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1 Introduction

In this paper we examine how uncertainty might lead to an agglomerative

bias in the domain of competition between jurisdictions for mobile

citizens. Since Tiebout's (1956) seminal work asserting that competition

between jurisdictions would lead to a first best allocation even in the

presence of public goods much of the research has addressed normative

questions. The models employed differ with respect to what extent and in

which way the public good is congestible, making it a local public good,

with respect to incorporating a land market, with respect to the possible

entry of new communities, the mobility of the consumers and the ability of

the communities' authorities to control the residence in their communities.

From a first best perspective only the consequences of population

(congestion) entering consumers' utility functions and the population

(congestion) entering the production function are of analytical interest. All

the other features taken as given in other models of local public finance

should be at the discretion of the social planner (Berliant 1998).



While the focus of this paper pertains to normative questions as well

we adopt a model that contains the characteristics that are considered to be

indispensable for an empirically relevant model. Similar to the uncertainty

that follows inherently from the frictions of spatial markets we study

uncertainty of consumers or potential migrants with respects to the

characteristics of the communities they are migrating to. This uncertainty

is the result of the fact that the consumers have limited knowledge of the

bundles of public services and tax policies which will prevail in the future

places of residence.

The empirically important features that the underlying model of local

public goods economies should contain are the following: First, since the

supply of local public goods is decided upon by local governments the

model should attempt to explain government behavior. It should therefore

set forth an explicit and realistic political process by which local

governments arrive at fiscal policy decisions. We use majority voting as

the jurisdiction's decision mechanism in the actual economy. Second, since

many jurisdictions use property taxes in their local tax bases the local

public goods model should contain land endowments with market prices,

as well as local property taxation. Third, Tiebout's insight that consumers

shop between communities by moving should be incorporated in the model



by allowing free mobility of individuals or households. That is, consumers

express their preferences in two kind of voting processes: voting with their

feet as emphasized by the Tiebout models and voting by ballot.

These requirements have first been put forward by Rose-Ackerman

(1979) and subsequently adopted by Epple et al. (1984,1993), Dunz

(1985,1989), Nechyba (1994), and Konishi (1996). Rose-Ackerman

proposed a model with a finite number of mobile agents, majority rule

voting and property taxes on land. Land is rented from absentee landlords

and assumed to be perfectly homogeneous and divisible. Consumers

choose their residential locations by taking the tax-public good - bundles

as given. The local public good supply is financed by tax revenue collected

in each jurisdiction. Majority voting by the residents determines the level

of public good provision.

Rose-Ackerman's model extended previous work on a majority voting

equilibrium with an arbitrary finite number of jurisdictions in a two good

economy, without a land market of Westhoff (1977, 1979). Westhoff

assumed that there is a continuum of consumers who can be sorted

according to their marginal rates of substitution between a public and a

composite private good. The local public good in Westhoff s model is

financed by a wealth tax. That Westhoff s simpler model contained a strong



agglomerative tendency was noticed but as a central weakness of the

model: Since there is no land market and no congestion at all, it is difficult

to explain why consumers are spread over different communities. They

could enjoy a much higher level of public services at the same cost by

living together. Without any form of congestion it is always advantageous

to have just one jurisdiction, basically because there is no local public

good. For the study in this chapter we accept the postulates of Rose-

Ackerman for our model building.

The results of Rose-Ackerman's analysis, on the provision of local

public goods with voting and a land market, were primarily negative:

Equilibria were found not to exist generally. The equilibria which were

identified by restricting the space of admissible preferences were shown to

be unstable. As Konishi (1996) has pointed out, these negative results are

due to a non-convexity in the extended budget sets under land taxes when

land is assumed to be perfectly divisible. To identify stable equilibria of

public good provision in a system of jurisdictions other models have been

developed. These models either depend on restrictive assumptions as well

or deviate from Rose-Ackerman's set of postulates for an empirically

meaningful model.



Epple et al. (1984, 1993) proposed a model with a finite number of

jurisdictions and a continuum of consumers with identical preferences but

endowed with different amounts of the public good. This assumption, first

employed by Ellickson (1973) and later by Westhoff (1977), ensures that

the slopes of the indifference curves change continuously with income.

That is, the agents can be ordered by their marginal rates of substitution

between the private and the public good. There are no land endowments,

and hence incomes are unaffected by decisions on the supply of public

goods. Consumers can purchase any quantity of a homogeneous housing

good given by an exogenous supply function. The housing good is taxed

proportionately at a rate determined by the majority voting rule. Therefore,

the agents1 budgets are influenced by public decisions only to the extent

that the housing good becomes relatively more expensive with higher tax

rates. To circumvent the non-convexity problem of the budget set which

caused the equilibrium existence problems in the Rose-Ackerman model,

they assume concavity of indifference curves of indirect utility functions,

this possible way out of the non-existence problem had already been

discussed by Rose-Ackerman, pointing out that it is a restrictive

assumption which is not even satisfied by Cobb-Douglas utility functions.

The equilibria in the model of Epple et al. share the "stratification



property" of Westhoff s equilibrium results: Equilibria on the community

level are characterized by individuals with incomes and corresponding

marginal rates of substitution between the public and the private good in a

single interval. The level of public good provision rises with community

income. The stratification phenomenon is a consequence of the exogeneity

of individual incomes which allows for the ordering assumption according

to the marginal rates of substitution between the public and the private

good1

Yet another solution to the equilibrium existence problems which had

been encountered in the analysis of Rose-Ackerman is provided by Dunz

(1986, 1989). He modifies Rose-Ackerman' model by assuming

indivisibility of the non-transferable good (land holdings or houses) and a

wealth tax which is employed to finance the local public services. Since

housing supply is fixed, the model is transformed into an assignment

1 Epple and Platt (1992) have shown that the same results can be

obtained in a model with all agents differing additionally in a taste

parameter. The ordering assumption is made for both the incomes

differing with the taste parameter held fixed and the taste parameter

differing with the income held fixed for all individuals. The equilibria

then show two dimensional stratification.



model. Since there are no absentee, landlords, consumers' wealth levels

vary with house prices. Instead of assuming the sorting condition for

consumers' preferences, he assumes that each agent's most preferred tax

rate is independent of the total wealth level in the jurisdiction. Like the

sorting conditions this independence assumption is a strong assumption. If,

for example, the production function of the public good is linear, only the

Cobb-Douglas utility function allows for the independence. Nechyba

(1994) has extended the framework of Dunz by adding a national

government to the level of the local governments providing a national

public good financed by a wealth tax in addition to the local public goods

financed by a land tax. For the question of whether the tax competition

between local jurisdictions favors agglomeration this approach is

inadequate as the assumption of indivisible land implies that the

populations in the individual jurisdictions are fixed. Dunz (1989) has

shown that there is in general no stratification equilibrium if land

ownership is included in the model. The (restrictive) additional conditions

under which such a stratification equilibrium might occur are identified by

Nechyba (1994).

The most general framework for proving the existence of an

equilibrium of the provision of public goods in a system of multiple



jurisdictions was provided by Konishi (1996). He developed a model with

perfectly divisible land and without ordering assumptions building on a

model of Greenberg and Shitovitz (1988). Greenberg and Shitovitz had

developed a model with many local public goods which are provided in

many jurisdictions and the provision level of which is decided upon by

majority voting. The existence proof of this model however relied upon the

immobility of consumers. Without mobility of consumers Greenberg and

Shitovitz could assume the convexity of preferences and consumption sets.

In the case of consumer mobility this is unreasonable. The consumers'

location choice problem leads to non-convexity of consumption sets across

locations even though consumption sets in each location might be convex.

To be able to apply Kakutani's fixed point theorem Konishi introduces a

dummy consumer for each type to each jurisdiction. The locations of these

dummy consumers are fixed. The dummy consumers' demand bundles are

determined by the postulate to recover the convexity of consumption sets.

To avoid integer problems (discussed by Bewley (1981)) he assumes a

continuum of individuals entailing the conceptual problem that with

unrestricted mobility there might be empty jurisdictions in the sense that

only a zero measure of consumers is living there in equilibrium. This is a

conceptual problem as it is unclear how policy packages are determined in



empty jurisdictions. The problem is solved by assuming that there are no

empty jurisdictions.

In this paper we address a different conceptual problem that is common

to all of the work reviewed: In most of the reviewed models it is assumed

that the number of jurisdictions is very large to justify a "utility taking

equilibrium". That is, whatever voting equilibrium occurs and which

migration streams these might induce the utility levels prevailing in the

other jurisdictions will be unaffected. Adopting this decision in order to

model perfect competition between the local economies the conceptual

problem of the Konishi model, i.e. the possibility of empty jurisdictions is

most prevalent. With truly geographic frictions, e.g. distance dependent

migration costs, the competition between jurisdictions is restricted to a

limited number of jurisdictions in the same way as the competition

between firms on spatial markets is restricted to a limited number of

geographical neighbors. In such a case the assumption that decision

makers act as if all the other jurisdiction remain unaffected by what

happens in their own jurisdiction appears to be particularly difficult to

maintain. If the competition is among the few a fully rational behavior by

the migrants and voters requires that the voting, migration and market

equilibrium is anticipated by the individuals, (cf. Scotchmer 1994and
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Starrett 1993). The immense data collection and data processing

requirements associated with this situation have been discussed for local

public good models without a political process. It has been argued that it is

too restrictive to assume that local governments can anticipate the

equilibrium distribution of types across communities as this would require

that the government decision makers knew the preferences of the

individuals. After all, the decentralized provision of public goods was

meant to solve the problem of the revelation of the individuals' preferences

for public goods. In a model with voting and free mobility of the

individuals between jurisdictions each consumer would have to anticipate

the equilibrium if it were to be attained instantaneously.

This problem may be reflected in the models of Rose-Ackerman and

Epple et al. in that the otherwise fully rational agents are in some respects

assumed to be rather naive: Calculating the effects of specific fiscal

policies on the internal equilibrium the households in Rose-Ackerman's

model believe that the net land rents are unaffected by the extent of

property taxation and possible induced migration streams. Similarly, in the

model of Epple et al. (1993) the individuals believe that the net-of-tax

housing price is exogenously given. In an adjustment process towards the

equilibria that have been identified to exist, to maintain such naive beliefs
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experiencing changing land or house market equilibria would be a very

restrictive assumption.

Here we try to take explicit account of the fact that the information

collection and processing capacities of the individuals are limited.

Migration decisions of households are based on a non-sophisticated way of

estimating the distribution of future fiscal policy regimes across

communities. The individuals use limited information to arrive at such

estimates. What is more, agents are allowed to make mistakes or to have

different motives of choosing their residential location than picking the

optimal fiscal policy. The equilibrium that will be studied here differs from

the equilibrium concept employed in the literature reviewed above. There

an equilibrium is defined as the situation in which all markets clear and no

individual has an incentive to change his residential location after a round

of voting has taken place. Due to the possibility of the agents making

"mistakes" in the equilibrium concept we study here even such a situation

would be constantly in danger of being upset. What will be studied here is

the stochastically stable equilibrium. The stochastically stable equilibrium

will describe that configuration of types of households distributed over the

localities that will be observed in the long run most of the time (Young

1998). Perhaps surprisingly, assuming an adaptive behavior on the part of
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the agents and studying the stochastically stable equilibrium Tiebout's

claims with respect to the outcome of the competition of jurisdictions seem

more justified than in the traditional framework.

2 The model

2.1 Outline: voting and adaptive residential choice

The individuals select their residential location out of a fixed number of

jurisdictions on the basis of selecting the most preferred amount of public

services, financed by a property tax. The fiscal package implemented had

been determined before at the beginning of the periods considered by

majority voting. Only those individuals are eligible to participate in the

voting process who have residence in that community. The voting

equilibrium is in turn determined by past location decisions of the agents

and the consequent distributions of consumer types in the individual

communities. This interplay of migration and voting decisions constitutes

an n-person game which is played once each period. A migration phase is

preceded by voting on the fiscal policy package by the residents of a local

community. The n players are drawn at random from a large finite

population of N individuals.
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In principle players choose optimal strategies based on their beliefs

about the economic environment. This environment is held to be

stationary. The beliefs are formed by looking at how individuals in the

same situation have acted in the past. Since the means of collecting and

processing information are limited, each player knows only a fraction of

the relevant events in the past. In other words, current actions are based on

samples of play from recent time periods. In some periods the individuals

do not optimize in the sense of choosing the optimal reaction to the

information obtained.. This may be due to the agents' making mistakes

and/or experimenting.

Current actions become part of the relevant sample space in the next

period when another random set of n players is drawn from the fixed total

population. Each of these agents takes again a random sample of previous

plays and reacts optimally to the information obtained, or with some

probability makes mistakes or ventures to use different strategies. In our

case the sampling does not refer directly to the migration decisions taken

by individual players but to their consequences which are revealed in a

possibly new set of voting equilibria in the individual communities. In any

case, there is no continuous, systematic learning process over time, during

which the players update the information on the voting equilibria in all
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communities after each round of voting and implementation of a new

voting equilibrium. Rather the information consists of fragmentary pieces

of the entire history of relevant events in the past.

This pattern of behavior defines a Markov chain whose states are the

histories of voting equilibria in the finite number of communities truncated

to a finite number of periods.1 The belief formation and best reply behavior

with occasional mistakes is called adaptive play. As will be detailed below,

adaptive play need not converge to a Nash equilibrium for general n-

person games. It does, however, converge for games in which sequences of

best reply choices lead from any initial choice of strategies to a strict, pure

strategy Nash equilibrium. This class contains coordination games and

common interest games which are of interest for our model. For these

games which are called weakly acyclic games, adaptive play leads with

probability one to a pure strategy Nash equilibrium, provided that

information collection is sufficiently incomplete, and the players never

1 The prototype of such an adaptive dynamics is fictitious play. In

fictitious play agents react optimally with respect to the entire history

of previous actions taken by other players. Originally, this was not

meant to represent a learning process but considered as an algorithm to

compute Nash equilibria (Brown 1951, Robinson 1951).
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make mistakes. If the equilibrium is not unique it cannot be said in

advance to which of the equilibria the process will converge as this

depends on the random sampling process and on the initial state.

If the possibility that players make mistakes or experiment occasionally

is taken into account more can be said. Then the process does not converge

to an equilibrium and does not stay in an absorbing state as long as the

environment remains constant. Rather, adaptive play with a positive

probability of making mistakes has a stationary distribution around a

particular subset of pure strategy Nash equilibria. Moreover, the process

usually puts almost all the probability weight on a particular equilibrium.

This equilibrium is called the stochastically stable equilibrium which will

be observed almost surely when the disturbance created by the mistakes is

close to zero.1

2.2 Voting and location decisions

There is a fixed number of K communities. The number is exogenously

given, K being a positive integer. An individual can be a resident of only

1 The analytical techniques of studying perturbed Markov processes has

been developed by Freidlin and Wentzell (1984). They have been first

applied to general evolutionary processes by Foster and Young (1990).
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one of these communities. In our model we consider three types of goods,

a local public good g, a local housing good h as a non-tradable good and a

composite private good c. The private good is the numeraire good. The

consumption of the public good is restricted to the residents of the

community where it is supplied. The level of provision of the public good

is decided by majority voting. Only the residents of the community are

eligible to vote. The public good is financed by an ad valorem tax on the

housing good. In presenting the core of the model we assume in

accordance with the Tiebout model and the Rose-Ackerman postulates that

the costs of changing the residential relocation are negligible. The role of

positive migration costs will be considered in the next section when the

geographical structure is added.

Our equilibrium definition must comprise an intercommunity

component and an intracommunity component: The intercommunity

equilibrium is characterized by the fact that each community has a

population of positive size, and the fact that no individual wants to move

to another community, i.e. that no individual strictly prefers the bundle

available in another community to the one available where he or she

currently resides. The equilibrium within the community is defined by the

following: Each household is in equilibrium, i.e. no household could
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increase its utility by changing the bundle of housing services and the

composite private good. The community is in political equilibrium, i.e. the

preferences of the median voter are implemented. The budget of the

community is balanced, and the aggregate supply of housing services

equals its aggregate demand.

Defining different types of consumers with respect to their preferences

for the public good we assume following Epple et al. (1993) that all

individuals have the same preferences but different incomes and therefore

differing willingness to pay for the public good in units of the composite

private good. More specifically, all individuals are assumed to have a

utility function U which is a continuous increasing function of (g, c, a),

with g denoting the local public good, c the private composite

consumption good and a the housing good. Moreover, U is assumed to be

separable in g and (c, a), strictly quasi-concave and twice continuously

differentiable in (g, c, a) over all (g, c, a) » 0. If (g, c, a) » 0, then

U(g,c,h)>u(0,c,h)

U(g,c,h)>u(g,0,h),forall (g,c,h)>0.

U(g,c,h)>U(g,c,0)
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The individuals differ in their incomes y. In the total population of N

agents we observe n different values of incomes. That is the N members of

the total population are partitioned into n non-empty income classes Ci, C2,

... , v_-n-

Each community finances the local public good with a proportional tax

on the non-tradable good, a housing tax. Let p be the gross of tax price of

housing. The individuals then maximize their utility U(g,c,a) with respect

to the private good c and the housing good a subject to the budget

constraint y > pa + c. Substituting the optimal values of c and a as

functions of the gross price of housing, household income and the level of

local public services g we obtain the indirect utility function

V(g,p,y) = maxU(g,c,a) s.t. y>ah + c. (1)

(c,a)

From this indirect utility function we derive the marginal rate of

substitution M

dg dp

M indicates by how much the gross price of the housing good might

increase, what agents are willing to pay (accompanied by an adjustment of

the consumption of h relative to c) to finance a marginal increase of the
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public services without affecting the indirect utility of the individual. If all

agents have identical utility functions the value of the individual income

determines the value of M. That is, the classes of agents Q (i = 1, 2, ..., n)

are characterized by identical income levels for all members. Given the

above assumptions the willingness to pay is positive for finite values of the

gross price of the housing good. To have a one-to-one correspondence

between the income levels and the willingness to pay it is further assumed

that the willingness to pay is continuously increasing with income

)P>y) > O.for all (x,p) » 0.
ydy

This assumption implies that the indifference curves of individuals with

differing incomes cross only once, with the indifference curve of a poorer

individual crossing that of a wealthier individual from above.1

Each locality i e {1, 2, ... ,K} is endowed with a supply function

As'(ph') where ph' denotes the net-of-tax price of a unit of housing services

at i. The population of community i be N1. Let the tax rate in the

community be t1, and let p1 be the gross-of-tax price of housing in

1 More generally the single crossing property has been used to ensure

the existence of voting equilibria. Cf. Roberts (1977)
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community i. The level of public services provided in community i is g'.

Let ij1 denote the number of individuals of class j (j = 1, 2 n) living in

community i. {iV, r2', ... ,rn'} then describes the discrete distribution of

types in community i. The tax rate in that community be t1. The cost of

providing the public services g1 is given by the cost function c(g',Nj). With

this notation we can make the equilibrium definitions more precise: Given

a distribution of types in community i, ph\ t1 is an internal equilibrium if

and only if

a. The relationship between the gross-of-tax price p1 and the net-of-tax

price for housing is given by:

(2)

b. The sum of the individual demands for housing within each

community is equal to the aggregate supply of the housing good.:

rj = A s ( P h ) w n e r e f° r any Yj» a(p'.yj) solves the problem

maxu(g i , a ,y j -p i h) (3)

c. The community budget is balanced:
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d. The voting equilibrium is characterized by the following:

Over all (g,t) * (g'.t1) on the community budget constraint it must hold that

u(g i , a (p i
) y j ) ,y j -p i a(p i , y j ) )>u(g i , a (p i , y j ) ) y j -p 1

h ( l +

for strictly more than half of the voters.

To define the intercommunity equilibrium we denote a set of

individuals forming a community at location i as R1, and the internal

equilibrium of that community as (g1, t1) leaving t1 and ph' as implicitly

defined by (7.1) to (7.4). We then have the following for the formal

definition of the intercommunity equilibrium

R1, R2 RK; (g1, p1), ... ,(gK,pK) is an equilibrium with K distinct

communities iff

U ! i i R i = ( N l ' and R' > Ofor dl { = l '2' - ' K; (6)

(g1, p1) is an internal equilibrium in community R1, and

every individual residing in R1, i e {1, 2, ... , K} weakly prefers (g1, p1) to
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Let t = 1,2, ... denote successive time periods. A stage game G is played

once in each period. In each period t one individual is drawn randomly

from each of the classes of players C (i = 1,2, ... , n) and assigned to

choose his or her preferred place of residence with respect to the fiscal

policy implemented. We refer to the member of the class C who has the

right to choose as player i, although the identity would be the same only by

chance. All players choose a strategy s'(t) in period t (i = l,2,...,n), i.e. they

move to some other jurisdiction or they prefer to remain in the community

of their current residence. The strategy tuple of the random selection of

players s(t) = (s'(t), s2(t),..., sn(t)) changes the distribution of types in each

of the communities and consequently the distribution of median voter

preferences in each jurisdiction. Let the willingness to pay of the median

voter in community R' be denoted as MM. The median voter preferences

are recorded as the K-tuples Mm(t) = (Mml(t), NT^t), ... , NC^t)). Each of

these K-tuples will be referred to as the record of time t. The history up to

time t consists of the sequences'h(t) = (Mm(l), Mm(2), ... , Mm(t)). These

histories are anonymous, i.e. the individuals are unable to keep track of

due to whose movement the median voter profile changed. That is, the

stochastic process evolves on two levels. The first one is the level of

actions taken by the n individuals in taking residence in one of the K
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communities. These actions change directly the distribution of types over

communities. The change of the distribution of consumer types, in turn,

changes the voting equilibrium in the communities.. This means that

underlying the sequence of K-tuples of indices of median voter preferences

is a changing distribution of intra-community distributions of consumer

types. The latter distribution is directly affected by the actions of the n

players s? e Sj selected from the individual action spaces. The Markov

process on the state space consisting of all distriubiton of intra-comunity

distributions of consumer types is mapped into a Markov process of voting

equilibria, driving the development of the histories of distributions of

median voter preferences.

The individuals now decide how to choose their strategies as follows:

The individuals form expectations on the future fiscal policies

implemented in the communities by examining the histories of policies that

have been pursued there. The most distant record they might investigate is

the record of the period m -1 + I.1 Older records are considered irrelevant

1 For the sake of completeness we assume that that the first m lays are

randomly selected. Thus we can think of the sampling process as

beginning in period t = m + 1 from some arbitrary initial sequence of m

records h(m).
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or are disregarded due to limited capacities of holding information. Each

player inspects these recent records by drawing randomly a sample of size

k (1< k < m) without replacement. The restriction of the sample might

reflect a limited capacity to process information or reflect a passive attitude

towards information gathering with the effect of getting to know about a

limited number of historical records. The specific values of the restrictions

of the length of the history to m records and the sample size to k randomly

drawn records is not important. What matters is the level of completeness

of the individuals measured by the ratio k/m. The feasible samples of size k

must not necessarily have an equal probability weight. It suffices to

assume that all feasible samples of size k have a positive probability of

being drawn by each potential migrant i. We then obtain a finite Markov

chain on the state space H consisting of all m-sets of K-vectors of median

voter indices drawn from ]~[Mmi beginning with some arbitrary initial
ieK

state h(m).

The histories h are the states of the Markov chain. A successor of a state

h G H is any state h1 € H obtained by deleting the left-most element of h

and adjoining a new right-most element. The finite Markov process moves

from the current state h to a successor state h1 in each period according to



25

the following transition rule: For each s1 E S1, p(s' |h) be the probability

that agent i chooses s1. p(s' h) is positive if and only if there exists a

sample of size k to which s1 is player i's best response. It is also assumed

that p(s' I h) is independent of t. All this defines a time-homogeneous

Markov process: If s' is the right-most element of the history h, the

probability of moving from h to h' is

h' is then the new K-vector of indices of median voter preferences induced

by the n-vector of actions si. The Markov process P is called adaptive play

with memory m and sample size k (Young 1993a).

The next question we have to address is whether such a process

converges to an absorbing state. An absorbing state would be reached if

the above pattern of decisionmaking would move the process to a m-

history where in all successive periods the members of all classes of

individuals take identical decisions, no matter what sample they happened

to draw from sequence of histories. In our context the repetition of

identical actions means that agents of a prticular type choose the same

residential location. That is, there are no movements between communities.
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This implies that only such histories can be absorbing states which consist

of a strict pure Nash equilibrium being played m times in succession.

Suppose that the m-set of n-vectors of actions (s(l), s(2), ... , s(m)) is an

absorbing state. For each agent i let s1 be the best response to some subset

of k records drawn from this m-set, and let s = (s1, s2, ... , sn). By

assumption there is a positive probability of moving to a successor (s(2),

s(3), ..., s(m), s) in one period. Since the m-set is absorbing s(l) = s(2).

Continuing in this way we conclude that s(l) = s(2) = ... = s(m) = s.

Therefore, if the m-set of vectors of actions is to be an absorbing state it

has to be an m-tuple of identical s. By construction all of the elements of s

are best replies. Furthermore, the best replies are unique, otherwise the

process could move to a different state. Thus, s is a strict, pure-strategy

Nash equilibrium. Conversely, any strict pure-strategy Nash equilibrium of

the stage game which is repeated m times is an absorbing state.

The existence of a strict, pure-strategy equilibrium is, on the other hand,

no sufficient condition for the convergence of the process as was shown by

Shapley (1964). As has been mentioned before, a sufficient condition for

the convergence of adaptive play when there is no experimentation is that

the game T is weakly acyclic. To define a weakly acyclic game we have to
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introduce a best reply graph of T. Each vertex of a best reply graph is an n-

n
tuple of strategies s e J~js! . For every two vertices s and s1 there is a

directed edge s —> s' if and only if s ^ s' and there exists exactly one agent i

such that (s1)1 is the best reply to the actions of all other agents and these

actions are in turn best replies to (s1)'. A game is now acyclic if its best

reply graph contains no directed cycles. It is weakly acyclic if, from any

initial vertex s there exists a directed path to some vertex s* from which

there is no exiting edge. Such a vertex s* is called a sink. In other words, a

game is weakly acyclic if and only if from every strategy tuple there exists

a finite sequence of best replies by one agent at a time which ends in a

sink. For this class of games adaptive play without mistakes converges

with probability one, provided that sampling is sufficiently incomplete

(Young 1993a, Theorem 1, see Appendix 1).

That is, the limited degree of being informed prevents that the agents

never forget about past miscoordination and enables them to move towards

an absorbing state. The incomplete sampling introduces stochastic

variation into the players' responses. Because of this stochastic variation

it is possible that players initially coordinate by chance and by doing so
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often enough the process might lock in to an absorbing state which is a

pure strategy equilibrium.

For our concerns, however, not all absorbing states are desirable. If, for

example, each community had the same distribution of consumer types

with the consequence of identical voting equilibria in all communities no

individual would have an incentive to move. The identity of the voting

equilibria would continue to be a convention although the sorting of

individuals of different types into different communities would be Pareto-

superior. (Bewley 1981)

Such a lock-in into a Pareto - inferior allocation is avoided if the agents

do make mistakes or experiment with choices of residence which are not

best replies to samples of the distribution of voting equilibria. In this case

the stochastic process does not converge to an absorbing state, because

there are no longer absorbing states. Even if the process has settled on an

m-times repetition of the strategy tuple, mistakes or experiments could

cause the process to leave the rest point. Assuming, however, that all

mistakes can occur with positive probability and that these probabilities

are time-independent, the process does have a unique stationary

distribution. When the mistake probability is small, the distribution is

centered around a particular absorbing state of the unperturbed process.



29

These are the stochastically stable states which will be observed in the long

run when the perturbation of the process due to the mistake probabilities is

small but non-vanishing.

To define adaptive play with perturbations we fix the sample size k and

the number of records in a history m. We assume that with some small

probability e^ > 0 that a player of type i experiments by choosing a

strategy from his or her strategy set S1 instead of choosing a best-reply with

respect to the information gained by sampling. The factor e determines the

probability with which players in general experiment. The event that

individual i experiments is assumed to be independent of the event that

agent j experiments for every i * j . The ratio XjXj is the relative probability

with which a player i experiments as compared to a player of type j . For

every player of type i let qj(s | h) to be the conditional probability that he or

she chooses s 6 S' given that she or he experiments and that the process is

in h, where ^q,(s jh) = lfor every i and h. qj(s | h) is assumed to be time

seS1

independent and positive for all s e S1. the latter assumption is meant to

ensure in a direct way that every state is reachable from every other state in

a finite number of periods by agents who experiment.
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The fact that we do not have any further information on the distribution

q = (qi(.). q2(.)» ••• . Qn()) or the relative probabilities of experimentation A,

= (A-i, .̂2, ••• , -̂n) of the different types does not matter for the long run

behavior of the stochastic process: If the overall probability of

experimentation is small and the individuals experiment independently of

one another, the selected stochastically stable equilibria are independent of

q and X.

Which consequences does the positive probability of mistakes have for

the stochastic process? Let the stochastic process be in state h at time t. Let

J be a subset of j players, 1 < j < n. the probability that exactly the

members of the subset J experiment and the others do not is

~e^-j)- Conditional on this event the transition probability

of moving from h to h' is

Qhh1 = 1 1 ^ j ( s j l n )n p j ( s j | k ) *f h ' i s a s u c c e s s o r °f n> s being the right-
jeJ jgJ

most element of h', and Q'hh. =0 if h' is not a successor of h.

If no agent experiments, then the transition probability of moving from

h to h' in one period is given by the unperturbed process P°h.. The event
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(I

"no one experiments" occurs with the probability TT(l-eXj) . The

perturbed Markov process then has the transition function

Phh-= TT(l-eXj) P° + V elJl n ^ i fT( l -^ i ) Qih- (7)
nn 1 1 \ i / nn £u 1 1 J 1 1 \ J / ^ n n v /

Vi=l ) JcN,J^0yeJ AjeJ J

The process Pe is called adaptive play with memory m, sample size k,

experimentation probabilities e^ and experimentation distributions qj. P

will be referred to as the unperturbed process.

The asymptotic behavior of process (6), when the overall probability of

mistakes or experiments is close to zero, characterizes the stochastically

stable equilibrium. Let h and h' be two distinct states. If Pe is in state h at

time t, there is a positive probability that all players will experiment for m

periods in succession. Thus there is a positive probability that the process

arrives at state h' at time t + m, so Pe is irreducible1 The process is also

1 A state s is accessible from state s, if there is a positive probability of

moving from z to z' in a finite number of periods. If both z and z' are

accessible from each other they are said to communicate. States which

communicate form an equivalent class of states, a communication

class. A communication class is called a recurrent class if no state

outside the class is accessible from any state inside it. A process is
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aperiodic because the process can move from h to h in exactly m periods

and also in exactly m + 1 periods.1 As any other irreducible aperiodic

Markov process Pe has a unique stationary distribution JLLE satisfying the

equation fiePE = p.6. For a process that is irreducible and aperiodic, not only

is it true that the time-average behavior of the process converges to the

unique stationary distribution [i; its position at each point in time t is also

approximated by \i when t is sufficiently large. In other words, the

probability that the process is in a particular state and the relative

frequency with which a state has been observed after t periods converge to

the same probability, independently of the initial state. Consequently, the

perturbed Markov process is ergodic, i.e. independent of the starting point

of the process.

called irreducible if it has exactly one recurrent class, which consists of

the whole state space. Equivalently, a process is irreducible if and only

if there is a positive probability of moving from any state to any other

state in a finite number of periods.
1 Let P be any finite Markov process on the set S, and for each state s,

let Ns be the set of all integers n > 1 such that there is a positive

probability of moving from z to z in exactly n periods. The process is

called aperiodic if for every z, the greatest common divisor of Nz is

unity.
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A state h e H is stochastically stable relative to the process PE if

limfXe(h)>0. (8)
e->0

States which are not stochastically stable will be observed infrequently in

the long run compared to states which are, provided that the mistake

probability e is small.

To discuss how the stochastically stable states are computed, we first

make precise what is a mistake. Let h' be a successor of h and let s be the

right-most element of h1. A mistake in the transition h —> h1 is a component

s' of s that is not an optimal response of by agent i to any sample of size k

from h. For any two states h and h' the resistance r(h,h') is the total number

of mistakes involved in the transition h —> h1 if h' is a successor of h;

otherwise r(h, h1) = °o.

Now we consider all states of the entire state space H as vertices of a

directed graph. For every pair of states h, h1 we insert a directed edge h —»

h1 if r(h, h1) is finite, and let r(h, h1) be its weight or resistance. The edges of

zero resistance correspond to the transitions which occur under P° with

positive probability. Let Hi, H2, ... , Hj be recurrent communication classes

of P° These disjoint classes have the following characteristics: From every

state there is a path of zero resistance to at least one of the classes. Within
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the recurrent classes there is a path of zero resistance from every state to

every other state. Every edge exiting form a recurrent class has positive

resistance.

Given any two recurrent classes Hs and Hj consider all directed paths

that begin in Hj and end in Hj in the perturbed process PE. There is at least

one such path, because the perturbed process is irreducible. Among all

such paths we have to identify the one with the least total resistance. We

denote this resistance by rig. By definition rig > 0. Computing the rig

amounts to solving a shortest path problem in a directed graph. r;g is

independent of which vertex of Hj is the starting point and of which vertex

is the end point in Hj because every two states within the same class are

accessible form each other by paths of zero resistance.

We then define a directed graph Q as follows: There is one vertex i for

each recurrent communication class Hi, and for every distinct 1 < i, j < J

the directed edge (ij) has resistance ry. An i-tree in Q is now defined as a

spanning tree such that from every vertex j ^ i there is a unique path

directed from j to i.

For every vertex i let T\ denote the set of all i-trees on Q. The resistance

of an i-tree T e 71 is the sum of the resistances of its edges:
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r(T)= £ r i j (9)
(i.j)eT

The stochastic potential yx of a recurrent class Hi is now the least resistance

among all i-trees:

Yi=minr(T) (10)

Computing Yi for a given set of weights rij is a standard problem in

combinatorial optimization, known as the abhorescence problem. There

exist algorithms for solving it in the order of | J | 2 steps (Tarjan 1977). At

this point we can see that the potential function is independent of the

values of the relative probabilities of making mistakes X} and of the

probabilities q with which certain actions are taken when experimenting.

We can summarize these results by stating

Proposition 1: Let F be an n-person game on a finite strategy space. The

stochastically stable states of adaptive play with mistakes are the states

contained in the recurrent communication classes of the unperturbed

process, i. e. the equilibria of with rational agents, which have minimum

stochastic potential. The states of minimum stochastic potential are

independent of the relative probabilities with which the agents resort to

actions which are not best responses and of the probabilities with which
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certain actions are taken when the agents are experimenting as long as

these probabilities have full support.

That is, if a game F is weakly acyclic and the relative sample size k/m <

l/(Lr+2) the stochastically stable states of adaptive play is the convention

or are the conventions with minimum stochastic potential.

3 Stochastic stability and the size bias in the voting and mobility

model

The noise, caused by the individuals' mistakes or experimentation, the

consequent perturbed stochastic processes and the equilibrium concept of

stochastic stability imply that even in a stationary environment the

equilibrium will be upset from time to time. In our context this means that

the Nash equilibrium of the competitive process between jurisdictions

might be upset, leading to a process of changing voting equilibria and new

rounds of residential relocations. As long as the residential relocation is

costless, the agents do not care about how often they have to change the

community of residence. If we assume instead that the agents have to bear

moving costs to change their residence they will care about how often they

have to change their location. In other words they will care about how long
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the periods of inertia will last before a phase of turbulence is caused by the

pressure of the constant noise in the Markov process.

To show an agglomerative bias of the adaptive model of voting within

the communities and moving between communities we have to

demonstrate that the periods of stability are longer in relatively large

jurisdictions. The individuals have to have additional information on the

size of the communities. Taking account of positive mobility costs the

agents would then have an incentive to favor large jurisdictions in taking

their decisions where to locate, the decisions being guided by the local

fiscal policies.

To show that relatively large communities have longer periods of

inertia we turn to a technique of computing the stationary distribution of

adaptive play, using a technique developed by Freidlin and Wentzell

(1984).' More specifically, we want to determine the stationary distribution

when the noise parameter e is not converging to zero but small and

positive. If e were known precisely it is in principle possible to compute

1 The computation of stochastically stable states as set out in the

previous subsection is a special case of applying that technique.
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the stationary distribution \i£(h). One way would be to solve the system of

equations

(iePe = ^ e , with^iE >0 and £ jj.e(h) = 1 (11)
zeZ

In our model this system has as many equations as there are conceivable

distributions of median voter preferences indexed by their willingness to

pay for the public good. The technique of Freidlin and Wentzell offers a

route to solve for the stationary distribution at lower computational costs.

Like the computation of the stochastic potential function the determination

of \iE is based on the notion of rooted trees. It does, however, not proceed

from the construction of trees with the recurrent classes as vertices but on

trees which comprise all states of the process as vertices. Recall that

adaptive play Pe is an irreducible Markov process defined on a finite state

space H. We consider a directed graph with the vertex set H. The edges of

this graph form a h-tree, for one particular state h e H, if it consists of

H -1 edges and from each vertex h1 ^ h there is a unique directed path

form h' to h. The directed edges can be represented by ordered pairs of

vertices (h, h') and we can represent a h-tree T as a subset of all ordered
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pairs of neighboring vertices. Let 7~h be the family of all h-trees. We can

then define the likelihood of a h-tree T e Th as

(h,h')eTh

The probability H-E(h) of each state h can now be determined with the help

of the following lemma (cf. the simplified proof in Young 1998, Appendix,

pp. 151-153).

Lemma (Freidlin and Wentzell 1984): Let P be an irreducible Markov

process in a finite state space Z. Its stationary distribution /J, has the

property that the probability fi(z) of each state z is proportional to the sum

of the likelihoods of its z-trees, that is

M.(h) = v(h) / YJ V ( W ) ' where v (h ) = YJ P ( T ) •
weH TeTh

We define a state z as the relative distribution f types of an individual

community j . The state space of all distributions for an individual

community is denoted by Z. A z-tree is then given by

p(z)= npz,Z'

(z,z')eZ

For each z-tree we have
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K. K.
JJ (z,z JeZ

For every z e [0,1 ] we can then define

Taking logarithms we have for individual z-trees:

lim - l n v N ( z ) =

and the convergence is uniform on the vector w with elements [0,1]. Let z*

be the global maximum. For every small 5 >0 let F5 = {z: z-z* > 5} and

N w = {z:

and

z - < 5/2}. Then sup{V(z):z G F5} < inf {V(z): z e NM},

lim

JemV(z)dz

JemV(z)dz
N5/2

= 0

That is for large populations of individual communities the probability that

the distribution of types is in a very small neighborhood of the Nash

equilibrium is equal to one. From this we can conclude that for not too
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small mobility cost the changes of the voting equilibria will be small

enough not to induce relocations when the stochastically stable equilibria

are upset.

4 Conclusions

We have shown that the conjectures of the literature following the Tiebout

model can be supported by a model of adaptive behavior of the economic

agents. If the number of the jurisdictions is not very large, the assumption

of adaptive behaviour overcomes the conceptual problems of assuming

common knowledge of the game.

Adaptive play with a positive error probability avoids the results of

standard equilibrium models that the inter-community equilibrium may be

pareto-inferior. We show that the stochastically stable equilibria will be

selected the more sharply, and that therefore the periods of inertia are the

longer the larger the population of individual communities. If the agents

have to incur positive mobility costs, other things equal they will therefore

prefer relatively large communities in terms of the absolute size of the

population.
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Appendix 1

Let F be a weakly acyclic n-person game. For each strategy tuple s let L(s)

denote the shortest directed path in the best reply graph from the strategy-

tuple s to a strict Nash equilibrium. LT be the longest of all such shortest

paths:

Lf = maxL(s)
s

Theorem (Young 1993a): F be a weakly acyclic n-person game. If the

sample size k is smaller or equal to the number of records of a history m

divided by the length of the longest of all shortest directed paths leading

from an arbitrary strategy tuple to a Nash equilibrium plus 2 then adaptive

play converges almost surely to a convention, i. e. histories which contain

only identical elements.

Proof: We arbitrarily fix a sample size k and a length of a history m

with k < m/(Lr+2). To prove the theorem it is shown that there exists a

positive integer M and a positive probability p such that from any state h

the probability is at least p that adaptive play will converge to a convention

within M periods. M and p are time- and state-independent. Hence the

probability of not reaching an absorbing state after at least rM periods is at

most (l-p)r.
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Let h = (s(t-m+l), ..., s(t)) be the state in period t > m. In period t+1

there is a positive probability that each of the n agents samples the last k

plays in h, denoted by r\. There is also a positive probability that from

periods t+1 to t + k inclusive, every agent draws the sample r\ every time.

Finally there is a positive probability that, if an agent has a choice of

several bet replies to r\, he will choose the same one k times in succession.

Thus there is a positive probability of a run (s, s, ... , s) from periods t + 1

to t + kinclusive.1

Suppose that s happens to be a strict Nash equilibrium. There is a

positive probability that from periods t + k + 1 through t + m, each agent

will sample only the last k plays, in which case the unique best response of

each agent i is s. In that case they play s for m - k more periods. At that

point the process has reached an absorbing state, i.e. the players continue

to play s forever.

In case is not a strict Nash equilibrium, there exists a directed path s, s1,

... , sr in the best reply graph such that sr is a strict Nash equilibrium. The

first edge on this graph is s —» s'.. Lit i be an index such that s.j = s.j. That

1 This argument requires that the agents' memory is at least 2k-1 , since

otherwise they could not choose the sample r\ in period t+k.
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is, if player i plays a best response to strategies the other players play in s,

these other players have no reason to revise their strategies. Consider the

event in which agent i samples from the run of s established in periods t +

1 to t + k, and responds by playing Sj, while every agent j * i draws the

sample r\ = (s(t-k+l), ..., s(t)). By assumption, a best response of every

agent j to this sample is Sj. These events occur together with positive

probability, and there is a positive probability that they occur in every

period from t + k + l t o t + 2k, assuming that m > 3k - 1. The result is a run

of s' = (Sj, s.j) for k periods in succession.

Continuing in this way, we see that there is a positive probability of

obtaining a run of s, followed by a run of s' etc., followed eventually by a

run of sr.. Each run is of length k, and the run of sr occurs from period t +

kr + 1 to t + kr + k. To reach this point may require that some agent look

back kr + 2k - 1 periods, namely, from period t + kr + k to period t - k + 1.

This is possible because of the assumption that k < m/(Lr+2).

On this basis the process can converge to the absorbing state (sr, sr, ... ,

sr) by period t + kr + m if each agent samples the previous k plays from

periods t + kr + k+ 1 tot + kr + m inclusive.
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Since r < Lr, it is established that, given an initial state h, there is a

probability ph > 0 of converging to an absorbing state within M = k Lr + m

periods. Letting p = min heH Ph > 0> it follows that from any initial state the

process converges with probability at least p to an absorbing state within at

most M periods.
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