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Abstract: Dynamic modeling of demand for goods whose cumulated stocks enter an
intertemporal utility function as latent variables, is discussed. The issues include: how
represent addiction, how handle unobserved expectations and changing plans, how deal
with ‘dynamic inconsistency’? Arguments are put forth to give all optimizing conditions
attention, not only those in which all variables are observable. If the latter, fairly common,
‘limited information-reduced dimension’ strategy is pursued, problems are shown to arise
in attempting to identify coefficients of the preference structure and to test for addictive
stocks. Examples, based on quadratic utility functions, illustrate the main points and
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1 Introduction

In modelling demand for commodities like tobacco, alcohol, caffeine, and drugs,

but also certain other goods and even for services, addiction reflecting cumulated

past consumption receives may be important. A characteristic of addictive goods

is the increase in current consumption induced by an increase in past consumption.

Such stock variables are rarely observable to the econometrician in his endeavour

to quantify the theory by estimating equations connecting observed variables. In a

dynamic model of individual behaviour, habit formation in general and addiction

in particular may be represented by a time-varying stock variable representing the

individual’s consumption history [cf., e.g., Lluch (1974), Dixon and Lluch (1977),

Becker and Murphy (1988), and Wangen (2004)]. However, unobserved habit effects

can also be considered individual ‘properties’, represented within a static model by

individual specific latent variables [cf. Wangen and Biørn (2001)].

This paper discusses critically the translation of a dynamic theory-model con-

taining unobservable variables into an econometric model expressed in terms of ob-

servable variables. Of particular concern will be the translation of a life-cycle model

with unobserved stocks and flows into an econometric model to be confronted with

time-series or panel data. Two approaches are available: (a) reduce the model’s di-

mension by disregarding all equations which contain unobserved variables, or (b) re-

tain the model’s size and the latent variables in the structure and represent them by

additional relationships which connect the latent variables to observed ones. The

frequently used ‘Euler equation approach’ exemplifies (a), Imposing perfect fore-

sight or rational expectations exemplifies (b). Previous related literature includes:

(i) Becker, Grossman, and Murphy (1994) [‘rational addiction’ for cigarettes an-

alyzed by time-series data], (ii) Labeaga (1999), Wangen and Biørn (2001), Balt-

agi and Griffin (2001, 2002), Bretteville-Jensen and Biørn (2003), and Jones and

Labeaga (2003) [similar studies for cigarettes, alcoholic beverages, and heroin, us-

ing panel data for micro or more aggregate units], (iii) Pollak (1970), Phlips (1972)

and Pashardes (1986) [myopic behaviour formalized through one-period utility func-

tions; (Pashardes also considering forward-looking behaviour), incorporating stocks

or habit formation], and (iv) Diewert (1974), and Muellbauer (1981) [inter-temporal

models with stocks of consumer ‘durables’].

Translating neo-classical demand theory for goods subject to habit formation

into an econometric model raises several questions: First, should one-period (my-

opic) or multi-period (dynamic) utility functions be used, and in the latter case,

how represent addiction? Second, should geometric discounting, starting from any

decision time, be assumed? Third, should perfect foresight be assumed or should

expectations (exogenous) and plans (endogenous) be revised as new information be-

comes available, and if so, how should unobserved expectations, plans, and addictive
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stocks be represented? Fourth, should the econometric implementation be based on

a complete system with as many equations as endogenous variables, or would a

‘limited information’ approach, picking a subset of equation with mainly observable

variables, be sufficient?

In this paper, we reconsider some of these questions. We depart from previous

literature on addiction and habit formation at crucial points: First, we abandon

perfect foresight, i.e., allow for revisions of expectations and plans at any time. Sec-

ond, the complete equation system as derived from the optimizing conditions is in

focus. Variables with leads have two time indices: the current decision time and

the future time of realization. We argue that this is a recommendable procedure

even though observations on such double-indexed variables are rare. The length

of the consumer’s horizon relative to the length of the time series becomes impor-

tant. A perfect foresight approach may, under reasonable assumptions, lead to an

overdetermined equation system when all theory-restrictions are exploited.

We further demonstrate that an equation with lags and leads in Xt, say the

purchases of the addictive good cigarettes in period t of the form

Xt = a−1Xt−1 + a+1Xt+1 + price terms + intercept + disturbance,

as considered in Becker, Grossman, and Murphy (1994), and reexamined by im-

proved econometric methods in Labeaga (1999), Baltagi and Griffin (2001, 2002),

and Jones and Labeaga (2003), can be given widely different interpretations rela-

tive to an underlying structural model. In other words, we argue that identification

problems prevail. Using five examples, we discuss which specific parts of the model

contribute to the lags and the leads. This casts doubts on the attraction of testing

‘rational-addiction’ life-cycle theories by means of the kind of equations used in the

mentioned articles.

The rest of the paper is disposed as follows: In Section 2 the theoretical model

and its three elements, the utility function, the accumulation process for the addic-

tive stock and the intertemporal budget constraint, are presented. In Section 3 we

take the first steps towards an econometric model version, by formulating the equa-

tion system which represents the optimizing conditions from the theory, by means of

lag- and lead-polynomials and a general form for the instantaneous utility function.

Next, in Section 4, five examples of increasing complexity, based on a quadratic

utility function are considered, the first two being baseline examples with a degen-

erate dynamic structure. In all cases except the very simplest ones, autoregressive

equations in the purchase of the addictive good arise. The lessons we draw from

these examples are that there are obvious problems in distinguishing econometri-

cally between rational addiction theory-models and other less strongly theory-based

dynamic models of the purchases. Section 5 concludes.
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2 Theoretical framework

A consumer with a horizon of H periods, who is in period t, ‘today’, is considered.

The model describing his behaviour has three elements.

First, the preference ordering is represented by a utility function which is addi-

tive in period utilities. The instantaneous utility, is a twice differentiable concave

function, U(Ct, Xt, St), in consumption of a non-addictive good, Ct, consumption

of an addictive good, Xt, and the stock of the latter as perceived in period t, St.

The prospective utility in period t+ i, as seen from period t, U(Ct,t+i, Xt,t+i, St,t+i),

depends on planned consumption of the non-addictive good, Ct,t+i, and of the ad-

dictive good, Xt,t+i, as well as the stock of the latter, St,t+i. The two time subscripts

denote the current period and a future period to which the plans refer. Further,

βt,i is the subjective discounting factor by means of which utility in period t is dis-

counted i periods ahead. Letting ρt,j be the subjective interest rate for utility in

period t+ j (j = 0, 1, 2, . . . ), we can write βt,i =
∏i−1

j=0(1+ρt,j)
−1 (i = 1, . . . , H),

βt,0 = 1. The multi-period utility then is

(1) Vt = U(Ct, Xt, St) +
∑H

i=1 βt,iU(Ct,t+i, Xt,t+i, St,t+i).

Second, the accumulation of the addictive good is described as a weighted sum of

past purchases as follows: Let dt,j (≥ 0) be the share of the purchase of the addictive

good with contributes to the stock giving utility j periods later, the survival function

for short. In particular, dt,0 may be zero, so that the addictive stock, St,t+i, or

addiction, is determined by decisions made before time t+i.1 Hence,

(2) St,t+i =
∑∞

j=0 dt,jXt,t+i−j =
∑i

j=0 dt,jXt,t+i−j + S̄t,t+i,

where
∑i

j=0 dt,jXt,t+i−j represents the part of the addictive stock that is determined

by the purchase flow in the time interval [t, t+i], and

S̄t,t+i =
∑∞

j=i+1 dt,jXt+i−j, i = 0, 1, . . . , H,

is predetermined. Addiction can be said to occur whenever dt,0 ≥ 0, dt,1 > 0. For

i = 0 we have
St = dt,0Xt + S̄t,t = dt,0Xt +

∑∞
j=1 dt,jXt−j.

Equation (2) includes as special cases several formulations in the literature, not

only for allegedly addictive goods, but also for (services from) ‘durable’ goods. One

parametrization is geometric decay: dt,j = (1−δt)
j, δt ∈ (0, 1), a second is ‘hyper-

bolic discounting’ [see, e.g., Laibson (1997), Azfar (1998), Harris and Laibson (2003),

Diamond and Köszegi (2003)], a third is the simplistic specification of Becker, Gross-

man, and Murphy (1994): dt,0 = 1, dt,1 = d1 > 0, dt,2 = dt,3 = · · · = 0. The latter

implies

St = Xt+d1Xt−1, St,t+1 = Xt,t+1+d1Xt, St,t+i = Xt,t+i+d1Xt,t+i−1, i=2, . . . , H,
1Usually, the survival function dt,j is non-negative and non-increasing in j, but these assump-

tions are not obvious. For instance dt,j+1 > dt,j would represent a case where a purchase made

j+1 periods ago has stronger impact on current addiction than has a purchase made j periods ago.
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so that (1) takes the form

Vt = U∗(Ct, Xt, Xt−1) +
∑H

i=1 βt,iU
∗(Ct,t+i, Xt,t+i, Xt,t+i−1),

assuming that the parameters of the survival function are absorbed in the functional

form U∗.
The third element is the intertemporal budget constraint. We assume, for simplic-

ity and without essentially restricting the argument, that both goods have prices

equal to one in all periods. Time-varying relative prices can be allowed for by a

straightforward extension, attaching prices to the C and X variables.

Let Wt,t+H be the difference between terminal wealth and initial wealth, as

planned at time t, let It,t+i be the exogenous (non-wealth) income and the interest

income accruing from the initial wealth which in period t is expected for period t+i,

and let rt,j be the one-period interest rate which in period t is expected for period

t+j and αt,i =
∏i−1

j=0(1+rt,j)
−1. In Appendix A it is shown that the full equation

system derived from utility maximization becomes

Ct +Xt +
∑H

j=1 αt,j(Ct,t+j +Xt,t+j) + αt,HWt,t+H = It +
∑H

j=1 αt,jIt,t+j,(3)

UC,t = βt,1α
−1
t,1UC,t,t+1 = βt,2α

−1
t,2UC,t,t+2 = · · · = βt,Hα

−1
t,HUC,t,t+H ,(4)

UC,t − UX,t − US,t =
∑H

j=1 βt,jdt,jUS,t,t+j,(5)

βt,i(UC,t,t+i − UX,t,t+i − US,t,t+i) =
∑H−i

j=1 βt,i+jdt,jUS,t,t+i+j, i=1, . . . , H,(6)

St = dt,0Xt + S̄t,t,(7)

St,t+i =
∑i−1

j=0 dt,jXt,t+i−j + dt,iXt + S̄t,t+i, i=1, . . . , H,(8)

where UQ,t = ∂U(Ct, Xt, St)/∂Qt, UQ,t,t+i = ∂U(Ct,t+i, St,t+i)/∂Qt,t+i (Q = C,X, S).

Equation (3) is the budget constraint, (4) connects the marginal utilities of ordinary

non-addictive consumption in the current and future periods, (5) and (6) connect

the marginal utilities of ordinary consumption with the marginal utilities of the

addictive good, and (7) and (8) connect the time path of the addictive stocks to past

expenditures. Altogether, (3)–(8) determine – for given income path It, {It,t+i}i=H
i=1 ,

discount factors {αt,i}i=H
i=1 , and terminal wealth Wt,t+H – the consumption and the

addictive stock in the current period t, (Ct, Xt, St) as well as their planned time

paths {Ct,t+i, Xt,t+i, St,t+i}i=H
i=1 thereafter – in total 3(H+1) variables. Equations

(3)–(8) will form the fundament of the econometric model.

3 Towards an econometric model formulation

A reformulation using lead- and lag-polynomials

We introduce the backward shift (lag) operator, B, and the forward shift (lead) op-

erator, F, defined by, respectively, BnCt = Ct−n (n = 1, 2, . . . , ), and FmCt =

Ct,t+m (m = 1, 2, . . . ). Notice that Fm defines a variable with two time subscripts;
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Fm is not the same as B−m. The following lead- and lag-polynomials will be needed:2

φt(F) = αt,1F+ αt,2F
2 + · · ·+ αt,HF

H ,

ψt,0(F) = βt,1dt,1F+ βt,2dt,2F
2 + · · ·+ βt,Hdt,HF

H ,

ψt,i(F) =
βt,i+1

βt,i

dt,1F+
βt,i+2

βt,i

dt,2F
2 + · · ·+ βt,i+H

βt,i

dt,H−iF
H−i, i=1, . . . , H,

ζt,i(F) = dt,0F
i + dt,1F

i−1 + dt,2F
i−2 + · · ·+ dt,i−1F, i=1, . . . , H,

ξt,0(B) = dt,1B+ dt,2B
2 + · · · ,

ξt,i(B) =
dt,i+1

dt,i
B+

dt,i+2

dt,i
B2+· · · i = 1, 2, . . . .

(9)

Substituting ηt,i = βt,iα
−1
t,i and using (9), we can rewrite (3)–(8) as

(Ct +Xt − It) + φt(F)(Ct +Xt − It) + αt,HF
HWt = 0,(10)

UC,t = ηt,1FUC,t = ηt,2F
2UC,t = · · · = ηt,HF

HUC,t,(11)

UC,t − UX,t − US,t = ψt,0(F)US,t,(12)

Fi(UC,t − UX,t − US,t) = Fiψt,i(F)US,t,(13)

St = dt,0[Xt + ξt,0(B)Xt],(14)

FiSt = ζt,i(F)Xt + dt,i[Xt + ξt,i(B)Xt], i=1, . . . , H.(15)

Note that:

[1] The coefficients of ψt,0(F) and ψt,i(F) depend on both the subjective discounting

factors and the survival function of the stock.

[2] ψt,i(F) and ζt,i(F) have H−i and i terms, respectively.

[3] If the stock remembers purchases P periods backwards (P finite): dt,j=0 (j>P ),

then ξt,i(B) has P−i terms.

Example: In the special case with geometric, time invariant depreciation and geo-
metrically declining discount factors and infinite horizon, i.e.,

αt,i = αi (0 ≤ α < 1), βt,i = βi (0 ≤ β < 1), dt,i = di (0 ≤ d < 1) ∀ i& t; H → ∞,

the polynomials in (9) are simplified to

φt(F) = φ(F) =
∑∞

j=0 α
jFj = αF

1−αF ,

ψt,i(F) = ψ(F) =
∑∞

j=0(βd)
jFj = βdF

1−βdF ,

ξt,i(B) = ξ(B) =
∑∞

j=0 d
jBi = dB

1−dB ,

ζt,i(F) = ζi(F) =
∑i−1

j=0 d
jFi−j = Fi(1−dF−i)

1−dF−1 .

2Their t-subscripts indicate that both sequences of discounting factors as well as the weights of

the survival function of the addictive stock are allowed to change over time. The lead polynomial

φt(F) generates the budget constraint, ψt,0(F) and ψt,i(F) generate the relationships between the

marginal utilities for the consumption flows C and X and the stock S. The lag polynomials ξt,0(B)

and ξt,j(B) generate the relationships between addictive stocks and previous expenditures, whereas

ζt,j(F) describes the dependence of the stock planned in period t+i on the expenditures in periods

t+1, . . . , t+i.
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The system (10)–(15) contains, for t = 1, . . . , T , 3(H+1) equations in Qt ≡
(Ct, Xt, St) and {Qt,t+i}i=H

i=1 ≡ {Ct,t+i, Xt,t+i, St,t+i}i=H
i=1 . If no further restrictions

are imposed, we therefore have T (H+1) equations in (Ct, Ct,t+i), (Xt, Xt,t+i) and

(St, St,t+i), i.e., a determined system of 3T (H+1) equations:

Q1, Q1,2, Q1,3, . . . , Q1,H ,
Q2, Q2,3, Q2,4, . . . , Q2,1+H ,

...

QT , QT,T+1, QT,T+2, . . . , QT,T+H Q = (C,X, S).

(16)

The treatment of unobservable variables

Translating (10)–(15) into a model to be confronted with time series data raises

the obvious problem that the agents’ income expectations and plans for future con-

sumption and the current and future addictive stocks are both unobserved. The

only observable variables are: (It, Ct, Xt), (It+1, Ct+1, Xt+1), (It+2, Ct+2, Xt+2), . . . .

The double-indexed variables are only (at best) ‘in the mind of’ the consumer and

unobservable to the econometrician.

The 3(H+1) equations in (10)–(15), for any current time t, have different econo-

metric status. All of them contain at least one unobservable variable: (i) Equation

(14), although having only current and lagged variables, cannot be estimated since

its left-hand side variable is unobservable. (ii) The H equations in (13) contain

only leads, all of them unobservable. (iii) The 2(H+1) equations in (10)–(12) and

(15) combine leads, current values and lags, and hence include both observable and

unobservable variables.

In econometric studies of addiction based on life-cycle theory, it is almost al-

ways assumed that the consumer (i) has perfect foresight with respect to the exoge-

nous variables, which annihilates the first subscript on the interest factors αt,i, and

(ii) always sticks to his original plan [see Becker, Grossman, and Murphy (1994) and

the successors mentioned above]. Formally, (i)–(ii) may be interpreted as imposing

additional restrictions which annihilates the first subscript on (Ct,t+i, Xt,t+i, St,t+i).

That this practice is so common is surprising, in view of the vast econometric lit-

erature that exists on the modelling of agents’ formation of expectations and on

the modelling of equation systems with latent structural variables. It may indeed

be appealing to formally consider all variables in (10)–(15) with two subscripts as

latent.

Before addressing the question of how to model the latter variables we con-

sider implications of the perfect foresight assumption. We have assumed that the

consumer’s planning horizon spans H periods from any current time t. The econo-

metrician’s sample period may be longer or shorter than the length of the consumers’

horizon. It is not unlikely that drug-addicted persons, in particular, have short hori-

zons. On the other hand, the time window of time series data, and especially panel
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data, may be short. So both T >H and T <H should be of interest.

Perfect foresight and overdeterminatedness

If (10)–(15) are (mathematically) independent equations and if we also impose per-

fect foresight, we get an overdetermined equation system for any H>1. This conclu-

sion has crucial econometric implications. Perfect foresight when T >H is different

from perfect foresight when T <H, as it implies (see Appendix B):

If T >H :





Q1,2 = Q2,
Q1,3 = Q2,3 = Q3,

...
Q1,H = Q2,H = Q3,H = · · · = QH−1,H = QH ,
Q2,H+1 = Q3,H+1 = Q4,H+1 = · · · = QH,H+1 = QH+1,
Q3,H+2 = Q4,H+2 = Q5,H+2 = · · · = QH+1,H+2 = QH+2,

...
QT−H+1,T = QT−H+2,T = QT−H+3,T = · · · = QT−1,T+2 = QT .

If T <H :





Q1,2 = Q2,
Q1,3 = Q2,3 = Q3,

...
Q1,T = Q2,T = Q3,T = · · · = QT−1,T = QT .

The conclusion of overdeterminatedness is conceptually closely related to ‘dy-

namic inconsistency’ in planning, as expressed as a theoretical problem in discount-

ing ‘future pleasures’ by a constant interest rate more than fifty years ago:

“An individual who because he does not discount all future pleasures at a constant

rate of interest finds himself continuously repudiating his past plans may learn to

distrust his future behaviour, and may do something about it. Two kinds of action

are possible. (1) He may try to precommit his future activities either irrevocably or

by contriving a penalty for his future self if he should misbehave. This we call the

strategy of precommitment. (2) He may resign himself to the fact of inter-temporal

conflict and decide that his “optimal” plan at any date is a will-o’the-wisp which

cannot be attained, and learn to select the present action which will be best in

the light of future disobedience. This we call the strategy of consistent planning.”

[Strotz (1956, p. 173)].

How could we in formulating an econometric model treat the overdeterminatedness

which follows? In the next section we give examples to clarify this.

4 Four econometric models compared

In this section, we consider five examples, of increasing complexity and realism,

although with rather simple parametric forms for U(·), αt,i, βt,i, and dt,i. The in-

tention is first, to illustrate econometric implementations of the system (10)–(15)

and demonstrate that equations containing lag and lead distributions in the expen-

ditures on the addictive good, similar to those considered in Becker, Grossman, and
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Murphy (1994), and further examined by improved methods in Labeaga (1999), Bal-

tagi and Griffin (2001, 2002), and Jones and Labeaga (2003), can be given widely

different interpretations and hence involve identification problems. The second in-

tention is to put into focus from which parts of the model contribute to the lags and

the leads. Altogether, these examples cast doubt on the attraction of using equa-

tions of the form used in the above mentioned papers for testing ‘rational-addiction’

life-cycle theories econometrically.

Throughout we make the following assumptions:

(i) Wt,t+H=0, i.e., terminal wealth equals initial wealth,

(ii) the addictive stock S is unobservable,

(iii) the αt,i, βt,i and dt,i sequences are invariant to t, and

(iv) quadratic utility functions.

The latter assumption implies that the three marginal utilities which occur in (4)–(6)

can be written as:

(17)

UCt = aC + aCCCt + aCXXt + aCSSt,
UXt = aX + aXCCt + aXXXt + aXSSt,
USt = aS + aSCCt + aSXXt + aSSSt,
UCt − UXt − USt = A0 + ACCt + AXXt + ASSt,

where the as are constants (aCX=aXC , aCS=aSC , aSX=aXS) and A0=aC−aX−aS
and AQ=aCQ−aXQ−aSQ (Q = C,X, S).3

The five examples are:

a: One-period optimization. Geometric stock.

b: Multi-period optimization. Constant interest rates. No stock accumulation.

c: Multi-period optimization. Constant interest rates. Geometric stock.

d: Multi-period optimization. Variable interest rates. No stock accumulation.

e: Multi-period optimization. Variable interest rates. Non-geometric stock.

Examples a and b act as baseline cases, being strictly inappropriate for addictive

goods. Example c generalizes a and b, d generalizes b, and e generalizes c and d.

a: One period. Geometric stock

Consider first the simple case with a one-period (myopic) utility function Vt =

U(Ct, Xt, St) and assume that the survival function of the addictive stock declines

geometrically at the rate 1−δ (0 < δ ≤ 1) over an infinite period, so that δ can be

3Several econometric implementations of ‘rational addiction’ models [e.g., Becker, Gross-

man, and Murphy (1994), Labeaga (1999), Baltagi and Griffin (2001, 2002) and Jones and

Labeaga (2003) rely on assumptions (ii)–(iv), without, however, specifying the point of depar-

ture as in (10)–(15).
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interpreted as a retirement rate for the stock. Then the αt,is are irrelevant and

βt,0 = 1, βt,1 = βt,2 = · · · = 0,
dt,0 = 1, dt,j = (1−δ)j (0<δ≤1), j=1, 2, . . . ,

so that (9) is simplified to

φt(F) = ψt,i(F) = 0, ξt,i(B) = ξ(B) =
(1−δ)B

1− (1−δ)B
, ∀ t& i,

because the lag-polynomial 1−(1−δ)B is invertible. Then (10)–(15) degenerate to

three equations in Ct, Xt, St:

Ct +Xt = It,(a.1)

UC,t − UX,t − US,t = 0,(a.2)

St − (1−δ)St−1 = Xt,(a.3)

with It exogenous and St−1 predetermined. Inserting (17) in (a.2) and adding dis-

turbances ub
1t, u

a
2t, u

a
3t, – letting ‘con’ symbolize an unspecified constant – we get an

equation system with a one-period lag and no leads:

Ct +Xt = It + ua
1t,(A.1)

ACCt + AXXt + ASSt = con + ua
2t,(A.2)

[1− (1−δ)B]St = Xt + ua
3t.(A.3)

Multiplying (A.2) by [1− (1−δ)B] and using (A.1) and (A.3), we obtain

[1− (1−δ)B][AC(It−Xt + ua
1t) + AXXt] + AS(Xt+ua

3t)

= con + [1− (1−δ)B]ua
2t.

This yields the following first-order autoregressive equation in X, with a one-period

lag distribution in I and a disturbance:

(AX+AS−AC)Xt(A.4)

= (AX−AC)(1−δ)Xt−1 − ACIt+AC(1−δ)It−1 + con + vat ,

where vat = (ua
2t −ACu

a
1t)− (1−δ)(ua

2,t−1 −ACu
a
1t−1)−ASu

a
3t. Both Xt and Xt−1 are

correlated with the composite disturbance vat , as the latter has a memory of at least

one period. If ua
1t, u

a
2t or u

a
3t have a memory the memory of vat will be longer than

the memory of either of them.

Equation (A.4) can be normalized either by division by (AX+AS−AC), to give

an equation with a one-period lag in Xt, or by division by (AX−AC)(1−δ), to give

an equation with a one-period lead when we in the latter case increase (t−1, t) to

(t, t+1), and put Xt at the left-hand side. Regardless of which normalization we

adopt, we will for estimation need an instrument for Xt−1, respectively Xt+1, in view

of the memory of vat .

If the geometric stock accumulation equation (A.3) had been generalized to a

rational lag distribution, say ξS(B)St = ξX(B)Xt + ua
3t, where ξS(B) and ξX(B) are
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finite-order lag-polynomials, the former invertible, we would obtain

ξS(B)[AC(It −Xt + ua
1t) + AXXt] + AS[ξX(B)Xt + ua

3t] = con + ξS(B)u
a
2t.

This would expand (A.4) to a higher-order autoregressive equation in X, with a

disturbance process with longer memory.

Hence we can conclude: A multi-period horizon is not necessary for obtaining an

autoregressive equation in the purchase of the addictive good, of order at least two.

b: Multi-period. Constant interest rates. No stock

Next we assume an arbitrary, finite horizon, but let the stock evaporate in only one

period, so that St = Xt (=⇒ FiSt = FiXt ∀i). Also, we assume that αt,i and βt,i are

geometrically declining at the rates (1+r)−1 and (1+ρ)−1, respectively, so that

αt,i = αi, α = (1+r)−1 (r > 0),

βt,0 = 1, βt,j = βj, β = (1+ρ)−1 (ρ > 0),

ηt,j = ηj, η = (1+r)/(1+ρ),

dt,0 = 1, dt,j = 0, j=1, . . . , H.

Then (9) degenerates to

φt(F) = φ(F) =
∑H

j=1 α
jFj = αF(1−αHFH)

1−αF
,

ψt,i(F) = 0, i = 0, 1, . . . , H,

ζt,i(F) = 0, i = 1, . . . , H,

ξt,0(B) = 0, ξt,i(B) undefined and irrelevant, i = 1, . . . , H,

and (10)–(15) collapse into 3(H+1) equations in (Ct, Xt, St),{Ct,t+i, Xt,t+i, St,t+i}i=H
i=1 :

(Ct +Xt − It) +
∑H

j=1 α
jFj(Ct +Xt − It) = 0,(b.1)

UC,t = ηiFiUC,t,(b.2)

UC,t − UX,t − US,t = 0,(b.3)

Fi[UC,t − UX,t − US,t] = 0,(b.4)

St = Xt,(b.5)

FiSt = FiXt, i=1, . . . , H.(b.6)

Inserting (17) in (b.2)–(b.4) and adding disturbances ub
1t, u

b
2it, u

b
3t, u

b
4it, u

b
5t, u

b
6it gives

Ct +Xt − It +
∑H

j=1 α
j(Ct,t+j +Xt,t+j − It,t+j) = ub

1t,(B.1)

aCCCt+aCXXt+aCSSt = ηi[aCCCt,t+i+aCXXt,t+i+aCSSt,t+i]+con+ub
2it,(B.2)

ACCt + AXXt + ASSt = con + ub
3t,(B.3)

ACCt,t+i + AXXt,t+i + ASSt,t+i = con + ub
4it,(B.4)

St = Xt + ub
5t,(B.5)

St,t+i = Xt,t+i + ub
6it, i=1, . . . , H.(B.6)

This equation system has H leads and no lag.
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From (B.1)–(B.4), after elimination of St, St+1 by using (B.5)–(B.6), we get

(B.7)

Ct +Xt − It +
∑H

j=1 α
j(Ct,t+j +Xt,t+j − It,t+j) = ub

1t,
aCCCt + (aCX + aCS)Xt + aCSu

b
5t

= ηi[aCCCt,t+i + (aCX + aCS)Xt,t+i + aCSu
b
6it] + con + ub

2it,
ACCt + (AX + AS)Xt + ASu

b
5t = con + ub

3t,
ACCt,t+i + (AX + AS)Xt,t+i + ASu

b
6it = con + ub

4it, i=1, . . . , H,

This system has 2(H+1) equations determining the time path of the expenditures

on the two commodities from the current and expected income flow. How could it

be transformed to be suitable for confrontation with time series data?

A suggestion may be to exploit the reduced form. The reduced form of (B.7)

expresses Xt, Ct, {Xt,t+i}i=H
i=1 , and {Ct,t+i}i=H

i=1 as linear functions of the discounted

current and expected income flow It+
∑H

j=1 α
iIt,t+i and the disturbance components.

To represent the income process we may replace It,t+i by E(It,t+i) = E(It+i|ΩI
t ) where

ΩI
t is the consumer’s information set at time t, containing the history of income,

and possibly of other exogenous variables, up to period t. In the equation to be con-

fronted with data, the parameters which describe this expectation process will then

become part of the reduced-form equation and be intermingled with the structural

coefficients in (B.7). Although this strategy may work – technically – it may be

difficult to see how it can lead to an equation for Xt useful for testing the ‘rational

addiction’ hypothesis.

We will here, and at similar places for the following examples, consider two

strategies for constructing econometric models:

[A]: Imposing perfect foresight.

[B]: Modelling expectations.

[A] To formalize perfect foresight in Example b we delete the first subscript on all

leaded variables, i.e., replace (Ct,t+i, Xt,t+i, It,t+i) by (Ct+i, Xt+i, It+i) in the model

version intended for estimation. Then (B.7) collapses into

(B.8)
Ct +Xt − It +

∑
i α

i(Ct+i +Xt+i − It+i) = dis,
aCCCt + (aCX + aCS)Xt = η[aCCCt+1 + (aCX + aCS)Xt+1] + con + dis,
ACCt + (AX + AS)Xt = con + dis,

where ‘dis’ is an abbreviation for an unspecified disturbance. The three-equation

system (B.8) is still overdetermined in (Ct, Xt) for t = 1, . . . , T . Imposing perfect

foresight therefore forces us to disregard one equation. If we suspend the budget

constraint, solve for Ct and Ct+1 from the third equation, which gives

Ct =
AX+AS

AC

Xt + con + dis, Ct+1 =
AX+AS

AC

Xt+1 + con + dis,

and insert the result into the second equation, we get an equation which connects

Xt with Xt+1, but it contains no income variable. Alternatively, if we suspend the

second equation in (B.8) and insert the above expressions for Ct and Ct+1 into the
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budget constraint an equation which connects Xt with Xt, Xt+1, . . . , Xt+H+1 and

the discounted income flow It+
∑H

j=1 α
iIt,t+i follows. An equation with the same

basic structure, but with different interpretation of the coefficients, will follow if the

third equation is suspended. Such an ad hoc strategy cannot be recommended as a

feasible way of identifying structural coefficients.

[B] To formalize the formation of plans and expectations in Example b we introduce

expectations conditional on the consumer’s information set at the planning time,

i.e.. Letting Ωt denote the information set at time t, we replace (Ct,t+i, Xt,t+i) by

E(Ct,t+i) = E(Ct+i|Ωt), E(Xt,t+i) = E(Xt+i|Ωt),

where Ωt can contain the history of the exogenous (and maybe also endogenous)

variables up to period t. This gives (B.7) the form

(B.9)

Ct +Xt − It +
∑

i α
i[E(Ct+i|Ωt) + E(Xt+i|Ωt)− E(It+i|Ωt)] = dis,

aCCCt + (aCX + aCS)Xt

= ηi[aCCE(Ct+i|Ωt) + (aCX + aCS)E(Xt+i|Ωt)] + con + dis,

ACCt + (AX+AS)Xt = con + dis,

ACE(Ct+i|Ωt) + (AX+AS)E(Xt+i|Ωt) = con + dis, i=1, . . . , H,

which is a system of 2(H+1) equations in Ct, Xt and {E(Ct+i|Ωt),E(Xt+i|Ωt)}i=H
i=1 . It

resembles an econometric rational expectation model, where It,t+i can be represented

by E(It,t+i) = E(It+i|ΩI
t ), with ΩI

t containing, inter alia, the income history up to

period t. This system, in contrast to (B.8), will not be overdetermined because

E(Ct+i|Ωt),E(Xt+i|Ωt) depend on t. We can from the two last equations of (B.9)

derive

Ct =
AX+AS

AC

Xt + con + dis, E(Ct+i|Ωt) =
AX+AS

AC

E(Xt+i|Ωt) + con + dis,

insert them into the first two equations, to obtain a (H+1)-equation system which

determines Xt and {E(Xt+1|Ωt)}i=H
i=1 as linear functions of It+

∑H
j=1 α

iE(It+i|Ωt) and

the disturbances.4 The period-to-period revision of the information set gives rise to

autoregressive equations with leads and lags.

Hence we conclude: The occurrence of an addictive stock is not a necessary

condition for obtaining an autoregressive equation in the purchase of the additive

good, of order at least two. Once again, maintaining that an equation of this form

can serve to identify coefficients in the preference structure or for testing for a latent

addictive stock is not justified.

Examples a and b – although not useful for mimicking addiction within a life-

cycle theory – serve to demonstrate that scalar autoregressive equations in observed

4For a discussion of the solution to, and identification of, single- and multi-equation ratio-

nal expectation econometric models with forward-looking expectations, see Pesaran (1987, Sec-

tions 5.3, 6.6, 7.7).
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purchase of a good – or equations with (at least) a one-period lag and a one-period

lead – will follow if the consumer either accumulates a stock of the good under geo-

metrically declining weights or has a one-period horizon. Altogether, these baseline

examples challenge the validity of testing the ‘rational addiction’ hypothesis, under

quadratic period utility functions, by means of linear, single-equation autoregres-

sive models, as suggested by Becker, Grossman, and Murphy (1994) and adopted

by several followers.

c: Multi-period. Constant interest rates. Geometric stock

The third example combines the stock accumulation assumption in Example a with

the multi-period horizon assumption in Example b. We specifically assume

αt,i = αi, α = (1+r)−1 (r > 0),

βt,i = βi, β = (1+ρ)−1 (ρ > 0), i = 0, 1, . . . , ,

ηt,i = ηi, η = (1+r)/(1+ρ), i = 1, 2, . . . , H,

dt,i = di d = 1−δ (0 < δ ≤ 1), i = 0, 1, . . . ,

=⇒ βt,idt,i = ψi, ψ = (1−δ)/(1+ρ), i = 0, 1, . . . .

Then (9) take the form

φt(F) =
∑H

j=1 α
jFj = αF(1−αHFH)

1−αF
,

ψt,i(F) =
∑H−i

j=1 ψjFj = ψF(1−ψH−iFH−i)
1−ψF

, i = 0, 1, . . . , H,

ζt,i(F) =
∑i−1

j=0(1−δ)jFi−j = Fi
∑i−1

j=0(1−δ)jBj = F i[1−(1−δ)iBi]
1−(1−δ)B , i = 1, . . . , H,

ξt,i(B) =
(1−δ)B

1−(1−δ)B , i = 0, 1, . . . .

When δ=1, they collapse into the polynomials given above for Example b. Combin-

ing these polynomials with (10)–(15), we find that (b.1)–(b.2) are unchanged while

the right-hand sides of (b.3)–(b.6) change. The system now reads:

(Ct +Xt − It) +
∑H

i=1 α
iFi(Ct +Xt − It) = 0,(c.1)

UC,t = ηiFiUC,t,(c.2)

UC,t − UX,t − US,t =
∑H

j=1 ψ
jFjUS,t,(c.3)

Fi[UC,t − UX,t − US,t] =
∑H−i

j=1 ψjFi+jUS,t,(c.4)

St − (1−δ)St−1 = Xt,(c.5)

Fi[1− (1−δ)B]St = FiXt − (1−δ)i, i=1, . . . , H.(c.6)

Consider again modelling strategies [A] and [B]. Comparing the conclusions with

those from Example b serves to put into focus how inclusion of an addictive stock

with geometrically declining weights affects the possibilities for deriving an econo-

metric model.

[A] We can implement a perfect foresight assumption in Example c by deleting the

first subscript on all leaded variables. The three-equation system (B.7) will now be
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extended to the (H+3)-equation system:

Ct+Xt−It +
∑

i α
iFi(Ct+Xt−It) = dis,

[1−(1−δ)B][aCCCt+aCXXt] + aCSXt

= ηF{[1−(1−δ)B][aCCCt+aCXXt] + aCSXt}+ con + dis,

[1−(1−δ)B][ACCt+AXXt] + ASXt

=
∑H

j=1 ψ
jFj{[1−(1−δ)B][aSCCt + aSXXt] + aSSXt}+ con+dis,

Fi[1−(1−δ)B][ACCt + AXXt] + ASXt,t+i

=
∑H−i

j=1 ψjFi+j{[1−(1−δ)B][aSCCt+aSXXt]+aSSXt}+con+dis,

i=1, . . . , H,

(C.1)

see Appendix C, in particular (*C7), for detailed derivations. This extension reflects

the stock accumulation and the assumed H period horizon. However, only two equa-

tions are needed for explaining {Ct, Xt}t=T
t=1 , which means that H+1 equations can

be suspended. This strategy therefore suffers from an arbitrariness similar to that

in Example b.

[B] Instead of deleting the first subscript on the leaded variables, we can intro-

duce equations to simulate the formation of expectations. Replacing (Ct,t+i, Xt,t+i)

and It,t+i in (*C7) by [E(Ct,t+i)=E(Ct+i|Ωt),E(Xt,t+i)=E(Xt+i|Ωt)] and E(It,t+i)=

E(It+i|Ωt), we get a system of 2(H+1) equations in (Ct, Xt), {E(Ct+i|Ωt),E(Xt+i|Ωt)}i=H
i=1

of the form

(C.2)

Ct +Xt − It +
∑H

i=1 α
i[E(Ct+i|Ωt) + E(Xt+i|Ωt)− E(It+i|Ωt)] = dis,

[1−(1−δ)B][aCCCt + aCXXt] + aCSXt

= ηi{[1−(1−δ)B][aCCE(Ct+i|Ωt) + aCXE(Xt+i|Ωt)]

+ aCSE(Xt+i|Ωt)}+ con + dis,

[1− (1−δ)B][ACCt + AXXt] + ASXt

=
∑H

j=1 ψ
j{[1−(1−δ)B][aSCE(Ct+j|Ωt) + aSXE(Xt+j|Ωt)]

+ aSS(E(Xt+j|Ωt)}+ con + dis,

[1− (1−δ)B][ACE(Ct+i|Ωt) + AXE(Xt+i|Ωt)] + ASE(Xt+i|Ωt)

=
∑H−i

j=1 ψj{[1−(1−δ)B][aSCE(Ct+i+j|Ωt) + aSXE(Xt+i+j|Ωt)]

+ aSSE(Xt+i+j|Ωt)}+ con + dis, i=1, . . . , H,

which generalizes (B.9). By manipulating this linear system so that the 2H vari-

ables {E(Ct+i|Ωt),E(Xt+i|Ωt)}i=H
i=1 are eliminated, we end up with a VAR system in

(Ct, Xt) which includes the discounted income path It+
∑H

i=1 α
iE(It+i|Ωt) and linear

combinations of the disturbances. From this the ‘final equations’ for Ct and Xt, of

AR form with exogenous variables and identical AR-coefficients can be derived [see,

for example Lütkepohl (1991, Section 8.2)].

Hence we conclude: The occurrence of an addictive stock with geometric weights

and a multi-period horizon may be manipulated to give an autoregressive equation
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in the purchase of the additive good of a higher order than 2, depending on the

length of the horizon. Once again, maintaining that an equation of the AR(2)

form for the purchase of the addictive good can serve to identify coefficients in the

quadratic preference structure or for testing for the presence of such a stock in the

way suggested by Becker, Grossman, and Murphy (1994) is not justified. We cannot

exclude that identification and testing may be possible, but it remains to be seen

and will require a more elaborate dynamic analysis.

d: Multi-period. Variable interest rates. No stock

This, fourth example also extends Example b, now by relaxing the assumption that

βt,j and αt,j are geometrically declining in j, i.e., relaxing constancy of the market

and the subjective interest rates. Again, the stock is assumed to evaporate within

one period: St = Xt (=⇒ FiSt = FiXt, ∀i). Precisely, we assume

βt,0 = 1, βt,i = βi,
αt,i = αi

ηt,i = ηi = βi/αi,
dt,0 = 1, dt,i = 0, i=1, . . . , H,

which imply that (9) is simplified to

φt(F) =
∑H

i=1 αiF
i,

ψt,i(F) = 0, i = 0, 1, . . . , H,

ζt,i(F) = 0, i = 1, . . . , H,

ξt,i(B) = 0, i = 1, . . . , H.

Then (10)–(15) are reduced to 3(H+1) equations in (Ct, Xt, St), {Ct,t+i, Xt,t+i, St,t+i}i=H
i=1 ,

similar to (b.1)–(b.6), except that the geometrically declining (αj, βj) in (b.1) and

(b.2) are replaced by unrestricted (αj, βj). See (*C8)–(*C13) in Appendix C.

Let us once again consider modelling strategies [A] and [B]. Comparing the results

with those for Example b serves to put into focus how relaxation of the geometric

succession assumption for the weights of the addictive stock affects the possibilities

for deriving an econometric model.

[A] Instead of the three-equation system (B.7), we now get – by dropping the first

subscript on all leaded variables in (*C14) in Appendix C – the (H+2)-equation

system

(D.1)

Ct +Xt − It +
∑H

i=1 αi(Ct+i +Xt+i − It+i) = dis,

aCCCt + (aCX + aCS)Xt = η1[aCCCt+1 + (aCX + aCS)Xt+1] + con + dis,

aCCCt + (aCX + aCS)Xt = η2[aCCCt+2 + (aCX + aCS)Xt+2] + con + dis,
...

aCCCt + (aCX + aCS)Xt = ηH [aCCCt+H + (aCX + aCS)Xt+H ] + con + dis,

ACCt + (AX + AS)Xt = con + dis.
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Since η1, η2, . . . , ηH do not form a geometric succession, Equations 2 through H+1

no longer collapse into one equation when the equation system is designed for time

series data for (Ct, Xt):
5 The econometric implications of the H+2 equations (D.1)

differ crucially from those of the 3 equations (B.8). When the ratios between any

two succeeding ηis are not the same, the H middle equations equations in (D.1) are

in general in conflict, their left-hand sides being equal, their right-hand sides not.

If we were to select two equations from this overdetermined system, we would have

to select two which are not in conflict, which again signifies arbitrariness. We may

also have to include equations mimicking the consumer’s prediction of ηi.

[B] Replacing again (Ct,t+i, Xt,t+i) by [E(Ct,t+i)=E(Ct+i|Ωt),E(Xt,t+i)=E(Xt+i|Ωt)]

and It,t+i by E(It+i|Ωt), we end up with get the following generalization of (B.9):

Ct+Xt−It+
∑

i αi[E(Ct+i|Ωt)+E(Xt+i|Ωt)−E(It+i|Ωt)] = dis,

aCCCt+(aCX+aCS)Xt

= η1[aCCE(Ct+1|Ωt)+(aCX+aCS)E(Xt+1|Ωt)]+con+dis,

aCCCt+(aCX+aCS)Xt

= η2[aCCE(Ct+2|Ωt)+(aCX+aCS)E(Xt+2|Ωt)]+con+dis,
...

aCCCt+(aCX+aCS)Xt

= ηH [aCCE(Ct+H |Ωt)+(aCX+aCS)E(Xt+H |Ωt)]+con+dis,

ACCt+(AX+AS)Xt=con+dis,

ACE(Ct+1|Ωt)+(AX+AS)E(Xt+1|Ωt)=con+dis,

ACE(Ct+2|Ωt)+(AX+AS)E(Xt+2|Ωt)=con+dis,
...

ACE(Ct+H |Ωt)+(AX+AS)E(Xt+H |Ωt)=con+dis.

(D.2)

This determined system has 2(H+1) equations in Ct, Xt and {E(Ct+i|Ωt),E(Xt+i|Ωt)}i=H
i=1 .

To solve it we can proceed by first using the last H+1 equations to express Ct by

means of Xt and E(Ct+i|Ωt) by means of E(Xt+i|Ωt) (i = 1, . . . , H) and second insert

the result into the first H+1 equations, etc.

e: Multi-period. Variable interest rates. Non-geometric stock

The fifth and final example generalizes all the previous ones. Not only are a finite

multi-period horizon and a stock accumulation allowed for, but also general, non-

geometric paths for βt,j, αt,j and dt,i are assumed. Precisely, our assumptions are

5This is an aspect of the ‘dynamic inconsistency’ referred to in Section 3.
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now

dt,0 = 1, dt,i = di, i=1, 2, . . . , P,

αt,i = αi,

βt,0 = 1, βt,i = βi,

ηt,i = ηi = βi/αi, i=1, . . . , H,

βt,idt,i = ψi = βidi, i=1, . . . , K = min[H,P ].

The lead- and lag-polynomials are time invariant and take the form6

φt(F) =
∑H

j=1 αjF
j,

ψt,i(F) = ψi(F) =
∑K−i

j=1 ψjF
j,

ζt,i(F) = ζi(F) =
∑i−1

j=1 djF
j,

ξt,0(B) = ξ0(B) =
∑P

j=1 djB
j, ξt,i(B) = ξi(B) =

∑P
j=1(di+j/di)B

j,

The system (c.1)–(c.6) is now generalized to (*C15)–(*C20) given in Appendix C.

From here on we can proceed as in Example c. First we substitute the expressions

for the marginal utilities, (17), eliminating all stock variables from (*C16)–(*C18)

by using (*C19)–(*C20). We then get autoregressive equations in (Ct, Xt) which

generalize (c.1)–(c.6). Again, the perfect foresight modelling strategy [A], imply-

ing omission of the t subscript from all double indexed variables, would give an

overdetermined system, while the ‘rational expectation’ strategy [B], although be-

ing econometrically feasible and giving a system determining, inter alia, (Ct, Xt),

is more complicated than (C.2) and (D.2). It is obvious that the interpretation of

their coefficients departs considerably from the interpretation of the coefficients of

the Becker-Grossman-Murphy (1994) ‘rational addiction’ equations.

We therefore conclude that Example e – maybe the one that most adequately

models accumulation of latent addictive habits in a life-cycle quadratic period util-

ity context – strengthens, once again, the conclusions we drew from the baseline

Examples a and b.

5 Conclusions and extensions

In this paper, a life-cycle theory-model containing an unobserved stock of a habit-

related good and its translation into an econometric model of observed expenditure

flows, have been considered. We have given arguments to support the view that

econometric modelling in such cases should exploit the full equation system ob-

tained from the theory, not only pick one or a few of its equations which appear as

‘econometrically simple’. The fact that some equations contain variables which are

6When di = di, αi = αi, βi = βi, η = (β/α)i and P → ∞, we revert to Example c. When

dt,i = 0, (i ≥ 1), we revert to Example d.
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non-observable to the econometrician and at best only ‘in the mind of’ the respon-

dents, including stock variables as well as plans and expectations related to flow

variables, should not, in principle, be an objection against this line of attack. The

equations introduced to eliminate the unobservable variables will then become part

of the econometric model.

We have shown that when stock accumulation occurs and the consumer’s horizon

exceeds one period, the implied expenditure function for the addictive good contains

both lags and leads. The former are consequences of the stock accumulation, the

latter follow from the forward-looking utility and budget constraint. The latent

addictive stock variables can be eliminated from econometric equations by exploiting

the stock-flow relationship via lag-distribution representations.

Imposing perfect foresight on a systems of equations derived a from consumer’s

optimizing behaviour give, in general, an equation system which is mathematically

overdetermined. The only exceptions occur in the extreme case with geometrically

declining coefficients in lag and lead distributions and infinitely long horizon for

the consumption plans as well as infinitely long memory in the accumulation of the

addictive stock. How to cope with ‘dynamic inconsistency’ of this kind when con-

structing econometric model versions in general is an unsettled question. Pursuing a

strategy in which expectations are modelled, exploiting ideas from the ‘rational ex-

pectation’ literature, may be a feasible approach. This brings lags into the equations

to be estimated.

By several examples, based for simplicity on quadratic period utility functions

and in this respect following a lot of previous literature, we have shown that multi-

period models in which addictive stocks are disregarded completely, lead to autore-

gressive equations in the expenditures on the addictive good which have essentially

the same form as those following from models including unobserved addictive stocks

and then eliminating them afterwards. From this we conclude that attempts to

identify the parameters in utility functions containing latent stocks are very likely

to run into problems. Hence, testing the ‘rational addiction’ hypothesis from time

series of purchases of the addictive good, income, etc. is also likely to become prob-

lematic. Qualitatively dissimilar theories give rise to similar econometric equations,

making it difficult for econometricians to distinguish between them.

Several problems are left for further investigation. First, a reconsideration of

the model’s econometric implications under financial restrictions (e.g., borrowing

constraints) may be worthwhile. Second, the model may be redesigned from a time-

series to a panel data format. Latent individual heterogeneity – with respect to

e.g., subjective discounting factors, survival rates, memory, length of horizon, etc.,

as well as observed heterogeneity related to age, cohort, gender, education, employ-

ment status, etc. – can then be modelled and analyzed, and hopefully be better

understood. Third, exploring the implications of replacing the time invariance (sta-
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tionarity) assumption for the lag- and lead-distributions with non-stationarity may

be interesting since changes in interest rates are often announced in advance, e.g. by

central banks, to affect expectations. Fourth, if in compiling micro data for addictive

and other habit-affected goods, the data collectors could motivate the respondents

to give information about addictive stocks, length of memory, length of planning

horizon, size of discount rates, etc., we may obtain more precise inference about the

role played by addictive stocks in consumers’ life-cycle behaviour. Anyway, before

modelling the purpose of the research should be clarified, whether it is to test theo-

ries about addiction, to understand factors which determine purchases of addictive

goods or to provide the best tool for predicting such purchases.

Appendix A: The optimizing conditions

In this appendix we explain the derivation of (3)–(8) from the optimizing conditions.

Let W ∗
t,t+i denote net wealth which in period t is planned for period t+i, I∗t,t+i denote the exogenous

(non-wealth) income which in period t is expected for period t+i, rt,j denote the one-period interest
rate which in period t is expected to apply in period t+j (j = 0, 1, 2, . . . ), and for convenience
define

(*A1)
Wt,t+i = W ∗

t,t+i −W ∗
t−1,

It,t+i = I∗t,t+i + rt,iW
∗
t−1, i=1, . . . , H.

The latter are, respectively, wealth in excess of initial wealth and predetermined income, i.e.,
exogenous income plus interests on initial wealth. The period budget constraint for period t+ i as
planned in period t then is W ∗

t,t+i = (1+rt,i)W
∗
t,t+i−1 + I∗t,t+i − Ct,t+i −Xt,t+i, or, equivalently,

(*A2) Wt,t+i = (1+rt,i)Wt,t+i−1 + It,t+i − Ct,t+i −Xt,t+i, i = 0, 1, 2, . . . , H.

Defining

(*A3) Rt,j,k =
∏k−1

g=j (1+rt,g). j = 0, . . . , k; k=0, . . . , H,

and eliminating Wt,t+1, . . . ,Wt,t+H−1, we obtain, since Wt−1 = 0,

Wt,t+H = Rt,0,H(It−Ct−Xt) +Rt,1,H(It,t+1−Ct,t+1−Xt,t+1)

+Rt,2,H(It,t+2−Ct,t+2−Xt,t+2) + · · · + (It,t+H−Ct,t+H−Xt,t+H).

Multiplication by R−1
t,0,H yields the inter-temporal budget constraint

(*A4) It − Ct −Xt +
∑H

i=1 αt,i(It,t+i − Ct,t+i −Xt,t+i) = αt,HWt,t+H ,

where αt,i = R−1
t,0,H . The planned terminal wealth, Wt,t+H , is taken as exogenous.

The Lagrangian for maximization of (1) subject to (2) and (*A4) is

Lt = U(Ct, Xt, St) +
∑H

i=1 βt,iU(Ct,t+i, Xt,t+i, St,t+i)(*A5)

−λt[(Ct+Xt−It) +
∑H

i=1 αt,i(Ct,t+i+Xt,t+i−It,t+i) + αt,HWt,t+H ]

−µt,0(St−dt,0Xt−S̄t,t)−
∑H

i=1 µt,i(St,t+i−
∑i−1

j=1 dt,jXt,t+i−j−dt,iXt−S̄t,t+i),
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where λt and µt,0, µt,1, . . . , µt,H are Lagrange multipliers. The first-order conditions for the current
period, i.e., i = 0, are

∂Lt

∂Ct

= UC,t − λt = 0,

∂Lt

∂St

= US,t − µt,0 = 0,

∂Lt

∂Xt

= UX,t − λt + µt,0dt,0 + µt,1dt,1 + · · ·+ µt,Hdt,H = 0,

where UQ,t = ∂U(Ct, Xt, St)/∂Qt (Q = C,X, S), while for the future periods they read

∂Lt

∂Ct,t+i

= βt,iUC,t,t+i − λtαt,i = 0,

∂Lt

∂St,t+i

= βt,iUS,t,t+i − µt,i = 0,

∂Lt

∂Xt,t+i

= βt,iUX,t,t+i − λtαt,i + µt,idt,0 + µt,i+1dt,1 + · · ·+ µt,Hdt,H−i = 0, i=1, 2, . . . , H,

where UQ,t,t+i = ∂U(Ct,t+i, St,t+i)/∂Qt,t+i (Q = C,X, S). Eliminating µt,1, . . . , µt,H and λt we

obtain from these conditions in combination with (2))

Ct +Xt +
∑H

j=1 αt,j(Ct,t+j +Xt,t+j) + αt,HWt,t+H = It +
∑H

j=1 αt,jIt,t+j ,(*A6)

UC,t = βt,1α
−1
t,1UC,t,t+1 = βt,2α

−1
t,2UC,t,t+2 = · · · = βt,Hα−1

t,HUC,t,t+H ,(*A7)

UC,t − UX,t − US,t =
∑H

j=1 βt,jdt,jUS,t,t+j ,(*A8)

βt,i(UC,t,t+i − UX,t,t+i − US,t,t+i) =
∑H−i

j=1 βt,i+jdt,jUS,t,t+i+j , i=1, . . . ,H,(*A9)

St = dt,0Xt + S̄t,t,(*A10)

St,t+i =
∑i−1

j=1 dt,jXt,t+i−j + dt,iXt + S̄t,t+i, i=1, . . . ,H.(*A11)

Appendix B: Length of horizon versus length of time series

In this appendix, we elaborate the relationships between the 3T (H+1) variables in (16) under per-
fect foresight when the time series length exceeds the consumer’s horizon, and when the opposite
is the case.

A. If T >H, we could formalize perfect foresight (although not, in general, ‘time consistency’) by
imposing additional restrictions on Q = (C,X, S) of two kinds:

(a) Relating to the sample period 1,. . . ,H,H+1,. . . ,T and restricting the observable variables:

Q1,2 = Q2,
Q1,3 = Q2,3 = Q3,

...
Q1,H = Q2,H = Q3,H = · · · = QH−1,H = QH ,

Q2,H+1 = Q3,H+1 = Q4,H+1 = · · · = QH,H+1 = QH+1,
Q3,H+2 = Q4,H+2 = Q5,H+2 = · · · = QH+1,H+2 = QH+2,

...
QT−H+1,T = QT−H+2,T = QT−H+3,T = · · · = QT−1,T+2 = QT .

(*B1)

(b) Relating to the post-sample period, T+1,. . . ,T+H, including only latent variables:

QT−H+2,T+1 = QT−H+3,T+1 = QT−H+4,T+1 = · · · = QT,T+1 = QT+1,
QT−H+3,T+2 = QT−H+4,T+2 = QT−H+5,T+2 = · · · = QT+1,T+2 = QT+2,

...
QT+1,T+H = QT+2,T+H = QT+3,T+H = · · · = QT+H−1,T+H = QT+H .

(*B2)
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B. If H>T , the additional equations expressing perfect foresight are of two kinds:

(a) Relating to the sample period 1, . . . , T and restricting the observable variables:

Q1,2 = Q2,
Q1,3 = Q2,3 = Q3,

...
Q1,T = Q2,T = Q3,T = · · · = QT−1,T = QT .

(*B3)

(b) Relating to the post-sample period, T+1, . . . , H,H+1, . . . , H+T , including only latent variables:

Q1,T+1 = Q2,T+1 = Q3,T+1 = · · · = QT,T+1 = QT+1,
Q1,T+2 = Q2,T+2 = Q2,T+2 = · · · = QT+1,T+2 = QT+2,

...
Q1,H = Q2,H = Q3,H = · · · = QH−1,H = QH ,

Q2,H+1 = Q3,H+1 = Q4,H+1 = · · · = QH,H+1 = QH+1,
...

QT+1,H+T = QT+2,H+T = QT+3,H+T = · · · = QH+T−1,H+T = QH+T .

(*B4)

This case, of course, includes the infinite horizon case (H → ∞).

Appendix C: Detailed derivations for Examples c, d and e

Example c: Inserting (17) in (c.2)–(c.4) and adding disturbances we get

Ct +Xt − It +
∑H

i=1 α
i(Ct,t+i +Xt,t+i − It,t+i) + dis,(*C1)

aCCCt + aCXXt + aCSSt(*C2)

= ηi[aCCCt,t+i + aCXXt,t+i + aCSSt,t+i] + con + dis, i=1, . . . ,H,

ACCt +AXXt +ASSt(*C3)

=
∑H

j=1 ψ
j [aSCCt,t+j + aSXXt,t+j + aSSSt,t+j ] + con + dis,

ACCt,t+i +AXXt,t+i +ASSt,t+i(*C4)

=
∑H−i

j=1 ψ
j [aSCCt,t+i+j+aSXXt,t+i+j+aSSSt,t+i+j ] + con + dis, i=1, . . . ,H,

St − (1−δ)St−1 = Xt + uc
5t,(*C5)

St,t+1 − (1−δ)St = Xt,t+1 − (1−δ) + dis,
St,t+i − (1−δ)St,t+i−1 = Xt,t+i − (1−δ)i + dis,

i = 2, . . . ,H.(*C6)

This equation system, which generalizes (B.1)–(B.6), has H leads and one lag. Multiplying (*C2)–
(*C4) by [1−(1−δ)B] and inserting for St and St+1 from (*C5)–(*C6) we obtain

(*C7)

Ct +Xt − It +
∑H

i=1 α
i(Ct,t+i +Xt,t+i − It,t+i) = dis,

[1− (1−δ)B][aCCCt + aCXXt] + aCSXt

= ηi{[1− (1−δ)B][aCCCt,t+i + aCXXt,t+i] + aCSXt,t+i + con + dis, i=1, . . . , H,

[1− (1−δ)B][ACCt +AXXt] +ASXt

=
∑H

j=1 ψ
j{[1−(1−δ)B][aSCCt,t+j + aSXXt,t+j ] + aSSXt,t+j}+ con + dis,

[1− (1−δ)B][ACCt,t+i +AXXt,t+i] +ASXt,t+i

=
∑H−i

j=1 ψ
j{[1−(1−δ)B][aSCCt,t+i+j+aSXXt,t+i+j ]+aSSXt,t+i+j}+con+dis,

i=1, . . . , H.

From this system we can derive (C.1) and (C.2) in the main text.
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Example d: Inserting (17) in (b.2)–(b.4), after having replaced (αi, ηi) by (αi, ηi) and having
added disturbances, we get

Ct +Xt − It +
∑H

i=1 αi(Ct,t+i +Xt,t+i − It,t+i) = dis,(*C8)

aCCCt+aCXXt+aCSSt = ηi[aCCCt,t+i+aCXXt,t+i+aCSSt,t+i]+con+dis,(*C9)

ACCt +AXXt +ASSt = con + dis,(*C10)

ACCt,t+i +AXXt,t+i +ASSt,t+i = con + dis,(*C11)

St = Xt + dis,(*C12)

St,t+i = Xt,t+i + dis, i=1, . . . , H.(*C13)

This equation system has H leads, but no lag. From (*C8)–(*C11), after having eliminated St and
St,t+i by using (*C12)–(*C13), it follows that

(*C14)

Ct +Xt − It +
∑H

i=1 αi(Ct,t+i +Xt,t+i − It,t+i) = dis,
aCCCt + (aCX + aCS)Xt = ηi[aCCCt,t+i + (aCX + aCS)Xt,t+i + con + dis,
ACCt + (AX +AS)Xt +ASu

d
5t = con + dis,

ACCt,t+i + (AX +AS)Xt,t+i +AS = con + dis, i=1, . . . ,H,

From this system we can derive (D.1) and (D.2) in the main text.

Example e: Inserting the relevant lag- and lead polynomials in (10)–(15) we get

(Ct +Xt − It) +
∑H

i=1 αiF
i(Ct +Xt − It) = 0,(*C15)

UC,t = ηiF
iUC,t, i=1, . . . , H,(*C16)

UC,t − UX,t − US,t =
∑H

j=1 ψjF
jUS,t,(*C17)

Fi[UC,t − UX,t − US,t] =
∑K−i

j=1 ψjF
i+jUS,t, i=1, . . . ,K=min[H,P ],(*C18)

St = Xt +
∑P

j=1 djB
jXt,(*C19)

FiSt = FiXt +
∑P

j=1 djF
iBjXt, i=1, . . . , H.(*C20)
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