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WEIGHT RESTRICTIONS IN DEA: 

MISPLACED EMPHASIS?  

by 

Finn R Førsund 

Department of Economics, University of Oslo 

February 2011 

 

Abstract: Measuring productive efficiency is an important research strand within fields of 
economics, management science and operations research. One definition of efficiency is the 
proportional scaling needed for observations of an inefficient unit to be projected onto an 
efficient production function and another definition is a ratio index of weighted outputs on 
weighted inputs. When linear programming is used to estimate efficiency the two definitions 
give identical results due to the fundamental duality of linear programming. Empirical 
applications of DEA using linear programming showed a prevalence of zero weights leading to 
questioning the consequence for the efficiency score estimate based on the ratio definition. Early 
literature on weight restrictions is exclusively based on the ratio efficiency. It was stated that 
variables with zero weights had no influence on the efficiency score, in spite of the alleged 
importance of the variables. This has been one motivation for introducing restrictions on 
weights. Another empirical result was that often there were too many efficient units. This 
problem could also be overcome by introducing weight restrictions. Weight restrictions were 
said to introduce values for inputs and outputs. The paper makes a critical examinations of these 
claims based on defining efficiency relative to a frontier production function. 

 

Keywords: Weight restrictions; DEA; efficiency; frontier production function; primal and dual 
linear programming problems 

JEL classification: C61, D20 

                                                 
 The paper is written within the research programme “Kostnadseffektiv drift av Forsvaret (Koster III)” (Cost 
Efficiency in Defence) at the Norwegian Defence Research Establishment (FFI). 
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1. Introduction 

 

Measuring productive efficiency is an important research strand within the fields of economics, 

management science and operations research. The two seminal contributions are Farrell (1957) 

and Charnes et al. (1978). However, the fundamental definition of efficiency is apparently 

different in the two papers; Farrell (1957) basing his definition on the proportional scaling 

needed for observations of an inefficient units to be projected onto an efficient production 

function and Charnes et al. (1978) basing their definition on an index of weighted outputs on 

weighted inputs, restricting this ratio to be less than (or equal to) the one for the most efficient 

operation. 

However, it is well known that if the proportional scaling factors can be estimated using linear 

programming, then if optimal solutions exist, the two definitions give identical efficiency scores 

due to the fundamental duality between the primal and dual problem of linear programming. It 

may then be said that is does not matter which definition that is adopted. But it will be argued in 

the paper that the choice of a definition does matter for the understanding of the problem at hand, 

because adopting the index definition and searching for imposing value judgements about 

relative values of inputs and outputs by means of various forms of weight restrictions lead to 

problem formulations that are not well founded, and may be regarded in conflict with principles 

of estimation of efficiency based on a data set. 

The ratio expression defining efficiency in Charnes et al. (1978) is what is termed productivity in 

economics. The construction of productivity indices is a well-known aggregation problem in 

economics. A productivity index is closely related to an efficiency index. If a productivity index 

for a unit is compared to the productivity index of the most productive unit by forming a ratio, 

then this ratio is an efficiency index using the most productive unit as a benchmark. This is just 

what the constraints on the productivity index imply in the Charnes et al. (1978) definition. 

There are two basic approaches to this construction: estimating weights used to aggregate 

outputs and inputs, respectively, directly, or starting from an estimate of the relevant production 
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function. Using output and input prices as weights is the standard example of the first approach, 

while utilising the Farrell technical efficiency measures as done when calculating the Malmquist 

productivity index (Caves et al. 1982) is an example of the latter.  

The Farrell (1957) definition of efficiency is independent of any index of efficiency constructed 

directly by weighted outputs over weighted inputs, i.e., if an estimate of a frontier production 

function and input-output data for a unit are available, the Farrell technical efficiency scores can 

be calculated. The use of linear programming is just one of several tools of estimating a frontier 

function, but its use is not necessary for efficiency measurement in principle. The choice of 

estimation method depends on the specification of the form of the frontier production function, 

but the definition of efficiency remains the same. 

Most of the papers concerned with weight restrictions start with the Charnes et al. (1978) 

efficiency definition of weighted outputs over weighted inputs. This may explain the interest in 

the weights. It is also common to associate the weights with value judgements, and state that 

introducing restrictions on these weights is to introduce values. However, the question is if this is 

warranted. It may help to think about public sector service-producing units that do not sell their 

outputs in markets. Two kinds of efficiency problems can then be posed. The first one concerns 

the efficiency of producing the services, i.e., the efficiency of utilising inputs in the production of 

the actual services provided, and the second problem addresses whether the set of services 

produced, promote the fundamental objectives of undertaking the service production in the first 

place. This is a question of effectiveness. The relative value of the services can only be found by 

connecting to the fundamental objectives of undertaking service production. However, almost all 

empirical applications of efficiency studies are concerned with the first type of problem; the 

efficient use of inputs in the production of the actual services provided. Then the weights should 

not be manipulated within this problem set up for yielding measures of technical efficiency, but 

be reserved for a second stage analysis.1 In the case studied in Farrell (1957) there is one output, 

and known input prices. Farrell goes on to develop the second-stage analysis by estimating 

allocative efficiency of the employment of inputs, and finally multiplying technical and 

                                                 
1 In Joro and Viitala (2004, p. 814) weight restrictions based on preferences or value information, is, somewhat at 
odds with the philosophy presented above, being regarded there as an “intermediate approach” between standard 
DEA analysis of technical efficiency and the analysis of economic efficiency said to requiring price information on 
inputs and outputs. 
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allocative efficiency to yield overall efficiency (see Diagram 1 in Farrell 1957, p. 254). (It is 

straightforward to develop a similar overall measure to cover optimal mix of multiple outputs 

priced in markets.)  

The lesson to be learned for technical efficiency analyses is that the extension to an overall 

efficiency measure incorporating values does not interfere at all with the analysis of technical 

efficiency. It should also be noted that an overall optimal solution covering both stages requires 

that the provision of the service mix actually produced obeys technical efficiency. 

Concerning estimation of efficiency it is stated in Charnes et al. (1990, p.73) that there are two 

developments to consider: empirical production functions and managerial performance 

evaluation (efficiency analysis). Thus, it is not the situation that the need to estimate a frontier 

technology is not well known in the literature. However, most of the papers are preoccupied with 

formulating constraints on weights in the weight space, and do not link this to implications for 

the production possibility set in input-output space, although it is realised in general that 

constraining the weights in the weight space implies expansion of the production possibility set 

in input-output space. But in Podinovski (2004a) (extended in Podinovski 2005) it is shown that 

starting with incorporating more information about the production possibilities in the form of 

trade-offs between outputs or inputs the corresponding weight restrictions can be found. This is 

called the trade-off approach. Podinovski (2004a, p. 1316) is very clear on the difference 

between what he calls ‘technology thinking’ and ‘value thinking’. He, furthermore, warns that 

the latter approach may lead to inconsistencies with the production realities and distort the 

economic meaning of efficiency. 

An alleged problem with the ratio definition of efficiency is that zero values of weights may 

often appear as optimal solutions. It is, then, important to have in mind that the data at hand 

actually determine the outcome (Olesen and Petersen 1996).  Zero weights appear because data 

do not contain sufficient information to avoid this. Olesen and Petersen (1996) are very clear on 

the connection between the data and the resulting form of the frontier production function when 

using the DEA model to estimate it. They analyse consequences of ill-conditioned data sets in 

detail, and point out the role of facets of full dimension if estimates of rates of transformation 

and substitution is also wanted, and not only an efficiency score. There cannot be any zero value 

for multipliers or weights in the relative interior of a fully dimensional efficient facet. The 
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problem is that variation in data may not support a full set of the rates. A data set is called ill-

conditioned if a relatively large number of the units are located in areas where a full set of ratios 

does not exist.  

The purpose of the paper is to have a closer discussion of the differences between the two 

seminal contributions to efficiency definitions, and in particular to address some aspects of the 

weight-restriction literature that seem to be misunderstandings of the issues involved. In Section 

2 the efficiency definitions in the two seminal papers are reviewed, and in Section 3 the 

interpretation of the Farrell (1957) definitions in the case of a non-parametric benchmark 

technology are treated in detail in order to see the connection with the exposition in Charnes et 

al. (1978), thereby preparing the ground for exposing misunderstandings in the DEA weight-

restriction literature. These misunderstandings are then commented upon in Section 4, and 

Section 5 concludes. 

 

 

2. The seminal contributions to measurement of productive efficiency 

 

The frame of reference for defining productive efficiency in Farrell (1957) is the most efficient 

production technology, now commonly termed the frontier production technology. Knowledge 

about such a technology can be obtained in two ways; based on engineering information about 

the production activity in question, or based on observed best practice. Given that an efficient 

technology is known, then efficiency of a unit is defined by the scaling that is required to project 

an inefficient observation to the frontier, either by a proportional scaling down of all inputs for 

given output levels by a scalar scaling factor, or by a proportional scaling up by a scalar scaling 

factor of all the outputs given the input quantities. Restricting the efficiency measures to be 

between zero and one the latter output-oriented efficiency measure is then the inverse of the 

scaling factor. These efficiency-measure definitions are independent of how the efficient 

technology, or frontier technology, is estimated, and, furthermore, independent of the scale 
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properties of the frontier function. Farrell (1957) termed the measures for technical efficiency 

measures. Obviously, there is no value judgement involved about inputs or outputs.  

The Farrell technical efficiency measures can in a general setting be formalised as follows:2 

 
   

1

2

Min : ( , ) 0

1/ Max : ( , ) 0 , 1,...,

j

j

j j j j j j

j j j j j j

E F Y X

E F Y X j n





 

 

 

  
                                                                       (1) 

Here ( , ) 0j j jF Y X    is the efficient multi-output, multi-input production function (with standard 

properties) for unit j , ( , ) 0j j jF Y X   indicates inefficient operations, Yj and Xj are the output and 

input vectors respectively, the input-oriented technical efficiency measure is E1j, the output-

oriented efficiency measure is E2j, and the scaling factors are θj and j . The Farrell efficiency 

measures correspond to the concept of distance functions introduced in Shephard (1970). 

In the case of input prices being available, Farrell (1957) also defines price or allocative 

efficiency based on cost minimisation relative to the frontier technology, and overall efficiency 

as the product of technical efficiency and price efficiency. Farrell (1957, pp. 260-261) puts 

forward arguments for weaknesses with price efficiency and recommends focusing on technical 

efficiency. His concerns are that price efficiency is sensitive to introduction of new observations 

through the impact on curvature of isoquants or errors in measurement of prices, and that the 

current choice of input proportions may be based on past or expected future prices and not on 

current prices, and will therefore only provide a good measure in a completely static situation.  

Farrell (1957) also proposed a method of estimating a best-practice frontier by enveloping the 

data by a non-parametric piecewise function, imposing convex negatively-sloped isoquants, and 

constant returns to scale. He comments that this way of estimating a production function may not 

                                                 
2 Farrell (1957) did not present formal definitions of the efficiency measures, may be due to a wish to keep the 
exposition simple in order to be “of interest to a wide range of economic statisticians, business men and civil 
servants, many of whom have little knowledge of economic theory or mathematics” (p. 11). However, his two 
widely reproduced graphical illustrations convey very well his efficiency definitions and his approach of estimation, 
specifying a piecewise linear convex unit isuquant enveloping the data points. 
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be the best if estimating a frontier is all that is required, but that “it was chosen simply as 

providing the best measure of technical efficiency” (Farrell, 1957, p. 262).3  

Farrell (1957) applied his approach in the case of only a single output.  His method of estimating 

the efficiency scores was based on solving a system of linear equations. In the discussion of 

Farrell’s paper at the meeting of the Royal Statistical Association in 1957 Hoffman made the 

crucial intervention that a newly developed technique, linear programming, could be applied. In 

Farrell and Fieldhouse (1962) linear programming was applied for the first time to the efficiency 

problem, however, still restricted to constant returns to scale and a single output. Farrell and 

Fieldhouse (1962) suggested generalisations both to variable returns to scale and to multiple 

outputs, but were not completely successful in doing this (Førsund et al. 2009). A group of 

agricultural economists at Berkeley formalised more successfully the Farrell and Fieldhouse 

approach and extended the linear programming to multiple outputs (Boles 1967; 1971) (for more 

references to works by the Berkeley group, see Førsund and Sarafoglou 2002; 2005). 

Charnes et al. (1978) start out declaring that they want to relate their ideas about efficiency 

measurement to development in economics by making “reference to production functions and 

related concepts…” (p. 430). However, they also want to relate their ideas to engineering, and 

this is actually the starting point for their efficiency definition; it is (allegedly) based on how 

efficiency is defined within that discipline. The key quote from the engineering literature is: 

“efficiency is the ratio of the actual amount of heat liberated in a given device to the maximum 

amount that could be liberated by the fuel” (p. 430). (The reference for the quote is to 

Encyclopedia Americana.) This quote leads to the introduction of the ratio approach of 

maximising a ratio of weighted outputs on weighted inputs subject to this ratio being less than or 

equal to one for all units, where the weights are the endogenous variables to be determined. This 

                                                 
3 He then goes on to suggest statistical approaches to estimating parametric frontier functions that were followed up 
in the economics literature during the first three decades after his seminal publication. 
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ratio definition is only valid for constant returns to scale. The formal definition of efficiency for 

a unit j0 is:4 
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                                                                                                   (2)                         

In (2) hj0 is the efficiency measure, y and x are the output and input vectors, respectively, with s 

outputs and m inputs, number of units are n, and urj0 , vij0 are the weights associated with outputs 

and inputs, respectively.5  

As the definition stands this approach seems to be quite different from the seminal approach of 

Farrell (1957). Furthermore, Farrell makes quite strong negative comments about the idea of 

forming an efficiency index by “weighing together input factors.” He sees the difficulty as 

finding a suitable set of prices serving as weights, and if they are found, he states that the whole 

exercise then boils down to making cost comparisons (Farrell 1957, p. 264).  

But Charnes et al. (1978), as promised, manage to relate the analysis to economics by turning the 

fractional program of the ratio definition (2) into an equivalent linear program, and furthermore, 

to show that the generalised optimisation problem of Farrell and Fieldhouse (1962) stated in 

output and input variables, is in fact the dual to the transformed ratio problem. The estimates of 

                                                 
4 In Podinovski (2001a) the first ratio in (2) is called ‘absolute efficiency’ (as stated earlier this ratio is defined as 
productivity in economics), while the full problem (2) is called relative efficiency. The interesting observation is 
made that problem (2) implies both a maximisation of absolute efficiency and relative efficiency. 
5 Later in the paper, in order to avoid the weights turning out zero, a non-Archimedean number   is used as the 
lower limit for the weights in (2). However, since this number can be arbitrarily close to zero, for practical purposes 
this may leave economic rates at zero of infinity and the construct is hardly in use anymore in applied studies. There 
are also more formal reasons for not using the non-Archimedean (Podinovski 2004b). 
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efficiency scores of the different approaches are therefore identical due to the duality property of 

a linear programming problem.  

However, the question still remains why Charnes et al. (1978) start with the so-called 

engineering approach and neglect Farrell (1957) completely concerning the basic definition of 

efficiency. The referred heat-ratio efficiency in engineering is quite obvious, but restricted to a 

single output and input, and the ratio definition (2) of efficiency does not really follow 

automatically. I do not know of any use of such a definition of efficiency in engineering. People 

following the ratio definition have not made any other references to engineering than the 

reference to Charnes et al. as far as I know, but still call the ratio definition for a classical 

engineering approach. In Banker et al. (1984) p. 1078, the following statement is made: “the 

CCR [Charnes et al. (1978)] ratio definition….generalizes the single-output to single input 

classical engineering-science ratio definition to multiple outputs and multiple inputs…” No 

reference to the engineering literature is offered. 

The preoccupation with restrictions on weights in the operations research literature on DEA is 

obviously directly influenced by the ratio definition.  This paper will try to demonstrate that 

starting with the weights may easily lead to misunderstandings about the relevant economic 

definition of efficiency and the estimation problems involved. Although the ratio definition is 

“saved” in a technical sense when linear programming is used to estimate the frontier production 

function and related technical efficiency measures, its status is in my opinion more in the “as if “ 

category rather than being a primary definition of efficiency on its own. The usefulness of the 

dual relationships in linear programming is that characterisations of the frontier production 

function can be made in the form of marginal productivities, rates of substitution between pair of 

inputs, and rates of transformation between pair of outputs, as will be shown in Section 3.  

An important observation is that the Farrell (1957) definition of efficiency does not depend on 

the method by which the frontier and efficiency scores are estimated, unlike starting from the 

ratio definition that can only be estimated when linear programming is used. It is also worthwhile 

to note that the ratio definition is awkward when specifying variable returns to scale, and the 

name ratio approach is actually not used in Banker et al. (1984), p. 1085, when the ratio problem 

is derived from the dual to the “envelopment problem”, i.e., the optimisation problem leading 
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simultaneously to the estimate of a frontier production function and efficiency scores in the 

output – input space. 

 

 

 

3. The interpretation of shadow prices 

 

In order to expose the awkward understanding of the simultaneous problem of estimating a 

value-free frontier production function and technical Farrell efficiency scores in the weight-

restriction literature, let us start with the production possibilities. We will assume a non-

parametric frontier function as was Farrell’s preferred alternative, and assume the axioms for the 

production possibility set presented in Banker et al. (1984) to hold. The production possibility set 

in the case of variable returns to scale can be written: 

1 1 1

( , ) : , , 1, 0
n n n

j j j j j j
j j j

T X Y X X Y Y   
  

 
     
 

                                                              (3) 

Here Xj is the input vector of m inputs, Yj the output vector of s outputs, and j =1,…, n is the 

index for the n units, using the notation in (1) and (2). The scalar variables λj are called “intensity 

weights” in the DEA literature. All values are constrained to be non-negative, and at least one 

output, one input and one intensity weight have to be strictly positive. Dropping the condition 

that the intensity weights sum to 1 we impose constant returns to scale. 

The standard primal problem of estimating Farrell technical efficiency scores for a unit j0 in the 

case of variable returns to scale and input orientation of the efficiency measure, following the 

definition (1) of efficiency (input orientation), is: 
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The variables (x1j,…, xmj) and (y1j,…, ysj) represent the observed m inputs and s outputs of 

production units j =1,…,j0,…,n. The endogenous intensity weights λj (telling us the composition 

of the frontier reference point for unit j0) is unit-specific, but for notational ease the index for j0 is 

suppressed, as is the usual practice in the literature.  

The general idea of Farrell technical efficiency for a unit is based on measuring the relative 

distance between a unit and the benchmark frontier, and that the way of measuring is to scale 

down proportionately the inputs, keeping the output fixed, defining the input-oriented measure as 

0j
 in (4), and scaling up proportionally the outputs keeping the inputs fixed for the output-

oriented measure. Thus, the Farrell definition of efficiency, based on a general frontier function 

as benchmark, is not defined by a weighted sum of outputs over a weighted sum of inputs.  

However, in the case of estimating the frontier function by using linear programming, assuming 

that the frontier is piecewise linear, the fundamental duality theorem of linear programming of 

equality between the value of the objective function of the primal and the value of objective 

function of the dual, can be utilised to express the Farrell efficiency score formally as a weighted 

sum of outputs on a weighted sum of inputs. 

The dual problem to problem (4) is6 

                                                 
6 This is the equivalent linear programming problem to the fractional programming problem (2). It may be noted that 
the latter problem, as far as I know, is not in use for practical computations. Since the problem has the Farrell 
problem as its dual, one may say that starting with the fractional problem (2) is done just to state a definition of 
efficiency, but as computation is concerned it is a detour. 
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The variables
0 0 0
, ,ij rj jv u u  are the shadow prices on the constraints in (4), which are the input 

constraints, the output constraints and the convexity constraint, respectively. In DEA it is more 

common to call these variables for multipliers or weights, and in the paper these terms are used 

interchangeably. We then have the fundamental duality result for an optimal solution:
 

0 0 0 0
.j rj rj jr

u y u    In addition to the weighted sum of outputs, expressed in dimensionless 

efficiency measure units, there is the shadow price on the convexity constraint in the case of 

variable returns to scale, and this shadow price will be zero in the case of constant returns to 

scale.
                                          

 

The shadow prices on the two constraints in (5) will have the interpretation of the efficiency 

score for the first constraint and the intensity weight for the second constraint.  

As to the concern of zero weights influencing the efficiency score it should be noted from (5) 

that for the input-oriented problem the sum of the product of shadow prices and the 

corresponding inputs is equal to one, so the weights for inputs do not have a direct impact on the 

efficiency score, but, of course, indirectly through the influence on the solution for the output 

weights. (In the case of output orientation it is the sum of the product of shadow prices and 

outputs that is equal to one and the concern should only be about input weights.) In the DEA 

literature the product of a shadow price and an input (output) is called virtual input (output).  

Setting up the Lagrangian for the constrained optimisation problem (4) for unit j0 we have 
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The necessary first-order conditions for a solution to problem (4) are: 
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From the first condition we have that the intensity weight will be zero for unit j0 if this unit is 

inefficient; using the duality result of equality of the two objective functions in (4) and (5) we 

have
0 0 0 0 0rj rj j ij ijr i

u y u v x   . The second condition will hold with equality since the 

efficiency score is unrestricted. We have that a non-positive value of the efficiency score is not 

admissible under the assumption of at least one output and one input being strictly positive, and 

at least one intensity weight must be positive. Furthermore, the efficiency score cannot exceed 

one in the optimal solution; inputs must be scaled down for inefficient units and remain the same 

for efficient units due to the nature of the minimisation problem. From the two last 

complementary slackness conditions we have that the shadow prices become zero for variables 

where we have slacks. 

If we have a unique solution to problem (4) then the shadow prices of the output and input 

constraints can be interpreted by applying the Envelope theorem for an inefficient unit. However, 

we know that there may typically be multiple solutions, especially for shadow prices. We will 

therefore assume that for inefficient units with the projection point to the frontier being in the 
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relative interior of a face we have unique solutions for the endogenous variables. Thus, 

considering unit  j0, assuming we have an optimal solution to problem (4), we get:   
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We have that 
0 00 for unit being inefficientj j  from the first necessary condition in (7). For 

inefficient units the shadow price on the output constraint is then directly interpreted as the 

increase in the efficiency score of a marginal increase in the output variable in question 

evaluated at a frontier point. The unit of measurement for the shadow price is efficiency score 

units (dimensionless) per measurement unit of the output variable in question.  

Concerning a change in an input variable we have in general that the shadow price on an input 

constraint for an inefficient unit measures the impact on the efficiency score of a marginal 

increase in the input variable in question. In the direct interpretation the shadow price on the 

constraint is weighted with the efficiency score. But because this is constant, we can evaluate the 

impact of a change in the input constraint by evaluating the change at the input value
0 0

( )j ijx that 

is on the frontier. The unit of measurement for the shadow price is again efficiency score units 

per measurement unit of the input variable in question.  

As we see the interpretation of the shadow prices is quite clear, conforming to the standard 

interpretation of shadow prices in constrained optimisation problems. Inspecting the objective 

function of the dual (5) we have that the weighing of outputs transform the expression into units 

of the efficiency score, i.e., a dimensionless number. Weighing an output or input is just 

calculating the marginal contribution of the variable in question to the efficiency score at the 

optimum solution; this has nothing to do with any external economic value put on the variable. 

So-called virtual inputs (outputs) are just expressing the contribution to the efficiency score at 

the optimal solution of the variable in question. 

The interpretation of the shadow prices in terms of standard production function concepts can 

straightforwardly be made utilising the dual problem (5). The second constraint will hold with 
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equality in an optimal solution and is the equation of the hyperplane of the corresponding face 

(called a facet if the face is of full dimension m + s - 1). Assuming that unit j is an efficient unit 

we have by differentiation: 
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This is the economic concept of the marginal productivity of input i in terms of the output of type 

r. Using also the types r’ and i’ of outputs and inputs, respectively, we develop in the same way 

the following expressions: 
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The first ratio expression is the marginal rate of transformation between output r and r’ and the 

second ratio expression is the marginal rate of substitution between input i and i’. The faceted 

form of the frontier production function implies that these three fundamental economic concepts 

are constant on a facet (or face).  

We know that the extreme-efficient units (efficient units with zero slacks)  are vertex points (or 

located on ridges), so the solution for shadow prices for these units will necessarily not be unique 

because these units belong to more than one face on the surface of the frontier production 

function. Because the constraint qualification is not satisfied for the vertex units we cannot use 

the envelope theorem for investigating impacts of change in data for such units.                           

When using  LP for both estimating the frontier and the efficiency measures,  as done for the first 

time in Farrell and Fieldhouse (1962), and generalised and made accessible to the research 

community in Charnes et al. (1978), then we have the fundamental relationship between a primal 

solution and a dual solution of an optimal solution. In a technical sense one may then say that 

whether efficiency is defined using the primal or dual does not matter. However, one should not 
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forget that the basic definition of an efficiency measure in economics is based on the frontier 

production function concept and formulated in input – output space. It is therefore natural, at 

least for economists, to view the problem called the envelopment problem in operations research 

for the primal model and the problem formulated in a shadow price space for the dual problem 

(the multiplier problem in OR literature).   

The lesson for efficiency definition is that following the ratio definition of Charnes et al. (1978), 

does not imply an estimation of weights independent of the production function. The weights 

provided by the dual solution to the envelopment problem has no independent value dimension, 

but have the standard interpretation of shadow prices on constraints in the envelopment problem, 

as is the terminology used in economics. 

 

 

4. A critical examination of the literature  

 

The first (published) paper to raise the weight-restriction issue in DEA is Thompson et al. 

(1986).  This paper states a rather special version of the ratio efficiency definition in Charnes et 

al. (1978): “The explicit objective function in DEA is the ratio of present value of benefits to 

present value of costs” (Thompson et al. 1986, p. 43). The efficiency problem set up involves 

just six units, and three inputs are specified assuming the same output for all the units. Two of 

the inputs are not inputs in a production function sense, but represent different properties of sites 

for locating a high-energy physics lab in Texas. The variables are present value of construction 

costs, user time delay of completing research projects (measured as excess over time at the most 

preferred site), and environmental impacts (measured by an index based on ten components). 

Thus, the DEA model serves the construction of an index and does not represent any attempt to 

estimate a production function as such (cf. the statement in Charnes et al. (1990), p. 74, 

concerning Thompson et al. paper: “Desired here was not an empirical production function but 

the choice of one of the DMUs [sites].” The problem was that running this DEA model five of 

the six sites turned out as efficient.  
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Now, the obvious solution to the choice problem would be to calculate the costs in monetary 

terms and perform a standard economic cost-benefit exercise. However, the claim in Thompson 

et al. (1986) was that this turned out to be too difficult to carry out, so instead the “system task 

force” started with manipulation of the weights in order to “weight the problem’s primary 

dimensions to establish preference for one site versus another (p. 37).” This was done by 

imposing restrictions in what they called the price-weight space. The concept of assurance 

regions to characterise lower and upper bounds for the input multipliers was born.  

It is interesting to note that in the calibration of the bounds, detailed data on the build-up of 

construction costs were used, and also additional information on environmental amelioration 

costs. Based on the data collected it seems that only a modest effort would be needed to pick the 

winner, since for the site with both the lowest construction costs and time loss it was stated that 

the amelioration cost (typically a maximal estimate of environmental costs) “will not constitute a 

major factor compared to the cost of tunnel construction” (p. 46). Assuming the time loss will be 

priced identically for all the sites (e.g. based on average wage costs of research) and assuming a 

modest enough environmental amelioration cost, a direct inspection of the data immediately 

indicates the same winner (both construction costs and time loss are the smallest, using Table 5 

on p. 44 of Thompson et al. 1986) as worked out in the end with some rounds of manipulating 

the assurance region bounds.  

However, a valuable theoretical contribution of Thompson et al. (1986) was to introduce the 

issue of weight restrictions into DEA and to propose assurance region constraints for weights. 

The assurance-region approach was further elaborated in Thompson et al. (1990) in a setting 

with a more normal number of units and within a regular agricultural production function. 

However, the purpose of weight restrictions was the same as above; to reduce the number of 

efficient units.  

In Dyson and Thanassoulis (1988) there is no mentioning of a production function at all, and 

neither any reference to Farrell (1957) (in fact there are only four references in the paper). Their 

concern is a different one from that in Thompson et al. (1986) (not referred to). They are worried 

about the complete weight flexibility in the ratio model, since “some DMUs [are] being assessed 

only on a small subset of their inputs and outputs, while their remaining inputs and outputs are 

all but ignored” (p. 563). Furthermore, they state (p. 564): “Few would argue against reducing 
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weight flexibility in DEA, since doing so would ensure that the subsequent assessment not only 

cannot effectively ignore any inputs or outputs, but also would assign weights to inputs and 

outputs more in line with some general view of their perceived importance.” This statement 

clearly reveals that they want to attach values beyond a production-function frame of reference to 

output and inputs.  

However, a production function is a technological construct and then neither the issue of 

importance of a variable (other than if an input is essential in a technical sense for positive 

outputs) nor issue of value does arise. In production theory (Frisch 1965) one has to keep apart 

technological considerations concerning transformation of inputs into outputs, and economic 

considerations of optimising some objective function (e.g., a profit or cost function) subject to 

the technology constraint (and any other constraints being relevant for the optimisation problem 

at hand), given input and output prices (in a competitive environment). This separation of 

technology also holds in the case of producing public services not sold on markets.7 

Regarding zero weights this reflects the nature of the data at hand, as mentioned in Section 1. A 

proportional scaling factor for all inputs or outputs, is however, found. But the zero shadow 

prices, or positive slacks on input and output variables tell us to be careful when interpreting an 

efficiency score in such circumstances. The general bias is that the efficiency score may have a 

too high value. However, starting to manipulating weights may not be the way to proceed. 

It is also a question of the technological realism of weight restrictions. Dyson and Thanassoulis 

(1988) introduce a minimum level of the resource per unit of output based on running 

regressions of the resource on the outputs. However, to state a minimum unit requirement of the 

input for all outputs is a technological statement that cannot be revealed by such a regression. It 

also a question if this is compatible with specifying constant returns to scale as done. 

A typical source of confusion can be found in the following statements (Dyson and Thanassoulis 

1988, pp. 564-565): “However, it is difficult to decide exactly how weights are to be constrained 

within a DEA assessment model in the general case, as weights cannot be readily interpreted”, 

                                                 
7 However, as observed in Charnes et al. (1978, p. 430, footnote 4) in a very interesting remark, engineering 
characterisations of technology can be “difficult in public sector programs such as education, public safety, etc., 
where the meaning of ‘technology’ is likely to be more ambiguous than in the case of manufacturing in the private 
sector, and even many service operations.”  
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and furthermore: “In general, the weights in a DEA model do not have a clear interpretation, 

which makes constraining them arbitrary.”  

However, as shown in Section 3 the shadow prices on output and input constraints have, indeed, 

a well-defined mathematical interpretation as the change in the objective function by a marginal 

change in the constraints. But this has nothing to do with putting values on outputs and inputs as 

such. As stated in Section 1 the occurrence of zero weights just reflect the information that can 

be extracted from the data at hand, given the assumptions imposed on the production possibility 

set by the analyst. 

Bessent et al. (1988) introduce a novel perspective related to the weight-restriction problem, but 

operate in the input and output space. They start out with referring to Farrell (1957) “in which an 

empirically derived frontier of relative efficiency, rather than a theoretical production function, is 

used as the basis for measuring the relative efficiency of units” (p. 785). Referring to the applied 

literature, the problem they identify is that DEA solutions in some cases “produce efficiency 

ratings and marginal rates of substitution and productivity that are difficult to interpret and often 

unacceptable to unit managers” (p. 785). They state that these results have to do with the mix of 

inputs and/or outputs of inefficient units that are different from any frontier point. Such units are 

termed “not naturally enveloped inefficient units.”  Empirical results referred to indicate that 

such units constitute the lion’s share of inefficient units (only 2.9 % out of 1132 inefficient units 

were naturally enveloped, according to Lang et al. 1995, p. 478). The remedy developed is not 

based on weight restrictions, but on seeking to extend the facets involving not naturally 

enveloped inefficient units. By extending faces a better envelopment is achieved. The face that is 

extended is the nearest face to the inefficient unit in question. An elaborate algorithm is set up to 

find the maximal number of referent units.  

However, the approach has its weaknesses. Olesen and Petersen (1996, p. 213) point to the 

problem created by allowing faces that are of less than full dimension to be candidates for 

extension, but that it may be impossible to reach a full dimensional facet from such  a subsets of 

efficient units spanning a face of reduced dimensions. Lang et al. (1995, p. 479) point to the fact 

that it may not be achievable to obtain proper envelopment, and that there may be collinear 

referents, and envelopment is only measured by the number of linearly independent referents that 

can be found on an efficient face. 
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In Charnes et al. (1990), based on an approach presented in Charnes et al. (1989), the problem 

faced was like the problem in Thompson et al. (1986); too many efficient units. Running a 

standard DEA model with constant returns to scale on data for banks, DEA recognised a few 

notoriously inefficient banks as efficient. A more objective assessment of managerial 

performance was desired. The solution was to base the estimate of the efficiency weights on only 

a few units declared efficient by bank experts. In the example only three banks, recognised as 

preeminently efficient, were chosen to represent the technology. It was stated that these three 

banks “were sufficient to provide for a reasonable range of flexibility in relative valuations of 

inputs and outputs” (p. 75). The ratio model of Charnes et al. (1978) was restricted in multiplier 

space by cones formed by the three efficient units. Imposing the restriction on the cones 

corresponds to transforming the data for the other units to comply with the shape of the frontier 

production function determined by those units. Data are transformed using the few efficient units 

to span the production possibility set, such that standard DEA software can be used after the 

transformation. 

The approach has interesting aspects form a mathematical point of view, although Olesen and 

Petersen (1996) criticise the approach because the multipliers for the few chosen efficient units 

are necessarily not unique, and the choice made as to which estimates of multipliers will be used 

will have consequences for the transformation of the data for the other units.  

However, a more general critique is that to discard information from real data sets and basing the 

estimation of efficiency measures on a very few units chosen by some experts, does not seem to 

represent a proper scientific approach to the estimation problem at hand. The evaluation will 

obviously depend on the few selected units (Charnes et al. 1990, p. 81). 

Wong and Beasly (1990) introduced a special version of weight constraints by constraining the 

share one variable had of the efficiency score to be within bounds. An exercise using the 

approach is found in Beasley (1995). Although they are aware of the multipliers being 

dimensionless, constraining the shares of the efficiency score is called introducing value 

judgements (p. 831). On the background of Section 3 it is difficult to agree with such a 

terminology. Again, the technical role of shadow prices in a programming problem is confused 

with values in an economic sense. 



21 
 

The two most recent and extensive review articles of weight restriction literature in DEA are 

Allen et al. (1997) and Pedraja-Chaparro et al. (1997). By accepting the positions in the reviewed 

literature without questions the papers demonstrate the typical misunderstandings of the 

philosophical position of weight restrictions and introduction of preferences and values, as 

commented upon above. In Pedraja-Chaparro et al. (1997, p. 218) the seminal Farrell (1957) 

Diagram 1 is reproduced. However, the level of understanding of values does not go beyond the 

level found in the literature that is reviewed.  

In the introduction Allen et al. (1997, p. 14) states: “The definition of efficiency in DEA is based 

on the engineering concept of total factor productivity and is specified as the ratio of the 

weighted sum of outputs to the weighted sum of inputs of a DMU.” To place the concept of total 

factor productivity within engineering may be a surprise for economists, but more serious in a 

review paper is the total neglect of the seminal definition of technical efficiency of Farrell 

(1957). 

An interesting new realisation is, however, presented concerning the nature of the Farrell radial 

technical efficiency measure when weight restrictions are introduced. For input and output 

variables that have their marginal rates constrained, it is shown that the radial nature of the 

Farrell measure is lost if the constraint are binding, even if the equality between the ratio 

definition and the scaling factor still holds.  In case of absolute constraints on weights the 

equality may also be lost. However, neither the implication of this insight for the most 

appropriate definition of technical efficiency nor the problem of continuing with the Charnes et 

al. (1978) ratio definition of efficiency in the case of variable returns to scale is commented 

upon. 

The possible divergence between the ratio measure of efficiency of Charnes et al. (1978) and the 

radial scaling factor of Farrell (1957) due to weight restrictions is given a thorough and extensive 

treatment in Podinovski and Athanassopoulos (1998) and in a series of related follow-up papers 

(Podinovski 1999; 2001a; 2001b; 2004b). It is rigorously shown that placing absolute weight 

restrictions in a DEA model equivalent to the model (2) in Charnes et al. (1978) generally does 

not lead to the correct evaluation of the relative efficiency of the assessed unit. 
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Thanassoulis and Allen (1998) point to the rather obvious fact that restricting weights also 

changes the production possibility set in the input and output space, and that it should be possible 

to introduce unobserved units that will generate the same change in the estimated production 

possibility set as introducing constraints in the multiplier spaces.8 The question is the basis for 

choice for the unobserved units. A subset of efficient units termed “Anchor points” was defined 

as the units that should be used as the basis for creating the unobserved unit. The end result is an 

extension of the efficient frontier that has parallels with the approaches in Bessent et al. (1988) 

and Lang et al. (1995) (as pointed out in Thanassoulis and Allen 1998).  

This idea is followed up in Allen and Thanassoulis (2004). The purpose of introducing 

unobserved units is sharpened to be to reduce as much as possible units with zero weights (or  

values) in order to make the units “properly enveloped.” Anchor points are more formally 

defined, and an elaborate algorithm in the case of multiple outputs, but a single input and 

assuming constant returns to scale, is developed. 

I will argue that the only defensible approach to weight restriction is that there is additional 

information about the shape of the production function. As we have seen in Section 3 marginal 

productivities and rates of transformation and substitution are expressed by ratios of shadow 

prices. But as is evident from Section 3 these properties are facet-specific, so to impose general 

restrictions seems inappropriate. It would, indeed, be a formidable task to get enough 

information about properties of each facet. Appealing to market prices, as in Charnes et al. 

(1990), p. 77, is hardly relevant, because this assumes that the hypothetical unit on the frontier, 

located at a point in the relative interior of a facet, is actually minimising costs or maximising 

profit, but this cannot apply to inefficient units, and then certainly not to their projections, and 

efficient units are vertex points that are not differentiable, so it is also without good meaning to 

appeal to economic optimising conditions for such points. The standard assumption in DEA is, 

after all, that data are not generated based on economic optimisation. 

                                                 
8 It is interesting to note that already Farrell (1957) introduced artificial units in his estimation problems, having 
infinity for one input at a time and zero for the other inputs. His purpose was to secure negatively sloped isoquants. 
Carnes et al. (1978), p. 435, referred to Farrell’s “awkward concepts such as ‘points at infinity’,” but introduce the 
use of the non-Archimedean   as a lower constraint on the multipliers. As pointed out in Førsund et al. (2009), and 
following Thanassoulis and Allen (1998), the two approaches can be made to have an equal impact on the optimal 
solution.  
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In three related interesting contributions (Podinovski 2004a; Podinovski 2005; Podinovski 2007) 

where the trade-off approach is introduced, as mentioned in Section 1, Podinovski establishes a 

way of transforming information about trade-offs between outputs or inputs in input-output space 

and work out the corresponding restrictions on weights in the dual space. Incorporating trade-off 

information will extend the production possibility set. A main property of the trade-off approach 

is then that the technological meaning of efficiency in terms of the radial contraction factor, the 

Farrell technical efficiency measure θ in problem (4), is not changed. It is shown that introducing 

so-called value judgements for introducing weight constraints in the dual space will not lead to 

the efficiency measure calculated using the ratio definition being equal to the Farrell technical 

efficiency measure. 

There are some problems with the trade-off approach, however. It is underlined in Podinovski 

(2005) that the trade-offs are not the same as marginal rates of transformation and substitution 

defined in (10). (However, trade-offs may be regarded as bounds on such rated.) Furthermore, 

the trade-offs are assumed to be valid for all observations. To check if this holds for a realistic 

data set is, indeed, some task. When estimating a frontier function concept the actual technology 

applying to each observed unit is not investigated, it is the pure data that are used. The problem 

of information about the frontier function rates remains unresolved. Although the university 

examples used in Podinovski (2004a); (2005); (2007) are quite instructive (and extensive in 

Podinovski 2007), it is still the question whether the assumption of fixed coefficients called 

trade-offs of the observed units are technically realistic.  

 

 

5. Conclusions 

 

It should be recognised that the concept of efficiency in economics is in general defined relative 

to an efficient production process and does not depend on the method for estimating neither the 

frontier function nor the efficiency score. However, Farrell (1957) recommended to use a 

piecewise linear non-parametric best-practice production function when estimating efficiency. 
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Charnes et al. (1978) started out with an efficiency definition claimed to be based on engineering 

science formulated as a problem of maximising productivity for each units subject to the 

constraint that no unit could be more efficient than observed best practice. The weights of the 

productivities are the endogenous variables. The optimisation problem was transformed to an 

equivalent linear programming problem. Due to the fundamental duality property of linear 

programming the apparently different definitions of efficiency are equal.  

Empirical applications of DEA showed a prevalence of zero (or -level) weights leading to 

question the consequence for the efficiency estimate based on the ratio definition. The literature 

on weight restrictions is exclusively based on the efficiency definition in Charnes et al. (1978). It 

was stated that variables with zero weights had no influence on the efficiency score, in spite of 

the alleged importance of the variables. This has been one motivation for introducing restrictions 

on weights. Another empirical result was that often there were too many efficient units. This 

problem could also be overcome by introducing weight restrictions.  

Framing the problem of estimation of efficiency within a linear programming model, this paper 

has raised serious questions about connecting the constraints on weights to intrinsic economic 

values of output and input variables. The shadow prices appearing in linear programming and 

occurring in the ratio definition of efficiency are not measures of economic values. If an overall 

efficiency measure is sought, then the values have to be found in another way, and treated as 

exogenous to the programming problem, just like the original definition of overall efficiency in 

Farrell (1957), introducing input prices. A measure of technical efficiency should not be 

confused with economic efficiency.  

Constraining weights have the implication of extending the production possibility set in input – 

output space. It may be argued that restricting weights are done in order to incorporate 

information about the shape of the production function using the connection between ratios of 

weights and economic concepts of marginal productivity, marginal rate of transformation 

between a pair of outputs, and marginal rate of substitution between a pair of inputs. However, 

these properties are specific to each face (and constant on a face) of the estimated frontier 

production function and it seems an overwhelming task to get such information for all faces. If 

the trade-off approach of Podinovski (2004a); (2005); (2007) can be realistically based it has 

some promises. Podinovski pointed out the superiority of the ‘technological thinking’ over 
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‘value thinking’. As pointed out in Podinovski and Athanassopoulos (1998) and follow-up 

papers the equality between the two basic definitions of efficiency may break down when weight 

restriction are introduced. 

In the few papers that have tried to find weight restrictions by working with sector experts it is 

difficult to see any generalising principles appearing from the often considerable effort spent 

(Joro and Viitala 2004). 

Recognising the importance of the shape of the production possibility set there are also efforts on 

changing the shape of faces by extending them in order to properly envelop inefficient units not 

being properly enveloped in the initial run and creating many of the problems mentioned above 

for efficiency measurement. However, extending faces is not easily done in a consistent manner, 

and there remains a sense of ad hoc about the approach. 

The idea of introducing artificial units was already applied in Farrell (1957). He introduced one 

unit for each input having the value of infinity for each unit in turn, in order to keep his preferred 

form of isoquants. This idea has resurfaced, and is based on using experts to inspect the resulting 

frontier in input – output space and work out introducing artificial observations targeted to solve 

some of the difficulties created by not properly enveloped units (Thanassoulis and Allen 1998; 

Allen and Thanassoulis 2004) and unduly efficient units (Krivonozhko et al. 2009).  

A most pertinent observation is the one made in Olesen and Petersen (1996) that zero multipliers 

and slacks appear because data do not contain sufficient information to avoid this. Zero shadow 

prices reflect the data structure relative to the basic axioms of the production possibility set when 

estimating the efficiency scores.Their remedy for what they call ill-conditioned data sets is to 

experiment with the degree of aggregation of the data, working on the premise that the higher the 

degree of aggregation the fewer zero weights will appear. However, this approach does not seem 

to have been followed up in the literature. 
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