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Abstract: Attempts can be found in the DEA literature to identify returns to scale at efficient 
interior points of the production possibility set on the basis of returns to scale at points of the 
corresponding reference sets. However, an opposite approach is put forward in this paper, 
advocating that returns-to-scale properties of efficient reference units should be found by 
identifying first returns to scale of an efficient interior unit that is a radial projection to the 
frontier of an inefficient unit. Returns-to-scale properties of both the corresponding reference 
units and units supporting the face in question can then be established. 
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1 Introduction 

 

Three types of units are mainly considered in DEA models: projections of inefficient points 

on the frontier, either in input- or output-oriented radial direction (most of these points are 

interior points of some faces of the frontier), the reference sets for every observed unit, and 

the set of efficient units spanning the face on which the projection to the frontier of an 

inefficient unit is located. The latter set may contain several reference sets for every 

projection. 

 

A question then arises: is there any connection between the returns-to-scale properties of the 

units of these three sets? In the DEA literature (Tone 1996; Tone 2005; Cooper et al. 2000, 

2006), attempts were made to answer partially this question, given that we know the returns-

to-scale properties of the reference sets. At first sight, this approach may seem reasonable. 

Moreover, getting results in this form may be regarded natural because standard optimisation 

software produces solutions in DEA models in the form of reference sets consisting of 

efficient units, thus it may seem natural to start with the reference sets.  

 

Our approach involves all the three sets introduced above. However, we consider to take 

quite an opposite approach than mentioned above: given the returns-to-scale properties  of the 

projected point or interior point of some face, what can then be said of the returns-to-scale 

properties  of not only the reference set, but also of the set of units spanning the face where 

the projected point is located?  

 

Solving a DEA variable-returns-to-scale problem (Banker et al., 1984) (BCC) using standard 

software gives us both the solution to the primal problem and the dual problem containing: 

efficiency score (input- and/or output-oriented) for every unit, list of reference units for every 

unit, and shadow prices on the constraints in the DEA problem for every unit. From 

optimisation theory, we know that units that are vertices in the model will not have unique 

solutions for the shadow prices; this means that the supporting hyperplane is not unique 

(Banker et al., 1984). 
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However, on the basis of the primal and dual solutions we can determine the returns-to-scale 

properties of a projected point on the frontier provided it is an interior point of a face of full 

dimension (Førsund, 1996; Førsund and Hjalmarsson, 2004; Førsund et al., 2007, Victor et 

al., 2009). However, the returns-to-scale properties of reference units can only be found by 

solving two additional LP problems for every reference unit. Moreover, starting with the 

returns-to-scale properties of a projected point we can also ask: what is the connection 

between the returns-to-scale properties of this point and the set of units spanning the entire 

face? 

 

In Section 2, returns to scale is defined, and we consider some examples that show that the 

returns to scale of the BCC-projected activity cannot be found by observing only the returns-

to-scale characteristics of production units in its respective reference set.  In Section 3 we 

prove some theorems which establish that the returns to scale of points on the facet 

determined by efficient units can be found by observing the returns-to-scale characteristic of 

some interior point of this facet. Section 4 concludes. 

 

 

2 Problem statement 

 

Returns to scale in neoclassical production theory 

In neoclassical production theory, production possibilities are expressed at the abstract level 

by a transformation function 

0),( =YXF ,      (1) 

where the input vector is m
m ExxX ∈= ),,( 1 …  and the output vector is r

r EyyY ∈= ),,( 1 … . 

The transformation function represents efficient input-output combinations in that output are 

maximised for given inputs; it is assumed to be smooth, i.e., continuously differentiable. The 

transformation function (1) describes a hypersurface or a frontier in the multidimensional 

space rmE +  of inputs and outputs. Efficient points ),( YX  belong to this hypersurface.  

 

The scale elasticity is a measure of the increase in output relative to a proportional increase in 

all inputs, evaluated as the marginal change at a point in input-output space. In a multi-output 

setting, a proportional increase in all outputs is most naturally used instead of an increase in a 
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single output (see Hanoch, 1970; Starrett, 1977; Panzar and Willig, 1977). Expanding inputs 

proportionally by factor α , the maximal proportional expansion, ),,( YXαββ =  [with 

1),,1( =YXβ ], of outputs allowed by the transformation function 

0)),,(,( =YXXF αβα      (2) 

is chosen. Scale elasticity, ε , as a function of inputs and outputs, is defined for a 

differentiable function as the marginal change in the output-expansion factor caused by a 

marginal change in the input-expansion factor over the average ratio, or 

β
α

α
αβε ⋅
∂

∂
=

),,(),( YXYX .     (3) 

The rule for calculating scale elasticity is obtained by differentiating (2) with respect to the 

input-scaling factor 

0)(
)(

))(,(
)(

))(,())(,(
11

=
∂

∂
∂

∂
+

∂
∂

=
∂

∂ ∑∑
== α

αβ
β

αβα
α

αβα
α

αβα r

j
j

j

m

i
i

i

y
y

YXFx
x

YXFYXF . (4) 

Evaluating the derivatives at 1== βα  without loss of generality, and solving for the scale 

elasticity as defined by (3) yields:  

∑

∑

=

=

∂
∂

∂
∂

−==
∂

∂
r

j
j

j

m

i
i

i

y
y

YXF

x
x

YXF

YXYX

1

1

),(

),(

),(),,( ε
α

αβ .    (5) 

Once a differentiable analytical transformation function is introduced, the scale elasticity 

value follows from carrying out all the differentiations involved. Returns-to-scale properties 

of increasing, constant and decreasing returns are then determined by ε > 1, ε = 1, ε < 1, 

respectively. 

 

Returns to scale in DEA 

In the DEA approach the production possibility set is a convex polyhedral. For this reason, 

function ),( YXF  describing the efficient frontier is not everywhere differentiable (Banker et 

al., 1984; Banker and Thrall, 1992; Førsund, 1996; Cooper et al., 2000). But it can be shown 

that this is a continuous convex function that takes a finite value at any finite point ),( YX . 

However, function ),( YXF  describes the boundary of T  implicitly (Krivonozhko et al., 

2004; Førsund et al., 2007). 
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For these very reasons, returns to scale and scale elasticity were calculated in the DEA 

approach indirectly through the solutions of BCC dual problems (Banker et al., 1984; Banker 

and Thrall, 1992; Cooper et al., 2000). Let us dwell on this more detail. 

 

The BCC primal input-oriented model is written in the form 

 

                                                        θmin  

subject to 

                                                        

,0

,1

,

,

1

1
0

1
0

≥

=

≥

≤

∑

∑

∑

=

=

=

j

n

j
j

n

j
jj

n

j
jj

YY

XX

λ

λ

λ

θλ

                                                  (6a) 

where Xj=(x1j,…, xmj) and Yj=(y1j,…, yrj) represent the observed inputs and outputs of 

production units j=1,…,n. In this primal model the efficiency score θ of production unit 

),( 00 YX  is found; ),( 00 YX  is any unit from the set of production units (Xj,Yj), j=1,…,n. 

 

The dual multiplier form of the BCC model is expressed as 

)(max 00 uYuT −  

subject to  

00 ≤−− uXvYu j
T

j
T ,  nj ,,1…=     (6b) 

                                                 10 =XvT  

             0≥kv ,  mk ,,1…= ,  0≥iu ,  ri ,,1…=  

where ),,( 0uuv  is a vector of dual variables, mEv∈ , rEu∈ , 0u  is a scalar variable 

associated with the convex constraint. 

 

Banker and Thrall (1992) (see also Cooper et al., 2000) stated the following result: 

 

Assertion 1. Assuming that ),( 00 YX  is an efficient unit in the BCC model the 

following conditions identify the situation for returns to scale at this point: 
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(i) Increasing returns to scale prevails at ),( 00 YX  if and only if 0*
0 <u  for all 

optimal solutions. 

(ii) Decreasing returns to scale prevails at ),( 00 YX  if and only if 0*
0 >u  for all 

optimal solutions. 

(iii) Constant returns to scale prevail at ),( 00 YX  if and only if 0*
0 =u  in some 

optimal solution. 

Hence, to identify returns to scale at point ),( 00 YX  lying on the efficient frontier it is 

necessary to solve some additional dual problems of the type (6b). 

 

Banker and Thrall (1992) established that right-hand side and left-hand side elasticities at 

efficient unit ),( 00 YX  are determined as 

{ })1(1min),( *
000

*
0

uYX
u

+=+ε  

{ })1(1max),( *
000

*
0

uYX
u

+=−ε  

where *
0u  belongs to the set of optimal dual variables of problem (6b). 

 

Next, in the DEA literature, as mentioned above, attempts were made to identify returns to 

scale at efficient points of set T  on the basis of returns to scale at points of reference set. Let 

us recall that the reference set of an inefficient unit ),( 00 YX  is defined as (Cooper et al., 

2000): 

},,1,0|{ *
0 njjE j …=>= λ , 

where *
jλ  are optimal variables of the BCC primal optimization model as obtained from 

solving (6a). 

 

In the attempt to determine returns-to-scale properties of a radial projection of an inefficient 

unit on a face by the returns-to-scale properties of the units belonging to the corresponding 

reference set E0 , it is stated in Cooper et al. (2006, p.148) and Tone (2005) that if  all 

reference units have constant returns to scale, then the returns to scale of the  radial projection 

cannot be determined. However, firstly the rule developed in Cooper et al. (2006) to 

determine the scale properties is incomplete, and, secondly, this way of establishing the scale 
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properties between  the reference set and the projected point of the inefficient unit actually 

attempts to establish the connection the other way round determining first the scale property 

of the efficient projected point, as is the objective of this paper. 

 

Examples of determining returns-to-scale properties 

Before going further, let us recall some notions from convex analysis. Faces are formed by an 

intersection of the supporting hyperplane and the polyhedral set. In the DEA models, the 

dimension of face may vary from 0 up to )1( −+ rm , the maximal dimension. Faces of 

maximal dimension are called facets. Faces of 0-dimension are known as vertices, 

1-dimension as edges. In our exposition, Γri  stands for relative interior of face Γ . 

 

In order to elucidate the problems with the reference set exhibiting constant returns to scale 

we will introduce some illustrations. In Figure 1, a two-inputs/one-output BCC model is 

illustrated. Points )89,45,45(=A , )23,3,1(=B , )23,1,3(=C , )3,5,5(=D  and 

)21,32,2(=E  represent the observed production units that determine the production 

possibility set T . It is easy to see that points A , B , C  and D  form facet Γ  of maximal 

dimension. This facet belongs to the hyperplane that is described by equation 

02421 =−+−− yxx  .    (7) 

From Assertion 1 mentioned above and from equation (7), it follows that any unit 

Γ∈ riYX ),(  displays decreasing returns to scale since for such units the relation 0*
0 >u  

holds. 

 

On the other hand, it can be easily checked that units A , B  and C  display constant returns to 

scale. Indeed, points A, B, C are efficient according to the Charnes et al. (1978) (CCR) model, 

but point D is efficient only on the BCC model. In addition, one can construct a ray from the 

origin through point A (B, C) in such a way that this ray touches the production possibility set 

only in point A (B, C). If such ray is constructed through point D, then it goes through the 

interior points of the production possibility set. So, points A, B, C have constant returns to 

scale and point D has decreasing returns to scale. In Figure 1, unit Γ∈ riF can be represented 

as a convex combination of units A , B  and C  of facet Γ . The interior points of facet Γ  

have decreasing returns to scale, however, units A , B  and C  have constant returns to scale.  
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Figure 1. Interior points of facet Γ  spanned by points A,B,D,C display decreasing returns to scale.  

However, reference set may contain only units with constant returns to scale 
 

 

On the other hand, unit F  can also be represented as a convex combination of points A , B  

and D  of facet Γ , where point D  has decreasing returns to scale. So, we have a situation 

where the reference set has a combination of constant returns to scale and decreasing returns 

to scale. 

 

In Figure 2, a three-dimensional BCC model is depicted. Points )43,45,45(=A , 

)23,3,1(=B , )23,1,3(=C  and )29,5,5(=D  represent the observed production units 

that form the production possibility set T . It is easy to prove that points A , B , C  and D   
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Figure 2. Interior points of facet Γ  spanned by points A,B,D,C display increasing returns to scale.  

However, reference set may contain vertices only with constant returns to scale 
 

 

determine some facet Γ . The supporting hyperplane containing facet Γ  is described by the 

following equation 

01221 =++−− yxx .     (8) 

From (8), it follows that points ( , )X Y ri∈ Γ  have increasing returns to scale since 0*
0 <u . 

 

It can be easily checked that units B , C  and D  have constant returns to scale and unit  A  

has increasing returns to scale. Actually, points B, D and C are efficient according to the CCR 

model, but point A is efficient only on the BCC model. 

 

So, if some point ΓriF ∈  is represented as a convex combination of points B , C  and D , 

then point F  has constant returns to scale. On the other hand, if point F  is written as a 

convex combination of points A , B  and D , then point F has to display increasing returns to 

scale. 
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Thus, these examples show us clearly that the returns to scale of the BCC-projected activity 

cannot be found only on the basis of the returns-to-scale characteristics of units in its 

respective reference set that, in fact, contains vertices of some facet. 

 

3. Main results 

 

Now, we will prove some theorems that show that only an interior point of face Γ  can 

identify the returns-to-scale characteristics of points lying on face Γ . 

 

Theorem 1.  For BCC models, let an efficient unit Γ∈ riYX ),( 00 , where Γri  stands 

for relative interior of Γ , and where Γ  is a face of maximum dimension of production 

possibility set T . Then any point Γ∈ riYX ),(  displays the same returns-to- scale  property 

as point ),( 00 YX . 

 

Proof. Since point ),( 00 YX  belongs to the interior of face Γ  of maximal dimension, 

then there exists a unique supporting hyper-plane P  that contains face Γ . For points 

Γ∈ riYX ),(  the equation of hyperplane can be written in the form   

0),(),(
0

11
=−

∂
∂

+
∂

∂ ∑∑
==

uy
y

YXFx
x

YXF r

i
i

i

m

i
i

i

.   (9) 

Using (5) and (9), we obtain 

∑∑

∑

==

=

∂
∂

−=

∂
∂

∂
∂

−
−= r

i
i

i

r

i
i

i

r

i
i

i

y
y

YXF
u

y
y

YXF

y
y

YXFu
YX

1

0

1

1
0

),(
1

),(

),(

),(ε .  (10) 

It is known (Cooper et al., 2000) that coefficients 
ix

YXF
∂

∂
−

),( , 
iy

YXF
∂

∂ ),( , 0u  of hyper-plane 

P  satisfy the constraints of the dual problem (6b), except normalisation constraint 10 =XvT  

that is associated with point ),( 00 YX . However, since hyperplane equation (9) is invariant 

under multiplication by a nonzero number, so the ratio ∑
= ∂
∂r

i
i

i

y
y

YXFu
1

0
),(  will be the same 

for all points belonging to the interior of face Γ . 
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Hence, taking into account (10), we obtain: 

1),( >YXε  if and only if 00 <u , that is point ),( YX  displays increasing returns to 

scale; 

1),( <YXε  if and only if 00 >u , that is point ),( YX  displays decreasing returns to 

scale; 

1),( =YXε  if and only if 00 =u , that is point ),( YX  displays constant returns to 

scale. 

 

The denominator in formulae (10) is always greater than zero, since BCC models consider 

production units that have 0≥iy  and there exist nonzero values in every output vector jY . In 

addition dual variables are always greater than zero for interior points of the efficient facet. 

Thus, in order to identify returns to scale at interior points of face Γ  it is sufficient to identify 

returns to scale at any interior point of face Γ . 

This completes the proof.  

 

In the next theorem, we consider the case when the dimension of a face is less than 

)1( −+ mr . 

 

Theorem 2. For BCC models, let an efficient unit Γ∈ riYX ),( 00 , where Γ  is a face 

of  T  and )1(dim −+<Γ mr . Let there also exist a segment, described by the following 

equation 

0))(,( 00 =YXF αβα ,     (11) 

that belongs to the interior of face Γ  under some  δαδ +≤≤− 11 , where δ  is a small 

parameter. Then any point Γ∈ riYX ),(  displays the same returns to scale as point ),( 00 YX . 

 

Proof. Consider some point Γ∈ riYX ),( . It is easy to prove that the sets of 

supporting hyperplanes at points ),( YX  and ),( 00 YX  coincide. Construct a supporting 

hyper-plane containing face Γ  and segment (11). The equation of the hyperplane can be 

written in the form 

00 =−+− uYuXv TT .    (12) 
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Observe that the part of the frontier corresponding to face Γ  is also described by equation 

(12).  

 

One can show that if there exists segment (11) going through point ),( 00 YX  and belonging to 

Γri , then there exists a segment of the form (11) going through point ),( YX  and also 

belonging to Γri . 

 

The intersection of hyperplane (12) and two-dimensional plane ),( YX βα , where α  and β  

are any real numbers, can be written as the following equation  

00 =−+− uYuXv TT βα ,    (13) 

that describes a segment of the form (11) in some vicinity of point Γ∈ riYX ),( . 

From (13), it follows that  

Yu
Xv

T

T
=

∂
∂
α
β . 

Hence, for any point Γ∈ riYX ),(  the following relations hold 

Yu
u

Yu
uYuYX TT

T
00 1

)(
),( −=⋅

−
=⋅

∂
∂

=
β
α

α
β

β
α

α
βε ,  (14) 

since 1=α , 1=β  for point ),( YX . 

 

Observe that there exist a lot of supporting hyper-planes of face Γ , since the dimension of 

this face is less than )1( −+ mr . However the equation of the segment (13) has a unique form 

for all such hyper-planes, which is invariant under multiplication by a nonzero number. Take 

any supporting hyper-plane 1P  that contains face Γ , hence this hyper-plane contains a part of 

the segment (13). Hence for every point Γ∈ riYX ),( the ratio Yuu T
0  is determined 

uniquely. 

 

Since for every point Γ∈ riYX ),(  we can take the same hyperplane in order to find the scale 

elasticity by the formulae (14), the sign of the ratio Yuu T
0  will be the same for all points 

Γ∈ riYX ),( . Therefore any point Γ∈ riYX ),(  displays the same returns to scale as point 

),( 00 YX . 

This completes the proof. 
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The previous two theorems considered the cases when the directional derivative of F(X,Y) at 

point ),( 00 YX  of some face along direction 0Xα  is continuous. The next theorem deals with 

the situation when the left-side and the right-side directional derivatives at point ),( 00 YX  of 

some face are not equal to each other. In other words, the next theorem takes up the case 

where face Γ  does not contain a segment of the type (11). 

 

Theorem 3. For BCC models, let efficient production unit 000 ),( Γ∈ riYX , where 0Γ  

is a face of T . Let also the segment described by equation (11) belong to face 1Γ  under some 

δα +≤≤ 11 , where δ  is a small parameter, let another segment described by equation (11) 

belong to face 2Γ  under some  11 ≤≤− αδ  and 210 Γ∩Γ=Γ . Then any point 0),( Γ∈ riYX  

displays the same returns to scale as point ),( 00 YX . 

 

Proof. Consider any point 011 ),( Γ∈ riYX  that differs from point ),( 00 YX . One can 

prove that there exists segment 1L  described by equation 0))(,( 11 =YXF αβα  and this 

segment also belongs to face 1Γ  under some 11 1α δ≤ ≤ + , where 1δ  is a small parameter. 

Next, using constructions of Theorem 2 one can show that for any point 0),( Γ∈ riYX  the 

following relation holds  

Yu
uYX T

+
+ −= 01),(ε ,      (15) 

where supporting hyper-plane P  is constructed in such a way that it contains faces 0Γ and 

1Γ , hence value +
0u  is the same for all points 10 Γ⊂Γri . 

 

By virtue of formulae (15), we obtain that for any point 0),( Γ∈ riYX  the following 

assertions are valid:  

1),( >+ YXε  if and only if 00 <
+u ;  

1),( =+ YXε  if and only if 00 =+u ;  

1),( <+ YXε  if and only if  00 >+u . 
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For the left part of the segment 0))(,( =YXF αβα  under 11 ≤≤− αδ  the proof is conducted 

similarly. Thus, for any point 0),( Γ∈ riYX  the left scale elasticity ),( YX−ε  takes the value 

greater than unity, equal to unity or less than unity depending on the sign of the value −
0u . 

 

Banker and Thrall (1992) proved that if at some point ),( YX  left-hand side and right-hand 

side scale elasticities, ),( YX−ε  and ),( YX+ε , are calculated, then: 

a) point ),( YX  displays increasing returns to scale if and only if 

1),(),( >≥ +− YXYX εε ; 

b) point ),( YX  displays decreasing returns to scale if and only if 

),(),(1 YXYX +− ≥> εε ; 

c) point ),( YX  displays constant returns to scale if and only if 

),(1),( YXYX +− ≥≥ εε . 

 

As we have already showed, to compare left-hand side elasticity ),( YX−ε  and right-hand 

side elasticity ),( YX+ε  with the unity at any point 0),( Γ∈ riYX  it is sufficient to conduct 

such comparison only for point 000 ),( Γ∈ riYX . Hence, any point 0),( Γ∈ riYX  displays the 

same returns to scale as point 000 ),( Γ∈ riYX . 

This completes the proof.  

 

Theorems 1 - 3 established that in order to identify returns to scale at interior points of a face 

it is sufficient to  identify returns to scale at any interior point of this face. The previous 

examples showed that vertices of a face cannot in general correctly identify returns to scale at 

interior points of this face. Thus, the question arises: what is an association between returns 

to scale at vertices of a face and interior points of this face? The answer is obtained from the 

following theorem. 

 

Theorem 4. For the BCC model, let S  be a set of vertices (efficient units) that form 

some face F  of the frontier. The following conditions identify the situation for the returns to 

scale at point SYX ∈),( : 
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(i) if any point Γ∈ riYX ),( 00  displays increasing returns to scale then point 

),( YX  displays increasing returns to scale or constant returns to scale; 

(ii) if any point Γ∈ riYX ),( 00  displays constant returns to scale then point 

),( YX  displays constant returns to scale; 

(iii) if any point Γ∈ riYX ),( 00  displays decreasing returns to scale then point 

),( YX  displays decreasing returns to scale or constant returns to scale. 

 

The proof of Theorem 4 is rather evident. It follows from Theorems 1-3, illustrative examples 

and Assertion 1. 

 

Proof. Consider every case separately. 

(i) If some interior point Γ∈ riYX ),( 00  displays increasing returns-to-scale, then 

for any supporting hyper-plane P at point ),( 00 YX the following relation 

holds: 0*
0 <u  according to Assertion 1. Hyper-plane P contains also point 

),( YX . If there exists supporting hyper-plane L at point  SYX ∈),( such that  

0*
0 ≥u , then point ),( YX  displays constant returns to scale according to 

Assertion 1. If there does not exist supporting hyper-plane L at point  

SYX ∈),( such that 0*
0 ≥u , then point ),( YX  displays increasing returns to 

scale.  

(ii) If some point Γ∈ riYX ),( 00  displays constant returns to scale, then there 

exists supporting hyper-plane P at point ),( 00 YX such that 0*
0 =u .This hyper-

plane contains also point ),( YX . Hence point ),( YX displays constant returns 

to scale. 

(iii) If point Γ∈ riYX ),( 00  displays decreasing returns to scale, then for any 

supporting hyper-plane P at point ),( 00 YX the following relation holds: 

0*
0 >u . Hyper-plane P contains also point ),( YX . If there exists a supporting 

hyper-plane at point  SYX ∈),( such that  0*
0 ≤u , then point ),( YX  displays 

constant returns to scale. If there does not exist a supporting hyper-plane at 
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point SYX ∈),( such that 0*
0 ≤u , then point ),( YX displays decreasing  

returns to scale according to Assertion 1. 

This completes the proof. 

 

Thus, only interior points of a face can serve as indicators of returns to scale at any points of 

this face. 

 

Further interpretations 

In their classic paper Banker et al. (1984) presented an excellent interpretation of term 0u  for 

the one-input/one-output BCC model. In this case the value 0u  is an intercept of the pertinent 

linear segment of production function with the vertical axis determined by output variable y . 

 

This interpretation carries over to the multi-dimensional case. In the multi-input/multi-output 

BCC model, the intersection of the hyperplane containing some face and two-dimensional 

plane ),( 11 YX βα  is determined by equation (13). Or, in other words, the following equation 

1

0

1

1

Yu
u

Yu
Xv

TT

T

+= αβ  

describes a pertinent segment of the frontier on the two-dimensional plane spanned by 

vectors 1Xα  and 1Yβ . Hence, value 1 0 1/ Tu u Yβ =  is an intercept of the line that contains the 

pertinent segment with axis 1Yβ . 

 

In Figure 3, point A  on the plane corresponds to point ),( 11 YX  on the multidimensional 

frontier. Value 1 0 1/ Tu u Yβ =  is an intercept of the segment containing point A  with axis 1Yβ . 

In this case, the positive value 1β  shows that point A  displays decreasing returns to scale.  

 

In the above examples, every interior point of face Γ  was associated with more than one 

reference set. In Figure 4, unit F  is lying on the facet Γ  formed by points A , B , C , D  and 

E . Hence, point F  may be represented as a convex combinations of several sets of points: 

A , B ,C  or E , B ,C  or  A , B , D  or A , D , E  and so on. In the multidimensional models the 

situation may be much more complicated. Thus, one needs to elaborate special algorithms 

that associate all reference sets with every production unit on the frontier. 
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Figure 3. Intersection of the frontier and two-dimensional plane going through point ),( 11 YX  

 

 

However, problems with constant returns of scale of units of the reference set and the scale 

properties of a projected point may also occur when an interior efficient point of some facet is 

associated with only one reference set. Indeed, consider the first example above (Figure 1). 

Now, let point D  be (5, 5, 2). In this case facet Γ  formed by units A , B , C  and D  is 

divided into two facets 1Γ  and 2Γ , respectively. Facet 1Γ  is formed by units A , B  and C , 

and these units display constant returns to scale. The reference set of interior point F  

belonging to 1Γ  consist of points A , B  and C . At the same time, unit F  has decreasing 

returns to scale since it is belongs to the unique supporting hyperplane, described by equation 

(7), that contains facet 1Γ  and point F . 

 

Somebody may object that all cases described above may occur very rarely. Our answer is 

very simple. Let us recall the situation in linear programming at the beginning of fifties. At 

that time everybody thought that a degenerate basis that caused cycling may occur very 

seldom in practice (Dantzig and Thapa, 2003). The degenerate basis means that some basic 

variables are equal to zero, which may lead to cycling during the solution process. And now, 

we see that every basis associated with a vertex (efficient unit) in DEA models is degenerate.  
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Figure 4. Several reference sets may exist for an interior point F  of facet Γ . 

 

This may cause heavy difficulties when constructing visualization methods in DEA models 

(Krivonozhko et al, 2004). 

 

4. Concluding remarks 

 

In this paper, we establish that the returns to scale of points on the faces of the frontier can be 

found only by observing the returns-to-scale characteristics of interior points of these faces. 

This unexpected result has, however, deep methodological reasons. Indeed, in neoclassical 

production theory the transformation function is assumed to be smooth (continuously 

differentiable).  

 

In the DEA approach, the frontier is constructed as a convex envelope of actual production 

units in the multidimensional space, as a result all efficient units lie on the frontier. The 

“payment” for this is that the frontier function is not differentiable at vertices (efficient units), 

this means that the gap of derivatives may take place at these points. This may lead to some 

economic properties (characteristics) being violated. 
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Interior points of faces keep the properties of smoothness. For this reason, only interior points 

of faces determine the returns-to-scale characteristics of these faces. 

 

In this paper we have considered all main cases of disposition of faces. In Theorem 1, face Γ  

has full dimension. In Theorem 2, face Γ  has not full dimension, however, it is differentiable 

along direction Xα . In Theorem 3, face 0Γ  has not full dimension, in addition it is not 

differentiable along direction Xα . For this reason, we have to consider two segments, or, in 

other words, we have to take left-side and right-side derivatives. 

 

Similar theorems can be stated for points TWEffriYX O⊂Γ∈),( , where TWEffO  stands for 

a set of output weakly efficient points with respect to the BCC model. We will not dwell on 

this, since to reveal the dimension and the type of faces only on the basis of optimal solution 

of the BCC model is impossible. For this purpose one needs to use significant additional 

computations. 

 

On the other hand, the direct approach (Krivonozhko et al., 2004; Førsund et al., 2007) for 

calculations of scale elasticities in DEA models enables us to find scale elasticities at any 

points of the frontier, and hence to identify returns to scale at any points of the face that 

contains this point. 
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