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1 Introduction

In most applications of noncooperative game theory, Nash equilibrium is used as a

tool to predict behavior. Under what conditions, if any, is this approach justified?

In his Ph D thesis, Nash (1950) suggested two interpretations of Nash equilibrium,

one rationalistic, in which all players are fully rational, know the game, and play it

exactly once. In the other, “mass action” interpretation, there is a large population

of actors for each player role of the game, and now and then exactly one actor

from each player population is drawn at random to play the game in his or her

player role, and this is repeated (i.i.d.) indefinitely over time. Whereas the latter

interpretation is studied in the literature on evolutionary game theory and social

learning, the former — more standard one in economics — is studied in a sizeable

literature on epistemic foundations of Nash equilibrium. It is by now well-known

from this literature that players’ rationality and beliefs or knowledge about the

game and each others’ rationality in general do not imply that they necessarily play

a Nash equilibrium or even that their conjectures about each others’ actions form a

Nash equilibrium; see Bernheim (1984), Pearce (1984), Aumann and Brandenburger

(1995).

The problem is not only a matter of coordination of beliefs (conjectures or ex-

pectations), as in a game with multiple equilibria. It also concerns the fact that, in

Nash equilibrium, each player’s belief is supposed to correspond to specific random-

izations over the others’ strategies. In particular, given her beliefs, a player may

have multiple pure strategies that maximize her expected payoff. Hence, any ran-

domization over these is a best reply. Yet in Nash equilibrium, each player’s belief

singles out those randomizations over the others’ pure best replies that serve to keep

their opponents indifferent across their mixed-strategy supports. In addition, each

player’s belief concerning the behavior of others assigns positive probability only to

best replies; players are not allowed to entertain any doubt about the rationality of

their fellow players.

Our aim is to formalize a notion of epistemic stability that relaxes these re-

quirements. In order to achieve this, we have to move away from point-valued to

set-valued solutions. Roughly speaking, we define a set X of pure strategy profiles

as epistemically stable if there exists a corresponding set Y of profiles of “player

types” such that:

(i) The strategies in X coincide with the best replies of the player types in Y .
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(ii) The set Y contains any player type that believes with sufficient probability

that the others are of types in Y and choose best replies.

While (ii) specifies a stable set of beliefs, (i) specifies a stable set of strategies in

response to it.

Any strict Nash equilibrium, viewed as a singleton product set, is epistemically

stable in this sense. Each player is then believed by the others to choose her unique

best reply to the others’ actions. To deviate to any other action would be strictly

worse, and remains so, as long as the player is sufficiently sure that the others

stick to their actions. By contrast, non-strict Nash equilibria by definition have

alternative best replies and are consequently not epistemically stable: players who

strive to maximize their expected payoffs might well choose such alternative best

replies even if they are sure that others are playing their equilibrium strategies. As

will be shown below, every epistemically stable set contains at least one strategically

stable set.

The notion of persistent retracts (Kalai and Samet (1984)) goes part of the way

towards epistemic stability. These are product sets requiring the presence of at least

one best reply to arbitrary beliefs close to the set. In other words, they are robust

to small belief perturbations, but admit alternative best replies outside the set.

Full epistemic stability is achieved by variants of curb sets. A curb set —

mnemonic for ‘closed under rational behavior’ — is a Cartesian product of pure-

strategy sets, one for each player, that includes all best replies to all probability

distributions over the strategies in the set.1 Hence, if a player believes that her op-

ponents stick to strategies from their components of a curb set, then her component

contains all her best replies, so she’d better stick to her strategies as well.

A Cartesian product of pure-strategy sets is fixed under rational behavior (furb)

if each player’s component not only contains, but is identical with the set of best

replies to all probability distributions over the set. Hence, furb sets are the natural

set-valued generalization of strict Nash equilibria. Basu and Weibull (1991) — who

1 Curb sets and variants were introduced by Basu and Weibull (1991) and became of im-

portance in the literature on strategy adaptation in finite games. Several classes of adaptation

processes eventually settle down in a minimal curb set; cf. Hurkens (1995), Sanchirico (1996),

Young (1998), and Fudenberg and Levine (1998). Such sets also give appealing results in com-

munication games (Hurkens, 1996; Blume, 1998) and network formation games (Galeotti, Goyal,

and Kamphorst, 2006). For closure properties under generalizations of the best-response correspon-

dence, see Ritzberger and Weibull (1995).
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refer to furb sets as ‘tight’ curb sets — show that minimal curb sets and the

product set of rationalizable strategies (Bernheim, 1984; Pearce, 1984) are important

special cases of furb sets.

In order to illustrate our line of reasoning, consider first the two-player game

l c

u 3, 1 1, 2

m 0, 3 2, 1

In its unique Nash equilibrium, player 1’s equilibrium strategy assigns probability

2/3 to her first pure strategy and player 2’s equilibrium strategy assigns probability

1/4 to his first pure strategy. However, even if player 1’s belief about the behavior

of player 2 coincides with his equilibrium strategy, (1/4, 3/4), player 1 would be

indifferent between her two pure strategies. Hence, any pure or mixed strategy

would be optimal for her, under the equilibrium belief about player 2. For all other

beliefs about her opponent’s behavior, only one of her pure strategies would be

optimal, and likewise for player 2. The unique curb set and unique epistemically

stable set in this game is the full set S = S1 × S2 of pure-strategy profiles.

Add a third pure strategy for each player to obtain the two-player game

l c r

u 3, 1 1, 2 0, 0

m 0, 3 2, 1 0, 0

d 5, 0 0, 0 6, 4

(1)

Strategy profile x∗ = (x∗1, x
∗
2) =

((
2
3 , 1

3 , 0
)
,
(

1
4 , 3

4 , 0
))

is a Nash equilibrium (indeed a

perfect and proper equilibrium). However, if player 2’s belief concerning the behavior

of 1 coincides with x∗1, then 2 is indifferent between his pure strategies l and c, and

if 1 assigns equal probability to these two pure strategies of player 2, then 1 will

play the unique best reply d, a pure strategy outside the support of the equilibrium.

Moreover, if player 2 expects 1 to reason this way, then 2 will play r: the smallest

epistemically stable set containing the support of the mixed equilibrium x∗ is the

entire pure strategy space. By contrast, the pure-strategy profile (d, r) is a strict

equilibrium. In this equilibrium, no player has any alternative best reply and each

equilibrium strategy remains optimal also under some uncertainty as to the other

player’s action: the set {d} × {r} is epistemically stable. In this game, all pure

strategies are rationalizable, S = S1 × S2 is a furb set, and the game’s unique

minimal curb set and unique minimal furb set is T = {d} × {r}.
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Our results on epistemic stability can be heuristically described as follows. By

Proposition 1(a), epistemically stable sets must be curb sets. Conversely, although

curb sets2 may involve strategies that are not best replies — e.g., strategies that

are strictly dominated — every curb set contains an epistemically stable subset.

Proposition 1(b) characterizes the largest one, whereas the smallest one(s), minimal

curb sets, receive special attention in Proposition 3. Proposition 2 establishes that

furb sets can be characterized in terms of epistemic stability, by removing player

types that do not believe with sufficient probability that the others choose best

replies. Proposition 3 starts with an algorithm (Prop. 3(a)) to generate epistemically

stable sets from any product set of types: epistemic stability requires including all

beliefs over the opponents’ best replies, and any beliefs over opponents’ types that

has such beliefs over their opponents, and so on. After all these beliefs have been

included, the corresponding product set of best responses to it is epistemically stable

and indeed the smallest curb set containing the best responses to the type set one

started with. With this algorithm in hand, minimal curb sets, the prime focus of

attention in applications of curb sets (recall footnote 1), can be characterized by

means of a path-independence property: a product set X of pure strategies is a

minimal curb set if and only if it is the outcome of the algorithm, whenever you

initiate it with a type profile assigning probability one to something from X being

played.

As our notion of epistemic stability implies stability to alternative best replies,

it is natural to follow, for instance, Asheim (2006) and Brandenburger, Friedenberg,

and Keisler (2008), and model players as having beliefs about the opponents without

modeling the players’ actual behavior. Moreover, we consider complete epistemic

models. In these respects, our modeling differs from that of Aumann and Bran-

denburger’s (1995) characterization of Nash equilibrium. In its motivation in terms

of epistemic stability of solution concepts and in its use of p-belief, the present ap-

proach is related to Tercieux’s (2006) analysis. His epistemic approach, however,

is completely different from ours. Starting from a two-player game, he introduces

a Bayesian game where payoff functions are perturbations of the original ones and

he investigates which equilibria are robust to this kind of perturbation. Zambrano

(2008) studies the stability of non-equilibrium concepts in terms of mutual belief

and is hence more closely related to our analysis. In contrast with our approach,

however, Zambrano (2008) restricts attention to rationalizability and probability-1

2Recall that the entire pure strategy space of a game is a curb set.
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beliefs. His main result follows from our Proposition 2. Also Hu (2007) restricts

attention to rationalizability, but allows for p-beliefs, where p < 1. In the games

considered in Hu (2007), pure strategy sets are permitted to be infinite. By contrast,

our analysis is restricted to finite games, but under the weaker condition of mutual,

rather than Hu’s common, p-belief of opponent rationality and of opponents’ types

belonging to given type sets.

The remainder of the paper is organized as follows. Section 2 contains the game

theoretic and epistemic definitions used. Section 3 gives the characterizations of

variants of curb sets. Proofs of the propositions are provided in the appendix.

2 The model

2.1 Game theoretic definitions

Consider a finite normal-form game 〈N, (Si)i∈N , (ui)i∈N 〉, where N = {1, . . . , n}
is the non-empty and finite set of players. Each player i ∈ N has a non-empty,

finite set of pure strategies Si and a payoff function ui : S → R defined on the set

S := S1 × · · · × Sn of pure-strategy profiles. For any player i, let S−i := ×j 6=iSj .

It is over this set of other players’ pure-strategy combinations that player i will

form his or her probabilistic beliefs. These beliefs may, but need not be product

measures over the other player’s pure-strategy sets. We extend the domain of the

payoff functions to probability distributions over pure strategies as usual.

For an arbitrary Polish (separable and completely metrizable) space F , let M(F )

denote the set of Borel probability measures on F , endowed with the topology of

weak convergence. For each player i ∈ N , pure strategy si ∈ Si, and probabilistic

belief σ−i ∈M(S−i), write

ui(si, σ−i) :=
∑

s−i∈S−i

σ−i(s−i)ui(si, s−i).

Define i’s best-reply correspondence βi : M(S−i) → 2Si as follows: For all σ−i ∈
M(S−i),

βi(σ−i) := {si ∈ Si | ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si} .

Let S := {X ∈ 2S | ∅ 6= X = X1 × · · · × Xn} denote the collection of non-

empty Cartesian products of subsets of the players’ strategy sets. For X ∈ S we

abuse notation slightly by writing, for each i ∈ N , βi(M(X−i)) as βi(X−i). Let

β(X) := β1(X−1) × · · · × βn(X−n). Each constituent set βi(X−i) ⊆ Si in this
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Cartesian product is the set of best replies of player i to all probabilistic beliefs over

the others’ strategy choices X−i ⊆ S−i.

Following Basu and Weibull (1991), a set X ∈ S is:

closed under rational behavior (curb) if β(X) ⊆ X;

fixed under rational behavior (furb) if β(X) = X;

minimal curb (mincurb) if it is curb and does not properly contain

another one: β(X) ⊆ X and there is no X ′ ∈ S with X ′ ⊂ X and

β(X ′) ⊆ X ′.

Basu and Weibull (1991) call a furb set a ‘tight’ curb set. The reversed inclu-

sion, X ⊆ β(X), is sometimes referred to as the ‘best response property’ (Pearce,

1984, p. 1033). It is shown in Basu and Weibull (1991, Prop. 1 and 2) that a

mincurb set exists, that all mincurb sets are furb, and that the product set of

rationalizable strategies is the game’s largest furb set. While Basu and Weibull

(1991) require that players believe that others’ strategy choices are statistically in-

dependent, σ−i ∈ ×j 6=iM(Sj), we here allow players to believe that others’ strategy

choices are correlated, σ−i ∈M(S−i).3 Thus, in games with more than two players,

the present definition of curb is somewhat more demanding than that in Basu and

Weibull (1991), in the sense that we require closedness under a wider space of be-

liefs. Hence, the present definition may, in games with more than two players, lead

to different mincurb sets.4

2.2 Epistemic definitions

The epistemic analysis builds on the concept of player types, where a type of a player

is characterized by a probability distribution over the others’ strategies and types.

For each i ∈ N , denote by Ti player i’s non-empty Polish space of types. The state

space is defined by Ω := S×T , where T := T1×· · ·×Tn. For each player i ∈ N , write

Ωi := Si×Ti and Ω−i := ×j 6=iΩj . To each type ti ∈ Ti of every player i is associated

a Borel probability measure µi(ti) ∈ M(Ω−i). For each player i, we thus have the

3Our results carry over — with minor modifications in the proofs — to the case of independent

strategies.

4 We also note that a pure strategy is a best reply to some belief σ−i ∈ M(S−i) if and only if

it is not strictly dominated (by any pure or mixed strategy). This follows from Lemma 3 in Pearce

(1984), which, in turn, is closely related to Lemma 3.2.1 in van Damme (1983).
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player’s pure-strategy set Si, type space Ti and a mapping µi : Ti → M(Ω−i) that

to each of i’s types ti assigns a probabilistic belief, µi(ti), over the others’ strategy

choices and types. The structure (S1, . . . , Sn, T1, . . . , Tn, µ1, . . . , µn) is called an S-

based (interactive) probability structure. Assume that for each i ∈ N :

• µi is onto: all Borel probability measures on Ω−i are represented in Ti. A

probability structure with this property is called complete.

• µi is continuous.

• Ti is compact.

An adaptation of the proof of Brandenburger, Friedenberg, and Keisler (2008, Propo-

sition 7.2) establishes the existence of such a complete probability structure.5

In the setting to be developed here, we consider players who choose best replies

to their beliefs — but need not believe that all other players do so, only that this is

sufficiently likely.

For each i ∈ N , denote by si(ω) and ti(ω) i’s strategy and type in state ω ∈ Ω.

In other words, si : Ω → Si is the projection of the state space to i’s strategy set,

assigning to each state ω ∈ Ω the strategy si = si(ω) that i uses in that state.

Likewise, ti : Ω → Ti is the projection of the state space to i’s type space. For each

player i ∈ N and positive probability p ∈ (0, 1], the p-belief operator Bp
i maps each

event (Borel-measurable subset of the state space) E ⊆ Ω to the set of states where

player i’s type attaches at least probability p to E:

Bp
i (E) := {ω ∈ Ω | µi(ti(ω))(Eωi) ≥ p} ,

where Eωi := {ω−i ∈ Ω−i | (ωi, ω−i) ∈ E}. This is the same belief operator as in Hu

(2007).6 One may interpret Bp
i (E) as the event ‘player i believes E with probability

at least p’. For all p ∈ (0, 1], Bp
i satisfies Bp

i (∅) = ∅, Bp
i (Ω) = Ω, Bp

i (E′) ⊆ Bp
i (E′′)

if E′ ⊆ E′′ (monotonicity), and Bp
i (E) = E if E = proj Ωi

E × Ω−i. The last

property means that each player i always p-believes his own strategy-type pair, for

any positive probability p. Since also Bp
i (E) = proj Ωi Bp

i (E) × Ω−i for all events

E ⊆ Ω, each operator Bp
i satisfies both positive (Bp

i (E) ⊆ Bp
i (Bp

i (E))) and negative

5The exact result we use is Proposition 6.1 in an earlier working paper version (Brandenburger,

Friedenberg, and Keisler, 2004). Existence can also be established by constructing a universal state

space (cf. Mertens and Zamir, 1985; Brandenburger and Dekel, 1993).

6See also Monderer and Samet (1989).
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(¬Bp
i (E) ⊆ Bp

i (¬Bp
i (E)) introspection. For all p ∈ (0, 1], Bp

i violates the truth

axiom, meaning that Bp
i (E) ⊆ E need not hold for all E ⊆ Ω. In the special case

p = 1, we have Bp
i (E′) ∩Bp

i (E′′) ⊆ Bp
i (E′ ∩ E′′) for all E′, E′′ ⊆ Ω.

Define i’s choice correspondence Ci : Ti → 2Si as follows: For each of i’s types

ti ∈ Ti,

Ci(ti) := βi(margS−i
µi(ti))

consists of i’s best replies when player i is of type ti. Let T denote the collection of

non-empty Cartesian products of subsets of the players’ type spaces:

T := {Y ∈ 2T | ∅ 6= Y = Y1 × · · · × Yn}.

For any such set Y ∈ T and player i ∈ N , write Ci(Yi) :=
⋃

ti∈Yi
Ci(ti) and C(Y ) :=

C1(Y1) × · · · × Cn(Yn). In other words, these are the choices and choice profiles

associated with Y . If Y ∈ T and i ∈ N , write

[Yi] := {ω ∈ Ω | ti(ω) ∈ Yi}.

This is the event that player i is of a type in the subset Yi. Likewise, write [Y ] :=⋂
i∈N [Yi] for the event that the type profile is in Y . Finally, for each player i ∈ N ,

write Ri for the event that player i uses a best reply:

Ri := {ω ∈ Ω | si(ω) ∈ Ci(ti(ω))}.

One may interpret Ri as the event that i is rational: if ω ∈ Ri, then si(ω) is a best

reply to margS−i
µi(ti(ω)).

3 Epistemic stability

We define a product set X ∈ S of strategies to be epistemically stable if there exists

a p̄ < 1 such that, for all probabilities p ∈ [p̄, 1], there is a set of type profiles Y ∈ T
such that

C(Y ) = X (2)

and

Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi] ∀i ∈ N. (3)

Condition (2) states that the strategies in X are precisely those that rational players

whose types are in Y may use. For each p < 1, condition (3) allows each player i to
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attach a positive probability to the event that others do not play best replies and/or

are of types outside Y .

Proposition 1(a) establishes that epistemically stable sets are necessarily curb

sets. Proposition 1(b) establishes that any curb set X contains an epistemically

stable subset, and also characterizes the largest such subset.

Denote, for each i ∈ N and Xi ⊆ Si the pre-image (upper inverse) of Xi under

player i’s best response correspondence by

β−1
i (Xi) := {σ−i ∈M(S−i) | βi(σ−i) ⊆ Xi} .

For a given subset Xi of i’s pure strategies, β−1
i (Xi) consists of beliefs over oth-

ers’ strategy profiles having the property that all best replies to these beliefs are

contained in Xi.

Proposition 1 Let X ∈ S.

(a) If X is epistemically stable, then X is a curb set.

(b) If X is a curb set, then ×i∈Nβi(β−1
i (Xi)) ⊆ X is epistemically stable. Fur-

thermore, it is the largest epistemically stable subset of X.

Claim (a) implies that every epistemically stable set contains at least one strate-

gically stable set, both as defined in Kohlberg and Mertens (1986) and as defined in

Mertens (1989), see Ritzberger and Weibull (1995) and Demichelis and Ritzberger

(2003), respectively.7 Concerning claim (b), we note that ×i∈Nβi(β−1
i (Si)) equals

the set of profiles of strategies that are best replies to some belief. Hence, since for

each i ∈ N , both βi(·) and β−1
i (·) are monotonic w.r.t. set inclusion, it follows from

Proposition 1(b) that any epistemically stable set involves only strategies surviving

one round of strict elimination.

Our proof shows that Proposition 1 can be slightly strengthened. For (a), one

only needs the stability conditions with p = 1; as long as there is a Y ∈ T such

that C(Y ) = X and (3) holds, X is curb.8 Moreover, although epistemic stability

allows that Y ∈ T depends on p, the proof of (b) defines Y independently of p.

Also furb sets can be characterized in terms of epistemic stability:

7In fact, these inclusions hold under the slightly weaker definition of curb sets in Basu and

Weibull (1991), in which a player’s belief about other players is restricted to be a product measure

over the others’ pure-strategy sets.

8In the appendix we also prove that if p ∈ (0, 1] and Y ∈ T are such that C(Y ) = X and (3)

holds for all i ∈ N , then X is a p-best response set in the sense of Tercieux (2006).
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Proposition 2 X ∈ S is a furb set if and only if X is epistemically stable and

(3) holds with equality.

As a corollary, Proposition 2 characterizes the set of rationalizable strategy pro-

files (Bernheim, 1984; Pearce, 1984), since this is the game’s largest furb set (Basu

and Weibull, 1991), without involving any explicit assumption of common belief of

rationality; only mutual p-belief of rationality and type sets are assumed. Proposi-

tion 2 generalizes the main result of Zambrano (2008) to p-belief for p sufficiently

close to 1. Proposition 2 also applies to mincurb sets, as these sets are furb.

By Proposition 1, the smallest epistemically stable sets are exactly the game’s

mincurb sets. As much of the literature on curb sets (recall footnote 1) focuses on

minimal ones, we now turn to an epistemic characterization of mincurb sets. The

characterization has two parts. The first part starts from an arbitrary product set

Y of types and generates en epistemically stable set by including all beliefs over the

opponents’ best replies, and any beliefs over opponents’ types that has such beliefs

over their opponents, and so on. The so obtained product set of best replies is

epistemically stable and is the smallest curb set containing C(Y ). The second part

characterizes mincurb sets in terms of a path independence condition: a product set

of pure strategies X is a mincurb set if and only if it is the output of the algorithm

in the first part, whenever the algorithm starts from a singleton set consisting of a

profile of types that assign probability one to strategies in X.

Formally, define for any Y ∈ T the sequence 〈Y (k)〉k by Y (0) = Y and, for each

k ∈ N and i ∈ N ,

[Yi(k)] := [Yi(k − 1)] ∪B1
i

(⋂
j 6=i

(
Rj ∩ [Yj(k − 1)]

))
. (4)

Define the correspondence E : Ti → 2Si , for any Y ∈ T , by

E(Y ) := C
(⋃

k∈N
Y (k)

)
.

Note that for each set X ∈ S in any finite game, there exists a unique smallest curb

set X ′ ∈ S with X ⊆ X ′ (that is, X ′ is a subset of all other curb sets X ′′, if any,

with X ⊆ X ′′).9

9To see that this holds for all finite games, note that the collection of curb sets containing a

given set X ∈ S is non-empty and finite, and that the intersection of two curb sets containing X

is again a curb set containing X.

11



Proposition 3 (a) Let Y ∈ T . Then X = E(Y ) is the smallest curb set satis-

fying C(Y ) ⊆ X. Furthermore, E(Y ) is epistemically stable.

(b) X ∈ S is a mincurb set if and only if for each t ∈ T with

∀i ∈ N : margS−i
µi(ti)(X−i) = 1, (5)

it holds that E({t}) = X.

Remark 1 If the set C(Y ) in claim (a) includes strategies that are not rationaliz-

able, then E(Y ) will not be furb. Therefore, the epistemic stability of E(Y ) does

not follow from Proposition 2: its stability is established by invoking Proposition

1(b).

In order to illustrate Proposition 3, consider the Nash equilibrium x∗ in game (1)

in the introduction. This equilibrium corresponds to a type profile (t1, t2) where t1

assigns probability 1/4 to (l, t2) and probability 3/4 to (c, t2), and where t2 assigns

probability 2/3 to (u, t1) and probability 1/3 to (m, t1). We have that C({t1, t2}) =

{u,m}×{l, c}, while the full strategy space S is the smallest curb set that includes

C({t1, t2}). Proposition 3(a) shows that C({t1, t2}) is not epistemically stable, since

it does not coincide with the smallest curb set that includes it. Recalling the

discussion from the introduction: if player 2’s belief concerning the behavior of 1

coincides with x∗1, then 2 is indifferent between his pure strategies l and c, and if 1

assigns equal probability to these two pure strategies of player 2, then 1 will play

the unique best reply d, a pure strategy outside the support of the equilibrium.

Moreover, if player 2 expects 1 to reason this way, then 2 will play r. Hence, to

assure epistemic stability, starting from type set {t1, t2}, the repeated inclusion of

all beliefs over opponents’ best replies eventually leads to the smallest curb set,

here S, that includes the Nash equilibrium that was our initial point of departure.

By contrast, for the type profile (t′1, t
′
2) where t′1 assigns probability 1 to (r, t′2) and

t′2 assigns probability 1 to (d, t′1) we have that C({t′1, t′2}) = {(d, r)} coincides with

the smallest curb set that includes it. Thus, the strict equilibrium (d, r) to which

(t′1, t
′
2) corresponds is epistemically stable, when viewed as a singleton set.

Appendix

Proof of Proposition 1. Part (a). By assumption, there is a Y ∈ T with

C(Y ) = X such that for each i ∈ N , B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi].
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Fix i ∈ N , and consider any σ−i ∈ M(X−i). Since C(Y ) = X, it follows that,

for each s−i ∈ S−i with σ−i(s−i) > 0, there exists t−i ∈ Y−i such that, for all j 6= i,

sj ∈ Cj(tj). Hence, since the probability structure is complete, there exists a

ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So

βi(X−i) := βi(M(X−i)) ⊆
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a curb set.

Part (b). Assume that X ∈ S is a curb set, i.e., X satisfies β(X) ⊆ X. It

suffices to prove that ×i∈Nβi(β−1
i (Xi)) ⊆ X is epistemically stable. That it is the

largest epistemically stable subset of X then follows immediately from the fact that,

for each i ∈ N , both βi(·) and β−1
i (·) are monotonic w.r.t. set inclusion.

Define Y ∈ T by taking, for each i ∈ N , Yi := {ti ∈ Ti | Ci(ti) ⊆ Xi}. Since

the probability structure is complete, it follows that Ci(Yi) = βi(β−1
i (Xi)). For

notational convenience, write X ′
i = βi(β−1

i (Xi)) and X ′ = ×i∈NX ′
i. Since the game

is finite, there is, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X ′
−i)

for all σ−i ∈M(S−i) with σ−i(X ′
−i) ≥ pi. Let p = max{p1, . . . , pn}.

We first show that β(X ′) ⊆ X ′. By definition, X ′ ⊆ X, so for each i ∈ N :

M(X ′
−i) ⊆ M(X−i). Moreover, as β(X) ⊆ X and, for each i ∈ N , βi(Xi) :=

βi(M(X−i)), it follows that M(X−i) ⊆ β−1
i (Xi). Hence, for each i ∈ N ,

βi(X ′
i) := βi(M(X ′

−i)) ⊆ βi(M(X−i)) ⊆ βi(β−1
i (Xi)) = X ′

i .

For all p ∈ [p, 1] and i ∈ N , we have that

Bp
i

(⋂
j 6=i

(Rj ∩ [Yj ])
)

= Bp
i

(⋂
j 6=i

{ω ∈ Ω | sj(ω) ∈ Cj(tj(ω)) ⊆ X ′
j}

)
⊆

{
ω ∈ Ω | µi(ti(ω)){ω−i ∈ Ω−i | for all j 6= i, sj(ω) ∈ X ′

j} ≥ p
}

⊆ {ω ∈ Ω | margS−i
µi(ti(ω))(X ′

−i) ≥ p}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ βi(X ′
−i)}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ X ′
−i} = [Yi],

using β(X ′) ⊆ X ′.
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For X ∈ S and p ∈ (0, 1], write, for each i ∈ N ,

βp
i (X−i) := {si ∈ Si | ∃σ−i ∈M(S−i) with σ−i(X−i) ≥ p

such that ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si} .

Let βp(X) := βp
1(X−1)× · · · × βp

n(X−n). Following Tercieux (2006), a set X ∈ S is

a p-best response set if βp(X) ⊆ X.

Claim: Let X ∈ S and p ∈ (0, 1]. If Y ∈ T is such that C(Y ) = X and (3) holds

for each i ∈ N , then X is a p-best response set.

Proof. By assumption, there is a Y ∈ T with C(Y ) = X such that for each

i ∈ N , Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi].

Fix i ∈ N and consider any σ−i ∈M(S−i) with σ−i(X−i) ≥ p. Since C(Y ) = X,

it follows that, for each s−i ∈ X−i, there exists t−i ∈ Y−i such that sj ∈ Cj(tj) for

all j 6= i. Hence, since the probability structure is complete, there exists a

ω ∈ Bp
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So, by definition of βp

i (X−i):

βp
i (X−i) ⊆

⋃
ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a p-best response set.

Proof of Proposition 2. (If) By assumption, there is a Y ∈ T with C(Y ) = X

such that for all i ∈ N , B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
= [Yi].

Fix i ∈ N . Since C(Y ) = X, and the probability structure is complete, there

exists,for any σ−i ∈M(S−i), an

ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj ]

))
= [Yi]

with margS−i
µi(ti(ω)) = σ−i if and only if σ−i ∈M(X−i). So

βi(X−i) := βi(M(X−i)) =
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a furb set.

(Only if) Assume that X ∈ S satisfies X = β(X). Since the game is finite,

there exists, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X−i) if

σ−i(X−i) ≥ pi. Let p = max{p1, . . . , pn}.
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For each p ∈ [p, 1], construct the sequence of Cartesian products of type subsets

〈Y p(k)〉k as follows: For each i ∈ N , let Y p
i (0) = {ti ∈ Ti | Ci(ti) ⊆ Xi}. Using

continuity of µi, the correspondence Ci : Ti ⇒ Si is upper hemi-continuous. Thus

Y p
i (0) ⊆ Ti is closed, and, since Ti is compact, so is Y p

i (0). There exists a closed set

Y p
i (1) ⊆ Ti such that

[Y p
i (1)] = Bp

i

(⋂
j 6=i

(
Rj ∩ [Y p

j (0)]
))

.

It follows that Y p
i (1) ⊆ Y p

i (0). Since Y p
i (0) is compact, so is Y p

i (1). By induction,

[Y p
i (k)] = Bp

i

(⋂
j 6=i

(
Rj ∩ [Y p

j (k − 1)]
))

. (6)

defines, for each player i, a decreasing chain 〈Y p
i (k)〉k of compact and non-empty

subsets: Y p
i (k + 1) ⊆ Y p

i (k) for all k. By the finite-intersection property, Y p
i :=⋂

k∈N Y p
i (k) is a non-empty and compact subset of Ti. For each k, let Y p(k) =

×i∈NY p
i (k) and let Y p :=

⋂
k∈N Y p(k). Again, these are non-empty and compact

sets.

Next, C(Y p(0)) = β (X), since the probability structure is complete. Since X is

furb, we thus have C(Y p(0)) = X. For each i ∈ N ,

[Y p
i (1)] ⊆ {ω ∈ Ω | margS−i

µi(ti(ω))(X−i) ≥ p} ,

implying that Ci(Y
p
i (1)) ⊆ βi(X−i) = X−i by the construction of p. Moreover,

since the probability structure is complete, for each i ∈ N and σ−i ∈ M(X−i),

there exists ω ∈ [Y p
i (1)] = Bp

i

(⋂
j 6=i(Rj ∩ [Y p

j (0)])
)

with margS−i
µi(ti(ω)) = σ−i,

implying that Ci(Y
p
i (1)) ⊇ βi(X−i) = X−i. Hence, Ci(Y

p
i (1)) = βi(X−i) = Xi. By

induction, it holds for all k ∈ N that C(Y p(k)) = β(X) = X . Since 〈Y p
i (k)〉k is a

decreasing chain, we also have that C(Y p) ⊆ X. The converse inclusion follows by

upper hemi-continuity of the correspondence C. To see this, suppose that xo ∈ X

but xo /∈ C (Y p). Since xo ∈ X, xo ∈ C (Y p (k)) for all k. By the Axiom of Choice:

for each k there exists a yk ∈ Y p (k) such that (yk, x
o) ∈ graph (C). By the Bolzano-

Weierstrass Theorem, we can extract a convergent subsequence for which yk → yo,

where yo ∈ Y p, since Y p is closed. Moreover, since the correspondence C is closed-

valued and u.h.c., with S compact (it is in fact finite), graph (C) ⊆ T × S is closed,

and thus (yo, xo) ∈ graph (C), contradicting the hypothesis that xo /∈ C (Y p). This

establishes the claim that C(Y p) ⊆ X.

It remains to prove that, for each i ∈ N , (3) holds with equation for Y p. Fix

i ∈ N , and let

Ek =
⋂

j 6=i

(
Rj ∩ [Y p

j (k)]
)

and E =
⋂

j 6=i

(
Rj ∩ [Y p

j ]
)
.
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Since, for each j ∈ N , 〈Y p
j (k)〉k is a decreasing chain with limit Y p

j , it follows that

〈Ek〉k is a decreasing chain with limit E.

To show Bp
i (E) ⊆ [Y p

i ], note that by (6) and monotonicity of Bp
i , we have, for

each k ∈ N, that

Bp
i (E) ⊆ Bp

i (Ek−1) = [Y p
i (k)] .

As the inclusion holds for all k ∈ N:

Bp
i (E) ⊆

⋂
k∈N

[Y p
i (k)] = [Y p

i ] .

To show Bp
i (E) ⊇ [Y p

i ], assume that ω ∈ [Y p
i ].10 This implies that ω ∈ [Y p

i (k)]

for all k, and, using (6): ω ∈ Bp
i (Ek) for all k. Since Ek = Ωi × projΩ−i

Ek, we have

that Eωi
k = projΩ−i

Ek. It follows that

µi(ti(ω))(projΩ−i
Ek) ≥ p for all k .

Thus, since 〈Ek〉k is a decreasing chain with limit E,

µi(ti(ω))(projΩ−i
E) ≥ p .

Since E = Ωi × projΩ−i
E, we have that Eωi = projΩ−i

E. Hence, the inequality

implies that ω ∈ Bp
i (E).

Proof of Proposition 3. Part (a). Let X ∈ S be the smallest curb set

containing C(Y ): (i) C(Y ) ⊆ X and β(X) ⊆ X and (ii) there exists no X ′ ∈ S with

C(Y ) ⊆ X ′ and β(X ′) ⊆ X ′ ⊂ X. We must show that X = E(Y ).

Consider the sequence 〈Y (k)〉k defined by Y (0) = Y and (4) for each k ∈ N and

i ∈ N . We show, by induction, that C(Y (k)) ⊆ X for all k ∈ N. By assumption,

Y (0) = Y ∈ T satisfies this condition. Assume that C(Y (k − 1)) ⊆ X for some

k ∈ N, and fix i ∈ N . Then, ∀j 6= i, βj(margS−j
µj(tj(ω))) ⊆ Xj if ω ∈ [Yj(k − 1)]

and sj(ω) ∈ Xj if, in addition, ω ∈ Rj . Hence, if ω ∈ B1
i

(⋂
j 6=i

(
Rj ∩ [Yj(k − 1)]

))
,

then margS−i
µi(ti(ω)) ∈ M(X−i) and Ci(ti(ω)) ⊆ βi(X−i) ⊆ X−i. Since this holds

for all i ∈ N , we have C(Y (k)) ⊆ X. This completes the induction.

Secondly, since the sequence 〈Y (k)〉k is non-decreasing and C(·) is monotonic

w.r.t. set inclusion, and the game is finite, there exist a k′ ∈ N and some X ′ ⊆ X such

that C(Y (k)) = X ′ for all k ≥ k′. Let k > k′ and consider any player i ∈ N . Since

10We thank Itai Arieli for suggesting this proof of the reversed inclusion, shorter than our original

proof. A proof of both inclusions can also be based on property (8) of Monderer and Samet (1989).
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the probability structure is complete, there exists, for each σ−i ∈ M(X ′
−i) a state

ω ∈ [Yi(k)] with margS−i
µi(ti(ω)) = σ−i, implying that βi(X ′

−i) ⊆ Ci(Yi(k)) = X ′
i.

Since this holds for all i ∈ N , β(X ′) ⊆ X ′. Therefore, if X ′ ⊂ X would hold,

then this would contradict that there exists no X ′ ∈ S with C(Y ) ⊆ X ′ such that

β(X ′) ⊆ X ′ ⊂ X. Hence, X = C
(⋃

k∈N Y (k)
)

= E(Y ).

Write X = E(Y ). To establish that X is epistemically stable, by Proposition

1(b), it is sufficient to show that

X ⊆ ×i∈Nβi(β−1
i (Xi)) ,

keeping in mind that, for all X ′ ∈ S, X ′ ⊇ ×i∈Nβi(β−1
i (X ′

i)).

Fix i ∈ N. Define Y ′
i ∈ T by taking Y ′

i := {ti ∈ Ti | Ci(ti) ⊆ Xi}. Since the prob-

ability structure is complete, it follows that Ci(Y ′
i ) = βi(β−1

i (Xi)). Furthermore, for

all k ∈ N, Y (k) ⊆ Y ′ and, hence,
⋃

k∈N Y (k) ⊆ Y ′. This implies that

Xi = C
(⋃

k∈N
Y (k)

)
⊆ Ci(Y ′

i ) = βi(β−1
i (Xi))

since Ci(·) is monotonic w.r.t. set inclusion.

Part (b). (Only if) Let X ∈ S be a mincurb set. Let t ∈ T satisfy (5).

By construction, C({t}) ⊆ X. By part (a), E({t}) is the smallest curb set with

C({t}) ⊆ E({t}). But then E({t}) ⊆ X. The inclusion cannot be strict, as X is a

mincurb set.

(If) For each t ∈ T satisfying (5), C({t}) ⊆ E({t}) = X, so X is a curb set.

To show that X is a minimal curb set, suppose — to the contrary — that there

is a curb set X ′ ⊂ X. Let t′ ∈ T be such that margS−i
µi(t′i)(X

′
−i) = 1 for each

i ∈ N . By construction, C({t′}) ⊆ X ′, so X ′ is a curb set containing C({t′}). By

part (a), E({t′}) is the smallest curb set containing C({t′}). Moreover, as X ′ ⊂ X,

t′ satisfies (5), so X ′ ⊇ E({t′}) = X, contradicting that X ′ ⊂ X.
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