Stähler, Frank; Michaelis, Peter

Working Paper — Digitized Version
Managing waste exports when closure risks are endogenous

Kiel Working Paper, No. 559

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

Suggested Citation: Stähler, Frank; Michaelis, Peter (1993) : Managing waste exports when closure risks are endogenous, Kiel Working Paper, No. 559, Institut für Weltwirtschaft (IfW), Kiel

This Version is available at:
http://hdl.handle.net/10419/47236
Managing Waste Exports when Closure Risks are Endogenous

by Frank Stähler and Peter Michaelis

March 1993

Institut für Weltwirtschaft an der Universität Kiel
The Kiel Institute of World Economics
Managing Waste Exports when Closure Risks are Endogenous

by Frank Stähler and Peter Michaelis

March 1993

Abstract: This paper provides a rationale for taxing waste exports when closure risks are endogenous in that they depend on the importing country's accumulated stock of waste. The paper shows that the optimal time path of waste exports requires a progressively increasing tax rate which even surmounts a Hotelling tax which tackles the problem by evaluating the expected closure stock.

The authors are solely responsible for the contents and distribution of each Kiel Working Paper. Since the series involves manuscripts in a preliminary form, interested readers are requested to direct criticism and suggestions directly to the authors and to clear any quotations with them.
1. Introduction

During the last years, the export of solid and hazardous waste has become one of the most controversial issues of environmental policy in industrial countries (see, e.g., HiLZ, 1992). The debate is largely polarized between two extreme viewpoints. On the one hand, extreme environmentalists call for a total ban on waste exports which they consider as a kind of neocolonialism that shifts environmental problems into politically weak (developing) countries. On the other hand, extremely market-oriented economists claim that there should be no governmental interferences at all since transfrontier movements of waste are nothing else than an expression of comparative cost advantages the exploitation of which is beneficial for all involved countries.\footnote{For an ironically exaggerated presentation of this viewpoint see \textit{SUMMERS} (1992).}

Both conclusions are wrong. Even from a paternalistic point of view that includes long-term welfare effects in the importing country, a total ban on waste exports can not be justified since there exist many cases where international trade in waste management services does not conflict with considerations like equity and sustainability. However, a similar objection can be raised against the call for an unlimited laissez-faire regime since there exist circumstances under which regulations of waste exports can be justified by purely domestic interests. For example, improper disposal practices by the importing country may cause transfrontier environmental externalities that diminish the quality of groundwater in the exporting country.

Another, less obvious case which justifies regulations of waste exports from a purely domestic point of view is connected with closure risks, i.e. the risk that the possibility of waste export may be foreclosed by an unilateral action of the importing country.\footnote{The practical significance of such risks has become particularly clear in the end of 1992 when France and some countries in Eastern Europe announced that they will close their borders for foreign (especially German) waste.} One could assume that these risks are exogenous with respect the exporting countries' decisions. In this case, the problem of identifying an optimal policy regarding waste exports can be solved by a myopic optimization approach (see Section 2). However, the foreclosure option is usually caused by public resistance in
the importing country, and it seems plausible to assume that the degree of resistance is influenced by the accumulated stock of imported waste. Hence, from the perspective of the exporting country, the closure risk is not exogenous but depends on the chosen export policy.

It is this latter case we will analyze in the present paper. In particular, we will show that an optimal time path of waste exports requires the implementation of a dynamic export tax which even surmounts the corresponding Hotelling tax. In Section 2, we introduce our model and determine the (myopic) laissez-faire level of waste exports. In Section 3, we contrast this solution with the optimal time path and discuss the properties of an optimal tax scheme on waste exports. In Section 4, we close the paper by some concluding remarks.

2. The Model

We assume that the economy produces a constant flow of waste W°. Waste management includes two options: Domestic treatment by recycling, incineration or landfill and exports into another country. Due to institutional deficiencies, the importing country charges a constant per unit price of q and does not take into account that its landfill capacities may be limited.\(^3\)

The accumulated stock of waste exports is denoted by S and the probability of closure is given by the probability function $P(S)$ with $P(0)=0$ and the corresponding density function $p(S)$. Hence, the closure risk solely depends on the policy of the export country.

Domestic treatment exhibits increasing marginal costs caused by tight environmental regulations. For the sake of simplicity, we assume a quadratic cost function where S', the first derivative of the stock S with respect to time, indicates waste exports:\(^4\)

\(^3\) This assumption seems pretty reasonable from an empirical point of view since even in the FRG and most other OECD-countries public landfill rates usually do not include depletion costs (see Michaelis, 1992).

\(^4\) Domestic treatment may also include source reduction. In this case, W° has to be interpreted as the potential flow that would be produced under the assumption of free disposal.
A myopic planner or a sufficient number of individual waste producers do not take the risk-increasing effects of waste exports into account. The waste producers may even know that their exports increase the closure risk. But any individual denial on waste exports merely produced strong positive externalities for the other potential exporters whereas the individual benefits of a reduction of the global closure risk fell extremely short of the corresponding individual costs. Thus, a myopic planner or a sufficient number of unregulated individual waste producers behave as if the closure risk were absent and just balance marginal domestic treatment cost with the export price q. This results in a myopic time path where waste exports $S'_m(t)$ are constant over time until the importing country closes its borders:

$$S'_m(t) = W^o - \frac{q}{\gamma} = \text{const.}$$

This solution, however, cannot be optimal since it does not take into account that the closure risks depend on waste exports.

3. Optimizing Waste Exports

We assume that the social planner is risk-neutral and minimizes the expected costs of waste treatment. This assumption is not arbitrary but originates from the magnitude of risky decisions which governmental authorities face. Unless the authorities recognize strong effects on the risks of other decision problems, i.e. unless risk of waste export policies and other policies are strongly correlated, the assumption of basing waste policies on expected costs is well-founded because the great number of other risky decisions provides an insurance with respect to the total risks of a country's policy (see ARROW/LIND, 1970). Additionally, we assume that the planner discounts future costs and benefits by a constant non-zero discount rate r.

Since domestic waste treatment does not stand at risk, we can adopt the dual problem of maximizing the expected profits of waste exports. Thus,
the socially optimal time path of waste exports is given by the solution of the following maximization problem:

\[\max \int_0^T F(S', S, t) = \int_0^T e^{-rt} [1 - P(S(t))] \left[\frac{\gamma}{2} W^* - \frac{\gamma}{2} (W^* - S'(t))^2 - qS'(t) \right] dt \quad \text{s.t. } S(0) = 0. \]

The corresponding Euler equation gives

\[[1-P(S(t))]\gamma S''(t) - p(S(t))\frac{\gamma}{2}S'(t)^2 + r[1-P(S(t))][\gamma(W^*-S'(t))-q] = 0 \]

which can be rearranged for:

\[S'(t) = W^* - \frac{q}{\gamma} + \frac{S''(t)}{r} - \frac{p(S(t))}{2r [1 - P(S(t))]} S'(t)^2. \]

Unfortunately, (4) does not generally fulfill the second-order-conditions because the second derivative of the integrand with respect to the stock, i.e.

\[F_{SS} = -e^{-rt} \frac{dp}{dS} \left\{ W^* - \frac{\gamma}{2} [W^* - qS'(t)] \right\}, \]

is only negative if \(\frac{dp}{dS} \) is negative. This requirement is a too strong condition because it rules all well-known density functions out because they exhibit a descending branch like, e.g., the normal distribution. However, the second derivative of the integrand with respect to waste exports, i.e.

\[F_{SS'} = e^{-rt} [1 - P(S(t))] \gamma < 0, \]

is clearly non-positive and ensures that (4) meets the Legendre condition for local concavity (see, e.g., CHIANG, 1992). Hence, (4) turns out to repre-

5 Note that in the case of *exogenous* closure risks the maximization problem would lead to the myopic solution described by (2) since any denial on waste exports would not change risks.

6 A negative \(\frac{dp}{dS} \) is only a necessary condition which is not sufficient to guarantee the concavity condition of an always positive \(F_{SS'} F_{SS} - F_{SS}^2 \).
sent at least a locally optimal plan. In the Appendix, we proof that the myopic path, which is conceivably the only competing candidate for an optimal export policy, does not represent a local optimum since any marginal export restriction shows up to improve on the myopic outcome. Hence, the time path according to (4) is the only local optimum and consequently the global one, too.

However, the differential equation (4) is not very convenient since the term which contains \(p(S(t)) \) prevents to solve it explicitly. This term signals that waste exports do not merely increase a principally limited stock. Additionally, waste exports deteriorate the risks of the existence of waste export opportunities. In terms of the famous problem of 'eating a cake of unknown size' (see Kemp/Long, 1980), eating a piece of the cake does not only imply a smaller cake but also an increased risk that the cake will be stolen.

Although we cannot solve (4) explicitly, it is evident that waste exports will decline in the course of time. Discussing the path properties demands to address the transversality conditions concerning the end of the planning horizon. A risk-neutral planner will determine the end of the planning horizon, \(T \), in terms of the expected closure stock \(\Omega \) which is given by

\[
\Omega = \int_0^\infty S p(S) \, ds = S(T).
\]

The planner expects that the importing country will close its borders when the accumulated stock of waste exports has reached the closure stock \(\Omega \). A free \(T \) and a fixed closure stock induce the transversality condition that all expected export opportunities should be exploited at time \(T \). This can only be satisfied by the condition \(S'(T) = 0 \). Hence, the optimal time path of waste exports approaches zero when the expected endogenous closure date is reached.

Now suppose a "naive" planner which falsely assumes that he can catch the risks of waste export solely by fixing the expected closure stock. Such a planner would calculate \(\Omega \) and chose a time path of waste exports which seems to exploit a limited resource efficiently. This "naive Hotelling-approach" simplifies (4) significantly into:
\((4')\) \quad S''(t) - r S'(t) + r \left[W^o - \frac{q}{\gamma} \right] = 0.

\((4')\) represents a solvable second-order inhomogenous difference equation which has the following solution:

\[
(5) \quad S(t) = \left[1 - e^{rt} \right] \frac{e^{-rT}}{r} \left[W^o - \frac{q}{\gamma} \right] + \left[W^o - \frac{q}{\gamma} \right] t.
\]

Differentiating \((5)\) with respect to \(t\) provides the time path of waste exports, \(S'(t)\), and its curvature:

\[
(6a) \quad S'(t) = \left[W^o - \frac{q}{\gamma} \right] \left[1 - e^{r(t-T)} \right] > 0,
\]

\[
(6b) \quad S''(t) = -r e^{r(t-T)} \left[W^o - \frac{q}{\gamma} \right] < 0,
\]

\[
(6c) \quad S'''(t) = -r^2 e^{r(t-T)} \left[W^o - \frac{q}{\gamma} \right] < 0.
\]

Comparing the myopic path \((2)\) with \((6a)\) reveals that the naive Hotelling path implies lower waste exports at every moment of time. Moreover, as can be seen from \((6b)\) and \((6c)\), the time path of exports exhibits negative first and second-derivatives with respect to time. According to this solution, the Hotelling tax on waste exports, \(\sigma(t)\), must increase overproportionally in the course of time:

\[
(7) \quad \sigma(t) = e^{-r(t-T)} \left\{ \gamma W^o - q \right\}.
\]

However, assuming a problem according to \((4')\) means neglecting that waste exports deteriorate the risks of future waste export opportunities. The social planner would stick to a too optimistic waste export path, i.e. he would be highly endangered to experience an earlier closure date although his expectations concerning the closure stock were true from an ex ante perspective. Comparing \((4')\) and \((4)\) reveals that the optimal path must lie

\[\text{Note that } \left[1 - e^{rt} \right] \text{ is unambiguously negative.}\]
below the naive Hotelling path, and consequently a tax according to \(\sigma(t) \) would fall short of the necessary tax. Hence, a tax which guarantees the efficient use of foreign waste disposal opportunities must even surmount the Hotelling-based tax.

The tax scheme (7) is clearly a progressive tax because the naive Hotelling path implies overproportionally decreasing waste exports. The optimal tax is also a progressive one. Rearranging (4) and differentiation with respect to time yields:

\[
S''(t) = S''(t) \left[r + \frac{P(S)}{1 - P(S)} S'(t) \right].
\]

(8) shows that the second derivative of waste exports exhibits the same sign as the first derivative which means that the optimal time path of waste exports is declining and concave, too. E.g. assuming the specific probability function \(P(S) = 1 - e^{-\pi S} \), which provides a constant \([p(S)/(1-P(S))] = \pi \), leads to:

\[
S''(t) = S''(t)[r + \pi S'(t)].
\]

4. Conclusions

In this paper, we have shown that a rationale for taxing waste exports exists when closure risks are endogenous in that they depend on the accumulated stock of waste in the importing country. It turned out that the optimal time path of waste exports requires a progressively increasing tax rate which even surmounts the Hotelling tax which tackles the problem by a mere evaluation of the expected closure stock. Hence, unless institutional deficiencies can be ruled out, our results indicate that managing waste exports is a much more complex issue than merely relying on the short-sighted exploitation of cheap export opportunities.
Appendix

Assume that the waste exporting country sticks to the myopic path but deviates from it for a specific period \([\tau, \tau + \Delta \tau]\), \(0 \leq \tau, \tau + \Delta \tau \leq T\), through decreasing waste exports by \(\varepsilon\). \(T\) represents the expected closure date in the case of myopic policies. We define

\[
V = \int_0^\tau e^{-rt} \left[1 - P\left(\{W^* - (q/y)\}\{t\}\right) \right] \left[\left(\frac{y}{2}\right)W^2 + q^2/2\gamma - qW^* \right] dt
+ \int_\tau^{\tau + \Delta \tau} e^{-rt} \left[1 - P\left(\{W^* - (q/y)\}\{t\} + \{W^* - (q/y) - \varepsilon\}\{t\}\right) \right] \left[\left(\frac{y}{2}\right)W^2 - \frac{q^2}{2\gamma} - qW^* \right] dt
+ \int_\tau^{\tau + \Delta \tau} e^{-rt} \left[1 - P\left(\{W^* - (q/y)\}\{t\} + \{W^* - (q/y) - \varepsilon\}\{t\}\right) \right] \left[\left(\frac{y}{2}\right)W^2 + q^2/2\gamma - qW^* \right] dt.
\]

Compared to the myopic path, \(V\) represents the changed discounted expected profits and the changed terminal date \(T'\), \(dT'/d\varepsilon\), is due to a denial on export opportunities which delay the expected closure decision of the other country. According to the Leibnitz Rule, differentiating \(V\) with respect to \(\varepsilon\) yields:

\[
\frac{\partial V}{\partial \varepsilon} = \int_\tau^{\tau + \Delta \tau} \left\{ p(t) \left[\left(\frac{y}{2}\right)W^2 + q^2/2\gamma - qW^* \right] dt \right\}
+ \int_\tau^{\tau + \Delta \tau} \left\{ \left(\frac{y}{2}\right)W^2 - \frac{q^2}{2\gamma} - qW^* \right\} dt
+ \int_\tau^{\tau + \Delta \tau} \left\{ \left(\frac{y}{2}\right)W^2 + q^2/2\gamma - qW^* \right\} dt.
\]

Calculating

\[
\frac{\partial V}{\partial \varepsilon} \bigg|_{\varepsilon = 0} = \int_\tau^{\tau + \Delta \tau} p(t) \left[\left(\frac{y}{2}\right)W^2 + q^2/2\gamma - qW^* \right] dt \quad (> 0)
\]
\[+ \int_{t+\Delta t}^{T} e^{-\tau t} \Delta \tau \ p(t) \ [(\gamma/2)W^{'2} + q^2/2\gamma - qW'] \ dt \quad (> 0) \]

\[+ \frac{dT}{d\varepsilon} e^{\varepsilon T} \ [1 - P\{(W* - (q/\gamma))T\} \ [(\gamma/2)W^{'2} + q^2/2\gamma - qW'] \quad (> 0) \]

shows that the myopic path is no local maximum because marginally restricting the waste exports for a certain period can easily increase the expected profits. Because (4) represents the only extremal interior value and restricting the myopic path improves the outcome, (4) is the only local optimum and thus a global one.

References

