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1 Introduction

Demand analysis has never been more important for policy analysis, where it is the key ingre-

dient for a number of policy relevant issues, such as the structure of optimal taxation, or the

analysis of demand for the study of industrial organisation and competition policy and indeed

of labour supply. However, it has now long been observed that the standard unitary model

often leads to estimated demand functions that are problematic. One key reason for this is that

the attempt to represent aggregate household demands as resulting from one “representative”

optimising household decision maker may generate demand functions incompatible with the

implications of models with multiple decision makers.

Indeed Browning and Chiappori [10] have shown that if the efficient collective model is true

the Slutsky substitution matrix will generally not be symmetric, but can be represented by a

matrix that is the sum of a symmetric matrix plus a matrix of a rank determined by the number

of household members. Both in the context of demand analysis and in labour supply there

has been a detailed examination of the theoretical and empirical implications of the efficient

collective model, as detailed below. However, there are good reasons to believe that efficiency

may not hold, if anything because of the informational requirements and the resulting cost of

implementing efficiency. Thus in this paper we consider the structure of household demands

under the assumption that these are the result of non-cooperative interaction between household

members. This allows us to relax the assumption of efficiency made in the collective models as

well as the restrictive structure of the unitary model which models household behaviour as if

there was one individual deciding.

Maximisation of utility by a single consumer subject to a linear budget constraint implies

strong testable restrictions on the properties of demand functions. Empirical applications to

data on households often reject these restrictions. In particular, such data frequently show a

failure of Slutsky symmetry - the restriction of symmetry on the matrix of compensated price

responses (see for example Deaton [19], Browning and Meghir [13], Banks, Blundell and Lewbel

[2] and Browning and Chiappori [10]).

From the theoretical point of view, the inadequacy of the single consumer model as a de-

scription of decision making for households with more than one member has also long been

recognised. Attempts to reconcile this model with the existence of several sets of individ-

ual preferences have been made for instance by Samuelson [30] and Becker [3], [4] but rely

upon restrictive assumptions about preferences or within-household decision mechanisms (see

Bergstrom [5], Cornes and Silva [17]).

A large body of recent research has investigated models accommodating alternative descrip-

tions of within-household decision-making processes. Efficiency of household decisions holds in

a number of models of household behaviour which have been suggested: for instance in the

Nash bargaining models of Manser and Brown [26], McElroy and Horney [29] and McElroy
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[28], and in Browning, Bourguignon, Chiappori and Lechene [9] and Bourguignon and Chiap-

pori [8]. However, it is not a property of noncooperative models such as those of Ulph [32], [33]

and Chen and Woolley [14].

An important advance is made by Browning and Chiappori [10], who show that under the

sole assumption of efficient within-household decision making, the counterpart to the Slutsky

matrix for demands from a k member household is the sum of a symmetric matrix and a

matrix of rank k − 1. Chiappori and Ekeland [15] establish not only that efficiency implies a

rank k − 1 deviation but also that a rank k − 1 deviation implies the existence of preferences

compatible with efficient behaviour. Chiappori and Ekeland [16] show that for these preferences

to be identified it is required to know which goods are private and which are public and that

it is sufficient for identification to assume the existence of exclusive goods. Browning and

Chiappori [10] report tests on Canadian data which reject symmetry for couples, but not for

single individual households. The hypothesis that the departure from symmetry for the sample

of couples has rank 1, as implied by the assumption of efficiency, is also not rejected.

These results not only fill a gap in our theoretical understanding of demand behaviour but

also open the prospect of reconciling demand theory and data on consumer behaviour. The

work of Browning and Chiappori [10] and Chiappori and Ekeland [15] is important in showing

that the assumption of efficiency generates testable restrictions on household demand functions,

clearly distinguishing the collective model from both the unitary and the entirely unrestricted

case.

In this paper we explore the same question of the testable restrictions implied by an alter-

native structural assumption on within household interactions. The model considered is the

principal alternative to both the unitary and collective models, that of noncooperative demand

behaviour with voluntarily contributed public goods. This model warrants attention in its own

right as the only currently widely discussed alternative to fully efficient models of the sort de-

scribed above1. It is also interesting in so far as the equilibria in this model can be considered as

the fallback position in bargaining models as suggested, for example, in Woolley [35], Lundberg

and Pollak [25] and Chen and Woolley [14].

Models of voluntarily contributed public goods have relevance beyond analysis of household

demand. When they involve more than two players, these models can be used to represent a

variety of situations involving private contributions to public goods either in the national or

international context. What distinguishes what we have termed the “household Nash equilib-

rium model” from the general Nash equilibrium model is the small number of agents, which is

two in the case considered here.

In section 2 we lay out the general framework. The model has two types of equilibria,

1D’Aspremont and Dos Santos Ferreira [18] provide an interesting recent attempt to parametrise cases
intermediate between fully cooperative and fully noncooperative within-household behaviour.
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depending upon whether partners do or do not contribute jointly to a common set of public

goods. In section 3, we consider the case in which there are jointly contributed public goods.

We show that equilibrium quantities vary with prices and household income in ways compatible

with the adding up and homogeneity properties of unitary demands and that negativity and

symmetry properties will generally be violated, as in the collective model. We derive the

counterpart to the Slutsky matrix, and show that it can be decomposed into the sum of a

symmetric matrix and another matrix whose rank generally exceeds the deviation to be expected

in a collective setting. Section 4 is devoted to the properties of demands in the case of no

jointly contributed public goods. Adding up holds, homogeneity may fail and the rank of the

departure from negativity and symmetry is shown to be similar in rank to that when public

goods are jointly contributed. Section 5 offers an example. Section 6 discusses how to make

use empirically of the result and how to combine it with previous results. In particular, we

establish the numbers of public and private goods required for the result to constitute a testable

restriction on behaviour. The results suggest that the properties of the Slutsky matrix provide

a basis for testing not only the Browning-Chiappori assumption of efficiency but also other

models within the class of those based on individual optimisation. Section 7 concludes.

2 The general model

Consider a household with two individuals, A and B. The household spends on a set of m

private goods q ∈ Rm
+ and n public goods Q ∈ Rn

+. The quantities of private goods purchased

by the individuals are qA and qB with total household quantities q ≡ qA+qB. The quantities of

public goods purchased by the household are Q with individual contributions QA and QB and

Q ≡ QA +QB. Individuals have smooth preferences represented by utility functions uA(qA, Q)

and uB(qB, Q), increasing and differentiable in all arguments, so that individual preferences

are defined over the sum of contributions to the public goods.2 The partners have incomes of

yA ∈ R+ and yB ∈ R+. Household income is denoted y ≡ yA + yB. Prices of private and public

goods respectively are the vectors p ∈ Rm
+ and P ∈ Rn

+.

Each person decides on the purchases made from their income so as to maximise their utility

subject to the spending decisions of their partner. We can write the agents’ problems as

max
qA,QA

uA(qA, Q) s.t. p′qA + P ′QA ≤ yA, QA ≥ 0, qA ≥ 0

and

max
qB ,QB

uB(qB, Q) s.t. p′qB + P ′QB ≤ yB, QB ≥ 0, qB ≥ 0

where inequalities should be read where appropriate as applying to each element of the relevant

vector.
2A good is public in the context of the household if more than one household member cares about it.
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A household Nash equilibrium consists of a set of quantities (qA, qB, QA, QB) simultaneously

solving these two problems. The existence of at least one such equilibrium is established in

Browning, Chiappori and Lechene [12]. The equilibrium need not be unique, though Bergstrom,

Blume and Varian [6], [7], Fraser [20] and Lechene and Preston [24] provide sufficient conditions,

essentially involving normality of both public and private goods, for uniqueness of certain sorts

of equilibria.

In any equilibrium, public goods can be divided into two types - those to which only one part-

ner contributes and those to which both do. We refer to the former as individually contributed

public goods, and denote the quantity vectors for such goods3 QA and QB, the respective prices

PA and PB and their dimensions nA and nB. Without loss of generality we assume nA ≥ nB.

The latter type, on the other hand, are referred to as jointly contributed public goods, with

quantity vector denoted X, prices R and dimension nX . Individual contributions to these

public goods are denoted XA and XB.

Equilibria can be distinguished into those in which there are and are not jointly contributed

public goods. Those in which nX ≥ 1 are called, for reasons which will become apparent,

income pooling equilibria and those in which nX = 0 are called separate spheres equilibria.

It is useful to recognise that the problems can be rewritten to have partners effectively

choosing the levels of the public goods for the household, subject to the constraint that this level

is greater than or equal to the contribution of the other agent. Given that yA = y−p′qB−P ′QB,

and similarly for B, the agents’problems can be re-written as:

max
qA,Q

uA(qA, Q) s.t. p′qA + P ′Q ≤ y − p′qB, Q ≥ QB, qA ≥ 0

and

max
qB ,Q

uB(qB, Q) s.t. p′qB + P ′Q ≤ y − p′qA, Q ≥ QA qB ≥ 0.

3 Income pooling equilibria

3.1 Income pooling

In an income pooling equilibrium, the solution to each partner’s problem coincides with that

to the following problems4

max
qA,QA,X

uA(qA, QA, QB, X) s.t. p′qA + P ′AQA +R′X ≤ y − p′qB − P ′BQB,

QA ≥ 0, X ≥ XB, qA ≥ 0

3Note that subscripts A and B are used to distinguish goods contributed exclusively by individuals A and
B whereas superscripts A and B distinguish contributions by individuals A and B (to any good).

4For general preferences, there can only be one jointly contributed public good X. We discuss this in section
3.2 below. The exposition here applies to both the general case with nX = 1 and the non-generic cases with
nX > 1.
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and

max
qB ,QB ,X

uB(qB, QA, QB, X) s.t. p′qB + P ′BQB +R′X ≤ y − p′qA − P ′AQA,

QB ≥ 0, X ≥ XA, qB ≥ 0.

Hence, quantities purchased will satisfy

qA = fA(y − p′qB − P ′BQB, p, P,QB) (1)

QA = FA(y − p′qB − P ′BQB, p, P,QB) (2)

qB = fB(y − p′qA − P ′AQA, p, P,QA) (3)

QB = FB(y − p′qA − P ′AQA, p, P,QA) (4)

and

X = GA(y − p′qB − P ′BQB, p, P,QB) (5)

= GB(y − p′qA − P ′AQA, p, P,QA). (6)

where fA(.), FA(.), fB(.), FB(.), GA(.), GA(.) are conditional Marshallian demand functions

corresponding to the two partners’ preferences and together satisfying the usual demand prop-

erties.

We use subscripts to denote derivatives of these demand functions: f iy, f
i
p, f

i
P , f iQj

, F i
y, F

i
p,

F i
P , F i

Qj
and Gi

y, G
i
p, G

i
P , Gi

Qj
for i = A,B, with respect to income y, price vectors p and P

and individually contributed public goods quantities of the other partner Qj respectively.

Note that (1) to (4) define 2m+ nA + nB equilibrium equations in 2m+ nA + nB quantities

(qA, QA, q
B, QB) independently of (5) and (6). Substituting solutions to these equations into

(5) or (6) will give the set of income pooling equilibria. Furthermore the set of solutions

to these equations plainly depend only upon (y, p, P ) and in particular do not depend upon

the distribution of income within the household. This well known “income pooling” result

is the source of the name given to such equilibria. This result is well known and has been

discussed by many authors. Warr [34] established income pooling for the case of a single

public good and Kemp [23] extended the claim to the case of multiple public goods, assuming

interior equilibrium. Kemp’s proof is queried by Bergstrom, Blume and Varian [6] who offer an

alternative proof.

3.2 Jointly contributed public goods

Satisfaction of both (5) and(6) with multiple jointly contributed public goods at anything other

than isolated values of (y, p, P ) clearly requires a certain coincidence in preferences over public

goods between the two partners. Browning, Chiappori and Lechene [12] demonstrate that
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generically nX ≤ 1 so that typically there will not exist more than a single jointly contributed

public good in equilibrium5. More precisely, given a suitable topology on preferences, there is

no open set in the space of the couple’s preferences, incomes and prices on which nX > 1 in

equilibrium. This is not to say, however, that there are not subspaces of preferences within

which equilibria with nX > 1 can hold on an open set of values for (y, p, P ). What is required

is that the partners’ marginal rates of substitution between jointly contributed public goods

should coincide at all equilibrium quantities of the goods over such a set. That is possible,

for example, if preferences over jointly contributed public goods are separable and identical

for the two partners. It is, in fact, possible even without such separability if preferences over

those individually contributed goods from which there is not separability are also identical

between the partners since there exist equilibria with quantities of these goods also identical

in equilibrium6. Lechene and Preston [24] demonstrate the possibility of such cases. Of course,

these cases are not robust to small independent perturbations in the partners’ preferences but

identity and separability of preferences over subsets of public goods may make sense in certain

cases - for example, if the subutility function reflects an agreed technology for producing some

intermediate good or if, say, the goods in question relate to children and the subutility reflects

an agreed welfare function for the children. We present results covering both the generic case

and the possibility that nX > 1.

3.3 Household demands

In what follows we assume uniqueness of the equilibrium and denote the mappings from (y, p, P )

to the unique individual equilibrium goods vectors by θA(y, p, P ), ΘA(y, p, P ), θB(y, p, P ),

ΘB(y, p, P ) and to the jointly contributed quantities by Ξ(y, p, P ). We let

θ(y, p, P ) = θA(y, p, P ) + θB(y, p, P )

5Throughout the paper we say that a property holds generically if the closure of the set of couples’ preferences,
incomes and prices at which it fails to hold has empty interior. To make such a statement we require a topology
on smooth preferences such as the compact-open topology discussed in, say, Kannai [22] or Mas-Colell [27]

6Specifically, interior equilibria with nX > 1 exist on an open set of values for (y, p, P ) if private goods can
be partitioned, qi = (qi0, q

i
1), i = A,B, in such a way that individual preferences take the weakly separable form

ui(qi, Q) = υi(qi0, Q
i, ν(qi1, X)) i = A,B

for some υi(., ., .), i = A,B and some common subutility function ν(., .). In such a case, marginal rates of
substitution between public goods in X are, for each partner, the same function of quantities qi1 and X and there
exist equilibria with qA1 = qB1 so that these marginal rates of substitution coincide as required. Such preferences
obviously include, for instance, the cases both of common separability of public goods (qi = qi0, X = Q) and of
identical preferences (qi = qi1, X = Q).
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and

Θ(y, p, P ) =

 ΘA(y, p, P )

ΘB(y, p, P )

Ξ(y, p, P )


denote the household private and public goods vectors. Note that quantities are uniquely deter-

mined as functions of the same economic determinants y, p and P as would be the case under

the “unitary” model where the household maximises a household utility function given the

household budget constraint. Distinguishing unitary and noncooperative household behaviour

therefore requires that we establish whether these equilibrium quantities have properties dissim-

ilar to demands in unitary households. Browning and Chiappori [10] provide such an analysis

for the collective model, and Browning, Chiappori and Lechene [11] examine the relationship

between collective and unitary models.

The properties of unitary demands are the standard Hurwicz-Uzawa [21] integrability re-

quirements of adding up (Engel and Cournot aggregation), homogeneity, negativity and sym-

metry. It is easy to establish that the household Nash equilibrium quantities satisfy adding-up

and homogeneity.

Negativity and symmetry are less simply dealt with. These are concerned in the case of

the unitary model with the properties of the Slutsky matrix, the matrix of price responses

at fixed household utility. Since household utility is undefined in a noncooperative setting,

no such matrix is defined but we can adopt the Browning and Chiappori [10] notion of the

“pseudo-Slutsky matrix”. This in the current context is the matrix

Ψ ≡ H + h

(
θ

Θ

)′
(7)

composed in a comparable way from derivatives of the equilibrium household quantities with

respect to prices and income

H ≡

(
θp θP

Θp ΘP

)
h ≡

(
θy

Θy

)
.

This is what would be calculated as the Slutsky matrix if the household were treated as behav-

ing according to the unitary model. The properties of the pseudo-Slutsky matrix can then be

examined by relating its terms to the “true” compensated price effects on the functions fA(.),

fB(.), FA(.), FB(.), GA(.) and GB(.) which correspond to the individual utility functions as-

sumed to have given rise to the observed behaviour of the household.

Theorem 1 In an income pooling equilibrium

1. (Engel aggregation)

(
p

P

)′
h = 1
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(Cournot aggregation)

(
p

P

)′
H +

(
θ

Θ

)
= 0

2. (Homogeneity) H

(
p

P

)
+ hy = 0

3. (Pseudo-Slutsky matrix) Ψ is the sum of a symmetric negative semidefinite matrix and a

matrix of rank generically equal to and never more than n+min(1,m−max(nA−nB, 1)).

Proof of Theorem 1.

See the Appendix.

In the general case where the number of private goods is at least two and two partners

contribute to roughly similar numbers of public goods then the rank of the departure from a

symmetric and negative semidefinite pseudo-Slutsky matrix is therefore n + 1, one more than

the number of public goods7.

To reduce the rank of the departure further requires specific restrictions on preferences.

Partners’ decisions in the equilibrium interact through individually contributed public goods

in two ways - firstly, through income effects consequent upon the effect of either individual’s

spending on household resources effectively available to their partner and, secondly, through ef-

fects of individually contributed public good provision on the preference ordering of the partner

over remaining goods. We can cut off the latter effect by appropriate separability assumptions

and thereby reduce the rank of the departure.

Theorem 2 In an income pooling equilibrium, if each person’s preferences over their con-

tributed goods are separable from the public goods individually contributed by the other or if

all public goods are jointly contributed then Ψ is generically the sum of a symmetric negative

semidefinite matrix and a matrix of rank no more than 2.

Proof of Theorem 2.

See the Appendix.

This departure from conventional demand properties is a much smaller number but still

one more than the same departure in the collective model8 (Browning and Chiappori [10]).

Intermediate cases corresponding to partial separability will give departures of intermediate

rank.
7Note that in the typical case in which max(nA−nB , 1) ≤ m− 1 it is immaterial to the rank whether public

goods are jointly or individually contributed since, say, an increase in nX matched by a corresponding fall in
nA + nB leaves the rank of the departure unchanged.

8This is as observed in Lechene and Preston [24], who consider the case in which all public goods are jointly
contributed and whose results are substantially generalised by Theorem 1.
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4 Separate spheres

4.1 Separate spheres

In separate spheres equilibrium, by contrast, there are no jointly contributed public goods,

nX = 0 and partners contribute to disjoint subsets of public goods. The term separate spheres

is taken from Lundberg and Pollak [25] who consider such a case as the threat point in a

household bargaining model. All goods are individually contributed and household spending

on each of the goods to which either partner contributes is effectively constrained by their own

individual income. Individual demands follow from solving

max
qA,QA

uA(qA, QA, QB) s.t. p′qA + P ′AQA ≤ yA,

QA ≥ 0, qA ≥ 0

and

max
qB ,QB

uB(qB, QA, QB) s.t. p′qB + P ′BQB ≤ yB,

QB ≥ 0, qB ≥ 0.

and income pooling does not hold. Instead

qA = fA(yA, p, P,QB) (8)

QA = FA(yA, p, P,QB) (9)

qB = fB(yB, p, P,QA) (10)

QB = FB(yB, p, P,QA) (11)

and equilibrium demands depend on the distribution of income within the household.

4.2 Household demands

Assuming again uniqueness, we can write the quantities solving the system of equations (8) to

(11) as functions θ̃A(yA, yB, p, P ), Θ̃A(yA, yB, p, P ), θ̃B(yA, yB, p, P ) and Θ̃B(yA, yB, p, P ) and

household demands as

θ̃(yA, yB, p, P ) = θ̃A(yA, yB, p, P ) + θ̃B(yA, yB, p, P ),

Θ̃(yA, yB, p, P ) =

(
Θ̃A(yA, yB, p, P )

Θ̃B(yA, yB, p, P )

)
.

Even to define conventional derivatives of demand and the pseudo-Slutsky matrix in such a

setting presents a problem as these equilibrium demands are not functions of household income.
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However household demands can be written as functions of the two individual incomes which

together constitute the sole source of variation in household income. It therefore makes sense

to look at income responses by considering the rate of change of household demands relative to

the rate of change of household income in all directions of variation which hold prices constant

- that is to say to consider the set of all directional derivatives 9

h̃φ ≡ φy

(
θ̃yA

Θ̃yA

)
+ (1− φy)

(
θ̃yB

Θ̃yB

)
for some real φy. Likewise, when considering price responses, we consider the set of directional

derivatives in all directions of variation which hold y constant while varying prices:

H̃φ ≡

(
θ̃p θ̃P

Θ̃p Θ̃P

)
+

(
θ̃yA − θ̃yB

Θ̃yA − Θ̃yB

)(
φp

φP

)′
for some φp ∈ Rm and φP ∈ Rn. We can then define the set of pseudo-Slutsky matrices

Ψφ ≡ H̃φ + h̃φ

(
θ̃

Θ̃

)′
(12)

for all φ ≡
(
φy, φp′, φP

′
)′
∈ R1+m+n and summarise properties of household demand as follows.

Theorem 3 In separate spheres equilibrium,

1. (Engel aggregation)

(
p

P

)′
h̃φ = 1 for all φ ∈ R1+m+n

(Cournot aggregation)

(
p

P

)′
H̃φ +

(
θ

Θ

)
= 0 for all φ ∈ R1+m+n

2. (Homogeneity) H̃φ

(
p

P

)
+ h̃φy = 0 if and only if φ′

 y

p

P

 = yA

3. (Pseudo-Slutsky matrix) Ψφ is the sum of a symmetric negative semidefinite matrix and a

matrix of rank generically equal to and never more than n+ min(1,m−max(nA−nB, 1))

for all φ ∈ R1+m+n.

Proof of Theorem 3.

9Here h̃φ is a directional derivative in the direction v =
(
φy, 1− φy, 0′m+n

)′ in the space of yA, yB , p and P ,
in which a proportion φy of the change in household income arises from change in yA. We define the directional
derivative in the manner of, say, Apostol [1, p.344], noting that it makes no sense in this context to require
‖v‖ = 1.
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See the Appendix.

Adding up holds for differentiation in all directions but homogeneity only if the directions

are such that equal proportional increases in both household income and prices are associated

with increases of the same proportion in the individual incomes10.

The properties of pseudo-Slutsky matrices, whatever φ, depart from those of Slutsky matri-

ces for the unitary household in generically similar fashion to that in the income pooling case.

The rank of the departure from conventional demand properties is the same as in the income

pooling case - typically n+ 1, one more than the number of public goods. This result therefore

applies to any type of equilibrium, and it is therefore immaterial to the generic rank of the

departure not only how many public goods are jointly contributed but also whether any are

jointly contributed at all. As in the case of income pooling, one would expect this bound on

the rank to be generically attained.

Again separability restrictions on preferences will reduce the rank of the departure from

unitary properties.

Theorem 4 In a separate spheres equilibrium, if each person’s preferences over their con-

tributed goods are separable from the public goods individually contributed by the other then Ψφ

is generically the sum of a symmetric negative semidefinite matrix and a matrix of rank no

more than 1 for all φ ∈ R1+m+n.

Proof of Theorem 4.

See the Appendix.

This is now the same rank of departure as found in the collective model11.

Empirical work conducted under the assumption of unitary decision making on data gen-

erated by a separate spheres equilibrium would be misspecified in terms of the household

characteristics assumed to determine the outcome. At each level of household income y and

of other determinants p, P and so on there will be households choosing differently because

they differ in the within-household distribution of income. The properties of estimated Slutsky

matrices would depend upon empirical techniques applied. One approach would be to condi-

tion on enough additional characteristics12 in the hope that the division of income within the

household could then effectively be treated as a deterministic function of household income and

prices. If successful, this approach would give a pseudo-Slutsky matrix of the form Ψφ with the

10Equivalently, the elements of φ are equal to the derivatives of a linearly homogeneous function from R1+m+n

to R taking the value yA.
11The fact that the rank reduction in this case is greater than under income pooling arises because, with no

public goods being jointly contributed, this separability restriction is more demanding.
12These would be similar to the ‘distribution factors’ of Browning and Chiappori [10].
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elements of φ corresponding to partial derivatives of that function with respect to y, p and P .

Alternatively, estimation which, say, picked up household demands at the conditional median

within-household distribution of income would give rise to pseudo-Slutsky matrices of the form

Ψφ with the elements of φ corresponding to median directions of variation in relevant variables.

Estimation, on the other hand, which picked out, say, the conditional mean household demand

would give a pseudo-Slutsky matrix which would be the mean of matrices of the form Ψφ and

which would therefore typically not have the properties noted in Theorem 3.

5 An example

Consider the following example in illustration of the results derived above. There are m private

goods q and one public good Q. Individual preferences are

uJ(qJ , Q) = αJ
′
ln
(
qJ − bJX

)
+ βJ lnQ J = A, B

where βJ =
∑

i α
J
i and bJ is an m vector allowing nonseparability of private from public good

demand.

Individual demand for someone living alone with income yJ would be(
qJ

Q

)
=

[(
ξJ

0

)
+

(
bJ

1

)
βJ

P + p′bJ

]
yJ ≡ ηJyJ

where ξJi = αJi /pi.

In an income pooling equilibrium(
q

Q

)
=

[
WAηA + WBηB −W 0

(
0

1

)]
y

where

W 0 = βAβB/
[(
βA + βB − βAβB

)
P + βBp′bA + βAp′bB

]
W J = W 0

(
P + p′bJ

)
/βJ J = A, B.

Adding up and homogeneity are easily seen to hold.

13



The pseudo-Slutsky matrix is

Ψ =

[
WAηAp,P + WBηBp,P + WA

p,Pη
A + WB

p,Pη
B −W 0

p,P

(
0

1

)]
y

+

[
WAηA + WBηB −W 0

(
0

1

)][
WAηA + WBηB −W 0

(
0

1

)]′
y

= ΨA + ΨB

+ βAWAβBWB

[((
1− βB

)
R + pbB

R + pbB
ηA − ηB

)(
ηA −

(
bA

1

)
1

R + pbA

)′

+

((
1− βA

)
R + pbA

R + pbA
ηB − ηA

)(
ηB −

(
bB

1

)
1

R + pbB

)′]

where

ΨJ =
[
ηJp,P + ηJηJ

′
]
W Jy J = A, B

and

ηJp,P =

(
−κJ 0

0 0

)
−

(
bJ

1

)(
bJ

1

)′
βJ

(P + p′bJ)2 J = A, B

κJij = ξJi /pi if i = j

= 0 if i 6= j J = A, B

W J
p,P =

1

βJ

[
W 0
p,P

(
P + p′bJ

)
+ W 0

(
bJ

1

)′]
J = A, B

W 0
p,P = −(W 0)

2

βAβB

[
βB

(
bA

1

)
+ βA

(
bB

1

)
− βAβB

(
0

1

)]′
.

The deviation from symmetry, Ψ−ΨA −ΨB, has rank 2 as suggested by Theorem 1.

In a separate spheres equilibrium with individual A alone contributing to the public good(
qA

QA

)
=

[(
ξA

0

)
+

(
bA

1

)
βA

P + p′bA

]
yA ≡ ηAyA

whereas(
qB

QB

)
=

( (
Im − ξBp′/βB

)
bB

0

)
βA

P + p′bA
yA +

(
ξB/βB

0

)
yB ≡ η̃AyA + η̃ByB

14



Household demand therefore has the form(
q

Q

)
=

[(
ξA

0

)
+

(
bA +

(
Im − ξBp′/βB

)
bB

1

)
βA

P + p′bA

]
yA +

(
ξB/βB

0

)
yB

≡
(
ηA + η̃A

)
yA + η̃ByB.

The pseudo-Slutsky matrix in the direction defined by φ is given by

Ψφ =
[
ηAp,P + η̃Ap,P

]
yA + η̃Bp,Py

B +
[
ηA + η̃A − η̃B

]( φp

φP

)′
+
[
φy
(
ηA + η̃A

)
+ (1− φy) η̃B

] [(
ηA + η̃A

)
yA + η̃ByB

]′
= ΨA + ΨB

+ η̃A

[
−

(
bA

1

)
+ φy

((
ηA + η̃A

)
yA + η̃ByB

)
+

(
φp

φP

)]′

+
(
ηA − η̃B

) [
φy
(
η̃ByB + η̃AyA

)
− (1− φy) ηAyA +

(
φp

φP

)]′
where

ΨA =
[
ηAp,P + ηAηA

′
]
yA

ΨB = η̃Ap,Py
A + η̃Bp,Py

B + η̃B
[
η̃AyA + η̃ByB

]′
and

η̃Ap,P =
βA

P + p′bA

[(
κBp′bB − ξBbB ′ 0

0 0

)
1

βB
−

( (
Im − ξBp′/βB

)
bB

0

)(
bA

1

)′
1

(P + p′bA)

]

η̃Bp,P =

(
−κB/βB 0

0 0

)
.

Again the departure from symmetry, Ψ−ΨA−ΨB, is rank 2, in accordance with Theorem 3.

If bB = 0 then each person’s preferences over those goods which they contribute are separable

from the public goods contributed by the other person, η̃B = 0 and the rank of the deviation

falls to rank 1 in accordance with Theorem 4.

6 Empirical testing

Theorems 1 and 3 establish a common bound for the rank of the departure of pseudo-Slutsky

matrices from symmetric and negative semidefinite matrices in the household Nash equilibrium

with voluntary contributed public goods. The bound, which is generically reached, is n + 1
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(unless nA − nB is known and large relative to m). This section assesses the usefulness of this

bound for testing either cooperative or noncooperative behaviour.

Note firstly that, unless there are no public goods (n = 0), in which case noncooperative

behaviour is efficient, then the departure under Nash equilibrium is greater than the rank 1

departure found under the collective model. Browning and Chiappori [10] discuss how to test a

rank 1 departure by testing the rank of Ψ−Ψ′. If such tests fail to reject a rank 1 departure for

couples then the results above establish clearly that cooperative behaviour cannot be rejected

against noncooperative behaviour for any number of public goods.

What, however, if cooperative behaviour is rejected? Is it possible to use properties of the

pseudo-Slutsky matrix to test compatibility with noncooperative behaviour of the sort analysed

here? The first point to note in this respect is that the nature of the departure depends upon the

number of public goods. This makes sense. In the cooperative case the rank of the departure

is 1 because all interaction arises through the single dimension of the sharing rule. In the

noncooperative case interaction arises through the public goods and it is natural that the rank

of the departure should depend upon how many public goods there are. There is an important

implication of this. Either one knows how many goods are publicly consumed in the household

or one can only test noncooperative behaviour jointly with a hypothesis about the number of

public goods13.

The restrictiveness of the above results regarding the properties of pseudo-Slutsky matrices

also depends upon not having too many public goods.

Theorem 5 Let Ψ be either the pseudo-Slutsky matrix in an income pooling equilibrium or a

pseudo-Slutsky matrix corresponding to directions of differentiation in which homogeneity holds

in a separate spheres equilibrium. Then the restriction that Ψ deviate from symmetry by a

matrix of rank no more than n+ 1 is restrictive if and only if m ≥ n+ 5.

Proof of Theorem 5.

See the Appendix.

For example, to test for noncooperative behaviour with one public good requires at least 7

goods in total of which 6 are private.

13The private or public quality of a good is intrinsically linked with the form of preferences and not the nature
of the goods, being a matter of which goods enter the preferences of which individuals. Under the assumption
of egoistic preferences, this could be established if it were possible to test the excludability and rivalrousness of
those goods.
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7 Conclusion

In this paper, we establish properties of demands in the Nash equilibrium with two agents

and voluntarily contributed public goods. This noncooperative model is the polar case to the

cooperative model of Browning and Chiappori [10] within the class of those models based on

individual optimisation.

We show that the nature of the departure from unitary demand properties in household Nash

equilibrium is qualitatively similar to that in collectively efficient models in that negativity and

symmetry of compensated price responses is not guaranteed. The counterpart to the Slutsky

matrix can be shown to depart from negativity and symmetry by a matrix whose rank typically

exceeds that found in the collective model unless strong auxiliary restrictions are placed on

preferences. This constitutes a testable restriction on household demand functions provided

the number of private goods is large enough relative to the number of public goods. Future

work will explore sufficient conditions for consistency with noncooperative equilibrium within

the household.
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Appendix

Proof of Theorem 1.

1. Engel aggregation and Cournot aggregation follow by differentiating the household bud-
get constraint p′θ(y, p, P ) + P ′Θ(y, p, P ) = y. .

2. Equilibrium quantities satisfying (1) to (6) will satisfy homogeneity given homogeneity of
the individual demand functions.

3. Substituting the equilibrium functions into (1) to (6) and differentiating, equilibrium
quantity responses are seen to follow from

M


dθA

dΘA

dθB

dΘB

dΞ

 = N1dy + N2

 dp
dPA
dPB
dR

 (13)

where the matrices M, N1 and N2 are defined below.

The M matrix captures interactions between the goods purchases of the two household
members and has the form14

M ≡

 I A 0
B I 0
0 C I
D 0 I


where the non-zero blocks are given by

A =

(
fAy
FA
y

)(
p
PB

)′
−
(

0 fAQB

0 FA
QB

)
≡ A1 + A2,

B =

(
fBy
FB
y

)(
p
PA

)′
−
(

0 fBQA

0 FB
QA

)
≡ B1 + B2,

C = GA
y

(
p
PB

)′
−
(

0 GA
QB

)
≡ C1 + C2

D = GB
y

(
p
PA

)′
−
(

0 GB
QA

)
≡ D1 + D2.

The components A1, B1, C1 and D1 arise from interaction through the budget constraint,
as greater purchases of any good individually contributed by one partner decreases the
amount left over from the household budget for purchases by the other. These matrices
each have rank 1, being each the outer product of a vector of income derivatives and a
vector of prices.

The components A2, B2, C2 and D2 arise from the effect of one individual’s purchases
of individually contributed public goods on the preference ordering of the other over
the goods individually contributed by the other. Such terms are generically of rank nB,
min(m+ nB, nA), min(nX , nB) and min(nX , nA), respectively15.

14We note the dimension of identity and zero submatrices only where it is not obvious from conformability
or from the dimensions of adjacent submatrices.

15Each has only nB , nA, nB and nA non zero columns, respectively, corresponding to the number of public
goods individually contributed by the other but in the case of B2, C2 and D2 this determines the rank only if
the numbers of rows m+ nB , nX and nX , respectively, are not short of nA.
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Taking these observations together, we see that the matrices A, B, C and D are therefore
generically of rank 1 + nB, min(m+ nB, 1 + nA), min(nX , 1 + nB) and min(nX , 1 + nA),

The N1 and N2 matrices take the form

N1 ≡


fAy
FA
y

fBy
FB
y

GA
y

GB
y

 and N2 ≡


fAp − fAy qB′ fAPA

−fAy Q′B fAR
FA
p − FA

y q
B′ FA

PA
−FA

y Q
′
B FA

R

fBp − fBy qA′ −fBy Q′A fBPB
fBR

FB
p − FB

y q
A′ −FB

y Q
′
A FB

PB
FB
R

GA
p −GA

y q
B′ GA

PA
−GA

yQ
′
B GA

R

GB
p −GB

y q
B′ −GB

y Q
′
A GB

PB
GA
R


and are composed of conventional income and price effects, excepting that it is necessary
to recognise in N2 that increases in the prices of the public goods individually contributed
by one partner decrease the amount left over from the household budget for purchases by
the other.

The system (13) is overdetermined, specifically in the final 2nX lines which imply alterna-
tive expressions for dX. With nX = 1 compatibility is ensured by adding up, whereas for
nX > 1 similar issues arise to those discussed in Section 3.2 concerning the nongenericity
of such cases. If we let M̄, N̄1 and N̄2 denote the submatrices of M, N1 and N2 obtained
by deleting the final nX rows then we can rearrange to get

dθA

dΘA

dθB

dΘB

dΞ

 = M̄−1N̄1dy + M̄−1N̄2

 dp
dPA
dPB
dR

 .

Since we work in terms of household purchases (q,QA, QB, X), we have therefore dθ
dΘA

dΘB

dΞ

 = EM̄−1

N̄1dy + N̄2

 dp
dPA
dPB
dR


where

E ≡

(
Im 0 Im 0
0 InA

0 0
0 0 0 InB+nX

)
is an appropriate aggregating matrix.

The pseudo-Slutsky matrix now follows from:

Ψ = EM̄−1

N̄2 + N̄1

 q
QA
QB
X

′ = EM̄−1Φ
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where

Φ =


fAp + fAy q

A′ fAPA
+ fAy Q

′
A 0 fAR + fAy X

′

FA
p + FA

y q
A′ FA

PA
+ FA

y Q
′
A 0 FA

R + FA
y X

′

fBp + fBy q
B′ 0 fBPB

+ fBy Q
′
B fBR + fBy X

′

FB
p + FB

y q
B′ 0 FB

PB
+ FB

y Q
′
B FB

R + FB
y X

′

GA
p +GA

y q
A′ GA

PA
+GA

yQ
′
A 0 GA

R +GA
yX

′



≡


ΨA
qq ΨA

qQ 0 ΨA
qX

ΨA
Qq ΨA

QQ 0 ΨA
QX

ΨB
qq 0 ΨB

qQ ΨB
qX

ΨB
Qq 0 ΨB

QQ ΨB
QX

ΨA
Xq ΨA

XQ 0 ΨA
XX

 .

Note that the terms in Φ are all elements of the underlying symmetric and negative
semidefinite true individual conditional Slutsky matrices corresponding to the individual
decision problems

ΨA ≡

 ΨA
qq ΨA

qQ 0 ΨA
qX

ΨA
Qq ΨA

QQ 0 ΨA
QX

0 0 0nB ,nB
0

ΨA
Xq ΨA

XQ 0 ΨA
XX

 and ΨB ≡

 ΨB
qq 0 ΨB

qQ ΨB
qX

0 0nA,nA
0 0

ΨB
Qq 0 ΨB

QQ ΨB
QX

ΨB
Xq 0 ΨB

XQ ΨB
XX

 .

The matrix M̄ has a block lower triangular structure which helps in inversion. Specifically

M̄−1 =

(
I + AB(I − AB)−1 −A(I − BA)−1 0
−B(I − AB)−1 I + BA(I − BA)−1 0
CB(I − AB)−1 −(C + CBA(I − BA)−1) I

)

Thus
EM̄−1Φ = ΨA + ΨB + ∆1 + ∆2 + Λ

where

∆1 = E

(
A
−I
C

)
B(I − AB)−1

(
ΨA
qq ΨA

qQ 0 ΨA
qX

ΨA
Qq ΨA

QQ 0 ΨA
QX

)

∆2 = E

(
−I
B
D

)
A(I − BA)−1

(
ΨB
qq 0 ΨB

qQ ΨB
qX

ΨB
Qq 0 ΨB

QQ ΨB
QX

)
Λ = E

(
0m+nA+nB ,m+n

ΛX

)
ΛX = −

(
ΨB
Xq 0 ΨB

XQ ΨB
XX

)
− ( C + (CB + D)A(I − BA)−1 )

(
ΨB
qq 0 ΨB

qQ ΨB
qX

ΨB
Qq 0 ΨB

QQ ΨB
QX

)
.

The individual Slutsky matrices ΨA and ΨB are symmetric and negative semidefinite and
so therefore is their sum. The deviation from conventional demand properties is therefore
determined by the properties of ∆1 + ∆2 + Λ.
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The rank of ∆1 cannot exceed the rank of B which is at most min(1 + nA,m + nB) and
that of ∆2 cannot exceed the rank of A which is at most 1 + nB, each being defined as
products involving these matrices.

The rank of Λ cannot exceed nX since it contains only nX non-zero rows. However the
rank can be reduced further. Note that, by adding up,(

p
PA
R

)′ fAy
FA
y

GA
y

 =

(
p
PB
R

)′ fBy
FB
y

GB
y

 = 1

and (
p
PA
R

)′ fAQB

FA
QB

GA
QB

 =

(
p
PB
R

)′ fBQA

FB
QA

GB
QA

 = 0.

Therefore

R′C +
(

p
PA

)′
A =

(
R′GA

y +
(

p
PA

)′( fAy
FA
y

))(
p
PB

)′
−
(

0 R′GA
QB

+
(

p
PA

)′( fAQB

FA
QB

) )
=
(

p
PB

)′
and

R′D +
(

p
PB

)′
B =

(
R′GB

y +
(

p
PB

)′( fBy
FB
y

))(
p
PA

)′
−
(

0 R′GB
QA

+
(

p
PB

)′( fBQA

FB
QA

) )
=
(

p
PA

)′
.

Thus

R′(C + (CB + D)A(I − BA)−1) =
(

p
PB

)′
−
(

p
PA

)′
A

+

((
p
PB

)′
B−

(
p
PA

)′
AB +

(
p
PA

)′
−
(

p
PB

)′
B

)
A(I − BA)−1

=
(

p
PB

)′
−
(

p
PA

)′
A +

(
p
PA

)′
(I − AB) (I − AB)−1A

=
(

p
PB

)′
and therefore

R′ΛX = −R′( ΨB
Xq 0 ΨB

XQ ΨB
XX )−

(
p
PB

)′( ΨB
qq 0 ΨB

qQ ΨB
qX

ΨB
Qq 0 ΨB

QQ ΨB
QX

)
= 0 (14)

by standard properties of the Slutsky matrix. Therefore the rank of ΛX cannot exceed
nX − 1 and neither therefore can that of Λ.

The rank of ∆1 + ∆2 + Λ cannot be greater than the sum of their ranks considered
individually which is n+min(1,m−nA+nB). This number cannot exceed the dimension
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n + m of the (square) matrix Ψ but can equal it in the one case m = 1 and nA = nB.
In this case it becomes relevant that ∆1, ∆2 and Λ share a common linear dependency
since, from (14) and (14)

(
p
P

)′
E

(
A
−I
C

)
=


p
PA
p
PB
R


′(

A
−I
C

)
= 0

(
p
P

)′
E

(
−I
B
D

)
=


p
PA
p
PB
R


′(
−I
B
D

)
= 0

and, from (14), (
p
P

)′
EΛ =


p
PA
p
PB
R


′

Λ = R′ΛX = 0.

This means that their sum cannot be of full rank and the maximum rank is reduced by 1
in this instance. (This is simply a consequence of Engel and Cournot aggregation which
ensure Ψ must be singular as are ΨA and ΨB.)

The rank of the departure is therefore bounded from above by n+ min(1,m−max(nA−
nB, 1)).

Although the theorem establishes only a bound on the rank of the sum of the matrices
∆1+∆2+Λ, inspection of the form of the matrices suggests that this bound will generically
be attained. Generically, only a single public good is jointly contributed in income pooling
equilibria in which case Λ disappears. The matrices ∆1 and ∆2 are both matrix products
in which the factors of lowest rank are B and A respectively and therefore the rank of
their sum will generically be the sum of the ranks of A and B.

Proof of Theorem 2.

If preferences of each partner over their individually contributed goods are separable from the
public goods individually contributed by the other or if there are no individually contributed
public goods then A2 and B2 disappear, A and B reduce to rank 1 matrices and therefore in the

generic case of nX = 1 the rank of the departure falls to 2.

Proof of Theorem 3.

1. (Adding up) The household budget constraint requires

p′θ̃(yA, yB, p, P ) + P ′Θ̃(yA, yB, p, P ) = yA + yB

and therefore (
p
P

)′( θ̃yA

Θ̃yA

)
=
(
p
P

)′( θ̃yB

Θ̃yB

)
= 1

from which Engel and Cournot aggregation follow for any φ.
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2. (Homogeneity) Since individual demand functions are homogeneous of degree zero

θ̃(λyA, λyB, λp, λP ) = θ(yA, yB, p, P ) and Θ̃(λyA, λyB, λp, λP ) = Θ(yA, yB, p, P )

for any λ > 0. Therefore(
θ̃p θ̃P
Θ̃p Θ̃P

)(
p
P

)
+

(
θ̃yA

Θ̃yA

)
yA +

(
θ̃yB

Θ̃yB

)
yB = 0

and H̃φ

(
p
P

)
+ h̃φy = 0 only if

(
p′φp + P ′φP

)( θ̃yA − θ̃yB

Θ̃yA − Θ̃yB

)
+

(
θ̃yA

Θ̃yA

)
φyy +

(
θ̃yB

Θ̃yB

)
(1− φy)y

=

(
θ̃yA

Θ̃yA

)
yA +

(
θ̃yB

Θ̃yB

)
yB

which is true only if φyy + p′φp + P ′φP = yA.

3. As in the income pooling case, we substitute the equilibrium functions into (8) to (11)
and differentiate, to derive

M


dθ̃A

dΘ̃A

dθ̃B

dΘ̃B

 = NA
1 dy

A +NB
1 dy

B +N2

(
dp
dPA
dPB

)
(15)

where the matrices M, NA
1 , NB

1 and N2 are defined below.

The M matrix captures interactions between the goods purchases of the two household
members and has the form

M≡
(
I A
B I

)
where the off-diagonal blocks are given by

A =

(
0 fAQB

0 FA
QB

)
,

B =

(
0 fBQA

0 FB
QA

)
and capture only the effects of individually contributed public goods purchases on part-
ners’ preference orderings over their individually contributed goods. A and B are generi-
cally of rank nB and min(nA,m+ nB), respectively.

The NA
1 , NB

1 and N2 matrices take the forms

NA
1 ≡

 fAy
FA
y
0
0

 , NB
1 ≡

 0
0
fBy
FB
y

 , N2 ≡


fAp fAPA

0
FA
p FA

PA
0

fBp 0 fBPB

FB
p 0 FB

PB


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and are composed of conventional income and price effects.

Defining a suitable aggregating matrix

E ≡

(
Im 0 Im 0
0 InA

0 0
0 0 0 InB

)
we can derive the pseudo-Slutsky matrices for the separate spheres case:

Ψφ = EM−1

(
N2 +

[
NA

1 −NB
1

] ( φp
φP

)′
+
[
φyNA

1 + (1− φy)NB
1

]( q
QA
QB

)′)
= EM−1

[
Φ + (NA

1 −NB
1 )ζ ′

]
where

Φ =


ΨA
qq ΨA

qQ 0
ΨA
Qq ΨA

QQ 0
ΨB
qq 0 ΨB

qQ

ΨB
Qq 0 ΨB

QQ


and

ζA =

(
qB

0
QB

)
, ζB =

(
qA

QA

0

)
, ζ = φyζA − (1− φy)ζB +

(
φp
φP

)
.

As in the income pooling case, Φ is made up of components of the true conditional Slutsky
matrices

ΨA ≡

(
ΨA
qq ΨA

qQ 0
ΨA
Qq ΨA

QQ 0
0 0 0nB ,nB

)
and ΨB ≡

(
ΨB
qq 0 ΨB

qQ
0 0nA,nA

0
ΨB
Qq 0 ΨB

QQ

)
.

while ζA, ζB and ζ are vectors.

The inverse of M has the form

M−1 =

(
I +AB(I −AB)−1 −A(I − BA)−1

−B(I −AB)−1 I + BA(I − BA)−1

)
Thus

Ψφ = ΨA + ΨB + ∆1 + ∆2 +K

where

∆1 = E
( A
−I

)
B(I −AB)−1

[(
ΨA
qq ΨA

qQ 0
ΨA
Qq ΨA

QQ 0

)
+

(
fAy
FA
y

)
ζ ′
]

∆2 = E
( −I
B
)
A(I − BA)−1

[(
ΨB
qq 0 ΨB

qQ

ΨB
Qq 0 ΨB

QQ

)
−
(
fBy
FB
y

)
ζ ′
]
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and
K = E

[
NA

1 −NB
1

]
ζ ′.

The individual Slutsky matrices ΨA and ΨB are symmetric and negative semidefinite and
so therefore is their sum. The deviation from conventional demand properties is therefore
determined by the properties of ∆1 + ∆2 +K.

The rank of ∆1 cannot exceed the rank of B which is at most min(nA,m+ nB) and that
of ∆2 cannot exceed the rank of A which is at most nB, each being defined as products
involving these matrices. Moreover, K being a matrix product involving an outer product
of vectors16, has rank 1.

The rank of ∆1 + ∆2 +K cannot be greater than the sum of the ranks of the component
matrices considered individually which is n+ min(1,m− nA + nB). This number cannot
exceed the dimension n + m of the (square) matrix Ψ but can equal it in the one case
m = 1 and nA = nB. In this case it becomes relevant that ∆1, ∆2 and K all share a
common linear dependency since, by adding up,(

p
PA

)′( fAQB

FA
QB

)
=
(

p
PB

)′( fBQA

FB
QA

)
= 0

and therefore

(
p
P

)′
E
( A
−I

)
B =

 p
PA
p
PB

′ ( A−I )B = −
(

p
PB

)′
B = 0

(
p
P

)′
E
( −I
B
)
A =

 p
PA
p
PB

′ ( −IB )
A = −

(
p
PA

)′
A = 0

and (
p
P

)′
E
[
NA

1 −NB
1

]
=

 p
PA
p
PB

′ [NA
1 −NB

1

]
= 1− 1 = 0.

Thus the maximum rank is reduced by 1 in this instance and the rank of the departure
is therefore bounded from above by n+ min(1,m−max(nA − nB, 1)).

The rank of K is always 1. The matrices ∆1 and ∆2, as in the income pooling case, are
both matrix products and their sum will generically have rank equal to the sum of the
ranks of A and B.

Proof of Theorem 4.

If preferences of each partner over their individually contributed goods are separable from the
public goods individually contributed by the other then A and B disappear and therefore the

rank of the departure falls to 1.

Lemma 1 Let Ψ be a real k× k matrix such that the rank of Ψ−Ψ′ cannot exceed s. Then Ψ
can be written as the sum of a symmetric matrix and a matrix of rank at most r if and only if
either (i) 2r + 1 ≥ s or (ii) 2r + 1 < s and Ψ−Ψ′ has rank at most 2r.

16By adding up, it is impossible for either NA
1 or NB

1 to be zero vectors or for them to equal each other so
these matrices have rank of exactly 1.
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Proof of Lemma 1.

For any real k×k matrix Ψ the matrix Ψ−Ψ′ is skew symmetric and therefore has even rank.
If the rank of Ψ − Ψ′ cannot exceed s then its rank is therefore at most s if s is even and at
most s− 1 if s is odd.

Suppose Ψ can be written as the sum of a symmetric matrix and a matrix of rank at most
r. Then

Ψ = S +
r∑
i=1

uiv
′
i

where S = S ′ and ui, vi are k × 1 vectors, i = 1, . . . , r. Then

Ψ−Ψ′ =
r∑
i=1

(uiv
′
i − viu′i)

which has rank at most 2r. If s is even then the rank is therefore at most min(2r, s) whereas
if s is odd then the rank is therefore at most min(2r, s − 1). In each case the bound of 2r is
restrictive only if 2r + 1 < s.

Conversely, suppose Ψ−Ψ′ has rank at most 2r. (Note that this holds for any matrix Ψ if
the rank of Ψ−Ψ′ cannot exceed s and 2r+ 1 ≥ s.) Since Ψ−Ψ′ is real and skew symmetric,
it is possible (see, for example, Theorem 2.5 in Thompson [31]) to write Ψ − Ψ′ = ULU ′ for
some orthogonal matrix U and a block diagonal matrix L = diag(L1, . . . , Lr, 0, . . . , 0) where

Li =
(

0 λi
−λi 0

)
for some real λi, i = 1, . . . , r. Therefore Ψ−Ψ′ =

∑r
i=1 λi(uiv

′
i−viu′i) where U = (u1 v1 u2 v2 . . . ).

Then Ψ −
∑r

i=1 λiuiv
′
i = Ψ′ −

∑r
i=1 λiviu

′
i is symmetric. Call this matrix S. Then Ψ can be

written as the sum of a symmetric matrix and a matrix of rank at most r

Ψ = S +
r∑
i=1

λiuiv
′
i.

This result generalises Lemma 1 of Browning and Chiappori [10] to cover departures of any

rank.

Proof of Theorem 5.

If demands satisfy adding up then
(
p
P

)′
Ψ = 0 and if they satisfy homogeneity then Ψ

(
p
P

)
=

0. Therefore
(
p
P

)′
(Ψ−Ψ′) = 0 and the rank of Ψ − Ψ′ cannot exceed one less than its

dimension n+m.
Lemma 1 shows that if Ψ−Ψ′ is known to have rank at most n+m− 1 then it is possible

to write Ψ as the sum of a symmetric matrix and a matrix of rank at most r whenever 2r+1 ≥
n + m − 1. A departure from symmetry of rank at most n + 1 is therefore restrictive only
if 2n + 3 < n + m − 1. It must therefore be the case that m ≥ n + 5 in order to test for
noncooperative behaviour with n public goods.
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