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IDENTIFYING TREND AND AGE EFFECTS

IN SICKNESS ABSENCE FROM INDIVIDUAL DATA:

SOME ECONOMETRIC PROBLEMS∗)

ERIK BIØRN

Department of Economics, University of Oslo,
P.O. Box 1095 Blindern, 0317 Oslo, Norway

E-mail: erik.biorn@econ.uio.no

Abstract: When using data from individuals who are in the labour force to disentangle the
empirical relevance of cohort, age and time effects for sickness absence, the inference may be biased,
affected by sorting-out mechanisms. One reason is unobserved heterogeneity potentially affecting
both health status and ability to work, which can bias inference because the individuals entering
the data set are conditional on being in the labour force. Can this sample selection be adequately
handled by attaching unobserved heterogeneity to non-structured fixed effects? In the paper we
examine this issue and discuss the econometric setup for identifying from such data time effects
in sickness absence. The inference and interpretation problem is caused, on the one hand, by the
occurrence of time, cohort and age effects also in the labour market participation, on the other
hand by correlation between unobserved heterogeneity in health status and in ability to work.
We show that running panel data regressions, ordinary or logistic, of sickness absence data on
certain covariates, when neglecting this sample selection, is likely to obscure the interpretation of
the results, except in certain, not particularly realistic, cases. However, the fixed individual effects
approach is more robust in this respect than an approach controlling for fixed cohort effects only.

Keywords: Sickness absence, health-labour interaction, cohort-age-time problem, self-selection,
latent heterogeneity, bivariate censoring, truncated binormal distribution, panel data
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1 Introduction

During the last two decades, the rate at which workers have been absent from work

due to sickness – absenteeism – has risen in several countries. Norway, for instance,

has seen a sharp increase, from around 4–5 per cent of paid hours in the early 1990s

to around 6.5 per cent in 2010. This rise has occurred despite general improvements

in self-reported health conditions. In a recent paper, Biørn et al. (2010) have, by

exploiting individual data on long-term absence spells for virtually all workers in

Norway over a 13-year period, addressed this problem empirically, attempting, in

particular, to disentangle the empirical relevance of cohort, age and time effects

by means of “fixed effect methods”. It is obvious that the data available for a

study of this kind are potentially affected by sorting-out mechanisms because the

individuals entering the data set are conditional on being in the labour force. It may

be questioned whether this sample selection can be adequately treated by handling

unobserved heterogeneity through fixed effects, and whether suppressing individual

heterogeneity and instead conditioning on cohort or age is likely to accentuate the

bias in the estimation of time effects.

In this paper we examine this issue and discuss more thoroughly the economet-

ric setup for identifying from such data time effects in sickness absence while, as far

as possible, controlling for cohort/age effects and systematic sample selection. The

inference and interpretation problems arise, on the one hand, because of the occur-

rence of time and cohort/age effects also in the labour market participation, on the

other hand because unobserved heterogeneity which most likely affects both health

status and ability to work. Specifically, the modelling and inference should account

for these two latent variables being correlated. Running regressions – ordinary or

logistic – of sickness absence data on certain regressors, without accounting for this

sample selection, is likely to obscure the interpretation of the findings and make it

difficult to explain their message to non-specialists.

The content of the paper is organized as follows. In Section 2 a simple basic

model is formulated, explaining jointly degree of ability to work and degree of sick-

ness by time, cohort and age, accounting for the exact collinearity of the latter, as

well as individual heterogeneity. The modelling of unobserved heterogeneity and

its implication for the interpretation of the coefficients are discussed in Section 3.

Derived sickness probabilities are discussed in Section 4, where we emphasize the

distinction between conditioning on individual effects and conditioning on cohort or

age. Next, in Section 5, models treating degree of sickness as an observable quan-

titative variable are discussed, while in Section 6 models treating it as binary (sick

versus non-sick) are considered. In the two latter sections, selection bias problems

and ways of coming to grips with them are put in focus. Some concluding remarks

follow in Section 7.
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2 Notation and basic model: Heterogeneity unmodelled

Let i and t denote individual and time period (year) and let ci and ait be birth

cohort and age. The three variables are collinear, since by definition

(2.1) ait ≡ t−ci.

Let 1{A}=1 and =0 if event A is true and untrue, respectively, and define

wit = 1{Individual i belongs to the labour force at time t},
sit = 1{Individual i is reported sick at time t}.

Let also
w∗

it = Degree of ability to work, individual i, time t,
s∗it = Degree of sickness, individual t, time t,

both quantitative and continuous, although not frequently observable in this way.

Regardless of whether (w∗
it, s

∗
it) are observable or latent, we postulate that they

depend on cohort, time, age, and latent heterogeneity (µw
i , µ

s
i ) as

w∗
it = βwci + γwt + δwait + µw

i + εwit,(2.2)

s∗it = βsci + γst+ δsait + µs
i + εsit,(2.3)

[

εwit
εsit

]

|[ci, t, µ
w
i , µ

s
i ] ∼ IID

([

0
0

]

,

[

σ2
w σws

σws σ2
s

])

≡ IID(0,Σ).(2.4)

where εwit and ε
s
it are genuine disturbances. Whether or not the covariance matrix Σ

is diagonal, i.e., whether σws=0 or 6=0, will be important for the selection bias issue.

Ways of modelling the latent individual effects (µw
i , µ

s
i ) and their consequences will

be discussed in Section 3.

We treat cohort, year and age as quantitative, but the terms involving these

variables in (2.2)–(2.3) and formulae derived from them can be easily replaced by

terms in cohort, year, age dummies – if desired. Specifically, we may extend t, ci, ait

to (column) vectors of cohort, time, age dummies, and extend the scalar coefficients

and (βw, γw, δw) and (βs, γs, δs) to (row) vectors of dummy coefficients, paying regard

to the definitional relationships between the dummies which correspond to (2.1).

Our primary objective is to identify γs, in combination with βs or δs if possible,

while controlling for observed and unobserved heterogeneity. Because cohort, time

and age are linearly related, confer (2.1), and the equations under consideration are

linear, the dimension of the equations must be reduced accordingly (2.2) or (2.3) is

confronted with data. As a starting point for the empirical modelling we therefore

can take either of the following versions of the equations:

w∗
it = (βw−δw)ci + (γw+δw)t+ µw

i + εwit(2.5)

≡ (γw+βw)t + (δw−βw)ait + µw
i + εwit

≡ (βw+γw)ci + (δw+γw)ait + µw
i + εwit,

s∗it = (βs−δs)ci + (γs+δs)t+ µs
i + εsit(2.6)

≡ (γs+βs)t+ (δs−βs)ait + µs
i + εsit

≡ (βs+γs)ci + (δs+γs)ait + µs
i + εsit.
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3 Extensions: Modelling systematic heterogeneity

The latent effects are likely to be correlated with observed regressors, for instance

because norms with respect to labour force participation and absenteeism are cor-

related with cohort. Econometrically, a ‘norm’ is a latent entity, to be attached to,

‘proxied by’, observable variables to be of relevance. A simple way of formalizing

this is

µw
i =αw + λwci + νwi ≡ αw + λw(t−ait) + νwi ,(3.1)

µs
i =αs + λsci + νsi ≡ αs + λs(t−ait) + νsi ,(3.2)

[

νwi
νsi

]

|[ci, t] ∼ IID

([

0
0

]

,

[

ω2
w ωws

ωws ω2
s

])

≡ IID(0,Ω),(3.3)

and concurrently modify (2.4) to

(3.4)

[

εwit
εsit

]

|[ci, t, ν
w
i , ν

s
i ] ∼ IID

([

0
0

]

,

[

σ2
w σws

σws σ2
s

])

≡ IID(0,Σ).

Inserting (3.1)–(3.2) in (2.5)–(2.6), we obtain

w∗
it = αw + (βw+λw−δw)ci + (γw+δw)t+ νwi + εwit(3.5)

≡ αw + (γw+βw+λw)t+ (δw−βw−λw)ait + νwi + εwit
≡ αw + (βw+λw+γw)ci + (δw+γw)ait + νwi + εwit,

s∗it = αs + (βs+λs−δs)ci + (γs+δs)t+ νsi + εsit(3.6)

≡ αs + (γs+βs+λs)t+ (δs−βs−λs)ait + νsi + εsit.

≡ αs + (βs+λs+γs)ci + (δs+γs)ait + νsi + εsit

This stylized modelling of heterogeneity makes (βw, βs) unidentifiable, as it

implies that we in (2.5)–(2.6) must extend (βw, βs) to (βw+λw, βs+λs) and replace

(µw
i , µ

s
i ) by (νwi , ν

s
i ). In view of (3.3)–(3.4), the composite disturbances

(uwit, u
s
it) = (νwi +ε

w
it, ν

s
i +ε

s
it)

have a vector error components form with components mutually orthogonal (εz ⊥

νz, z=w, s) and orthogonal to both regressors, with standard deviations (τw, τs)=

[(σ2
w+ω

2
w)

1
2 , (σ2

s+ω
2
s)

1
2 ], covariance τws = σws+ωws and correlation coefficient κws =

τws/[τwτs]. We will to some extent stick to (3.1)–(3.4) as a way of modeling system-

atic heterogeneity on the following.

However, unobserved heterogeneity may be related also to other observable

variables than cohort, some of which time-varying, reflecting (gradual) changes in

‘norms’ (‘norm drift’); (3.1)–(3.2) may be argued to be too ‘simplistic’. Consider a

variant of (2.2)–(2.3) where uni-dimensional heterogeneity (µw
i , µ

s
i ) is generalized to

two-dimensional heterogeneity (µw
it, µ

s
it) and (3.1)–(3.2) are extended to

µw
it = αw + λwci + γ‡wt + δ‡wait + νwi + ε‡wit ,

µs
it = αs + λsci + γ‡st + δ‡sait + νsi + ε‡sit .
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It is easy to show that this essentially implies extending (γw, δw, γs, δs) in (3.5)–(3.6)

to include (γ‡w, δ
‡
w, γ

‡
s, δ

‡
s), and (εwit, ε

s
it) to include (ε‡wit , ε

‡s
it ), respectively.

Obvious, but important, conclusions so far are:

Conclusion 1: The interpretation of ‘time effect in absenteeism’ depend on
which mechanism determines the two kinds of unobserved heterogeneity and
whether cohort or age is the other control variable.

Conclusion 2: The time effects in absenteeism obtained from (2.6), with
(2.4) assumed, and with heterogeneity accounted for, i.e., γs+δs or γs+βs,
may be a more stable ‘structure’ – the equation has a higher degree of ‘auton-
omy’ – than the time effects according to (3.6), with (3.3)–(3.4) assumed, or
extensions of it. The latter, unlike the former, changes when the parameters
of (3.2) change.

4 Sickness probabilities

4.1 Threshold values for sickness and ability to work

As remarked, w∗
it and s∗it, in particular the former, may not be observable as con-

tinuous variables, while their qualitative counterparts – whether or not individual

i is in the labour force and/or is sick at time t – are usually known. Let w̄, s̄ be

unknown critical threshold values for the two continuous variables determining the

status ‘being in the labour force’ and ‘being reported sick’:

w∗
it≥ w̄ =⇒ Individual i is observed belonging to the labour force.

s∗it≥ s̄ =⇒ Individual i is observed being declared sick by a doctor.

The work ability threshold w̄ may be time invariant or time dependent, in the

latter case capturing, inter alia, (worker) ‘norm drift’, the sickness threshold s̄ may,

likewise, be time invariant or time dependent, in the latter case also capturing

(worker) ‘norm drift’ as well as drift in doctors’ norms or attitudes with respect

to issuing sickness certificates. We want to derive expressions for the corresponding

sickness probabilities. Let, as a start, ψ(u, v) be the joint density of the standardized

disturbances in (2.5)–(2.6), or in (3.5)–(3.6), i.e., (u, v)=(εwit/σw, ε
s
it/σs), or (u, v)=

(uwit/τw, u
s
it/τs), and define, for arbitrary a, b,

f(a, b) = P (u>a, v>b) =
∫∞

a

∫∞

b
ψ(u, v) du dv,(4.1)

g(a, b) = P (v>b|u>a) =
P (u>a, v>b)

P (u>a)
=

f(a, b)

f(a,−∞)
.(4.2)

In (2.5)–(2.6), while utilizing (3.1)–(3.2), it is convenient to define

µw∗
i = (βw−δw)ci + µw

i = αw + (βw+λw−δw)ci + νwi ,
µw†
i = (βw+γw)ci + µw

i = αw + (βw+λw+γw)ci + νwi ,
(4.3)

µs∗
i = (βs−δs)ci + µs

i = αs + (βs+λs−δs)ci + νsi ,
µs†
i = (βs+γs)ci + µs

i = αs + (βs+λs+γs)ci + νsi .
(4.4)
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They can be interpreted as representing ‘gross individual heterogeneity’ inclusive of

cohort effects. Then (3.5)–(3.6) can be rewritten more simply as

w∗
it = (γw+δw)t+ µw∗

i + εwit ≡ (δw+γw)ait + µw†
i + εwit,(4.5)

s∗it = (γs+δs)t + µs∗
i + εsit ≡ (δs+γs)ait + µs†

i + εsit.(4.6)

Combining these expressions with (2.5)–(2.6), using the definition of the binary

variables in Section 2, we obtain

wit=1 ⇐⇒ w∗
it≥ w̄ ⇐⇒ εwit ≥ w̄−(γw+δw)t−µ

w∗
i = w̄−(γw+δw)ait−µ

w†
i ,

sit=1 ⇐⇒ s∗it≥ s̄⇐⇒ εsit ≥ s̄−(γs+δs)t−µ
s∗
i = s̄−(γs+δs)ait−µ

s†
i .

We introduce, in order to simplify notation, putting the kind of parameters

identifiable from binary response data (confer Section 6) in focus, two sets of rescaled

parameters, obtained by normalizing coefficients and thresholds against the relevant

disturbance standard deviations. The first is related to (2.5)–(2.6), the second to

(3.5)–(3.6), giving, respectively, ‘σ-normalized’ parameters:

γwσ =
γw+δw
σw

, w̄σ =
w̄

σw
, µiwσ =

µw∗
i

σw
, µ†

iwσ =
µw†
i

σw
,(4.7)

γsσ =
γs+δs
σs

, s̄σ =
s̄

σs
, µisσ =

µs∗
i

σs
, µ†

isσ =
µs†
i

σs
,(4.8)

and ‘τ -normalized’ parameters:

γwτ =
γw+δw
τw

, βwτ =
βw+λw−δw

τw
, w̄τ =

w̄

τw
,(4.9)

γsτ =
γs+δs
τs

, βsτ =
βs+λs−δs

τs
, s̄τ =

s̄

τs
,(4.10)

where, obviously, (w̄τ , s̄τ , γwτ , γsτ) are smaller (in absolute value) than (w̄σ, s̄σ, γwσ, γsσ).
1

We then obtain from (2.5)–(2.6)

wit=1 ⇐⇒
εw
it

σw

≥ w̄σ−γwσt−µiwσ = w̄σ−γwσait−µ
†
iwσ,(4.11)

sit=1 ⇐⇒
εs
it

σs

≥ s̄σ−γsσt−µisσ = s̄σ−γsσait−µ
†
isσ,(4.12)

and, likewise, from (3.5)–(3.6)

wit=1 ⇐⇒
uw

it

τw
≥ w̄τ−γwτ t−βwτci = w̄τ−(γwτ+βwτ)t+βwτait,(4.13)

sit=1 ⇐⇒
us

it

τs
≥ s̄τ−γsτ t−βsτci = s̄τ−(γsτ+βsτ)t+βsτait.(4.14)

1Possible smooth ‘norm-drift’ in w̄ and s̄ could be absorbed into (γwτ , γsτ ) or (γwσ, γsσ).
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4.2 Probabilities conditional on individual effects

Conditioning on individual effects, we can, using (4.1)–(4.2), (4.7)–(4.8) and (4.11)–

(4.12), express the probability of being sick unconditionally and conditional on being

in the labour force, as, respectively,2

P (sit=1; t, µisσ) = f(−∞, s̄σ−γsσt−µisσ)(4.15)

= f(−∞, s̄σ−γsσait−µ
†
isσ),

P (sit=1|wit=1; t, µiwσ, µisσ) = g(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ)(4.16)

= g(w̄σ−γwσait−µ
†
iwσ, s̄σ−γsσait−µ

†
isσ).

If εwit and ε
s
it are stochastically independent, then

g(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ)

≡ g(−∞, s̄σ−γsσt−µisσ) ≡ f(−∞, s̄σ−γsσt−µisσ).

4.3 Probabilities conditional on cohort or on age

Conditioning instead on cohort, or equivalently on age, we can, using (4.1)–(4.2),

(4.9)–(4.10) and (4.13)–(4.14), express the probability of being sick unconditionally

and conditional on being in the labour force, as, respectively,3

P (sit=1; t, ci) = f(−∞, s̄τ−γsτ t−βsτci)(4.17)

= f(−∞, s̄τ−(γsτ+βsτ)t+βsτait),

P (sit=1|wit=1; t, ci) = g(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci)(4.18)

= g(w̄τ−(γwτ+βwτ)t+βwτait, s̄σ−(γsτ+βsτ )t+βsτait).

If not only εwit and ε
s
it, but also ν

w
i and νsi are stochastically independent, then

g(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci)

≡ g(−∞, s̄τ−γsτ t−βsτci) ≡ f(−∞, s̄τ−γsτ t−βsτci).

5 Models treating sickness as quantitative.

In this section, leaving the probability expressions in Section 4, we return to the

setup presented in Sections 2 and 3 and consider three models with sickness as-

sumed quantitatively observable, say measured as the number of sickness days per

unit of time. All models condition on time or on age; otherwise they differ with

respect to the conditioning assumed: the individual effect (Section 5.1), the birth-

cohort (Section 5.2), the age (Section 5.3). Conditioning on age and on cohort give,

however, models which mirror models where the conditioning is on time and cohort.

We assume throughout that the observable variables are s∗it, wit, t, ci.

2Formally, the latter probability is conditional both on being in the labour force, and on unob-
served individual-specific heterogeneity in sickness and ability to work.

3Formally, the latter probability is conditional both on being in the labour force, and on the
observed cohort to which the individual belongs.
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5.1 Conditioning on individual effect

Assume first that (µw
i , µ

s
i ) are treated as fixed effects and, accordingly, that the het-

erogeneity submodel (3.1)–(3.3) is ‘suspended’. It follows from (2.4)–(2.6) and (4.6)

that only γs+δs and the composite parameters µs∗
i defined in (4.4) can be identified.

With respect to the sample, we distinguish between two cases:

[A] If the sample were not censored by labour force participation, the sick-leave trend

estimated by regressing s∗it linearly on (t, µs∗
i ), would have been γs+δs, since then

E(s∗it|t, µ
s∗
i ) = (γs+δs)t+ µs∗

i .(5.1)

[B] If the sample is censored by labour force participation, the sick-leave trend we

actually estimate differs from γs+δs. We have

E(s∗it|wit=1; t, µs∗
i ) = (γs+δs)t+ µs∗

i + E(εsit|wit=1; t, µs∗
i ).(5.2)

This equation exemplifies a bivariate sample selection model, whose last term ac-

counts for the sample selection; see, e.g., Cameron and Trivedi (2005, Section 16.5.3).

This model type is sometimes referred to as Amemiya’s ‘Type 2 Tobit Model’; confer

Amemiya (1985, Section 10.7).

In the binormal case, where

ψ(u, v) = (2π)−1(1−ρ2)−
1
2 e−

1
2
(u2−2ρ uv+v2)/(1−ρ2),

we can express E(εsit|wit=1; t, µs∗
i ) analytically as follows. Letting φ(·) and Φ(·) be

the univariate normal density and c.d.f., respectively, we get, by exploiting φ′(u)=

−uφ(u), E(v|u)= ρu, and E(u|a≤ u≤ b) = [φ(a)−φ(b)]/[Φ(b)−Φ(a)] [see, Johnson,

Kotz and Balakrishnan (1994, Section 10.1) or Biørn (2008, Appendix 8A)]:

(5.3) E(v|a≤u≤b) = ρ
φ(a)−φ(b)

Φ(b)−Φ(a)
,

and also that, for any a,

λ(a) ≡
φ(a)

Φ(a)
≡

φ(−a)

1−Φ(−a)
,(5.4)

λ′(a) ≡ −ξ(a) = −λ(a)[λ(a)+a].(5.5)

Therefore, if (εwit, ε
s
it) are binormal, letting ρws=σws/(σwσs) and using the ‘σ-

normalized’ parameters (4.7)–(4.8), we obtain

E(εsit|wit=1, t, µs∗
i ) = E[εsit|ε

w
it ≥ w̄ − (γw+δw)t−µ

w∗
i ; t, ci](5.6)

= σsE(
εs
it

σs

|
εw
it

σw

≥ w̄σ − γwσt−µiwσ; t, ci)

= ρwsσsλ(γwσt−w̄σ+µiwσ).

Inserting (5.6) in (5.2) we obtain

E(s∗it|wit=1; t, µs∗
i ) = (γs+δs)t+ µs∗

i + ρwsσsλ(γwσt−w̄σ+µiwσ)(5.7)

= σs[γsσt+ µisσ + ρwsλ(γwσt−w̄σ+µiwσ)].

7



Hence, utilizing (5.5), we find that the correct sickness trend, allowing for the sys-

tematic censoring, is, in general, non-linear and given by

∂E(s∗it|wit=1; t, µs∗
i )/∂t = γs+δs + ρwsσs∂λ(γwσt−w̄σ+µiwσ)/∂t(5.8)

= σs[γsσ−γwσρwsξ(γwσt−w̄σ+µiwσ)].

If ρws 6= 0, i.e., if the genuine disturbances in (2.2) and (2.3) are correlated, the

sickness trend (5.8) depends on σs, γwσ, w̄σ and µiwσ. Hence, when ρws 6= 0, the

correct trend will be individual-specific.

What can be said about the sign of the last component in (5.8)? First, (5.5)

implies that ξ(γwσt−w̄σ+µiwσ) is likely to be positive. Second, assume that some

common unspecified factors lead both to absenteeism and drop-out from the labour

force and hence ρws< 0. Third, assume that the trend in inclusion into (exclusion

from) the labour market is negative (positive), i.e., γwσ<0. Hence, (5.8) most likely

implies that ∂E(s∗it|wit=1; t, ci, µ
s
i )/∂t < γs+δs.

Conclusion 3: If the sample is censored by labour force participation and
ρws 6= 0, the (theoretical) regression E(s∗it|wit = 1; t, µs∗

i ) is, in general, non-
linear in (t, µs∗

i ). Its form depends on the coefficients of (2.5) and (2.6) as
well as the distribution of εwit, ε

s
it, as expressed by (5.7) in the binormal case.

A linear regression of s∗it on (t, µs∗
i ) will result in biased estimation of the

composite sickness trend coefficient σsγsσ=γs+δs and the composite individual
effects µs∗

i . If ρws=0 the bias disappears: ∂E(s∗it|wit=1; t, µs∗
i )/∂t=σsγsσ=γs+

δs. In the latter case, (2.5)–(2.6) form a recursive structure, conditional on the
individual effects: first labour market participation is decided, next sickness is
determined. Conditional on the individual effects, there are no latent elements
bringing feedback from the latter to the former.

5.2 Conditioning on birth-cohort

Assume next that heterogeneity modeled as (3.1)–(3.2) is part of the model, and

let ci be the conditioning variable in addition to t. It follows from (3.3)–(3.6) and

(4.6) that only γs+δs and βs+λs−δs (or one-to-one transformations of them) can

be identified. With respect to the sample, we again distinguish between two cases.

[A] If the sample were non-censored, the trend coefficient we would have estimated

by regressing s∗it linearly on (t, ci) would have been γs+δs, since then

E(s∗it|t, ci) = αs + (γs+δs)t+ (βs+λs−δs)ci.(5.9)

[B] If the sample is censored by labour force participation, the trend coefficient ac-

tually estimated by regressing s∗it on (t, ci) differs from γs+δs. We have

E(s∗it|wit=1; t, ci)=αs+(γs+δs)t+(βs+λs−δs)ci+E(usit|wit=1; t, ci).(5.10)

This equation exemplifies again a bivariate sample selection model, whose last term

accounts for the effects of the sample selection on the expected response variable.

Now, however, the origin of the selection is the composite disturbance usit=ν
s
i +ε

s
it.
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Assume in addition that (εwit, ε
s
it) and (νwi , ν

s
i ) are binormal, implying that

(uwit, u
s
it) are binormal with standard deviations (τw, τs), covariance τws and cor-

relation coefficient κws. From (5.3), (5.4) and (5.10), introducing the ‘τ -normalized’

parameters, (4.9)–(4.10), we then obtain

E(s∗it|wit=1; t, ci) = αs+(γs+δs)t+(βs+λs−δs)ci+κwsτsλ(γwτ t+βwτci−w̄τ )(5.11)

= αs + τs[γsτ t+βsτci+κwsλ(γwτ t+βwτci−w̄τ )],

where κws 6=0 if at least one of σws and ωws is non-zero. We then find, in a similar

way as (5.7), that the correct trend and the correct cohort effects are, in general,

non-linear and given by, respectively,

∂E(s∗it|wit=1; t, ci)/∂t = γs+δs+κwsτs∂λ(γwτ t+βwτci−w̄τ )/∂t(5.12)

= τs[γsτ−γwτκwsξ(γwτ t+βwτci−w̄τ )],

∂E(s∗it|wit=1; t, ci)/∂ci = βs+λs−δs+κwsτs∂λ(γwτ t+βwτci−w̄τ )/∂ci(5.13)

= τs[βsτ−βwτκwsξ(γwτ t+βwτci−w̄τ )].

If κws 6= 0, both derivatives depend on τs, γwτ , βwτ and w̄τ , which implies that the

correct trend is cohort-specific, while the correct cohort effect is time-varying.

What can be said about the sign of the last components in (5.12) and (5.13)?

First, (5.5) implies that ξ(γwτ t+βwτci− w̄τ ) is likely to be positive. Second, as-

sume [1] that some common latent individual-specific factors lead to absenteeism

and drop-out from labour force and hence ωws < 0, or [2] that some unspecified

time-varying factors also lead to absenteeism and drop-out from labour force and

hence σws<0. Together, [1] or [2] suggests κws<0. Third, assume that the trend in

inclusion into (exclusion from) the labour force is negative (positive), i.e., γwτ < 0.

Hence, (5.12) implies that ∂E(s∗it|wit=1; t, ci)/∂t<γs+δs.

Conclusion 4: If the sample is censored by labour force participation, the
(theoretical) regression E(s∗it|wit = 1; t, ci) is, in general, non-linear in (t, ci).
Its form depends on the coefficients of both (2.2)–(2.3) and (3.1)–(3.2), as well
as the distribution of (uwit, u

s
it), as expressed by (5.11) in the binormal case. A

linear (empirical) regression of s∗it on (t, ci) will result in biased estimation of
the adjusted trend coefficient γs+δs. If both σws=0 and ωws=0 hold, implying
κws = 0, the biases disappear: ∂E(s∗it|wit = 1; t, ci)/∂t = τsγsτ = γs+ δs and
∂E(s∗it|wit = 1; t, ci)/∂ci = τsβsτ = βs+λs−δs. In the latter case, (3.5)–(3.6)
form a recursive structure, unconditional on the individual effects: first labour
market participation is decided, next sickness is determined. Conditional on
cohort, but unconditional on the individual effects, there is no feedback from
the latter to the former.

5.3 Conditioning on age

Assume again that (3.1)–(3.2) are part of the model, and let t and ait be the con-

ditioning variables. It follows from (3.3)–(3.6) and (4.6) that only γs+βs+λs and
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δs−βs−λs (or one-to-one transformations of them) can be identified. With respect

to the sample, we again distinguish between two cases.

[A] If the sample were non-censored, the trend coefficient we would have estimated

by regressing s∗it linearly on (t, ait) would have been γs+βs+λs, since then

E(s∗it|t, ait) = αs + (γs+βs+λs)t + (δs−βs−λs)ait.(5.14)

[B] If the sample is censored by labour force participation, the trend coefficient ac-

tually estimated by regressing s∗it on (t, ait) differs from γs+βs+λs. We have4

E(s∗it|wit=1; t, ait) = αs+(γs+βs+λs)t+(δs−βs−λs)ait+E(usit|wit=1; t, ait).(5.15)

From (5.3), (5.4), (5.15) and (4.9), we obtain, in the binormal case,

E(s∗it|wit=1; t, ait) = αs + (γs+βs+λs)t+ (δs−βs−λs)ait(5.16)

+ κwsτsλ[(γwτ+βwτ)t−βwτait−w̄τ ].

The correct trend and the correct age effects therefore become5

∂E(s∗it|wit=1;t, ait)/∂t(5.17)

= γs+βs+λs+κwsτs∂λ[(γwτ+βwτ)t−βwτait−w̄τ ]/∂t

=τs [(γsτ+βsτ)−(γwτ+βwτ)κwsξ[(γwτ+βwτ)t−βwτait−w̄τ ]] ,

∂E(s∗it|wit=1;t, ait)/∂ait(5.18)

=δs−βs−λs+κwsτs∂λ[(γwτ+βwτ)t−βwτait−w̄τ ]/∂ait

= τs [−βsτ+βwτκwsξ[(γwτ+βwτ)t−βwτait−w̄τ ]] .

If κws 6= 0, both derivatives depend on τs, γwτ , βwτ and w̄τ , which implies that the

correct trend is age-specific and the correct age effect is time-varying.

Conclusion 5: If the sample is censored by labour force participation, the
(theoretical) regression E(s∗it|wit=1; t, ait) is, in general, non-linear in (t, ait).
Its form depends on the coefficients of both (2.2)–(2.3) and (3.1)–(3.2), as
well as the distribution of (uwit, u

s
it), as given by (5.16) in the binormal case.

A linear (empirical) regression of s∗it on (t, ait) will result in biased estima-
tion of the actual trend coefficient γs+βs+λs and of the adjusted age coef-
ficient δs−βs−λs. If both σws = 0 and ωws = 0 hold, implying κws = 0, the
biases disappear: ∂E(s∗it|wit = 1; t, ait)/∂t = τs(γsτ +βsτ ) = γs+βs+λs and
∂E(s∗it|wit = 1; t, ait)/∂ait = −τsβsτ = δs−βs−λs. Then (3.5)–(3.6) form a
recursive structure, unconditional on the individual effects. Conditional on
cohort, but unconditional on the individual effects, there is no feedback from
sickness to labour force participation.

4This equation, of course, mirrors (5.10).
5These equations mirror (5.12)–(5.13).
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6 Models treating sickness as dichotomously observable

6.1 General remarks

Having explored the situation where the degree of absenteeism, s∗it, is assumed to be

recorded quantitatively, we next consider models where absenteeism is assumed to

be recorded qualitatively (dichotomously). This may sometimes be a more realistic

assumption. Or even if continuous observations are available, the analyst may want

to exploit it only dichotomously for ‘institutional’ reasons, because of measurement

problems which may plague the data collection, suggesting a need for ‘robustifying’

the results, etc. This corresponds to the approach of Biørn et al. (2010). With

respect to the sample, we distinguish between cases [A] and [B], as in Section 5.

[A] Data for all individuals, whether in the labour force or outside, are in the sample.

Then we could want to make inference on trend effects in the sickness probability

from (4.15) or (4.17). If we base inference on (4.15) when (3.1)–(3.2) are part of

the data generating mechanism, using standard binomial logit or probit analysis –

and hence conditioning on ci or ait – we would estimate τ -normalized coefficients.

If we base inference on (4.17), using binomial logit or probit analysis – and hence

conditioning on µisσ – we would estimate σ-normalized coefficients.6 Derivatives of

the (log-)probabilities, ‘marginal effects’, could be estimated from either.

[B] The sample is only from individuals being in the labour force. Then, to obtain

valid inference on trend effects in the sickness probability, we should account for

the implicit censoring. Again, we could only obtain inference on τ - or σ-normalized

coefficients. Since the relevant sickness-absence probabilities underlying our binary

response data are conditional on wit=1, they are of the form (4.16) or (4.18). When

conditioning on µisσ (µ
†
isσ), we obtain more robust inference on the trend in the

sickness probability than when conditioning on ci (ait).

To see this we differentiate the relevant expressions for the conditional log-

probability of absenteeism with respect to time and the other relevant covariates.

Let Ψu(u; b)=
∫∞

b
ψ(u, v)dv and Ψv(v; a)=

∫∞

a
ψ(u, v)du, and write (4.1) as

f(a, b)=
∫∞

a
Ψu(u; b)du=

∫∞

b
Ψv(v; a)dv =⇒

{

∂f(a, b)/∂a=−Ψu(a; b),
∂f(a, b)/∂b=−Ψv(b; a).

(6.1)

Now differentiation of (4.2) gives

∂g(a, b)

∂a
= −g(a, b)Ga(a, b) ⇐⇒

∂ ln g(a, b)

∂a
= −Ga(a, b),(6.2)

∂g(a, b)

∂b
= −g(a, b)Gb(a, b) ⇐⇒

∂ ln g(a, b)

∂b
= −Gb(a, b),(6.3)

6In both cases the non-normalized coefficients are non-identifiable when only discrete informa-
tion is exploited since no metric for (w∗

it
, s∗

it
) and (w̄, s̄) is exploited.
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where

Ga(a, b) =
Ψu(a; b)

f(a, b)
−

Ψu(a;−∞)

f(a,−∞)
=

∫∞

b
ψ(a, v)dv

∫∞

a

∫∞

b
ψ(u, v)du dv

−

∫∞

−∞
ψ(a, v)dv

∫∞

a

∫∞

−∞
ψ(u, v)du dv

,

Gb(a, b) =
Ψv(b; a)

f(a, b)
=

∫∞

a
ψ(u, b)du

∫∞

a

∫∞

b
ψ(u, v)du dv

.

6.2 Conditioning on individual effect

It follows by combining (6.2)–(6.3) with (4.16) that the derivative of the log-probability

of absenteeism with respect to time is

∂ lnP (sit=1|wit=1; t, µiwσ, µisσ)/∂t(6.4)

= ∂ ln g(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ)/∂t

= γsσGb(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ)

+ γwσGa(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ).

The first term after the last equality sign represents the direct effect of the trend

in absenteeism – mirroring the effect of the trend term in (2.6). It is positive when

γsσ>0 since Gb(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ) is positive. The second term represents

the indirect effect, via the trend in the ability to work and dropping out of the labour

market – mirroring the effect of the trend term in (2.5). It is negative if γwσ < 0,

since Ga(w̄σ−γwσt−µiwσ, s̄σ−γsσt−µisσ) is, most likely, positive.

6.3 Conditioning on cohort or age

Combining (6.2)–(6.3) with (4.18), it follows, likewise, that

∂ lnP (sit=1|wit=1; t, ci)/∂t(6.5)

= ∂ ln g(w̄τ−γwτ t−βwτci, s̄σ−γsτ t−βsτci)/∂t

= γsτGb(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci)

+ γwτGa(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci),

∂ lnP (sit=1|wit=1; t, ci)/∂ci(6.6)

= ∂ ln g(w̄τ−γwτ t−βwτci, s̄σ−γsτ t−βsτci)/∂ci
= βsτGb(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci)

+ βwτGa(w̄τ−γwτ t−βwτci, s̄τ−γsτ t−βsτci),

or equivalently

∂ lnP (sit=1|wit=1; t, ait)/∂t(6.7)

= ∂ ln g(w̄τ−(γwτ+βwτ )t+βwτait, s̄σ−(γsτ+βsτ)t+βsτait)/∂t

= (γsτ+βsτ)Gb(w̄τ−(γwτ+βwτ)t+βwτait, s̄σ−(γsτ+βsτ )t+βsτait)

+ (γwτ+βwτ)Ga(w̄τ−(γwτ+βwτ)t+βwτait, s̄σ−(γsτ+βsτ )t+βsτait),

∂ lnP (sit=1|wit=1; t, ait)/∂ait(6.8)

= ∂ ln g(w̄τ−(γwτ+βwτ )t+βwτait, s̄σ−(γsτ+βsτ)t+βsτait)/∂ait
= −βsτGb(w̄τ−(γwτ+βwτ )t+βwτait, s̄σ−(γsτ+βsτ)t+βsτait)

− βwτGa(w̄τ−(γwτ+βwτ )t+βwτait, s̄σ−(γsτ+βsτ)t+βsτait).
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Again, the first terms after the last equality signs represents the direct effects, while

the second terms represent the indirect effect, via the ability to work and dropping

out of the labour market.

6.4 The recursive case and a synthesis

It is illuminating to compare the last five expressions with those obtained when the

structure is recursive, i.e., ρws=0 or τws=0. We then have g(a, b) =
∫∞

b
φ(v)dv =

1−Φ(b), which imply:7

Ga(a, b) = 0, Gb(a, b) =
φ(b)

1−Φ(b)
=
φ(−b)

Φ(−b)
= λ(−b).

Then (6.4)–(6.8) are simplified to

ρws = 0 (Recursivity conditional on individual effects) =⇒

∂lnP (sit=1|wit=1; t, µiwσ, µisσ)

∂t
=
∂lnP (sit=1; t, µisσ)

∂t
= γsσλ(γsσt+µisσ−s̄σ),

τws = 0 (Recursivity conditional on cohort) =⇒

∂lnP (sit=1|wit=1; t, ci)

∂t
=
∂lnP (sit=1; t, ci)

∂t
= γsτλ(γsτ t+βsτci−s̄τ ),

∂lnP (sit=1|wit=1; t, ci)

∂ci
=
∂lnP (sit=1; t, ci)

∂ci
= βsτλ(γsτ t+βsτci−s̄τ ),

τws = 0 (Recursivity conditional on age) =⇒

∂lnP (sit=1|wit=1; t, ait)

∂t
=
∂lnP (sit=1; t, ait)

∂t
= (γsτ+βsτ)λ((γsτ+βsτ)t−βsτait−s̄τ ),

∂lnP (sit=1|wit=1; t, ait)

∂ait
=
∂lnP (sit=1; t, ait)

∂ait
= −βsτλ((γsτ+βsτ )t−βsτait−s̄τ ).

Conclusion 6: When we condition on (a) the individual latent heterogeneity
or (b) cohort (or age) only, we should account for sample truncation when for-
mulating the appropriate response probabilities as functions of covariates and
likelihood functions for estimating trends in absenteeism, except when σws=0
(in case (a)) and ωws = σws = 0 (in latter case (b)). The correct form of
the likelihood function will, in the general case, reflect the mixture of discrete
choice and sample truncation.

7 Concluding remarks

We have in this paper presented a simple model framework for analyzing jointly

degree of sickness and degree of work ability with two kinds of latent heterogeneity

7If u, v are independent =⇒ ψ(u, v)=φ(u)φ(v), f(a, b)=[1−Φ(a)][1−Φ(b)], g(a, b) = [1−Φ(b)] ∀ a,
where φ(u) and Φ(u) are the univariate density and the c.d.f. of u or v [confer Section 4.1], then
Ψu(u; b)= [1−Φ(b)]φ(u), Ψv(v; a)= [1−Φ(a)]φ(v), and hence Ga(a, b) = 0, Gb(a, b) = φ(b)/[1−Φ(b)].
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interacting, one related to absenteeism (sickness absence), the other related to abil-

ity to work. Obtaining valid inference on trend effects has been the main focus of

the paper. Sometimes also cohort effects or age effects can be uncovered. We have

shown that correlation pattern of the two kinds of latent heterogeneity is impor-

tant. Treating the two decisions as recursive may not be always be the answer, and

neglecting the sample selection may obscure the interpretation of the coefficients

estimated.

An overall conclusion, somewhat related to and extending conclusions derived

for bivariate ‘Tobit models’ in literature, is that when we stick to linear regression,

the conditions which need to be satisfied for estimated composite trends (time ef-

fects) to be unbiased are stronger when the other covariate (conditioning variable)

is cohort or age, than when we condition on individual effects (and, by implica-

tion, eliminate any relationship between individual heterogeneity and cohort). In

the former case, the genuine disturbances in the underlying sickness equation and

work ability equation should be uncorrelated. The latter case, a kind of ‘double

recursivity’ should hold: both the genuine disturbances and the latent individual

effects in the two equations should be uncorrelated. Inference on sickness absence

trends obtained by linear regression with fixed individual effects (additive shifts in

the intercept) included, may therefore be characterized as more robust than that

obtained when including only cohort or age as regressors and throwing all hetero-

geneity into (gross) disturbances. Essentially, these conclusions also carry over to

the case where absenteeism is only observed dichotomously.

Natural, and rather straightforward, extensions, not elaborated in the paper,

could be to replace the time, cohort and age variable by corresponding time, cohort

and age dummies. Genuine ‘economic regressors’ could also be included, formally

as extensions of the models’ intercepts, except that no such regressor could be in-

dividual specific, in order to avoid perfect collinearity with the individual effects.

Neither could, for a similar reason, time specific regressors be included in models

where time dummies replace the continuous time variable.
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