results interesting in its own right. Firstly, we distinguish between the number of rivals in the pre-innovation market and the number of technological rivals in the innovation race. This distinction, which can be justified for example by financial constraints of some firms, is appropriate since our survey data show that these two variables usually do not coincide. Secondly, we prefer an oligopoly model of price competition in heterogeneous markets since homogeneous markets are rarely found in reality. This allows us thirdly to consider not only cost-reducing process innovations, but also demand-stimulating product innovations both of which are included in our data set.

The remainder of the paper is organized as follows: In Section 2 we present our basic innovation-race model which is further specified in Section 3 to explain the expected timing of innovations in terms of technological rivalry, market power, technological opportunities and market size. In Section 4 we derive a tractable econometric specification which can be estimated using qualitative-dependent-variable models. A description of the data is given in Section 5. Section 6 presents the empirical results. Finally, Section 7 concludes.
2 The Innovation-Race Model

Following the game-theoretic innovation-race approach as suggested by Delbono and Denicolo (1991), we consider a given number of firms m, which compete for a product or process innovation. The time at which a firm i’s research project is completed is a random variable T_i which follows the exponential distribution

$$F_i(t) = 1 - e^{-h(x_i)t}.$$

The hazard rate $h(x_i) = \frac{\hat{F}_i(t)}{(1 - F_i(t))}$ defines the conditional probability of an innovation success in the marginal time interval $[t; t + dt]$ given that no success occurred until this time. The hazard rate is assumed to be an increasing function of variable R&D expenditures x_i. Even if Lee and Wilde (1980) originally allowed for the possibility of initial increasing returns to R&D, the standard textbook version of the model assumes a global concave hazard function (see, e.g. Tirole 1988, Martin 1993). According to the specification of Delbono and Denicolo (1991), we specify the square root function

$$h_i = 2\mu x_i^{0.5},$$

where μ represents the productivity of R&D activities reflecting the technological opportunities in the considered market. The expected time of completion of the innovation project can then be calculated as

$$E[T_i] = \int_0^\infty th(x_i)e^{-h(x_i)t}dt = 1/h(x_i) = 0.5\mu^{-1}x_i^{-0.5}.$$

The greater a firm’s research effort, the sooner the expected time of completion. In game-theoretic R&D models, research activities depend strategically on the activities of their rivals. To keep the model tractable, we again follow Delbono and Denicolo (1991) by assuming that all firms realize an equal pre-innovation profit flow and that only one further innovation is considered. The expected discounted profits of a firm i, net of R&D expenditures, can then be written as

$$\Pi_i(x_i) = \int_0^\infty e^{-(r+h_i+\hat{h}_i)t} \left[h_i\pi_W/r + \hat{h}_i\pi_L/r + \pi_0 - x_i \right] dt$$

$$= \frac{h_i\pi_W/r + \hat{h}_i\pi_L/r + \pi_0 - x_i}{r + h_i + \hat{h}_i}, \quad i = 1, \ldots, m.$$

(3)
where π_0 is the symmetric profit flow of all incumbent firms in the pre-innovation market, π_W is the post-innovation profit flow accruing forever to the winner of the innovation race, π_L is the corresponding post-innovation profit flow of the non-participants and the losers, $\hat{h}_i = \sum_{j \neq i} h(x_j)$ is the instantaneous probability that one of the $(m - 1)$ rivals of firm i innovates and r is the constant interest rate. Using the hazard function (1), the first-order conditions in the symmetric Nash-equilibrium can be derived as

$$\tilde{\mu}(2m - 1)x - [2\tilde{\mu}^2(m - 1)(\pi_W - \pi_L) - 1]x^{0.5} - \tilde{\mu}(\pi_W - \pi_0) = 0$$

(4)

where $\tilde{\mu} \equiv \mu/r$. Equation (4) determines the equilibrium R&D expenditures x^* as a function of the technological opportunities μ, the interest rate r, the intensity of rivalry m, and the flow profits $\pi_L < \pi_0 < \pi_W$. The term $(\pi_W - \pi_0)$ measures the pure „profit incentive“, that is the incentive to invest in R&D in the absence of rivalry. The term $(\pi_W - \pi_L)$ reflects the „competitive threat“ (Beath et al. 1989) in the innovation race. Each firm has to recognize that, should it fail to innovate, one of its rivals will succeed in realizing the innovation. In contrast to the Lee and Wilde (1980) model where there are no pre-innovation profits and no post-innovation profits of the losers, in the Delbono and Denicolo (1991) model, the presence of current profits and the fact that even the losers make positive profits in the post-innovation equilibrium induce firms to delay the expected date of innovation.

It can be shown that the symmetric equilibrium is unique and locally stable provided that $\partial N/\partial x < 0$, N denoting the left-hand side of (4), whereby this stability condition is generelly met for a wide class of hazard functions including the specification in equation (1).\footnote{See Nti (1999).} Thus, by implicitly differentiating (4), we derive the following unambiguous comparative static effects on the equilibrium R&D expenditures and, taking (2) into account, the expected completion times of the innovations:

Hypothesis 1: An increase in the technological opportunities μ or a decrease in the interest rate r will increase the equilibrium R&D effort and decrease the expected innovation time of each firm $(\partial E[T_i]/\partial \tilde{\mu} < 0)$.

Hypothesis 2: An increase in the intensity of innovation rivalry m will increase the equilibrium R&D effort and decrease the expected innovation time of each firm $(\partial E[T_i]/\partial m < 0)$.\footnote{See Nti (1999).}
As long as π_0, π_W and π_L do not depend on m, the derivatives of the competitive-threat and the profit-incentive terms with respect to m are zero and the comparative static market-structure effect is unambiguous. However, as Delbono and Denicolo (1991) have pointed out, if these flow profits also depend on m, the impact of rivalry on innovative efforts becomes ambiguous. To further analyze the model in this case, they derive reduced form profit flows resulting from a Cournot oligopoly. In order to develop an empirically tractable version of the innovation race model, we follow their modeling strategy but depart from some crucial assumptions in three ways: Firstly, we distinguish between the number of rivals n in the pre-innovation market and the number of technological rivals m in the innovation race and assume $m \leq n$. This distinction can be justified for example by financial constraints which hinder some of the competitors in the pre-innovation market from participating in the race and is appropriate to fit the data which show that these two variables usually do not coincide. Accordingly, the flow profits depend on n but not on m. Secondly, since all firms in our survey data set operate in more or less heterogeneous markets, we cannot deal with homogenous markets. Thus, we present an alternative oligopoly model of price competition in heterogeneous markets which complements the Cournot model used by Delbono and Denicolo (1991). The extension to heterogeneous markets allows us thirdly to consider not only cost-reducing process innovations but also demand-stimulating product innovations both of which are included in our data set.

3 An Illustrative Model of Price Competition

To analyze the subgame perfect equilibrium of the two-stage game where m firms compete in R&D in the first stage and n firms compete in prices in the second stage, we have to derive reduced-form functions for the profit flows π_0, π_W and π_L. For reasons of simplicity and comparability, we assume linear demand functions $D_i(p) = s_i - p_i + (1/(n-1)) \sum_j p_j$, $i, j = 1, ..., n, i \neq j$, and constant marginal (and average) production cost c_i, leading to the flow profits

$$\pi_i = (p - c_i)(s_i - p_i + (1/(n-1)) \sum_{j \neq i} p_j).$$

We start with the symmetric structure of the pre-innovation market, where $c_i = c$
and \(s_i = s \) which yields the reduced-form flow profits

\[
\pi_0 = s^2
\]

(6)

where \(s \) is an indicator of the size of the market. Since we have data of product as well as of process innovations, we consider two versions of the model. In the case of product innovations, we assume that the winner’s demand parameter rises from \(s \) to \(s_W \) where \(d_s \equiv s_W - s \) represents the size of the product innovation. Since the case of a drastic innovation is already covered in the standard patent race model, we assume that the product innovation is non-drastic. This implies that the losers as well as the non-participants of the race, while still facing the demand parameter \(s \), will remain active in the post-innovation market. As a result, the flow profits in the asymmetric equilibrium can be derived as

\[
\pi_W = \left(s + \frac{n}{2n-1} d_s \right)^2, \quad \pi_L = \left[s + \frac{1}{2n-1} d_s \right]^2 .
\]

(7)

In the case of process innovations, we assume that the winner of the innovation race reduces its average cost from \(c \) to \(c_W \) where \(d_c \equiv c - c_W \) represents the size of the process innovation. Again, we concentrate on non-drastic innovations. In the asymmetric equilibrium the flow profits can be derived as

\[
\pi_W = \left(s + \frac{n-1}{2n-1} d_c \right)^2, \quad \pi_L = \left[s - \frac{1}{2n-1} d_c \right]^2 .
\]

(8)

Since prices are strategic complements, a demand-stimulation product innovation makes the winner soft, while a cost-reducing process innovation makes him tough. In the first case all prices and profits increase, of course those of the winner more than those of the rivals. Since \(\partial (\pi_W - \pi_0) / \partial n < 0 \) and \(\partial (\pi_W - \pi_L) / \partial n > 0 \), an increasing number of competitors in the market lowers the profit incentive but raises the competitive threat. In second case, the profits of the winner rise even if its price is reduced, but prices and profits of the rivals decline. The derivatives \(\partial (\pi_W - \pi_0) / \partial n > 0 \) and \(\partial (\pi_W - \pi_L) / \partial n < 0 \) are of the opposite signs compared to product innovations, so that an increasing number of competitors in the market now raises the profit incentive but lowers the competitive threat. Thus, the profit specifications in (7) and (8) enable us to additionally set up:
Hypothesis 3: The impact of an increase in the number of firms \(n \) in the market on the equilibrium R&D effort and the expected innovation time of each firm is ambiguous \((\partial E[T_i]/\partial n \gtrless 0) \).

Implicitly differentiating (4) with respect to the market size \(s \), making use of (7) and (8) finally yields:

Hypothesis 4: An increase in the size of the market \(s \) will increase the equilibrium R&D effort and decrease the expected innovation time of each firm \((\partial E[T_i]/\partial s < 0) \).

If unobserved heterogeneities of firms are treated as random, the comparative statics indicate that the probability of an expected product or process innovation within a specific time interval from the present depends positively on the intensity of rivalry \(m \), technological opportunities \(\mu \) and expected demand \(s \), while the influence of market power as measured by the inverse number of competitors \(n \) is ambiguous.

4 Econometric Specification

According to the presented model, each firm decides on the expected optimal innovation time \(E[T_i]^* = 1/h(x_i^*) \). In our data set, these decisions cannot be observed directly. Instead, we can only observe whether or not the firms intend to introduce an innovation within the next two years, implying whether or not \(E[T_i]^* \) falls into this given time interval. Therefore, we treat the optimal values of \(E[T_i]^* \) as continuous latent variables and define

\[
T^D = \begin{cases}
1, & \text{iff } E[T_i]^* \leq 2 \\
0, & \text{iff } E[T_i]^* > 2.
\end{cases}
\]

The structural equation for the latent variable is specified as

\[
E[T_i]^* = \beta' y_i + \varepsilon_i
\]

where the exogenous variables are summarized in the vector \(y_i \) and the stochastic error term \(\varepsilon_i \) is added to account for unobserved heterogeneities. For our econometric
model this implies that a firm’s probability of introducing an innovation within this
given time period is a function of the explanatory variables $\mu, m, n,$ and s.

If we assume the error term ε to be independently and normally distributed we
obtain the conditional probabilities of the random variable T^D given the exogenous
variables y:

$$P(T^D = 1|y, \beta) = \Phi \left(\frac{2 - \beta' y}{\sigma} \right)$$

(11)

where Φ denotes the standard normal distribution function. To identify the para-

meters the variance σ^2 has to be restricted to unity. In addition, the threshold value
and the constant term need to be combined so that

$$P(T^D = 1|y, \beta) = \Phi(-\beta' y)$$

(12)

With the available observations from individual firms on T^D and also on the re-

gressor variables y, we can formulate a likelihood function and maximize it with
respect to the parameter vector β. This is the standard probit model. As will be
noted in the next section, some of the regressors are ordinally scaled. We deal with
this problem in three different ways. Firstly, as is common practice in applied re-
search, we transform these variables into dummy variables implying that they can
be treated as nominally scaled variables. Secondly, we replace the ordinal coding
of $y = 1, \ldots, y = l$ by $E(y^*|y = 1), \ldots, E(y^*|y = l)$ as suggested by Terza (1987).
Thirdly, we follow an estimation procedure developed in Kukuk (2001) to account
for the ordinal scale of the regressors. All results are presented to demonstrate the
robustness of our results.

5 The Data

For our empirical analysis we use data from an innovation survey of German indus-
trial firms. The survey was conducted by the Centre for European Economic
Research (ZEW), Mannheim, in cooperation with infas Sozialforschung, Bonn, in
1994 and is part of the European Community Innovation Survey (CIS) initiated by Eurostat. For a detailed description of the survey refer to Janz et al. (2001). The CIS frame questionnaire is closely related to the OECD recommendations for firm level innovation surveys summarized in the OSLO Manual (1992). Following the OSLO Manual recommendation, a postal survey was designed and the questionnaire was sent out to approximately 11,500 firms in the German industrial sector stratified by firm size groups and branches. On average, about 25% to 30% of the firms responded which is comparable to other national CIS innovation surveys. For the 1994 wave a sample of 3065 firms is obtained.

The approach is to ask at the firm level, for instance, whether or not a product and/or a process innovation is planned to be introduced within the next two years. Definitions for those types of innovations are given to help the respondents to classify themselves. In addition to these questions about innovative activities, each panel wave had at least one block of varying topics. We use the second wave (1994) conducted in 1995 since it is the only questionnaire asking for the number of competitors in the firms relevant markets which we interpret as an inverse measure of market power. The firms responded whether they had one to five competitors (category 1), six to ten (category 2), or more than ten (category 3). The relative frequencies of those categories in the sample are roughly about 25%, 25%, and 50%, respectively. As a first attempt, we record bivariate and conditional frequencies of market power and planned innovations in Table 1. The companies with less market power (category 3) tend to plan to introduce an innovation less likely. In addition, the firms were asked to appraise the intensity of technological rivalry for the future on a five point Likert scale. Therefore, our available data set is extremely appropriate to empirically investigate the relationship between rivalry and the timing of innovations.

6 Empirical Results

According to our theoretical model, we are interested in analyzing the effects of innovation rivalry m, market power n, technological opportunities μ, and demand expectations s on the planned timing $E[T]$ of product and process innovations. Fortunately, the survey questions we use for our empirical work come close to the
Table 1: Relative Frequencies of Market Power and Planned Innovations

<table>
<thead>
<tr>
<th>Market Power</th>
<th>Planned Innovations</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td>category 1</td>
<td>6.52</td>
<td>18.47</td>
<td>24.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[26.09]</td>
<td>[73.91]</td>
<td>[100]</td>
<td></td>
</tr>
<tr>
<td>category 2</td>
<td>6.52</td>
<td>19.09</td>
<td>25.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[25.47]</td>
<td>[74.53]</td>
<td>[100]</td>
<td></td>
</tr>
<tr>
<td>category 3</td>
<td>18.47</td>
<td>30.93</td>
<td>49.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[37.39]</td>
<td>[62.61]</td>
<td>[100]</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>31.51</td>
<td>68.49</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note: Relative frequencies in % are recorded. N=2929.
Conditional relative frequencies in brackets.

decisive variables in our innovation-race model.

As a first step, we explain planned innovations in Table 2 where we do not differentiate between product and process innovations. Starting with the common practice method, it can be seen that the third category has a negative parameter which is only weakly significant reproducing the result of Table 1. The market power variable is measured by three categories in the data set. The first category serves as the reference group. The parameter for the second group is smaller in absolute terms than the parameter of the third category underlining the ordinal nature of this variable and also the linear effect this variable has on the dependent variable. In the second approach using the conditional expected value for the truncated latent variable, the market power variable is still (weakly) significantly negative. However, in the indirect inference approach which is reported in the last column market power is slightly positive but insignificant. This difference in estimates is due to the above mentioned error-in-variables problem in the first two approaches. With respect to technological rivalry, all three approaches find a strong positive effect on the planned timing of innovations.

The current innovation status as a measure for technological opportunities is highly significant and accounts for a large portion of the explanatory power of the estimation. Flaig and Stadler (1994, 1998) interpreted it as the success breeds success hypothesis. Compared to the services sector which is analyzed in Kukuk and Stadler (2001) the technological opportunities have a stronger impact in the industrial sector. There is also evidence for demand pull in all the different methods since the
Table 2: Estimation results for Planned Product and/or Process Innovations

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Dummies Parameter</th>
<th>Terza’s method Parameter (t-value)</th>
<th>Indirect inf. Parameter (t-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.7773 ***</td>
<td>0.33631 (1.521)</td>
<td>0.71980 (2.525)</td>
</tr>
<tr>
<td>Log(numb. of empl.)</td>
<td>0.11337 ***</td>
<td>0.11427 (5.302)</td>
<td>0.02571 (1.065)</td>
</tr>
<tr>
<td>Innovation in the past</td>
<td>1.38126 ***</td>
<td>0.84865 (22.783)</td>
<td>0.92436 (22.151)</td>
</tr>
<tr>
<td>Expected demand</td>
<td>-0.1107</td>
<td>0.12343 (3.829)</td>
<td>0.05559 (2.271)</td>
</tr>
<tr>
<td>Market power</td>
<td>-0.02448</td>
<td>-0.05774 (-1.650)</td>
<td>0.02487 (0.638)</td>
</tr>
<tr>
<td>Intensity of rivalry</td>
<td>-0.1065</td>
<td>0.11957 (3.703)</td>
<td>0.09741 (3.204)</td>
</tr>
<tr>
<td>East-Germany</td>
<td>-0.1270 **</td>
<td>-0.13994 (-2.176)</td>
<td>-0.13485 (-1.533)</td>
</tr>
<tr>
<td>Organizational Changes</td>
<td>0.2659 ***</td>
<td>0.24922 (2.897)</td>
<td>0.23930 (3.039)</td>
</tr>
<tr>
<td>Part of a trust</td>
<td>0.0066</td>
<td>0.00499 (0.073)</td>
<td>0.00261 (0.034)</td>
</tr>
</tbody>
</table>

Dummies for branches included but not reported

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>2775</td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-1211.7</td>
<td>-1208.9</td>
</tr>
<tr>
<td>R^2_{VZ}</td>
<td>0.485</td>
<td>0.486</td>
</tr>
</tbody>
</table>

Note: ***, **, and * indicate significance on the 1%, 5%, and 10% level in the first approach. R^2_{VZ} denotes a pseudo coefficient of determination (Veall and Zimmermann, 1996). In the dummies approach, reference groups are category 1 for market power and the unchanged categories for rivalry and expected demand, respectively.
expected demand variable2 shows the correct sign significantly. Surprisingly, the firm size measured by the (log of the) number of employees is not significant in the indirect estimation. An explanation is that the current innovation status already captures the firm size. Since we simulate the latent variable3 of the ordinal innovation indicator, the log of the number of employees does not carry the appropriate firm size information to explain more than the latent innovation variable.

The dummy variable for East-German firms is negative in all three approaches indicating that even four years after reunification the technological opportunities of those firms were lacking behind. We also controlled for organizational changes. About 15\% of firms had a major change in the firm structure. Our results indicate that these changes have a positive effect on the planned innovations. We also included dummy variables for 14 different branches accounting for sector specific innovation behaviour, however to save space we suppressed the results.

In a next step we differentiate between product and process innovations and analyze the determinants of the timing of their introduction. The results are recorded in Table 3. The dummy variable approach usually obtains the same results as Terza’s method and is therefore omitted in the table. For both types of innovation we yield an insignificant positive effect of market power using the indirect inference. Terza’s method reveals that the negative effect is larger for product innovations. The log of number of employees is significant for process innovations whereas for product innovations it is insignificant which drives the combined estimate of Table 2. All the other results are similar in both innovation types. The variables for demand and innovation rivalry used are both asking for expected changes in the future. In the data set there are analogous questions with respect to past changes. We also included them in another specification to determine their effects although our model does not suggest their inclusion. With the exception of past demand having a slightly negative effect on process innovation these variable are insignificant.

2 The variables for innovation rivalry and expected demand originally are measured with five categories, respectively. We summarize them into variables with three categories although estimation results are very similar using the original variables.

3 Strongly monotonic transformations of the latent variable lead to the same ordinal observations (Kukuk, 1994).
Table 3: Estimation results for Planned Innovations

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Terza’s method</th>
<th>Indirect inference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter</td>
<td>t-value</td>
</tr>
<tr>
<td>Dependent variable: Planned Process Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.12961</td>
<td>0.622</td>
</tr>
<tr>
<td>Log(numb. of empl.)</td>
<td>0.13213</td>
<td>6.700</td>
</tr>
<tr>
<td>Innovation in the past</td>
<td>0.71141</td>
<td>19.828</td>
</tr>
<tr>
<td>Expected demand</td>
<td>0.11574</td>
<td>3.917</td>
</tr>
<tr>
<td>Market power</td>
<td>-0.04251</td>
<td>-1.330</td>
</tr>
<tr>
<td>Intensity of rivalry</td>
<td>0.08898</td>
<td>2.968</td>
</tr>
<tr>
<td>East-Germany</td>
<td>-0.08698</td>
<td>-1.455</td>
</tr>
<tr>
<td>Organizational changes</td>
<td>0.25674</td>
<td>3.370</td>
</tr>
<tr>
<td>Part of a trust</td>
<td>-0.06168</td>
<td>-1.001</td>
</tr>
<tr>
<td></td>
<td>Number of observations</td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Log-Likelihood</td>
<td>-1471.8</td>
</tr>
<tr>
<td></td>
<td>(R^2_{YZ})</td>
<td>0.393</td>
</tr>
<tr>
<td>Dependent variable: Planned Product Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.33401</td>
<td>-1.662</td>
</tr>
<tr>
<td>Log(numb. of empl.)</td>
<td>0.09716</td>
<td>4.690</td>
</tr>
<tr>
<td>Innovation in the past</td>
<td>0.82102</td>
<td>22.467</td>
</tr>
<tr>
<td>Expected demand</td>
<td>0.12055</td>
<td>3.863</td>
</tr>
<tr>
<td>Market power</td>
<td>-0.06248</td>
<td>-1.851</td>
</tr>
<tr>
<td>Intensity of rivalry</td>
<td>0.11273</td>
<td>3.583</td>
</tr>
<tr>
<td>East-Germany</td>
<td>-0.13037</td>
<td>-2.079</td>
</tr>
<tr>
<td>Organizational changes</td>
<td>0.24000</td>
<td>2.941</td>
</tr>
<tr>
<td>Part of a trust</td>
<td>0.03169</td>
<td>0.487</td>
</tr>
<tr>
<td></td>
<td>Number of observations</td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Log-Likelihood</td>
<td>-1301.9</td>
</tr>
<tr>
<td></td>
<td>(R^2_{YZ})</td>
<td>0.478</td>
</tr>
</tbody>
</table>
7 Summary and Conclusion

The objective of this paper was to theoretically and empirically examine the influence of innovation rivalry, market power, technological opportunities and demand expectations on the planned timing of innovations. Using an extended version of the game theoretic innovation race model, we derived an estimation function where the timing of innovations depends positively on innovation rivalry, demand expectations and technological opportunities but where the influence of market power, measured by the number of firms in the relevant market, is ambiguous.

The derived econometric specification is estimated using 2775 firms in the German manufacturing sector. The empirical results, obtained with three conceptually different estimation procedures, show a significant positive effect of technological rivalry on the timing of innovations as suggested by our theoretical model. Further, our results confirm the technology push and the demand pull hypotheses since technological opportunities, measured by innovation successes in the past, and demand expectations also show the predicted signs. The market power effect which is ambiguous in our model also tends to spur the innovation process, however the effect is not significant throughout.
Literature

Tübinger Diskussionsbeiträge

147. Bascha, Andreas: Venture Capital, Convertible Securities und die Durchsetzung optima-
l rer Exitregeln, Oktober 1998.
Oktober 1998.
149. Hutton, John P. und Anna Ruocco: Tax Progression and the Wage Curve, Oktober
1998.
150. Neff, Cornelia: Asymmetric Information, Credit Rationing and Investment, Oktober
1998.
151. Nufer, Gerd: Event-Sponsoring am Beispiel der Fußball-Weltmeisterschaft 1998 in Frank-
152. Woeckener, Bernd: Network Effects, Compatibility Decisions, and Horizontal Product
Differentiation, Oktober 1998.
153. Starbatty, Joachim: Strukturpolitik im Konzept der Sozialen Marktwirtschaft? - Kom-
mentar Manfred Stadler, November 1998.
154. Starbatty, Joachim: Schicksalhafte Entscheidung und politische Argumentation - Bun-
destag und Bundesrat zum Euro, Dezember 1998.
155. Kukuk, Martin: Indirect Estimation of Linear Models with Ordinal Regressors. A Monte
156. Kukuk, Martin: Analyzing Ordered Categorical Data derived from Elliptically Symmetric
Distributions, Dezember 1998.
158. Opper, Sonja und Joachim Starbatty: Menschenrechte und die Globalisierung der
159. Kukuk, Martin und Manfred Stadler: Financing Constraints and the Timing of In-
novations in the German Services Sector, Februar 1999.
160. Hornig, Stephan O.: Informationsaustausch und trotzdem Wettbewerb? Unternehmens-
verhalten bei Nachfrageunsicherheit, Februar 1999.
161. Schnabl, Gunther: Die Kaufkraftparitätentheorie als Erklärungsatz zur Wechselkursent-
wicklung des Yen, Februar 1999.
Venture Capitalists, März 1999.

165. **Cansier, Dieter**: Informal-kooperatives Verwaltungshandeln im Umweltschutz aus ökonomischer Sicht, April 1999.

172. **Stadler, Manfred**: Demand Pull and Technology Push Effects in the Quality Ladder Model, August 1999.

176. **Starbatty, Joachim**: Das Menschenbild in den Wirtschaftswissenschaften, Dezember 1999.

179. **Stadler, Manfred und Rüdiger Wapler**: Arbeitsmarkttheorie, Februar 2000.

180. **Wapler, Rüdiger**: Unions, Monopolistic Competition and Unemployment, Februar 2000.

185. **Woeckener, Bernd**: Spatial Competition of Multi-Product Retail Stores with Store-Specific Variety Effects, April 2000.

IV

210. **Wapler, Rüdiger:** Unions, Efficiency Wages and Unemployment, August 2001.

211. **Starbatty, Joachim:** Globalisierung und die EU als „sicherer Hafen“ – einige ordnungs-politische Anmerkungen, August 2001.

214. **Baten, Jörg:** Neue Quellen für die unternehmenshistorische Analyse, August 2001.

218. **Schnabl, Gunther:** Weak Economy and Strong Currency – the Origins of the Strong Yen in the 1990’s, August 2001.

220. **Stadler, Manfred und Rüdiger Wapler:** Endogenous Skilled-Biased Technological Change and Matching Unemployment, September 2001.

221. **Preusse, Heinz G.:** How Do Latin Americans Think About the Economic Reforms of the 1990s?, September 2001.

222. **Hanke, Ingo:** Multiple Equilibria Currency Crises with Uncertainty about Fundamental Data, November 2000.

223. **Starbatty, Joachim:** Zivilcourage als Voraussetzung der Freiheit – Beispiele aus der Wirtschaftspolitik ., Oktober 2001.

228. **Starbatty, Joachim:** Röpkes Beitrag zur Sozialen Marktwirtschaft, Januar 2002.

229. **Nufer, Gerd:** Bestimmung und Analyse der Erfolgsfaktoren von Marketing-Events anhand des Beispiels DFB-adidas -Cup, März 2002.

