

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Dick, Rolf

Working Paper — Digitized Version
Tiefseebergbau versus Landbergbau: Metallproduktion
aus Manganknollen und Nickellateriterzen im
Wirtschaftlichkeitsvergleich

Kiel Working Paper, No. 131

Provided in Cooperation with:

Kiel Institute for the World Economy – Leibniz Center for Research on Global Economic Challenges

Suggested Citation: Dick, Rolf (1981): Tiefseebergbau versus Landbergbau: Metallproduktion aus Manganknollen und Nickellateriterzen im Wirtschaftlichkeitsvergleich, Kiel Working Paper, No. 131, Kiel Institute of World Economics (IfW), Kiel

This Version is available at: https://hdl.handle.net/10419/46834

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Kieler Arbeitspapiere Kiel Working Papers

Arbeitspapier Nr. 131*
TIEFSEEBERGBAU versus LANDBERGBAU
Metallproduktion aus Manganknollen
und Nickellateriterzen im Wirtschaftlichkeitsvergleich

von Rolf Dick November 1981

Institut für Weltwirtschaft an der Universität Kiel

Institut für Weltwirtschaft Kiel Forschungsabteilung I Düsternbrooker Weg 120; 2300 Kiel

Arbeitspapier Nr. 131*
TIEFSEEBERGBAU versus LANDBERGBAU
Metallproduktion aus Manganknollen
und Nickellateriterzen im Wirtschaftlichkeitsvergleich

von Rolf Dick November 1981

No 145 Oth 1 81 Netwickers

*In diesem Arbeitspapier wird über Forschungsergebnisse des Sonderforschungsbereichs 86/Teilprojekt 1 (Allokations- und Verteilungsaspekte der Meeresnutzung) berichtet. Diese Arbeiten werden von der Deutschen Forschungsgesellschaft finanziell gefördert. Der Autor dankt Wilfried Prewo für seine wertvollen Anregungen und Kommentare.

Mit den Kieler Arbeitspapieren werden Manuskripte, die aus der Arbeit des Instituts für Weltwirtschaft hervorgegangen sind, von den Verfassern möglichen Interessenten in einer vorläufigen Fassung zugänglich gemacht. Für Inhalt und Verteilung ist der Autor verantwortlich. Es wird gebeten, sich mit Anregungen und Kritik direkt an ihn zu wenden und etwaige Zitate aus seiner Arbeit vorher mit ihm abzustimmen.

Inhaltsverzeichnis

		Seite
I	Einführung	1
	Fixe und variable Kosten des Tiefsee- bergbaus	4
	Datenbasis	4
	Durchschnittliche fixe und variable Kosten	7
III	Fixe und variable Kosten des Landberg- baus	12
	Die Entwicklung der durchschnittlichen fixen Kosten im lateritischen Nickel- bergbau	12
	Die Entwicklung der durchschnittlichen variablen Kosten im lateritischen Nik- kelbergbau	14
IV	Analyse der Faktorabsorption im Tiefsee- bergbau und im Landbergbau	17
	Tiefseebergbau	17
	Landbergbau	19
V	Kostenvergleich Tiefseebergbau - Land- bergbau	20
VI	Schlußbemerkungen	26
Anhang A:	Tabellen A1 bis A9	28
Anhang B:	Fixe und variable Durchschnittskosten bezogen auf die Fördermenge an Mangan- knollen	53
	Literaturverzeichnis	62

TIEFSEEBERGBAU VERSUS LANDBERGBAU

Metallproduktion aus Manganknollen und Nickellateriterzen im Wirtschaftlichkeitsvergleich

I. Einführung

- 1. Während einer Pazifikfahrt des britischen Forschungsschiffes "HMS Challenger" im Jahre 1876 wurden auf dem Tiefseeboden knollenförmige polymetallische Gebilde mit hohen Mangangehalten entdeckt. Rund hundert Jahre später ist der vorgesehene Abbau der Manganknollen zum zentralen Streitthema der III. UN-Seerechtskonferenz geworden. Es ist nicht auszuschließen, daß die Konferenz an dieser Kontroverse scheitert. Strittig sind vor allem: Die Zugangsbedingungen zum Tiefseebergbau¹, die Organisation der vorgesehenen Meeresbodenbehörde, die Produktionsquoten, der Technologietransfer und die Besteuerung des Tiefseebergbaus².
- 2. Parallel zu den Verhandlungen auf der Seerechtskonferenz haben sich in den 1970er Jahren verschiedene Unternehmen, die Tiefseebergbau erwägen, zu Konsortien zusammengeschlossen³.

In der angelsächsischen Literatur werden für den Abbau der Manganknollen und deren Verhüttung die Begriffe "seabed mining" oder "deep sea mining" (Tiefseebergbau) verwendet. Im folgenden wird der Begriff "Tiefseebergbau" benutzt, weil unter den Begriff "Meeresbergbau" auch die Rohstoffgewinnung aus Schelfgebieten fällt.

Zu einer volkswirtschaftlichen Bewertung der institutionellen Aspekte und der Gegensätze zwischen Industrie- und Entwick-lungsländern vgl. Prewo /1979/; für eine völkerrechtliche Würdigung des Tiefseeregimes vgl. Graf Vitzthum /1978/. Die Tabelle A 1 im Anhang gibt eine Übersicht über die Tiefseebergbau-Konsortien und Joint Ventures.

Beim gegenwärtigen Stand von Forschung und Entwicklung, Prospektion und Exploration gilt der Tiefseebergbau als technisch realisierbar¹. Offen ist hingegen die Frage der betriebswirtschaftlichen Rentabilität. Zwar liegen bereits verschiedene Schätzungen über die Kosten des Tiefseebergbaus vor; entscheidend ist aber nicht so sehr die absolute Kostenhöhe, sondern die relative Wirtschaftlichkeit der Ausbeutung von Manganknollen im Vergleich zur Ausbeutung von Metallvorkommen an Land. Dieser Kostenvergleich ist das Ziel der vorliegenden Untersuchung².

3. Der künftige Tiefseebergbau wird in erster Linie mit dem (terrestrischen) Nickelbergbau konkurrieren. Neben Nickel enthalten die Manganknollen zwar auch andere Metalle, von denen vor allem Kupfer, Kobalt und Mangan wirtschaftlich bedeutsam sind. Ertragsmäßig ist Nickel jedoch die wichtigste Komponente, so daß der Tiefseebergbau am ehesten mit dem Nickelbergbau an Land verglichen werden kann. Im terrestrischen Nickelbergbau wird wiederum zwischen sulfidischen und lateritischen Erzen unterschieden. Neue terrestrische Betriebe werden nahezu

Freilich sind die betriebswirtschaftlichen Aspekte, die in der vorliegenden Untersuchung betrachtet werden, nur ein Teil der Wirtschaftlichkeitsrechnungen, die bei einer solchen Gegen- überstellung zu beachten sind. Darüber hinaus sind auch volkswirtschaftliche Kosten infolge "rechtlich-institutio- neller Regelungen und volkswirtschaftliche Vorteile, die sich nicht in den Gewinnerwartungen eines einzelnen Projekts niederschlagen", zu berücksichtigen (siehe Prewo, [1979],

Seite 183).

Im Gefolge der neunten und zehnten Sessionen der Seerechtskonferenz (1980 und 1981) sind die Informationen über die Aktivitäten der Tiefseebergbau-Konsortien spürbar zurückgegangen. Dies kann verschiedene Ursachen haben: Möglicherweise erscheint den Konsortien in der gegenwärtigen Phase der Konferenz eine zurückhaltende Informationspolitik geboten. Möglich ist aber auch, daß der Kenntnisstand so weit fortgeschritten ist, daß er jetzt nur noch durch Großversuche im kommerziellen Maßstab verbessert werden kann; angesichts des ungewissen Ausgangs der Konferenz mag dies den Unternehmen jedoch als zu riskant erscheinen.

ausschließlich auf der Basis lateritischer Erze errichtet werden¹. Für den Kostenvergleich zwischen Tiefseebergbau und Landbergbau müssen deshalb die Kosten der Gewinnung und Verhüttung von Manganknollen mit denen terrestrischer Nickellateriterze verglichen werden.

- 4. Zur Ermittlung der Kosten des künftigen Tiefseebergbaus und des Landbergbaus werden zwei Lösungswege beschritten: Der erste Ansatz geht von fixen und variablen Kosten, die für den Zeitraum 1965-1980 verfügbar sind, aus². Diese Kosten werden im Trend bis 1990, dem voraussichtlich frühesten Beginn des Tiefseebergbaus, projiziert. Der zweite Lösungsansatz geht von der Faktorabsorption aus: Faktormengen und Faktorkosten aktueller Nickellaterit- und fiktiver Tiefseebergbau-Betriebe und Annahmen über die voraussichtliche technologische Entwicklung im Bergbau- und Verhüttungssektor bilden die Grundlage zur Projektion der variablen Kosten.
- 5. Die Studie ist wie folgt gegliedert: Abschnitt II enthält Schätzwerte für fixe und variable Kosten des Tiefseebergbaus, Abschnitt III die Vergleichswerte für den Landbergbau. Die Analyse der Faktorabsorption im Tiefsee- und im Landbergbau erfolgt in Abschnitt IV. Für beide Lösungsansätze werden die Kosten des Landbergbaus und des Tiefseebergbaus in Abschnitt V miteinander verglichen.

¹Vgl. Bundesanstalt für Geowissenschaften und Rohstoffe, Deutsches Institut für Wirtschaftsforschung [1978].Im 2folgenden als BGR/DIW [1978] bezeichnet.

²Bei den Kostendaten für den Tiefseebergbau handelt es sich um geschätzte Werte, bei denen für den Landbergbau sowohl um geschätzte als auch um realisierte Werte.

II. Fixe und variable Kosten des Tiefseebergbaus

Datenbasis

- 6. Seit Mitte der 1970er Jahre sind eine Reihe teilweise sehr detaillierter Wirtschaftlichkeitsstudien über den Meeresbergbau veröffentlicht worden¹. Besonders erwähnenswert ist das am Massachusetts Institute of Technology (MIT) entwickelte Kostenmodell². Die "MIT-Studie" enthält Kostenschätzungen für die Bereiche Forschung und Entwicklung, Prospektion und Exploration, Bergbau, Transport, Aufbereitung und Verhüttung der Manganknollen in einem fiktiven Tiefseebergbau-Betrieb. Außer den fixen und den variablen Kosten werden in der MIT-Studie auch Erlöse für die Metalle Nickel, Kupfer und Kobalt geschätzt³.
- 7. Es ist zu erwarten, daß nicht zuletzt aufgrund der Erfahrungen, die durch Förder- und Verhüttungsversuche von Manganknollen inzwischen gewonnen wurden die Kostenschätzungen im Zeitablauf an Genauigkeit gewonnen haben. Aufgrund der Komplexität eines Tiefseebergbau-Projekts und der Vielfalt der technischen Lösungsmöglichkeiten erscheint es dennoch ange-

¹Erste Kostenschätzungen für den Tiefseebergbau sind Mitte der 21960er Jahre erschienen (Mero [1965]; Hess [1965]).

Nyhart u.a. [1978].

Das Basismodell der "MIT-Studie" beschränkte sich auf das 3-Metallverfahren (ohne Mangangewinnung). Mittlerweile wird die zusätzliche Gewinnung von Mangan mit in Betracht gezogen (4-Metallverfahren).Die in der MIT-Studie getroffenen Annahmen und die daraus abgeleiteten Schätzergebnisse wurden inzwischen von verschiedenen Autoren kritisch überprüft; vgl. Diederich u.a. [1979], Black [1980].

Die MIT-Studiengruppe arbeitet derzeit an einer Revision der ursprünglichen Studie.

bracht, für eine Beurteilung der Kosten des Tiefseebergbaus nicht nur auf die aktuellsten Kostenanalysen zurückzugreifen¹. Die wesentlichen Ausgangsdaten und Ergebnisse aller vorliegenden Kostenstudien sind in Tabelle A 2 (Anhang A) zusammengefaßt². Die Tabelle enthält folgende Größen:

- Betriebsgröße (Jahreskapazität),
- Gewinnungsverfahren (Art der Förderung der Manganknollen),
- Verhüttungsverfahren (Art der Verarbeitung der Manganknollen, Bezeichnung der gewonnenen Metalle),
- fixe Kosten für die Bereiche Forschung und Entwicklung,
 Prospektion und Exploration, Bergbau, Transport,
 Aufbereitung und Verhüttung,
- variable Kosten für die Bereiche Bergbau, Transport, Aufbereitung und Verhüttung,
- Annahme über die Menge der ausgebrachten Metalle.
- 8. Einige Studien enthalten auch Annahmen zu weiteren kostenwirksamen Faktoren. Sie wurden in die Tabelle A 2 unter der
 Rubrik "Bemerkungen" aufgenommen. Zu diesen Faktoren zählen
 beispielsweise die Lage (Tiefe) der Manganknollenfelder, der
 Bedeckungsgrad (Belegungsdichte) des Meeresbodens mit Manganknollen, die Oberflächenbeschaffenheit des Gewinnungsareals und
 der Wirkungsgrad der Sammel- und Aufnahmegeräte.

Die bislang von den Konsortien durchgeführten Förderungs- und Verhüttungstests haben eine Fülle von Erkenntnissen über die technischen Möglichkeiten des Tiefseebergbaus erbracht. Trotzdem verbleiben noch Unsicherheiten in bezug auf die technische Realisierung und die Höhe der fixen und der variablen Kosten, die bei einer Übertragung der Technologien von versuchsmäßigen, kleinen Pilotanlagen auf effiziente Großanlagen zu erwarten sind.

Die ältesten Kostenschätzungen, die uns vorlagen, sind aus der mittlerweile zum Klassiker des Tiefseebergbaus gewordenen Studie "The Mineral Resources of the Sea" von Mero [1965] entnommen; die aktuellsten Kostenschätzungen sind in einer Dissertation von Black "The Recovery of Metals from Deepsea Manganese Nodules and the Effects on the World Cobalt and Manganese Markets" [1980] enthalten.

- 9. Ein Vergleich der Kostenangaben in Tabelle A 2 erfordert zunächst ihre Umrechnung auf eine einheitliche Preisbasis1. Wie in den meisten anderen Kostenanalysen des Tiefseebergbaus wurde auch in dieser Studie der Chemical Engineering's Plant Cost Index für die Preisbereinigung herangezogen². Mit Hilfe dieses Index wurden die fixen und die variablen Kosten in Preisen von 1979 errechnet.
- 10. Neben der unterschiedlichen Preisbasis differieren die Ausgangsdaten der verschiedenen Kostenstudien auch hinsichtlich betriebsspezifischer Kenngrößen. So gibt es Unterschiede bei den angenommenen Betriebsgrößen, wobei die Jahreskapazitäten zwischen 0,913 und 3 Mill. Tonnen (Trockengewicht) schwanken. Darüber hinaus gibt es Unterschiede hinsichtlich der vorgesehenen Förder- und Verhüttungstechnologie. So gehen einige Kostenstudien davon aus, daß lediglich Kupfer, Nickel und Kobalt extrahiert werden. Solche Verhüttungstechnologien werden im folgenden als 3-Metall-Verfahren bezeichnet. Wird zusätzlich auch das Mangan ausgebracht, so handelt es sich um ein 4-Metall-Verfahren.

¹Einige der frühen Studien enthalten keinen Hinweis darauf, welche Preisbasis den Kosten zugrundeliegt. In diesen Fällen wurde das Erscheinungsjahr der Studie oder - sofern auch ein Erscheinungsmonat angegeben ist und dieser in der ersten Jahreshälfte liegt - das betreffende Vorjahr als Datum der Preisbasis angenommen.

Vgl. u. a. Diederich [1979], Seite 89 und Black [1980], Seite 3_{1}^{110} .
Mill short tons = 0,91 Mill. metric tons.

Durchschnittliche fixe und variable Kosten

- 11. Zum Vergleich der Kostenstudien werden durchschnittliche fixe und variable Kosten errechnet. Durchschnittskosten, die sich auf die gewonnene Metallmenge beziehen, konnten in 26 von 35 Fällen ermittelt werden; bei den restlichen Fällen liegen keine Angaben über die gewonnene Metallmenge vor¹.
- 12. Zum Vergleich der Kostendaten werden die Produktionsmengen aller Metalle in Nickeläquivalente umgerechnet. Dies erlaubt später den Vergleich zum konkurrierenden terrestrischen Nickellateritbergbau². Die Produktionsmenge eines ausgewählten Metalls, gemessen in Nickeläquivalenten, entspricht dabei der Nickelmenge, die erforderlich wäre, um den gleichen Erlös zu erzielen, der beim Verkauf der Menge dieses ausgewählten Metalls erlangt wird. Wesentlich für die Berechnung der Nickeläquivalente ist daher die Preisrelation des ausgewählten Metalls zu Nickel³. Die Koeffizienten der folgenden Nickeläqui-

In allen Fällen können aber Durchschnittskosten bezogen auf die Menge an Manganknollen (Fördermenge) errechnet werden.

Diese Berechnung und ihre Auswertung erfolgt in Anhang B.

Die Umrechnung in Nickeläquivalente ist in Kostenstudien über den Tiefseebergbau allgemein gebräuchlich. Vgl. beispielsweise Little [1977, S. 8], AMR [1979, S 6], Black, [1980, S. 122].

³Ist beispielsweise der Kobaltpreis doppelt so hoch wie der Nickelpreis, so werden – um die Nickeläquivalente dieser Kobaltmenge zu ermitteln – die Kobaltmengen mit dem Faktor 2 multipliziert.

valenz - Formel basieren auf langfristigen Preisrelationen 1:

$$Ni_{\ddot{a}qu} = Q_{Ni} + \frac{1}{3}Q_{Cu} + 2Q_{Co} + \frac{1}{16}Q_{FeMn} + \frac{1}{21}Q_{SiMn} + \frac{1}{7}Q_{Mn} + \frac{6}{5}Q_{Mo} + \frac{1}{41}Q_{MnCO_3} + \frac{1}{48}Q_{MnSiO_4}$$

wobei

Ni agu = Nickeläquivalent (Mengenangabe)

Q = Menge

Ni = Nickel

Cu = Kupfer

Co = Kobalt

FeMn = Ferromangan

SiMn = Silikomangan

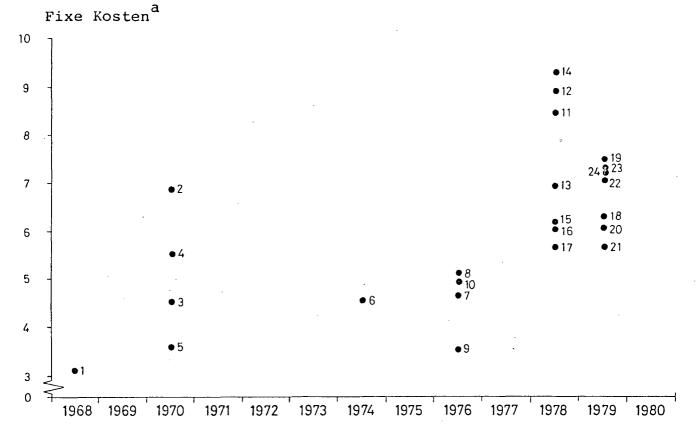
Mo = Molybdän

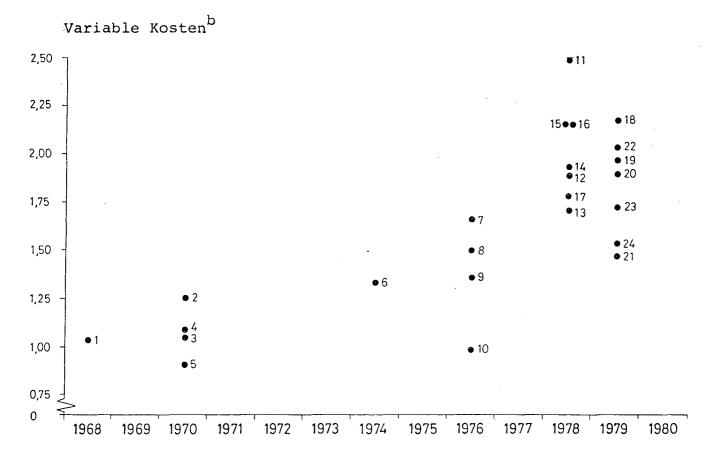
MnCo₃ = Mangancarbonat (manganhaltige Schlacke, 48 vH Mangan)

 $MnSiO_4$ = Mangansilikat (25-30 vH Mangan)

13. Soweit in den vorliegenden Studien Annahmen über die Mengen der ausgebrachten NE-Metalle enthalten sind, wurden die betreffenden Nickeläquivalente nach der o.g. Formel errechnet (Tabelle A 3). Je nach Betriebsgröße, Förderverfahren sowie der vorgesehenen Verhüttungstechnologie schwanken die Werte zwischen rund 20.000 und 100.000 Tonnen Nickeläquivalent pro Jahr. In allen Projekttypen, in denen nur Kupfer, Nickel, Kobalt und teilweise auch Molybdän gewonnen wird, ist Nickel eindeutig das nach dem Erlösanteil wichtigste Metall. Diese Aussage trifft allerdings nicht immer zu, wenn auch Mangan, sei es in reiner Form oder in Form von Ferro- oder Siliko-Mangan, zusätzlich

Die Koeffizienten für die Metalle Kupfer, Kobalt, Ferromangan, Silikomangan und reines Mangan wurden auf der Basis von Preisangaben (real long run metal price) in Black [1980], Seiten 122 und 255 errechnet. Der Koeffizient für Molybdän basiert auf Preisangaben in Little [1977], Seite 46, die Koeffizienten für MnCO3 und MnSiO4 auf Preisangaben in Little [1979], Seite 32.


ausgebracht wird. In diesen Fällen trägt Mangan wesentlich zum Gesamtnickeläquivalent bei; seine Nickeläquivalenz-Anteile sind oftmals höher als die Nickelanteile.


- 14. Schaubild 1 zeigt die durchschnittlichen fixen und variablen Kosten. Dieses Schaubild basiert auf den Angaben in Tabelle 1¹. Im Zeitablauf sind die Schätzwerte für beide Kostenwerte gestiegen: Für den Zeitraum 1968 1979 ergibt sich im Fall der fixen Kosten eine jahresdurchschnittliche Steigerungsrate von 5 vH, für die variablen Kosten von mehr als 6 vH².
- 15. Gegenwärtig, wird angenommen, daß der Tiefseebergbau voraussichtlich erst ab 1990 im Großmaßstab betrieben wird³. Unter der Annahme, daß in den Jahren bis 1990 die reale Kostenentwicklung ähnlich verläuft wie in der Vergangenheit, würden sich für das Jahr 1990 durchschnittliche fixe Kosten von 12 US-\$ (1979er Preise) pro Pound Nickeläquivalent Jahreskapazität und durchschnittliche variable Kosten von 3,5 US-\$ (1979er Preise) pro Pound Nickeläquivalent ergeben (Tabelle A4). Diese Ergebnisse der Trendanalyse müssen mit den Kostenschätzungen für den Nickellateritbergbau verglichen werden.

Die Angaben in Tabelle 1 geben darüber hinaus Aufschluß über die Kostenrelation zwischen den Verfahren einschließlich Mangangewinnung und den Verfahren ohne Mangangewinnung. Nach den älteren Schätzungen (bis Mitte der 1970er Jahre) liegen die Durchschnittswerte sowohl bei den fixen als auch bei den variablen Kosten im "4-Metall-Verfahren" deutlich unter denen des "3-Metall-Verfahrens". Neuere Kostenschätzungen lassen gdiesen Schluß nicht mehr eindeutig zu.

Die betreffenden Schätzgleichungen zeigt Tabelle A4 im Anhang. So wird beispielsweise in dem vom Bundestag im August 1980 beschlossenen Gesetz zur vorläufigen Regelung des Tiefseebergbaus eine Gewinnung "erheblicher Mengen von mineralischen Rohstoffen mit dem Ziel ihrer wirtschaftlichen Nutzung..." vor dem 1. Januar 1988 als nicht zulässig erklärt (vgl. Gesetz zur vorläufigen Regelung des Tiefseebergbaus, vom 16. August 1980, §2 und §4). Diese Regelung wurde aufgrund internationaler Absprachen in das Gesetz aufgenommen. Auch dieses Datum deutet darauf hin, daß der Tiefseebergbau wohl kaum vor Ende der 1980er Jahre eine wirtschaftliche Bedeutung in der Metallversorgung erlangen wird.

Schaubild 1 - Durchschnittliche fixe und variable Kosten im Tiefseebergbau 1968-1979

^aDurchschnittliche fixe Kosten in US\$ (1979) pro Pound Nickeläquivalent Jahreskapazität. - ^bDurchschnittliche variable Kosten in US\$ (1979) pro Pound Nickeläquivalent.

Quelle: Tabelle 1

Tabelle 1 - Durchschnittliche fixe und variable Kosten im Tiefseebergbau (Schätzungen 1968-1979)

	Lfd. Nr.	Kapazität (Mio jato Mangan- knollen)	Metalle a	Durchschnittliche fixe Kosten bin US\$/lb Nickeläqui- valent Jahreskapazi- tät (1979er Preise)	Durchschnittliche variable Kosten in US\$/1b Nickeläqui valent (1979er Preise)
Sorenson P.E, Mead W.J. (1968)	1	1,80	4	3,11	1,04
Drechsler H.	2	1,00	3	6,89	1,25
(1970)	3	1,00	4	4,52	1,05
	4	2,00	3	5,52	1,09
	5	2,00	4	3,62	0,91
Moncrieff A., Smale Adams K. (1974)	6	3,00	3	4,57	1,33
Arthur D.Little	7	2,72	4 ^C	4,68	1,66
(1976)	8	2,72	5 ^d	5,13	1,50
ļ	9	0,91	5 ^e	3,54	1,36
Nyhart J.D. u.a.(1976)	10	2,72	3	4,97	0,98
Diederich F. u.a.(1978)	11	2,72	3	8,46	2,48
AMR	12	3,00	4 ^f	8,90	1,88
(1978)	13	3,00	4 g	6,96	1,71
ľ	14	3,00	3	9,28	1,93
Arthur D.Little	15	2,72	4 ^h	6,21	2,16
(1978)	16	2,72	5 ⁱ	6,08	2,16
	17	2,72	5 ^j	5,70	1,78
Black J.R.H.	18	3,00	4 ^k	6,33	2,17
(1979)	19	3,00	3 ^k	7,50	1,97
	20	3,00	41	6,09	1,90
	21	3,00	3 ¹	5,68	1,47
	22	3,00	4 ^m	7,05	2,03
	23	3,00	3 ^m	7,27	1,72
	24	3,00	4 ⁿ	7,24	1,53

^aWenn nicht anders angegeben, bedeuten: 3 (Kobalt, Nickel, Mangan); 4 (Kobalt, Kupfer, Nickel, Mangan); 5 (Kobalt, Kupfer, Nickel, Mangan, Molybdän). Zu den Metallen und Verhüttungsverfahren vgl. auch Tabelle A2.

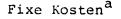
^bOhne Forschungs- und Entwicklungsaufwand. - ^CKennecott. - ^dINCO. - ^eOMA. - ^f220 000 jato FeMn. 9660 000 jato FeMn. - h"Ammonia Leach" ohne Mangan. - i"Ammonia Leach" mit Mangan. - jPyromet. - kINCO. - lCuprion. - ^mSulfuric Acid. - ⁿHydrochloric Acid.

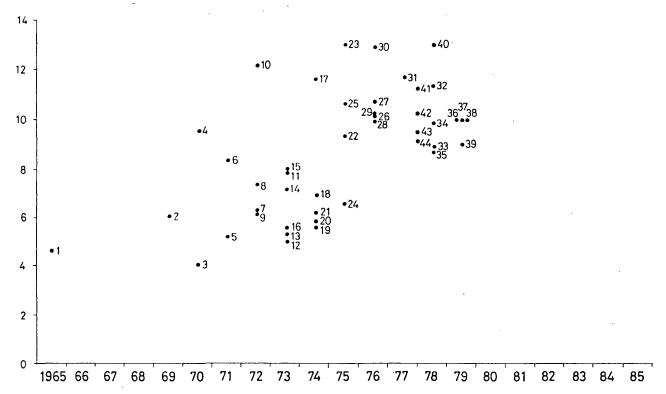
Quelle: Tabelle A2 - Eigene Berechnungen.

III. Fixe und variable Kosten des Landbergbaus

Die Entwicklung der durchschnittlichen fixen Kosten im lateritischen Nickelbergbau

16. Die Tabelle A5 enthält Daten über durchschnittliche fixe Kosten für die integrierte Nickelproduktion. Die Daten umfassen den Zeitraum 1965 - 1979; Preisbasis ist 1979¹. Die Tabelle A5 enthält auch für alle Beobachtungen einen Hinweis auf die betreffende Erzart: Bei 30 der 44 Projekte ist mit Sicherheit bekannt, daß es sich um lateritische Nickelerze handelt; in den restlichen 14 Fällen geht aus den Quellen nicht hervor, ob es sich um lateritische oder sulfidische Erze handelt; doch vermutlich überwiegen bei diesen 14 Projekten die Nickellateriterze².


17. Schaubild 2 zeigt die Entwicklung der durchschnittlichen fixen und variablen Kosten im Landbergbau. Wie bei den Schätzwerten für den Tiefseebergbau sind die fixen Kosten im Nickellateritbergbau im Beobachtungszeitraum (1965 - 1979) deutlich gestiegen, der Kostenanstieg beträgt im Jahresdurchschnitt mehr als 6 vH. Die Werte für die einzelnen Beobachtungen sind allerdings um diesen Trend beachtlich gestreut³. Ein wesentlicher Grund für den Anstieg der realen fixen Kosten liegt darin, daß neue Nickelproduktionsbetriebe zunehmend mehr in Regionen errichtet werden müssen, die - schon vor den spezifischen Arbeiten für den Erzabbau - erhebliche infrastrukturelle Maßnahmen erfordern. Die Lagerstätten der Nickellateriterze, die für einen künftigen Abbau in Frage kommen, liegen nahezu ausnahmslos


Es handelt sich überwiegend um Projektvorhaben in Entwicklungsländern. Diese Länder verfügen zumeist nur über lateritische Nickelerze.

Für die Preisbereinigung wurde - wie auch im Falle des Tiefseebergbaus (vgl. Ziffer 9) - der Chemical Engineering Plant Cost Index verwendet.

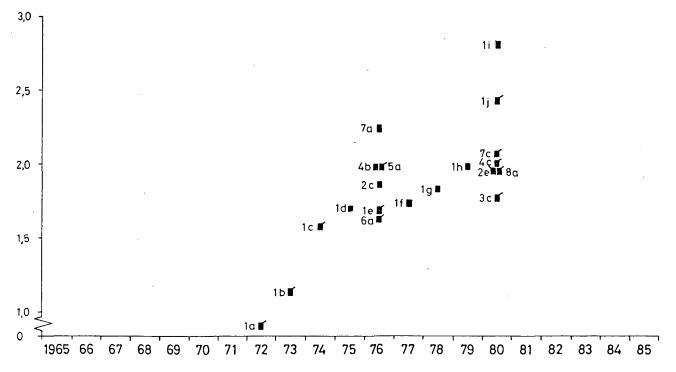

Tabelle A 4 (Gleichung 2) zeigt die Trendschätzung mit allen 44 in Tabelle A 5 genannten Projekten. Danach ergibt sich eine jahresdurchschnittliche Steigerungsrate von 6,5 vH. Werden nur die 30 "sicheren" Nickellateritprojekte in die Trendanalyse einbezogen, so ergibt sich eine jahresdurchschnittliche Steigerungsrate von 9,4 vH (Tabelle A 4, Gleichung 3).

Schaubild 2 - Durchschnittliche fixe und variable Kosten im Nickellateritbergbau 1965-1980

Variable Kosten^b

[■] Auslastungsgrad der Produktionskapazität ≥ 90 vH

Quelle: Tabellen 2 und A5

aDurchschnittliche fixe Kosten in US\$ (1979) pro Pound Nickel Jahres-kapazität. - bDurchschnittliche variable Kosten in US\$ (1979) pro Pound Nickel.

in tropischen, infrastrukturell kaum erschlossenen Regionen¹. Darüber hinaus muß immer mehr auf Erze zurückgegriffen werden, deren Wertmetallgehalt niedriger ist als in den bisherigen Bergbaubetrieben. Umweltschutzmaßnahmen sind ein weiterer Grund für Kostensteigerungen².

Die Entwicklung der durchschnittlichen variablen Kosten im lateritischen Nickelbergbau

18. Auch die durchschnittlichen variablen Kosten des Nickellateritbergbaus sind im Zeitablauf stark gestiegen. Tabelle 2 und Schaubild 2 vermitteln einen Eindruck von der Entwicklung der variablen Kosten im Zeitraum 1972-1980³. Wie schon bei den fixen Kosten, streuen auch bei den variablen Kosten die Werte beachtlich. Diese Streubreite ist zurückzuführen auf Unterschiede im Nickelgehalt der Roherze, in den Verhüttungsverfahren, im Lohn- und Gehaltsniveau, in Material- und Energiekosten, in der Art und Güte des ausgebrachten Nickels (beispielsweise Ferronickel, Nickelmatte, Nickel der Güteklassen I oder II), in der Kapazitätsauslastung der Produktionsbetriebe und im gewählten Abschreibungsverfahren. Soweit in Einzelfällen durch die Gewinnung von Kuppelprodukten die anteiligen Kosten der Nickelerzeugung reduziert werden konnten, wurde dies bei den durchschnittlichen variablen Kosten berücksichtigt. Für den

Zu den Lagerstätten der Nickellateriterze vgl. BGR/DIW [1978].
Die zusätzlichen fixen Kosten zur Erfüllung von Umweltschutzauflagen bei der Errichtung neuer Metall-Bergbaubetriebe und
Verhüttungsanlagen betragen etwa 25 vH der sonstigen fixen
Kosten (vgl. Mikesell, Financing for Expanding Free World Mine
3Producing Capacity Through 1990).

Ausgewiesen sind vor allem Daten des Unternehmens Falconbridge Dominicana. Darüber hinaus zeigt die Tabelle 3, wenn auch sehr lückenhaft, variable Kosten von Nickellateritbetrieben Neukaledoniens, Indonésiens, Australiens, der Vereinigten Staaten, Griechenlands, Guatemalas, der Philippinen und Japans. Es handelt sich hierbei sowohl um tatsächliche durchschnittliche Kosten bei der jeweiligen Kapazitätsauslastung als auch um theoretische Werte bei Vollauslastung der Produktionskapazität.

Tabelle 2

Nickelproduzent (Produktform 1980)		Jahr	Ausla- stungs- grad in vH		schreibung rtisation	mit Absound Amo:	in US \$/lb : chreibung rtisation ^a uldendienst	mit Abso	chreibung, ation und ndienst
	lfd. Nr.			lfd. Preise	konstante Preise	lfd. preise	konstante Preise	lfd. Preise	konstante Preise ^b
Falconbridge Dominicana, Dominikanische Republik (Ferronickel)	1a 1b 1c 1d 1e 1f 1g 1h 1i	1972 ^C 1973 1974 1975 1976 1977 1978 1979 1980 (1980) ^d	95 95 99 85 92 74 60 74 50 (100)	0,52 0,68 1,09 1,30 1,36 1,48 1,68 1,98 3,08 (2,66)	0,90 1,13 1,57 1,70 1,69 1,73 1,83 1,98 2,81 (2,43)	0,66 0,83 1,23 1,51 1,55 1,70 1,92 2,14 3,31	1,15 1,37 1,78 1,98 1,93 1,99 2,09 2,14 3,03	0,92 1,09 1,48 1,81 1,80 1,98 2,19 2,35 3,64 (3,19)	1,60 1,81 2,13 2,36 2,24 2,32 2,39 2,35 3,33 (2,92)
Société Metallur- gique Le Nickel (SLN), Neukaledonien (Nickel Klasse I)	2a 2b 2c 2d 2d 2e	1973 1974 1976 1980 (1980) ^d	81 95 87 62 (100)	1,50	1,86	1,26 1,29	2,09 1,86	1,52 1,54 4,40 (2,91)	2,52 2,22 4,02 (2,66)
Soroako, Indonesien (Nickelmatte)	3a 3b 3c	1974 1980 (1980) ^d	100 (100)	(1,94)	: (1,77)	0,83	1,20	4,51 (3,12)	4.12 (2,85)
Greenvale, Australien (Nickel Klasse II, Nickeloxid)	4a 4b 4c	1974 1976 1980 (1980) ^d	100 : (100)	1,60	1,99 (2,00)	0,92	1,33	1,92 4,30 (3,22)	2,77 3,93 (2,94)
Larco, Griechenland	5a	1976	91	1,60	1,99	•	•		•
Hanna, Oregon/USA	6a	1976	90	1,30	1,62	•	•	•	•
Marindugue, Philippinen (Nickel Klasse I)	7a 7b 7c	197.റ 1980 (1980) ^d	55 (100)	1,80	2,24		: :	4,68 (3,14)	4,28 (2,87)
Exmibal, INCO Guatemala (Nickelmatte, nicht raffniert)	8a	(1980) ^d	(100)	(2,15)	(1,96)	٠	•	(3,13)	(2,86)
Japanische Produ- zenten (.)	9a	1980	•			•	•	3,49	3,19

Im Falle SLN, Soroako und Greenvale "net cash operating cost excluded dept servicing". Preisbasis 1979, Preisbereinigung mit CE-Index

Der Produktionsbeginn erfolgte am 1.6. 1972. Die Gesamtproduktion 1972 betrug 38,4 Mill. lbs.
Die Kostendaten in Klammern sind theoretische Werte bei Vollauslastung der Produktionskapazität.

Keine Angabe

Kostenvergleich mit dem Tiefseebergbau müssen darüber hinaus die Kosten des Landbergbaus um den Kapazitätsauslastungseffekt bereinigt werden (Tabelle A 4, Gleichung 6).

19. Der Anstieg der variablen Kosten betrug im Zeitraum 19721980 im Jahresdurchschnitt mehr als 7 vH. Der rasche Anstieg der
variablen Kosten des Nickellateritbergbaus ist zu einem wesentlichen Teil auf die Verteuerung des Faktors Energie - insbesondere von 1973 auf 1974 und von 1979 auf 1980 - zurückzuführen. Der Einfluß der Kapazitätsauslastung auf die variablen
Kosten läßt sich anhand des folgenden Beispiels verdeutlichen:
nach der o.g. Gleichung ergeben sich für 1980 bei voller Kapazitätsauslastung variable Kosten von 2,22 US\$ (Preisbasis 1979)
pro Pound Nickel und 2,94 US\$ (Preisbasis von 1979) pro Pound
Nickel bei einem Kapazitätsauslastungsgrad von nur 50 vH.
Demnach steigen die variablen Kosten bei einem Kapazitätsauslastungsgrad von nur 50 vH um nahezu ein Drittel im Vergleich zu
dem Wert bei Vollauslastung¹.

Im Falle Falconbridge Dominicana ist der Einfluß des Kapazitätsauslastungsgrads nach den vorliegenden Daten offenbar nicht ganz so groß; die variablen Kosten lagen bei einer Kapazitätsauslastung von 50 vH im Jahre 1980 rund 16 vH über dem Wert bei Vollauslastung (vgl. Tabelle 3).

IV. Analyse der Faktorabsorption im Tiefseebergbau und im Landbergbau

Tiefseebergbau

- 20. Die Studie von Black [1980] enthält detaillierte Angaben über den Faktoreinsatz im Tiefseebergbau. Die dort getroffenen Annahmen über die Faktormengen beruhen im wesentlichen auf der MIT-Studie. Zur Kostenberechnung verwendet Black die Faktorpreise von 1979 für die Vereinigten Staaten (Tabelle A 6).

 Tabelle 3 zeigt die Struktur des Faktoreinsatzes für den Tiefseebergbau, getrennt nach 3-Metallverfahren und 4-Metallverfahren (einschließlich Mangangewinnung). Danach sind bei den 3-Metallverfahren der INCO-Schmelzprozeß und das Kennecott-Cuprion-Verfahren besonders energieintensiv, das SAL-Verfahren (High Temperature Sulfuric Acid Leach Process) besonders materialintensiv. In allen Fällen ist die zusätzliche Gewinnung des Mangans mit hohen Energiekosten verbunden; der Anteil der Energiekosten an den variablen Kosten beträgt je nach Verfahren zwischen 30 vH und annähernd 45 vH.
- 21. Unter den verschiedenen Verfahren gilt das INCO-Verfahren als vergleichsweise weit fortgeschritten. Die Analyse der Faktorabsorption wird deshalb auf dieses Verfahren beschränkt. Tabelle A 7 zeigt für die von INCO vorgesehenen 3-Metall- und 4-Metallverfahren die erforderlichen Faktormengen, jeweils bezogen auf einen Output von einem Pound Nickeläquivalent. Der Materialeinsatz ist nach Art des Materials (Chemikalien, Kalk, Elektroden usw.) und der Energiebedarf nach der Art des Energieträgers (Heizöl, Kohle, Strom usw.) getrennt ausgewiesen. Für den Energiebedarf des Tiefseebergbaus ergeben sich Werte von 32,4 kWh/lb Nickeläquivalent (3-Metallverfahren) bzw. 35,7 kWh/lb Nickeläquivalent (4-Metallverfahren).

¹ Zu den Umrechnungsfaktoren für Energiebilanzen vgl. Tabelle A 8.

Tabelle 3 - Struktur des Faktoreinsatzes im Tiefseebergbau^a
(vH-Anteile der Produktionsfaktoren an den variablen Kosten, Preisbasis 1979)

Produktions- verfahren ^b	3-Met (oh	all-Verfahre ne Mangan)	en		4-Metall-Ve:		
Faktoren	INCO	Cuprion	SAL	INCO	Cuprion	HAL	SAL
Energie	38,2	38,5	14,3	43,5	44,4	38,2	32,5
Arbeit	12,1	15,7	14,2	11,3	12,8	8,8	12,2
Material	21,2	16,6	39,9	22,3	20,3	18,8	31,3
Kapitalabhängige ^C	23,0	22,1	25,2	20,0	19,3	30,2	20,9
Sonstige	5,5	7,1	6,4	2,9	3,2	4,0	3,1

a Bergbau, Transport, Aufbereitung und Verhüttung

Quelle: Black [19807. - Eigene Berechnungen.

INCO = INCO Smelting Process; Cuprion = Kennecott Cuprion Process; SAL = High Temperature Sulfuric Acid Leach Process; HAL = Hydrochloric Acid Leach Process (Prozeß zur Gewinnung von Nickel, Kupfer, Kobalt und Mangan);

Jährliche Instandhaltungskosten 2,5 vH, Vermögenssteuer 4 vH und Versicherungsprämien 0,5 vH der Fixkosten

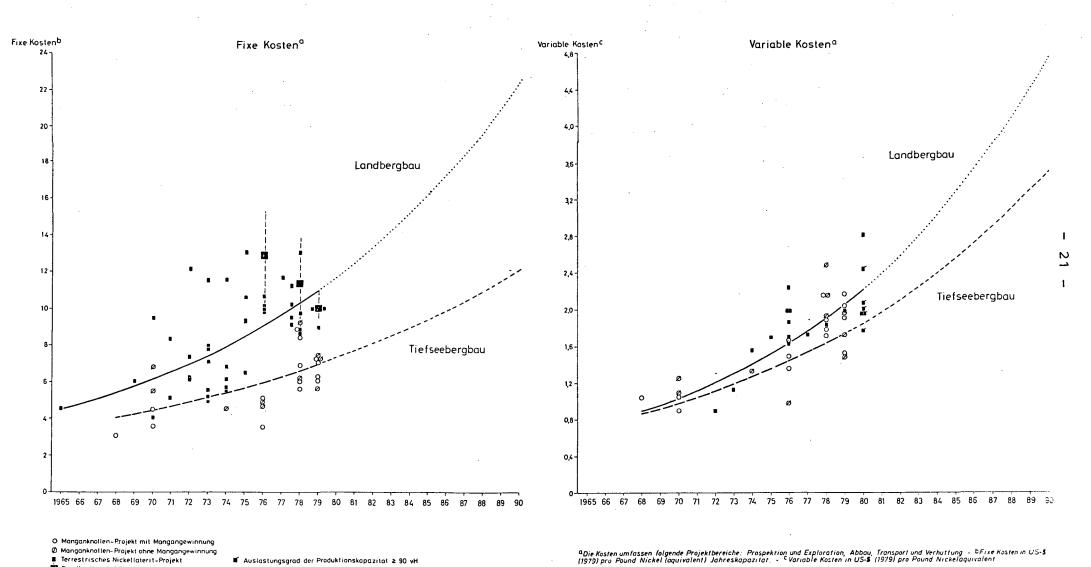
Landbergbau

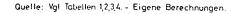
- 22. Tabelle A 7 enthält Angaben zu den Faktormengen im Landbergbau. Beispielhaft sind für drei Nickellateritprojekte, in denen Ferronickel produziert wird, die spezifischen Faktormengen (je Pound Nickel) angegeben. Zwei dieser drei Beispiele beruhen auf Erfahrungswerten eines europäischen Industrieunternehmens¹. Das dritte Beispiel zeigt den effektiven Material- und Energieeinsatz in dem brasilianischen Unternehmen Morro do Niguel. Für den Faktor Arbeit liegen in diesem Fall keine Angaben vor. Die Werte für den Energiebedarf des Landbergbaus liegen jeweils bei 28,4 kWh/lb Nickel (Nickellateritbergbau mit 1,25 Millionen Tonnen Roherz), 34,0 kWh/lb (1,5 Millionen Tonnen Roherz) und 47,2kWh/lb Nickel im Falle Morro do Niguel. Diese Werte für den Nickellateritbergbau liegen damit weitgehend im Rahmen der Daten aus anderen Quellen².
- 23. Der durchschnittliche Energiebedarf des Nickellateritbergbaus ist danach ungefähr so hoch wie der des Tiefseebergbaus. Da die einzelnen Energieträger jedoch in unterschiedlichem Maß eingesetzt werden, können bei den Energiekosten dennoch Unterschiede auftreten. Um einen detaillierten Kostenvergleich vornehmen zu können, in den auch die übrigen Produktionsfaktoren einbezogen werden, ist es erforderlich, Annahmen über die Faktorpreise zu treffen. Eine entsprechende Kostenberechnung auf der Basis der Faktorabsorptionsanalyse wird neben einer vergleichenden Kostenbetrachtung auf Basis der Trendanalysen für den Tiefseebergbau und für den Landbergbau im folgenden Abschnitt vorgenommen.

Für einen jährlichen Ausstoß von 50 Millionen lbs Nickel in Ferronickel werden nach der ersten Alternative 1,25 Millionen Tonnen Roherz, nach der zweiten Alternative 1,5 Millionen 2 Tonnen Roherz verarbeitet.

Vgl. beispielsweise Dasher [1976, Seite 389].

V. Kostenvergleich Tiefseebergbau-Landbergbau


- 24. Abschließend werden auf der Basis der bisherigen Untersuchungsergebnisse die Kosten des Landbergbaus und des Tiefseebergbaus miteinander verglichen und eine Projektion für das Jahr 1990 vorgenommen. Im Schaubild 3 sind die Streudiagramme der fixen und variablen Kosten des Landbergbaus und des Tiefseebergbaus dargestellt¹. Dieser schematische Vergleich zeigt bei den fixen wie auch bei den variablen Kosten Vorteile des Tiefseebergbaus. Die Vorteile des Tiefseebergbaus sind bei den Fixkosten allerdings stärker ausgeprägt als bei den variablen Kosten.
- 25. Zusätzlich zu den Streudiagrammen zeigt Schaubild 3 für den Landbergbau und den Tiefseebergbau die Trendprojektionen der variablen und fixen Kosten für den Zeitraum 1965-1990². Nach diesen Trendberechnungen erweist sich der Tiefseebergbau sowohl bei den fixen Kosten als auch bei den variablen Kosten im Vergleich zum Landbergbau als wettbewerbsfähig; die Kosten des Tiefseebergbaus liegen am Ende des Beobachtungszeitraums (1979) und im Projektionsjahr 1990 niedriger als die Vergleichswerte des Landbergbaus.


Die Schätzgleichungen für diese Trendprojektionen basieren auf dem jeweils längstmöglichen Beobachtungszeitraum (Gleichungen (1), (2), (4) und (6) der Tabelle A 4).

Die variablen Kosten wurden gemessen in US\$ (1979) pro Pound Nickel(-äquivalent) und die fixen Kosten in US\$ (1979) pro Pound Nickel(-äquivalent) Jahreskapazität. Im Falle des Tiefseebergbaus handelt es sich ausschließlich um Schätzwerte, im Falle des Landbergbaus teilweise um Plan- oder Schätzzahlen, teilweise um effektive Kosten von produzierenden Nickellateritbetrieben. Die in Schaubild 3 besonders (mit einer Fahne) gekennzeichneten Beobachtungen für den Landbergbau sind variable Kosten bei "Vollauslastung" der Produktionskapazität (Auslastungsgrad ≥ 90 vH).

Tiefseebergbau versus Landbergbau Schaubild 3 -

Streudiagramme und Trendprojektion der fixen und variablen Kosten im Tiefseebergbau (Manganknotten) und im Landbergbau (Nicketlateriterze) - (1965 bis 1990)

Bandbreite mit Mittelwert fürmehrere terrestrische Nickellaterit-Projekte

■ Auslastungsgrad der Produktionskapazität ≥ 90 vH

■ Terrestrisches Nickellaterit-Projekt

26. Bei den Kostenberechnungen für den Tiefseebergbau auf der Basis der Faktorabsorption bietet es sich an, dem von Black gewählten Vorgehen zu folgen und die Faktorpreise der Vereinigten Staaten in Ansatz zu bringen. Weiterhin wird angenommen, daß die Faktorpreise für Material und Energie im Landbergbau mit denen im Tiefseebergbau identisch sind. Zur Ermittlung der Arbeitskosten im Landbergbau werden dagegen nur 75 vH der Löhne und Gehälter des Tiefseebergbaus eingesetzt. Auf diese Weise soll berücksichtigt werden, daß der Nickellateritbergbau überwiegend in Ländern mit niedrigem Lohnniveau betrieben wird 1.

- 27. Die Tabelle 4 zeigt die Ergebnisse dieser Kostenberechnung aufgrund der Faktorabsorptionsanalyse. Danach
 - unterscheiden sich die Gesamtkosten, das heißt die variablen und die anteiligen Fixkosten des Tiefseebergbaus, kaum von denen des konkurrierenden Landbergbaus,
 - sind sowohl der Landbergbau als auch der Tiefseebergbau besonders energie-intensiv2,
 - erweist sich der Tiefseebergbau als material-intensiver 3 im Vergleich zum Landbergbau,
 - liegen die kapitalabhängigen Kosten des Landbergbaus höher als diejenigen des Tiefseebergbaus.

Bemerkenswert ist bei diesem Kostenvergleich auf der Basis der Faktorabsorptionsanalyse, daß die variablen Kosten des Tiefseebergbaus sich nicht wesentlich von den Kosten des Landbergbaus unterscheiden. Anders als im Falle der Trendanalyse erweist sich

Prozeßmaterial wie Chemikalien, Elektroden usw. (vgl. Tabelle A 7).

 $^{^{}m 1}$ Dabei wird angenommen, daß die zumeist geringere Arbeitsproduk-2tivität diesen Lohnvorteil nicht kompensiert.

Der Energieanteil an den variablen Kosten bewegt sich zwischen 38 vH (Tiefseebergbau, 3-Metallverfahren) und rund 45 vH (Landbergbau, Ferronnickelprozeß, Alternative B). Nach Angaben von Falconbridge Nickel Mines Ltd. betrug 1980 der Energieanteil 3bei Falconbridge Dominicana 60 vH.

Tabelle 4

Variable und anteilige fixe Kosten in US \$ (1979) pro Pound Nickel(-Äquivalent) im Tiefseebergbau und im Landbergbau (Faktorabsorptionsansatz)

Faktor	Tiefseeberg	bau (INCO)	Landbo	ergbau	
	ohne Mangan-	mit Mangan-	Ferronickelprozeß ^a		
	gewinnung	gewinnung	Alternative A ^b	Alternative B ^C	
Arbeit Arbeiterstd Angestelltenstd	0,1310 0,1043	0,1310 0,1172	0,2000 0,0500 0,25 d	0,2000 0,0500 <u>0,25</u> d	
Arbeit insgesamt	0,24	<u>0,25</u>	0,25	0,25	
Material Chemikalien Elektroden LIX 64 N Kalk Elektroden-Paste (Eisen) Schrott Koks Flußmittel (Silica) div. Material für Bergbau und Trans- port Wasser	0,2664 0,0324 0,0069	0,1633 0,0184 0,0039 0,0231 0,0215 0,0450 0,1140 0,0308	0,0081	0,0098	
Material insgesamt	0,42	0,48	0,10	0,12	
Energie Kohle Strom (Bergbau und Transport) Strom (Aufbereitung und Verhüttung) Dampf Heizöl Dieselöl	0,2658 0,0637 0,3309 0,0833 0,0025	0,1511 0,0363 0,6153 0,0502 0,0895	0,0029 0,3750 0,4284 0,0252	0,0035 0,4500 0,5141 0,0302	
Energie insgesamt	0,75	0,94	0,83	1,00	
Variable Kosten	1,41	1,67	1,18	1,37	
Anteilige Fixkosten	0,45	0,44	0,74	0,83	
Sonstige Kosten	0,11	0,06		•	
Variable und anteilige fixe Kosten insgesamt	1,97	2,17	1,92	2,20	

Die zugrundeliegenden Faktormengen beruhen auf Erfahrungswerten eines europäischen Industrieunternehmens.

b 1,25 Millionen Tonnen (dmt) Roherz, 50 Millionen Pound Nickel.

 $^{^{}m c}$ 1,50 Millionen Tonnen (dmt) Roherz, 50 Millionen Pound Nickel.

d Zur Berechnung vgl. Ziffer 26.

e Einschließlich eines Schätzwertes von 0,09 US \$/lb Nickel für nicht einzeln ausgewiesenes Material.

 $^{^{}m f}$ Einschließlich eines Schätzwertes von 0,11 US $\$/{
m lb}$ Nickel für nicht einzeln ausgewiesenes Material.

 $_{\cdot}^{g}$ Einschließlich Bergbau und Transport,

 $^{^{}m h}$ Unter der Annahme gleicher Konditionen wie bei INCO (7 vH des Investitionsaufwandes).

Quelle: Tabellen A6, A 7 und A8. - Eigene Berechnungen.

der Tiefseebergbau nach den Ergebnissen der Faktorabsorptionsanalyse nicht als ganz eindeutig vorteilhaft; der Tiefseebergbau ist allerdings auch nach dem Faktorapsorptionsansatz gegenüber dem Landbergbau wettbewerbsfähig.

28. Dies zeigt sich auch bei der Projektion der variablen Kosten für das Jahr 1990. Unter der Annahme, daß die Faktorpreise sich bis zum Jahr 1990 so weiterentwickeln wie von 1967 bis 1978 , sind auch für 1990 keine wesentlichen Unterschiede bei den Produktionskosten zwischen Nickellateritbetrieben und Tiefseebergbaubetrieben zu erwarten (Tabelle 5). Die variablen Kosten der beiden für den Landbergbau berechneten Alternativen² liegen zwischen den Werten, die sich für den Tiefseebergbau ohne Mangangewinnung einerseits und mit Mangangewinnung andererseits ergeben. Die durchschnittlichen variablen Kosten eines Tiefseebergbauprojekts mit Mangangewinnung liegen den Berechnungen zufolge im Jahr 1990 etwa 13 vH über den variablen Kosten eines Tiefseebergbauprojekts ohne Mangangewinnung. Die höheren Kosten des 4-Metallverfahres sind vor allem auf den größeren Materialeinsatz, zum Teil auch auf den größeren Energiebedarf zurückzuführen.

29. Bei der Projektion der Kosten wurde angenommen, daß keine Faktorsubstitution stattfindet. Da das Ziel dieser Untersuchung in erster Linie ein Vergleich der Kosten des Tiefseebergbaus und des Landbergbaus ist, erscheint diese Annahme als plausibel. Es ist zwar nicht auszuschließen, daß bis zum Jahr 1990 spürbare Verschiebungen beim Faktoreinsatz – etwa eine höhere Kapitalintensität oder die Verwendung alternativer Energien eintreten werden. So ist schon jetzt erkennbar, daß infolge der rasch

Der Zeitraum 1967 - 1978 wurde aus folgenden Gründen als Basiszeitraum für die Projektion ausgewählt: Im Vergleich zu den Vorjahren sind die Faktorpreise ab 1967 wesentlich stärker gestiegen, und 1978 ist das statistisch aktuellste Jahr, für das Preisangaben in allen Fällen vorlagen.

²Zu den Alternativen vgl. Ziffer 22.

Tabelle 5 - Projektion der durchschnittlichen variablen Kosten des Landbergbaus und des Tiefseebergbaus aufgrund der Faktorabsorptionsanalyse 1979 - 1990

aktor		Faktor- preise 1979	Jähr- liche Stei- ge-			Faktorn	engen	,		Faktorkost in US \$ 0 Dund Nicke		lent)
			rungs- rate		Tiefsee ohne Mangang	bergbau mit ewinnung	Landb Alter- native A	ergbau Alter- native B	Tiefseel ohne Mand	mit	Landb Alter- native A	ergbau Alter- native B
	Dimen- sion			Dimen- sion							***	
rbeit Arbeiter Ange- stellte	\$/Std. \$/Std.	10,00 10,75	2,1	Std. Std.	0,0131 0,0097	0,0131 0,0109	0,0260 0,0064	0,0260 0,0064	0,1646 0,1311	O,1646 O,1473	0,2452 0,0648	0,2452 0,0648
Chemie- kalien Elektroden LIX 64 N Kalk Elektroden- Paste	\$/1b \$/kg	1,000 2,7500 0,0325 0,3000	3,2 3,4 3,4 0,9 3,4	(US \$, 1979) kg 1b kg kg	(0,2664) 0,0324 0,0025	(0,1633) 0,0184 0,0014 0,7100 0,0718	0,2500	0,3000	0,3767 0,0468 0,0099	0,2309 0,0266 0,0056 0,0255 0,0311		· · o,o108
Schrott Koks Silica div.	\$/kg \$/kg \$/kg	0,1000 0,0800 0,0400	5,0 9,0 1,4 1,4	kg kg kg g	0,1122	0,4500 1,4300 0,7700 0,0637	: : :		- - -	0,0770 0,2952 0,3590	•	•
nergie Kohle Strom Dampf Heizöl	\$/m ³ \$/kg \$/kwh \$/lb \$/1	0,0132 0,0579 0,0300 0,0027 0,1260	9,0 3,4 3,4 7,1	kg kWh lb l	4,5900 13,1500 32,6900 0,0200	2,6100 21,7200 18,6100 0,7100	0,0750 0,0500 12,5000 3,4000	0,0900 0,0600 15,0000 4,0800	0,6857 0,5694 0,1275 0,0054	0,0003 0,3899 0,9405 0,0726 0,1903	0,0012 0,0075 0,5413 0,9112	0,0014 0,0090 0,6495 1,0934
Dieselöl apital- bhängige aktor- osten	\$/1	0,1260	6,5	1 (US \$ 1979)	0,5600	0,5000	0,2000	0,2400	1,1196	o,9996	0,0536	1,6593
nsgesamt									3,2400	3,9600	3,3200	3,8000

a 1967/1978

Quelle: Tabellen A6 und A7 Eigene Berechnungen gestiegenen Ölpreise im Nickellateritbergbau künftig in zunehmendem Maße auf Kohle als wichtigstem Energieträger zurückgegriffen wird. Diese Art der Substitution wird jedoch kaum auf den Landbergbau beschränkt bleiben; sie dürfte in entsprechender Weise wohl auch im Tiefseebergbau vorgenommen werden.

VI. Schlußbemerkungen

30. Nach den Untersuchungsergebnissen kann der Tiefseebergbau durchaus mit dem künftigen Nickellateritbergbau konkurrieren. Ebenso wie für den Nickellateritbergbau könnte jedoch auch für den Tiefseebergbau ein Rückgang der Nickelnachfrage zu einer geringeren Kapazitätsauslastung und infolgedessen steigenden Produktionskosten führen. Solange die Reserven sulfidischer Nickelerze ausreichen, um einen hohen Anteil der Nickelnachfrage zu befriedigen, wird sich ein Nachfragerückgang zunächst immer in einer geringeren Kapazitätsauslastung der Nickellateritbetriebe auswirken. Denn die Produktionskosten der Nickelsulfidbetriebe sind - nicht zuletzt wegen ihres geringen Energiebedarfs - in der Regel niedriger als die der Nickellateritbetriebe und des Tiefseebergbaus. Im Falle des Tiefseebergbaus wirkt sich allerdings vorteilhaft aus, daß außer Nickel noch andere Metalle gleichzeitig erzeugt werden. Sofern nicht zum gleichen Zeitpunkt und im gleichen Maße die Nachfrage nach Kobalt, Mangan und Kupfer ebenso zurückgeht wie die nach Nickel, so wird sich dies für den Tiefseebergbau im Vergleich zum Nickellateritbergbau günstig auswirken.

So soll beispielsweise ein Nickelwerk der Marinduque Mining and Industrial Corporation von Erdöl auf Kohlebefeuerung umgestellt werden (vgl. NfA, Nachrichten für den Außenhandel, Eschborn, vom 1.9.1981). Vgl. auch The Globe and Mail, June 16, 1981, Seite 86: "Accelerating fuel oil prices are the main factor pushing the bottom out of the unit's profit line and Falconbridge is studying an alternative fuel source,...The most likely one is to switch to a coal-fired power generating plant."

31. Im Tiefseebergbau dürfte auch das Rationalisierungspotential größer sein als im Nickellateritbergbau. Bei der Verhüttung lateritscher Erze werden zwar im Vergleich zur Verarbeitung sulfidischer Nickelerze relativ junge Technologien angewendet, die noch mehr Entwicklungsmöglichkeiten bieten. Für den Tiefseebergbau sind jedoch noch größere Rationalisierungschancen zu erwarten, sobald die Technologien zur Exploration, Förderung und Verhüttung der Manganknollen standardisiert und Skalenerträge sowohl bei der Produktion der Anlagen als auch bei deren Betrieb realisiert werden.

ANHANG A: TABELLEN A1 - A9

Tabelle A 1

Tiefseebergbau-Konsortien (Stand: 1980)

1.	Ocean Mining Associates (OMA)		
	- U. S. Steel Corporation	(33,3	vH)
	- Union Minière, Belgien	(33,3	vH)
	- Sun Oil Company	(33,3	vH)
2.	Ocean Management, Inc. (OMI)		
	- International Nickel Company	(25	vH)
	 Arbeitsgemeinschaft meerestechnisch gewinnbare Rohstoffe, AMR (Metallgesellschaft AG, Preussag AG, Salzgitter AG 	(25	vH)
	- Deep Ocean Mining Company (DOMC) (23 japanische Firmen, darunter Sumitomo, Nippon Mining, Dowa Mining)	(25	vH)
	.	•	
	- SEDCO, Inc.	(25	vH)

3. Kennecott Consortium

-	Kennecott Copper Corporation	(50	vH)
-	Mitsubishi Corporation	(10	vH)
-	Consolidated Gold Fields, Inc.	(10	vH)
-	Noranda Mines	(10	vH)
-	B. P. Minerals Co.	(10	vH)

4. Ocean Minerals Company

- Lockheed Missiles and Space
- Billiton B. V. (Royal Dutch Shell)
- AMOCO Minerals Division of Standard Oil of Indiana
- Bos Kalis Westminster B. V.

5. AFERNOD

- Centre National Pour l'Exploitation des Oceans (CNEXO)
- Commissariat l'Energie Atomique (CEA)
- Société Métallurgique Pour le Nickel (SLN)
- France Dunkerque (Empain Schneider Group)
- Bureau Recherches Géologique et Minières (BRGM)
- Pechiney

6. Continuous Line Bucket (CLB) Group

- CNEXO
- SLN
- CE
- Deepsea Ventures, Inc.
- Dome Exploration
- COMINCO
- Tech. Corporation
- International Nickel Company
- Sumitomo
- AMR
- Atlantic Richfield Corporation
- Occidental Minerals
- Placer Developments
- Utah International
- Superior Oil Corporation
- Broken Hill Pty.
- Phelps Didge
- Furutaka
- Ocean Resources Inc.

Tabelle A2 - Kostenstudien über den Tiefscebergbau (Förderung und Verhüttung von Manganknollen

Autor		Mero John L.	Hess H. D.	Sorenson P. E. and	Dorstewitz G.
Titel der St	udie	The Mineral Resour- ces of the Sea	The Ocean: Mining's Newest Frontier	Mead W. J. A Cost Benefit Ana-	Meeresbergbau auf Kobalt, Mangan
				lysis of Ocean Mine- ral Resource Devel-	
Facebook				opment: The Case of Manganese Nodules	
Ersche	inungs-	1965	1965	1968	1971
	Dimen-		•		
Produktions-					
kapazität (Manganknollen, trocken)	Mio jato	1,220 .	1,500	1,800	1,25
Betriebszeit, tägliche Förderung	Tage/ Jahr Tonnen	292 Tage à		360 Tage à 5000 to (net dry weight)	250 Arbeitstage à 5000 to
Gewinnungsver- fahren	Tag -	"deepsea hydraulid dredge"	"hydraulic dredge"		
Aufbereitungs- verfahren	-	"leaching" 4-Metalle	5-Metaile ¹	"reductive roast ammonium carbonate leach process" 4-Metalle	ammoniakalisches Drucklaugever- fahren nach Brook: Dean, Rosenbaum 4-Metalle
Preisbasis	(Jahr)	1963	19642	1968 1	1970,1,2
Fixe Kosten	(Mio.				
Forschung und Entwicklung	03 3,				
Prospektion und		,		,	•
Exploration		2	·	•	0,9
Bergbau		5.9 /1963/21 7.5 /197 <u>0</u> /2	6,0	150,0	23,1
Transport				15,0	11,0
Aufbereitung, Verhüttung		•	75,0 - 100,0	50,0	35,6
Insgesamt			(81,0 - 106,0) ³	215,02	70,6
Durchschnittliche fixe Kosten (per jato Kapazität	US S/to				
Forschung und Entwicklung					
Prospektion und				·	
Exploration					0,72
Rergbau		4,84 /196 <u>1</u> 7 ² 6,15 /197 <u>0</u> / ²	4,0	83,33	18,48
Transport				8,33	8,80
Aufbereitung, Verhüttung			50,00-66,70	27,78	28,48
Insgesamt			54,00-70,70	119,44	56,48
Variable Kosten (p.a.)	Mio. US-\$				
Bergbau		4,3 /19637 5,0/197 <u>0</u> /	6,0-9,0	16,53	9,1
Transport		3,07,970	15,0	10,54	7.7
Aufbereitung, Verhüttung		30,5/19597 36,6/197 <u>0</u> /	37,5	45,0	39,1
Insgesamt		47.0	58,5-61,5	72,0	55,8
Durchschnittliche Variable Kosten (per to Mangan- knollen)	US-\$/ to				
Bergbau		$\begin{array}{c} 3.55 & \sqrt{1962} \\ 4.10 & \sqrt{1972} \\ \end{array}$	4,00-6,00	9,20	7,24
Transport		, 10 Living)	10,00	5,80	6,14
Aufbereitung, Verhüttung		25,0 <u>71950</u> 75 30,0 <u>71950</u> 7	25,0	25,00	31,26
		75,55	39,00-41,00	40,00	54,64 ³
Insgesamt		,	VI, VI)=01, UU	,	•
detallgehalt in den danganknollen	vII				
Mangan		1		24,20	
Nickel			4	0,99	
Kobalt				0,35	
Kupfer				0,53	
Lisen				Fi , 00	
No1 ybdan		1	1	1	

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor		Mero John L.	Hess H. D.	Sorenson P. E. and Mead W. J.	Dorstewitz G.
Titel der S	Studie	The Mineral Resour- ces of the Sea	The Ocean: Mining's Newest Frontier	A Cost Benefit Anallysis of Ocean Mineral Resource Development: The Case of	Meeresbergbau auf Kobalt, Mangan und Nickel
Ersch jahr	neinungs	1965	1965	Manganese Nodules	1971
- Vani	Dimen-	1903	1903	1300	
	sion				
Ausbringungsgrad	vH			,	
Mangan		75,0		85,0	
Nickel	ļ	90,0	•	95,0	
Kobalt	}	85,0	•	90,0	
Kupfer		10,0	•	20,0	
Eisen	{			85,0	
Molybdän					
Jährliche Ausbringung	to				
Mangan				585 000 Mn-Fe-Erz	
Nickel				17 100	
Kobalt				5 760	
Kupfer				1 908	
Eisen	ļ				
Molybdän				}	
Bemerkungen		Belegungsdichte 2 lb/ft ² "Pick-up"-Wirkungs- grad 70 vH	Lage der Förder- stätten 12000 bis 18000 ft		Dorstewitz hat auch eine Kostenanalyse für den Fall einer Teilaufbereitung auf See durchgeführt. Besetzung 8000 to Manganknollen je km², Lagerstättenausbringung (pick up-rate 70 vH)
Fußnoten		Dec.12,1963. Soweit aus dem Text Abweichunger von dieser Preis- basis hervorgehei ist die jeweilig	offentlichung de Studie. Bergbau, Aufbereitung und Verhüttung.	offentlichung 12. Dec. 1968 2 An anderer Stell des Berichts wer den 175 Mio. 3 "capital cost"	preise nach dem Stand vom Mai 1970). Zur Umrechnung der DM-Angaben wurde ein Wechselkurs von 3,647 DM/US-4 in Ansatz gebracht. Ohne Kapitalkosten (3,1 US-4) to bei Aufbereitung und Weiterverarbeitung), ohne Explorationskosten (1,5 US-\$/to) HAngaben über

Quelle: Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen.

Autor			Drechsl		
Titel der Stu			A Study in Industri The Potential Seabe		
Erscheinung	sjahr		1972		
		Fall A	Fall B	Fall C	Fall D ¹
Produktions-	Dimen- sion				
kapazität		:			
(Manganknollen, trocken)	Mio. jato	1,0	1,0	2,0	2,0
Betriebszeit, tägliche Förderung	Tage/ Jahr Tonnen/ Tag	325 Tage à 3077 to	325 Tage & 3077 to	325 Tage & 6154 to	325 Tage à 6154
Gewinnungsver- fahren	-				
Aufbereitungs- verfahren	-	"Hydrometallurgical" 3-Metalle ²	gical" 4-Metalle)	"Hydrometallur-2 gical 3-Metalle	"Hydrometallur- gical" 4-Metalle
Preisbasis	(Jahr)	19704	19704	19704	19704
Fixe Kosten	(M10.	. `			
Forschung und Entwicklung	US §)	•	•	•	
Propektion und Exploration		6,0	6,0	9,6	9,6
Bergbau		70,0	70,0	112,2	112,2
Transport		15,0	15,0	24,0	24,0
Aufbereitung,					
Verhüttung		70,0	100,0	112,2	160,2
Insgesamt		161,0	191,0	258,0 ^{6a}	306,0 ^{6a}
Durchschnittliche fixe Kosten (per jato Kapazität)	US-\$/to				
Forschung und Entwicklung			•	•	•
Prospektion und Exploration		6,0	6,0	4,8	4,8
Bergbau		70,0	70.0	56,1	56,1
Transport		15,0	15,0	12,0	12,0
Aufbereitung,		70,0	100,0	56,1	80,1
Verhüttung Insgesamt		161,0	191,0	129,0	153,0
Variable Kosten ·	Mio.				
(p.a.)	US-\$				
Bergbau		4,25	4,25	7,40	7,40
Transport		3,00	3,00	5,22	5,22
Aufbereitung, Verhüttung]	15,00	30,00	62,12	52,24
Insgesamt		29,256	44,25 ⁶	50,946	77,06 ⁶
Durschnittlich e Variable Kosten (per to Mangan- knollen)	US-\$/ to			,	,
Bergbau		4,25 ⁵	4,25 ⁵	3,70	3,70
Transport		3,00	5,00	2,61	2,61
Aufbereitung, Verhüttung		15,00	30,00	13,06	26,12
Insgesamt		29,25 ⁶	44,256	25,47 ^{6,6} b	38,53 ^{6,6} b
Metallgehalt in den Manganknollen	vII				
Mangan					
Nickel					
Kobalt					
Kupfer					
Eisen	1 .				

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor		Drech	nsler, H.				
Titel der Studie Erscheinungsjahr	A Study in Industrial Organization: The Potential Seabed Mining Industry 1972						
	Fall A ¹	Fall B ¹	Fall C	Fall D ¹			
Dimen- sion							
	•						
usbringungsgrad vH							
Mangan							
Nickel							
Kobalt							
Kupfer							
Eisen							
Molybdän							
		·					
ährliche usbringung to							
Mangan	-	260 000	-	520 000			
Nickel	12 000	12 000	24 000	24 000			
Kobalt	2 400	2 400	4 800	4 800			
Kupfer	10 000	10 000	20 000	20 000			
Eisen	•						
Molybdän							
,							
Fußnoten							

l In der Kostenrechnung für fixe und variable Kosten untersucht Drechsler folgende 4 Fälle:

Fall	Jahreskapazität (Mio jato Nanganknollen)	Aufbereitungsverfahren
A B C	1,0 1,0 2,0	3-Metalle 4-Metalle 3-Metalle
D	2,0	4-Metalle

Für jeden der 4 Fälle werden 3 Alternativen - eine wahrscheinliche und zwei weniger wahrscheinliche (optimistische bzw. pessimistische Annahmen) betrachtet. In der vorliegenden Tabelle wurden nur die Angaben zu der jeweils wahrscheinlichsten Alternative aufgenommen.

- 2 Kupfer-, Nickel-, Kobalt-Metall.
- 3 Mangan-Oxyd (MnO₂ mit 48 vH Mangan), Nickel-Kobalt-Sulfat, Cement-Kupfer.
- 4 Vgl. Drechsler, 5. 73, Fußnote 2: "All cost and price estimates used in the economic calculations are in 1969-1970 money terms."
- 5 Einschließlich "washing and screening".
- 6 Einschließlich "overhead" 7 US-5/to.
- 6°Zur Berechnung vgl. Drechsler, S. 84.
- 6^bZur Berechnung vgl. Drechsler, S. 83.

Quelle: Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen.

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor Titel der	Studie	Clauss, G.	Leipziger, D. M. and Seabed Mineral Resor- omic Interests of Do 19	arces and the Econ- aveloping Countries			
Ersche	inungs- jahr	Theoretical and Experimental In- vestigations of Deep Sua Ocean Mining Systems and their Economic	Kaufmann, R., Rothstein A.J. (Doep Sea Ventures Inc.) The Approaching Ma- turity of Deep Ocean Mining - The Pace	Dubs Marne (Kennecott Copper Corporation) UN A/Conf. 62/25	Moncrieff, A. and Smale Adams, K. The Economics of First Generation Manganese Nodule Operations	Pearson, J. S. Ocean Floor Mining 1975	
		Implications 1972	Quickens 1973	1974	1974	Fall A ¹	Fall 5 ²
	Dimen- sion						
Ourchschnittlicho Pariable Kosten per to Mangen- nollen) Bergbau Transport	US-*/ to	6,74 4,86	26,00-33,00 46,00-66,00	8,00 4,00-9,00 17,00-23,00		11,03 . h,41 22,05	1 0,33 1 4,41
Vorhüttung Insgesamt			72,00-99,00	29,00-40,00	35,00	43,33 ¹⁰	20,18 ¹⁰
detaligehalt in den danganknollen Hangan Nickel Kobalt Kupfer Eisen Molybdän	νH			÷	1, 3 0, 2 1, 1	0	
usbringungsgrad Mangan Mickel Kobalt Kupfer Eisen Melybdän	νΗ				90,00 55,00 90,00	(process recovery efficiency	(process recovery effi- ciency" 70 vH)
shrliche Aus- ringung Hengan Kickel Kobelt Kupfer Eisen Holybdän	t•			÷.	35 100 3 300 29 700	326 300 (Mn-Fe) . 13 660 1 600 11 400	254 000 (Mn-Fe) 10 160 1 270 4 8 900
emerkungen uSnoten 		V Zur Umrechnung der DM-Angaben wurde ein Wech- selkurs von 3,189 DM/VS-5 in Ansatz ge- bracht.	l Vergleiche Leipziger, Nudge, S. 158.	1 Datum der Ver- öffentlichung May, 1974.	terms of mid-1974 dollar values (except for pre- 1974, exploration and ReD costs which have not been escalated." 2 Honcrieff nenat iewaits 1 Faile	1 Pall A "Hydraulic System". 2 Fall N "CLB-System" (Continou) 3 Entaprechend I Nio, short ton 4 Vorjahr der Veröffentlichung. 5 Der Transport erfolgt mit Cha Kosten bei den Natriehskosten 6 Einschl. Hetriebskopital von 7 Einschl. Hetriebskopital von 8 Einschl. 0,3 Nio. US- für Ex "Sonstige Kosten". 9 Einschl. 0,3 Nio.US-3 für Exp "Sonstige Kosten". 10 Einschl. Explorationskosten t 11 Die Angaben für die Metallau- laten für den Netallgehnit un ciency" ermittelt.	rter-Schiffen, vobei die bericksichtigt verden. 28,7 Mio.US- ² . 2,0 Mio. US- ² . ploration und 3,0 Mio. US- ² iloration und 2,0 Mio. ^{US-2} ind monstige Kosten.

Queller Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen.

noch Tabelle A2 - Kostenstudion über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor Titel der	Saudi.		Leipziger, D. M. an Seabed Mineral Reso omic Interests of D 19	urces and the Econ-			
Erschei		Clauss, G. Theoretical and Experimental In- vestigations of Deep Son Ocean Nining Systems and their Economic Implications	Raufmann, R., Rothstein A.J. (Deep Sea Ventures Inc.) The Approaching Ma- turity of Deep Ocean Nining - The Paces quickens	Dubs Marne (Kennecott Copper Corporation) UN A/Conf. 62/25	Moncrieff, A. and Smale Adams, K. The Economics of First Constition Manganese Nodule Operations	Ocean I	ion, J. S. Placer Mining
		1972	1973	1974	1974	Fall A	fail B2
Produktionskaps- zitüt (Hengan- knollen, trocken)	Dimen- sion	1.5	1,0	3,0	3,0	0,907	,
Detriebszeit, tägliche Förderung	Jato Tage/ John Tonnon/ Tag					·	1
Gewinnungsverfahren	-	hydraulic lifts"				"Hydraulic"	"CLB"
Aufbereitungs- verfahren	-	3-Metalle		_	3-Hetalle	"Differential Precipitation Process" 5-Metalle	Differential Leaching Process*
Preisbasis	(Jahr)	19721	1974	1974	1974 1	19744	1 19744
Fixe Kosten	(Mio. US-5)						1
Forschung und Entwicklung					80.02	1,0	0,1
Prospektion und Exploration		,			V - 30.0	0,3	0,3
Bergbau		23,6			Ú.	30.0	2,0
Transport		26, 3			300	.,	د.
Aufbereitung, Verhüttung		·			ز .	75.0	10,0
Inagesamt		•	140,0 - 210,0		380 ⁴	135,06	20,07
Durchschnittliche fixe Kosten (per jaco Napazitkt)	US-\$/to		;		anne "Commission- ing von 30 Hio.US\$ und ohne "working capital" von 40 Hio.US 3.		
Forschung und Entwicklung			1		h	1,10	0,11
Prospektion und Exploration			,		26,67	0,33	0.33
Bergbau		22,40			h	33,08	2,21
Transport		17.53			7 100,00	•	-
Aufbereitung, Verhüttung						82,69	11,03
Insgesamt			140,00-210,00		126,67	148,84	22,05
Variable Kosten (p.a.)	Mio. US-1						1
Borghan		10,1		24,0		10,0	0,3
Transport	ł	7.3	26,0-33,0	12,0-27,0	. [4,0	1 4,0
Aufbereitung, Verhüttung			46,0-66,0	51,0-69,0		20,0	10.0
Inagesamt			72,0-99,0	87,0-120,0	105,0* Colone Abechreibung	39, 1 ⁶	(18,5°

- 35 - noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor		Kennecott Copper Corporation: Comparative	Nyhardt, J.D.; Antrim, L.; Capstaff, A.E.;	Diederich, F.; Müller W.; Schneider, W.	
Titel der	Studie	Economics of Recovery of Metals from Ocean Nodules ¹	Kohler, A.D.; Leshaw, D. A Cost Model of Deep Ocean Mining and Associated Regulatory Issues	Analysis of the MIT- Study on Deep Ocean Mining - Critical Re- marks on Technologies and Cost Estimates	
Ersch	einungsjahr	1976	1978	1979	
	Dimension		"Baseline"Model		
Jahreskapazität	Mio.jato	1,36	2,72	2,72	
Jahresbetriebszeit bzw. Jahresförderung	Tage/Jahr		300 Arbeitstage pro Jahr (Mineship) 300 Arbeitstage pro Jahr(Transport Vessel)	250 Arbeitstage pro Jahr (Mineship) 300 Arbeitstage pro Jahr(Transport Vessel	
Covinnungevonfahren	1	·		, , ,	
Gewinnungsverfahren		HATTI Y			
Aufbereitungsverfahren		"NH ₃ -Leaching-Process" 3-Metalle	3-Metalle	3-Metalle	
Preisbasis		1976	1976	1976	
Fixe Kosten	Mio.US-\$				
Forschung u.Entwicklung			50,00	100,0	
Prospektion u.Exploration			16,40	69,2	
Bergbau			96,00	189,22	
Transport			55,00	99,5	
Aufbereitung u. Verhüttung		250-300	342,00	510,0	
Insgesamt			559,40	967,9	
			333,	2-112	
Durchschnittliche fixe Kosten (per jato Kapazität)	US-\$/to				
Forschung und Entwicklung			18,38	36,76	
Prospektion u. Exploration			6,03	25,44	
Bergbau			35,29	69,56	
Transport			20,22	36,58	
Aufbereitung u. Verhüttung		183,82-257,35	125,74	187,50	
Insgesamt			205,66	355,85	
Variable Kosten (p.a.)	Mio. US-\$				
Bergbau		70,0-120,0	21,1	58,8	
Transport			14,9	22,9	
Aufbereitung u. Verhüttung		·	64,5	170,0	
Insgesamt			100,5	251,7	
				• •	
Durchschnittliche Variable Kosten (per to Manganknol- len)	US-%/to				
Bergbau		51,47-88,24	7,77	21,62	
Transport			5,48	8,42	
Aufbereitung u. Verhüttung			23,71	62,50	
Insgesamt			36,95	92,54	
	ļ	1	1		

Autor	Titel der Studie		Nyhardt, J.D.; Antrim, L.; Capstaff, A.E.; Kohler, A.D.; Leshaw, D.	Diederich, F.; Müller, W.; Schneider, W. Analysis of the MIT-Study on Deep Ocean Mining - Critical Remarks on Technologies and Cost Estimates	
Titel de			A Cost Model of Deep Ocean Mining and Associated Regulatory		
Erscheinungsjahr		. 1976	Issues 1978	1979	
	Dimension				
Metallgehalt in den Mangan- knollen	vH				
Mangan			26,90		
Nickel			1,50	1,223	
Kobalt			0,24	0,17	
Kupfer			1,30	0,99	
Eis en Molybdän			·	·	
Ausbringungsgrad	νH				
Mangan			o		
Nickel			95	82 ³	
Kobalt			60	88	
Kupfer			95	55	
Eisen		·			
Molybdän					
Jährliche Ausbringung	to/Jahr				
Mangan			-		
Nickel	l	17 687	38 776		
Kobalt		2 721	3 918		
Kupfer		14 966	33 605		
Eisen		-			
Molybdän	*,				
Bemerkungen			Surface abundance of Nodules on Seafloor = 13,2 kg/m²(wet) 2 1b/ft² (dry nodules = 2,7 lb/ft² wet nodules). Collector Efficiency 0,65,(S. 69). Sweep efficiency 0,50.	Surface abundance of Nodules on Seafloor 1,5 $1b/ft^2$ (dry) = 10 kg/m^2 (wet). Collector efficiency 0,75.	
Fußnoten		1 Die Daten wurden entnommen aus Diederich F. u.a., Analysis of the MIT- Study, S. 82.	1 Fixed and Misc. operationg costs.	1 "The actual values (as at the end of 1978) were divided by the factor 1,15 according to the CE-Plant Cost Index Vgl. S. 89. 2 2 Mineships (MIT- Base-Study 1 Mine- ship). 3 Vgl. S. 87 "Least Favorable Case).	

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor		Technological an	Arthur D. Litt d Economic Asses	sment of Manga~	AMR Summary of Project Dat	
Titel der		nese Nodule Mini		9	TOE a 3 MIO.DMT Nodule	
Ersche	einungsjahr	"Kennecott	1977		per Year Project	
		Project"	"INCO-Project"	"OMA-Project"		
	Dimension			-		
Metallgehalt in den Manganknollen	vH					
Mangan				:	25,50	
Nickel					1,33	
Kobalt					0,22	
Kupfer					1,09	
Eisen					8,40	
Ausbringungsgrad	vH					
Mangan		<u>-</u> · ·	80	90	87	
Nickel		95	90	90	88	
Kobalt		55	70	90	76	
Kupfer	1	95	90	90	90	
Eisen		-	-	-		
Molybdan		55	70	90		
Jährliche Ausbringung	to/Jahr					
Mangan		·	609 524	228 571	221 900-665 660	
Nickel		34 286	34 286	11 429	35 100	
Kobalt		2 993	3 810	1 633	5 000	
Kupfer		31 020	29 388	9 796	29 400	
Eisen						
Molybdän		898	1 143	490		
Bemerkungen						
Fußnoten		1 Mining Ships +				
		Transportation + Pipe Strings, Dredges, Pumps etc.				
·		2 Land, Build- ings, Equip- ment				
		3 Mining Ships, Pipe strings, Pumps, Dredge heads.				
+ 3	·	4 Transportation ship, (leased), Unloading + overland trans port, Taxes		ş	,	
		and insurance.				

Quelle: Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen.

noch Tabelle A2 - Kostenstudien über den Tiefsechergbau (Förderung und Verhüttung von Manganknollen)

Autor Titel der S	tudie nungsjahr		Arthur D. Little d Economic Assess ny and Processing 1977	ment of Manga-	AMR Summary of Project Data for a 3 Mio. DMT Nodule per Year Project
DI SCHOOL		"Kennecott Project"	"INCO-Project"	"OMA-Project"	1979
	Dimension				
Jahreskapazität	Mio.jato	2,72	2,72	0,91	3,0
Jahresbotrichszeit bzw. Jahresförderung	Tage/Jahr				
Gewinnungsverfahren		"Hydraulic mining	"Hydraulic mining	"Hydraulic mining	"Hydraulic"
Aufbercitungsverfahren		"Ammonia leach process" "4-Metalle	"Pyrometallurgi- cal process" 5-Metalle	"Hydrochloric Acid Leach" 5-Netalle	Smelt/Leach
Preisbasis		1976	1976	1976	1978
Fixe Kosten		,			
Forschung u.Entwicklung	Mio.US-5	45,0	45,0	40,0	
Prospektion u.Exploration	Mio.US-5		,		
Bergbau	Mio.US-3	98,0 ¹	145.4	73,21	. 160
Transport	Mio.US-4	`			17
Aufbereitung u.Verhüttung	Mio.US-3	331,0 ²	453;0 ²	253,0 ²	617 (einschl.Mn)
Insgesamt	Mio.US-\$	474,0	643,4	366,2	959 (einschl.165 Mio.US-4 Auxiliaries infrastructure, Land)
					1313 (einschl. "working capital" 76 Mio.US-3, "indirect investment" 278 Mio.US-3)
Durshachnittliche fixe Kosten (per jato Kapazität)	US-\$/to				
Forschung u. Entwicklung		, ,		,	•.
Prospektion u.Exploration		16,54	16,54	43,96	
Bergbau		1		:	53,33
Transport		36,03	53,46	80,44	5,67
Aufbereitung u.Verhüttung		121,69	166,54	278,02	205,67
Insgesamt		174,26	236,54	402,42	319,67
			·		, .
Variable Kosten (p.a.)	Mio. US-\$				
Bergbau	ľ	· 17,0 ³	23,4	12,2	42
Transport		31,54	34,5	15,7	30
Aufbereitung u.Verhüttung		95,0	104,0	85,0	142
Insgesamt		a 153,0 ^a a einschl."Sales- General- and Administration Costs" 9,5 Mio. US-5.	174,9 ^a , acinschl."Sales General- and Administration Cost" 13 Mio. US-5.	123,7 ^a einschl. "Sales-, General- and Administration Costs" 10,8 Mio.US-S.	262-334 ^a aeinschl. 48-120 Nio. US-S/Jahr ("Manganese Smelting").
Durchschnittliche variable Kosten (per to Manganknol- len)	US-\$/to			A40.03=0.	
Bergbau		6,25	8,60	13,41	14,00
Transport		11,58	12,68	17,25	10,00
Aufbereitung u.Verhüttung		34,93	38,24	93,41	47,33
Insgesamt		56,25	64,30	135,93	87,33-111,43

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor		Arthur D. Little Inc.				
Titel der Studie Erscheinungsjahr		Technological and Econo Mining and Pr	omic Assessment of Macocessing. November			
		Ammonia Leach without Manganese	Ammonia Leach with Manganese	Pyrometallurgica		
	Dimension					
Jahreskapazität	Mio. jato	2,72	2,72	2,72		
Jahresbetriebszeit bzw.Jahresförderung	Tage/Jahr	•				
Gewinnungsverfahren	ļ .	•				
Aufbereitungsverfahren		Ammonia Leach 4-Metalle	Ammonia Leach 5-Metalle	Pyrometallurgica: 5-Metalle		
Preisbasis	1	1978	1978	1978		
Fixe Kosten	Mio US \$					
Forschung u. Entwicklung			•			
Prospektion u. Exploration		•				
Bergbau Transport		213,21	213,2 ¹	213,21		
Aufbereitung u. Verhüttung Ni, Cu, Co, FeMn, SiMn		421 · 2	686 ²	563 ²		
Insgesamt		634	899	776		
Durchschnittliche fixe Ko- sten (per jato Kapazität)	US \$/to					
Forschung u. Entwicklung				•		
Prospektion u. Exploration						
Bergbau Transport		78,38	78,38	78,38		
Aufbereitung u. Verhüttung	Į į	154,78	252,21	206,99		
Ni, Cu, Co, FeMn, SiMn Insgesamt		233,16	330,59	285,37		
Variable Kosten (p. a.)	Mio US \$					
Bergbau Transport		83	83	83		
Aufbereitung u. Verhüttung		138	237	159		
Insgesamt		221	320	242		
Durchschnittliche vari- able Kosten (per to Man- ganknollen)	US \$/to					
Bergbau Transport		30,51	30,51	30,51		
Aufbereitung u. Verhüttung		50,74	87,13	58,46		
Insgesamt		81,25	117,64	88,97		
Metallgehalt in den Manganknollen	vн					
Mangan	, ,	28,00 1,40	28,00	28,00 1,40		
Nickel Kobalt	}	0,20	0,20	0,20		
Kupfer Eisen		1,20	1,20	1,20		
Molybdän		0,06	0,06	0,06		

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor	```	Arthur D. Little Inc. Technological and Economic Assessment of Manganese Nodule Mining and Processing. November 1979				
Titel der Studie Erscheinungs						
		Ammonia Leach without Manganese	Ammonia Leach with Manganese	Pyrometallurgical		
. D	imension					
Ausbringungsgrad vH	Ī					
Mangan Nickel Kobalt Kupfer Eisen Molybdän		90 50 90 50	90 97 70 97 - 70	90 90 70 90		
Jährliche Ausbringung to Mangan Nickel Kobalt Kupfer Eisen Molybdän	o/Jahr	O 34 292 2 722 29 393 816	685 839 36 959 3 810 31 679 1 143	685 839 34 292 3 810 29 393 1 143		
Zu den Annah	men vgl. S	ation, start up and trains. 113. 1. Tabelle 26, S. 114.	ning costs" (page 11	3).		
Fußnoten: 1 Mining Ships	and Trans	portation, Pipe String,	Dredges, Pumps etc.	-		
2 Land, Buildi	ngs and Eq	quipment				

Quelle: Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor			Black, John Roland	d Howard (I)	
Titel der St	udie		Metals from Deepsea alt and Manganese Ma		and the Effects
Erscheinu		on the world con	ait and Manganese Ma 1980		
		INCO	Cuprion	Sulfuric Acid	Hydrochloric Acid
	Dimension				j
Jahreskapazität	Mio.jato	3,0	3,0	. 3,0	3,0
Jahresbetriebszeit bzw. Jahresförderung	Tage/Jahr	330 Tage à 24 Stunden	330 Tage å 24 Stunden	330 Tage d 24 Stunden	330 Tage à 24 Stunden
Gewinnungsverfahren					·
Aufhereitungsverfahren		"INCO-Smelting Process" 4-Metalle	"Kennecott Cuprion Process" 4-Metalle	"High Temperature Sulfuric Acid Leach Process" 4-Metalle	"Hydrochloric Acid Leach Process" 4-Metalle
Preisbasis		1979	1979	1979	1979
Fixe Kosten	Mio. US/\$				
Forschung u. Entwicklung		100,0	100,0	100,0	100,0
Prospektion u.Exploration		19,9	19,9	19,9	19,9
Bergbau		120,8 + (9,7) ^a	120,8 + (9,7) ^a	120,8 + (9,7) ^a	120,8 + (9,7) ^a
Transport		65,5	65,5	65,5	65,5
Aufbereitung u.Verhüttung Ni, Cu, Co		711,3 + (50,0) ^b	510,4	665,2	1355,5 ^d
FeMn, SiMn		442,1	547,0	547,0	
Insgesamt		1459,6 + (183,9) amining working beapital. Extra Pollution Control. Total Project Working Capital	1363,6 + (169,8)°	1518,4 + (193,2) ^c	1661,7 + (213,0) ^c ^d Cu,Co,Ni, Electro lytic.Mn.
Durchschnittliche fixe Kosten (perjato Kapazität)	US-\$/to			·	
Forschung u. Entwicklung		33,33	33,33	33,33	33,33
Prospektion u.Exploration		6,63	6,63	6,63	6,63
Bergbau		40,27	40,27	40,27	40,27
Transport		21,83	21,83	21,83	21,83
Aufbereitung u.Verhüttung Ni,Cu,Co FeMn, SiMn		237,10	170,13	221,73	451,83
		147,37	182,33 454,53	182,33	
Insgesamt		486,53	454,53	506,13	553,90
Variable Kosten (p.a.)	Mio. US/\$				
Bergbau		25,2	25,2	25,2	25,2
Transport		15,9	15,9	15,9	15,9
Aufbereitung u. Verhüttung		199,6 ^a 188,8 ^b	144,7 ^a 224,7 ^b	164,5 ^a 224,7 ^b	290,2
Insgesamt	-	429,5 ^a Ni,Cu,Co. ^b Mn-Recovery.	410,5	430,3	331,3
Durchschnittliche variable Kosten(per/to Manganknollen)	US-5/to				
Bergbau		8,40	8,40	8,40	8,40
Transport		5,30	5,30	5,30	5,30
Aufbereitung u. Verhüttung		66,53 62,93	48,23 74,90	54,83 74,90	96,73
Insgesamt		143, 17	136,83	143,43	110,43

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor Titel der Studie		Black, John Roland Howard (I) The Recovery of Metals from Deepsea Manganese Nodules and the Effects						
		on the World Cobalt and Manganese Markets						
Erschei	nungsjahr	INCO	1980 Cuprion	Sulfuric Acid	Hydrochloric Acid			
	Dimension	ined	euprion	Suffuffe Acid	hydrochiofic Acid			
fetallgehalt in den Mangan- mollen	vH		4					
Mangan		25,00	25,00	25,00	25,00			
Nickel		1,30	1,30	1,30	1,30			
Kobalt		0,25	0,25	0,25	0,25			
Kupfer		1,25	1,25	1,25	1,25			
Eisen Molybdän								
usbringungsgrad	vH							
Mangan		75	75	75	87			
Nickel		85	85	85	85			
Kobalt		50	50	50	50			
Kupfer		85	85	85	85			
Eisen								
Molybdän	·				·			
		· .						
Ahrliche Ausbringung	to/Jahr							
Mangan		180 000 (SiMn) 535 000 (FeMn)	590 000	590 000	590 000 (Electro			
Nickel		36 000	36 300	35 000	40.000 - 44 000			
Kobalt		4 500	4 500	4 300	4 300			
Kupfer	,	31 500	32 300	32 300	31 000			
Eisen								
Molybdan			1 000					
emerkungen	"Costs ex (page 11)	cclude depreciation,	, start up and t	raining costs"	(
	Zu den Ar Zu Einzel	nnahmen vgl. S. 113. Ikosten vgl. Tabelle	, 26, S. 114.					
ıßnoten			- , · · · · ·					
·								
•								
·								
			•					

Quelle: Vgl. Autoren im Kopf der Tabelle. - Eigene Berechnungen.

noch Tabelle A2 - Kostenstudien über den Tiefseebergbau (Förderung und Verhüttung von Manganknollen)

Autor			Black, John Roland	Howard (II)	
Titel der Stu	ıdie	The Recovery of A	etals from Deepsea	Manganese Nodules	and the
Erscheinur		Effects on the Wo	orld Cobalt and Mang 198		
Discherium	igs jaint	INCO	Cuprion	Sulfuric Acid	Hydrochloric Acid
	Dimension				
Jahreskapazität	Mio.jato	1,0	1,0	1,0	1,0
Jahresbetriebszeit bzw. Jahresförderung		330 Tage å 24 Stunden	330 Tage à 24 Stunden	330 Tage à 24 Stunden	330 Tage à 24 Stunden
Gewinnungsverfahren			·		
Aufbereitungsverfahren	•	"INCO Smelting Progress"	"Kennecott Cuprion Process"	"High Temperature Sulfuric Acid Leach Process"	"Hydrochloric Acid Leach Process"
	·	4-Metalle	4-Metalle	4-Netalle	4-Metalle
Preisbasis	٠.	1979	1979	1979	1979
Fixe Kosten	Mio. US-S				
Forschung u. Entwicklung		100,0	100,0	100,0	100,0
Prospektion u.Exploration		9,9	9,9	9,9	. 9,9
Bergbau		73,5	73,5	73,5	73,5
Transport		30,1	30,1	30,1	30,1
Aufbereitung u.Verhüttung		583,2	532,1	614,9	554,6 ^d
Insgesamt	:	796,7 + (92,6) ^c Total Project	745,6 + (87,2)°	828,4 + (99,7) ^c	768,1 + (89,2) ^d Cu, Co, Ni,
		Working Capital			Electrolytic.Mn.
Durchschnittliche fixe Kosten (per jato Kapazität)	US-\$/to		:		
Forschung u. Entwicklung		100,0	100,0	100,0	100,0
Prospektion u.Exploration		9,9	9,9	9,9	9,9
Bergbau		73,5	73,5	73,5	73,5
Transport	·	30,1	30,1	30,1	30,1
Aufbereitung u. Verhüttung		583,2	532,1	614,9	554,6
Insgesamt		796,7	745,6	828,4	768,1
Variable Kosten (p.a.)	Mio. US-\$				
Bergbau		18,0	18,0	18,0	18,0
Transport		8,6	8,6	8,6	8,6
Aufbereitung u.Verhüttung		 197,9	176,6	 185, 1	128,6
Insgesamt		224,5	203,2	211,7	155,2
Durchschnittliche variable. Kosten (per to Manganknol- len)	US-\$/to			19 00	18.00
Bergbau		18,00	18,00	18,00	18,00
Transport		8,60	8,60	8,60	8,60
Aufbereitung u.Verhüttung			176,60	185,10	128,60
Insgesamt		224,50	203,20	211,70	155,20
	·				·

Quelle: Vgl. Autoren im Kopf der Tabelle .- Eigene Berechnungen.

Tabelle A3 - Metallproduktion im Tiefseebergbau (Schätzwerte)

Koste	enstudie									
Lfd. Nr.	Autor(en)	Produktions- kapazität in Millionen Tonnen (dmt)	Metalloutput in Tonnen pro Jahr (Nickeläquivalent in Tonnen pro Jahr)							
		Manganknollen pro Jahr	Nickel	Kobalt	Kupfer	Mangan (oder mangan- haltige Verbin- dung)	Molybdän	Nickel- äquivalen insgesamt		
1	Sorenson P. E., Mead W. J.	1,80	17100	5760 (11520)	1908 (636)	585000 (36563)	-	(65819)		
	Drechsler H.						•			
2	Fall A	1,00	12000	2400 (4800)	10000 (3333)	-	-	(20133)		
3	Fall B	1,00	12000	2400 (4800)	10000 (3333)	260000 (16250)	-	(36383)		
4	Fall C	2,00	24000	4800 (9600)	20000 (6667)	-	-	(40267)		
5	Fall D	2,00	24000	4800 (9600)	20000 (6667)	520000 (32500)		(72767)		
6	Moncrieff A., Smale Adams K.	3,00	35100	3300 (6600)	29700 (9900)	-	-	(51600)		
	Pearson J. S.									
7	Fall A	0,91	13000	1600 (3200)	11400 (3800)	326500 (20406)	-	(40406)		
8	Fall B	0,91	10160	1270 (2540)	8900 (2967)	254000 (15875)	-	(31542)		
	Arthur D. Little									
9	Kennecott- Project	2,72	34286	2993 (5986)	31020 (10340)	-	898 (1078)	(51690)		
10	INCO-Project	2,72	34286	3810 (7620)	29388 (9796)	609524 (12698)	1143 (1371)	(65771)		
11	OMA-Project	0,91	11429	1633 (3266)	9796 (3265)	228571 (32653)	490 (588)	(51201)		
12	Nyhart J. D. u. a.	2,72	38776	3918 (7836)	33605 (11202)	-	-	(57814)		
13	Diederich F. u. a.	2,72	38776	3918 (7836)	33605 (11202)	-		(57814)		
	AMR									
14	Fall A	3,00	35100	5000 (10000)	29400 (9800)	221900 (13869)	-	(68769)		
15	Fall B	3,00	35100	5000 (10000)	29400 (9800)	665600 (41600)	-	(96500)		
16	Fall C	3,00	35100	5000 (10000)	29400 (9800)	-	-	(54900)		
							•			
			1					ŀ		

Koste	nstudie							
Lfd. Nr.	Autor (en)	Produktions- Metalloutput in Tonnen pro Jahr kapazität in (Nickeläquivalent in Tonnen pro Jahr) Millionen Tonnen (dmt) Manganknollen						
		pro Jahr	Nickel	Kobalt	Kupfer	Mangan (oder mangan- haltige Verbin- dung)	Molybdän	Nickel- äquivalent insgesamt
	Arthur D. Little			, a. -				
17	"Ammonia Leach" (ohne Mangan)	2,72	34292	2722 (5444)	29393 (9798)	685839 (16728)	816 (979)	(50513)
18	"Ammonia Leach" (mit Mangan)	2,72	36959	3810 (7620)	31679 (10560)		1143 (1372)	(73239)
19	"Pyro- metallurgical"	2,72	34292	3810 (7620)	29393 (9798)	685839 (14288)	1143 (1372)	(67370)
	Black J. R. H.							
20	INCO (mit Mangan)	3,00	36000	4500 (9000)	31500 (10500)	715000 (42009)	-	(97509)
21	INCO (ohne Mangan)	3,00	36000	4500 (9000)	31500 (10500)	-	-	(55500)
22	CUPRION (mit Mangan)	3,00	36300	4500 (9000)	32300 (10767)	590000 (36875)	1000 (1200)	(94142)
23	CUPRION (ohne Mangan)	3,00	36300	4500 (9000)	32300 (10767)	-	1000 (1200)	(57267)
24	Sulfuric Acid (mit Mangan)	3,00	35000	4300 (8600)	32300 (10767)	590000 (36875)	-	(91242)
25	Sulfuric Acid (ohne Mangan)	3,00	35000	4300 (8600)	32300 (10767)	-	-	(54367)
26	Hydrochloric Acid	3,00	42000	4300 (8600)	31000 (10333)	590000 (36875)	<u></u>	(97808)

Quelle: Tabelle A2 - Eigene Berechnungen

Schätzgleichungen für die Entwicklung der fixen und der variablen Kosten im Landbergbau und im Tiefseebergbau 1965 - 1980 sowie durchschnittliche Kosten 1979 und 1990 Tabelle A4

	Schätzgleichung ^a	Zeitraum N		n $\overline{\mathbb{R}}^2$	F	ĐW	Kosten in US \$ (1979) pro Pound Nickel- (-äquivalent)	
							1979	1990
Tiefseebergbau	Fixe Kosten (1) ln CAC = - 97,3986 + 0,0502 T (-3,79)* (3,86)*	1968-1979	24	0,38	14,87*	1,57	7,01	12,18
Landbergbau (Nickellaterit- bergbau)	(2) ln CAC = -126,2335 + 0,0650 T (-5,46)** (5,55)**	1965-1979	44	0,41	30,81 ^{**}	2,13	11,04	22,57
	(3) $\ln CAC = -184,1266 + 0.0943 T$ $(-6,54)^{*}$ $(6,62)^{*}$	1970–1979	30	0,60	43,77*	1,34	12,10	34,14
	<u>Variable Kosten</u>							
Tiefseebergbau	(4) ln OPC = $-125,1122 + 0,0635 \text{ T}$ $(-6,42)^{*}$ $(6,44)^{*}$	1968-1979	24	0,64	41,47*	1,93	1,74	3,50
Landbergbau (Nickellaterit- bergbau)	(5) ln OPC = ~144,8829 + 0,0736 T (-5,25)* (5,27)*	1972–1980	20	0,58	27 , 76 *	0,90	2,16	4,86
	(6) ln OPC = $-148,7245 + 0,0758 \text{ T}$ $(-6,59)^*$ $(6,64)^*$							
	- 0,0056 KAP (-2,29)*	1972-1980	19	0,74	26,48*	1,05	2,06	4,75

^aZu den Symbolen: CAC = Fixe Kosten in US \$ (1979) pro Pound Nickel (-äquivalent) Jahreskapazität;

OPC = Variable Kosten (ohne Abschreibung, Amortisation und Schuldendienst) in US \$ pro Pound

Nickel (-äquivalent);

KAP = Auslastungsgrad der Produktionskapazität in vH T = Jahr (1965 - 1980);

t-Werte in Klammern;

* signifikant bei einer Irrtumswahrscheinlichkeit von 5 vH

Quelle: Tabellen 1, 2 und 3 Eigene Berechnungen.

Tabelle A5 - Durchschnittliche fixe Kosten im Nickellateritbergbau 1965 - 1979

Lfd. Nr.	Jahr	Fixe Kosten in US \$ (1979)) /lb Nickel	Lagerstättentyp ^a
1	1965	4,58	A
2	1969	6,02	A
3 4	1970 1970	4,04 9,50	B A
5	1971	5,16	В
6	1971	8,31	В
7 8	1972	6,26 7,39	B B
9 .	1972 1972	6,18	В
10	1972	12,18	Ā
11	1973	7,80	В
12	1973	4,95 5,27	В В
13 14	1973 1973	7,11	В
15	1973	8,00	B
16	1973	5,55	В
17	1974	11,63 6,86	A B
18 19	1974 1974	6,86 5,56	В
20	1974	5,77	В
21	1974	6,19	В
22	1975	9,36	A
23 24	1975 1975	13,09 6,54	A B
25	1975	10,69	A
26	1976	10,15	A
27 28	1976 1976	10,71 9,90	A B
29	1976	10,20	В
30	1976	12,96	В
		(10,14 bis 15,78)	
31	1977	11,70	В
32	1978	11,38	В
33 34	1978 1978	8,91 9,82	A B
35	1978	8,73	В
36	1979	10,00	A
		(9,00 bis 11,00)	
37	1979	10,00	A
38	1979	10,00	A
39 40	1979 1978	9,00 13,09	B B
41	1977/78	11,29	В
42	1977/78	10,27	В
43 44	1977/78 1977/78	9,59 9,14	B B
44	(377)76	9,14	

A Keine Angabe, ob lateritischer oder sulfidischer Lagerstättentyp; B Lateritischer Lagerstättentyp

Quelle: Fachzeitschriften: Engineering and Mining Journal; Mining Annual Review; Mining Congress Journal; Handelsblatt; NfA - Nachrichten für den Außenhandel; Metallwirtschaft und Metallmarkt -

Unternehmen: INCO, Toronto; Falconbridge International Limited, Toronto; Kennecott Copper Corporation; AMR, Frankfurt; Metallgesellschaft AG, Frankfurt -

Sonstige: Arthur D. Little (1977); J. Hilmy (1979); J. R. H. Black (1980)

Tabelle A6

Faktorpreise der Vereinigten Staaten, 1979

Faktor	Preis in US	\$ (1979)/Mengeneinheit
Heizöl	20	\$/bbl
Kohle	57,90	\$/t
Koks	80	\$/t
Strom	0,03	\$/kWh
Elektroden	1.000	\$/t
LIX 64 N	2,75	\$/1b
Dampf	0,0027	\$/1b
Wasser	50	\$/Mgal
Ammoniak	150	\$/t
Salzsäure	42	\$/t
Schwefelsäure	57,80	\$/t
Kalk	32,50	\$/t
Siliciumoxid	40	\$/t
(Eisen-)Schrott	100	\$/t
Elektroden Paste	300	\$/t
Lohn: Betriebspersonal	20.000	\$/Mann und Jahr
Wartungspersonal	23.000	\$/Mann und Jahr

Quelle: Black [1980], S. 114.

Tabelle A7

Faktorabsorption (Arbeit, Material, Energie) im Tiefseebergbau und im Landbergbau

Faktor	Di-	Faktormenge je Pound Nickel(-äquivalent)							
	men- sion	Tiefseebergbau (INCO) ohne mit Mangangewinnung		Landb (Ferronic Alternative A	Morro do Niguel				
Arbeit									
Arbeiter- Angestellte-	Stunden Stunden	0,0131	0,0131 0,0109	0,0260	0,0260 0,0064				
Material	L								
Chemikalien	us \$ ^b	0,2664	0,1633		•				
Elektroden	kg	0,0324	0,0184	•	•				
LIX 64 N	lb	0,0025	0,0014	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
Kalk	kg	-	0,71	0,25	0,30	0,07			
Elektroden-Paste		_	0,0718	•	•	0,17-0,24			
(Eisen-) Schrott		_	0,45		•				
Koks	kg	, -	1,43	•	•				
Flußmittel (Si- lica)	la or		0,77						
div. Material	kg	_	0,77	•	•				
(Bergbau und		İ		1					
Transport)	ne ap	0,1122	0,0637						
Wasser	uş ≴ ^b m	0,0372	0,0037	0,075 ^c	0,090 ^c				
Flußspat	ka	1	0,0217	1 0,073	0,090	0,0061			
Sauerstoff	kg m	•	•	,	•	0,05			
Soda	kg	1 :	•	• :	•	0,52			
boud	~9		•		•	0,32			
Energie									
Kohle	kg	4,59	2,61=	0,05	0,06	1,75 ^d			
Strom	kŴh	4,59 13,15 ^e	2,61 21,72 ^f	12,50	15,00	27,17			
Dampf	lb	32,69	18,61	•	•	•			
Heizöl	1	0,02	0,71	3,40	4,08	3,31			
Dieselöl	1		•	0,20	0,24	•			

Alternative A: Input 1,25 Millionen dmt pro Jahr, Output 50 Millionen lbs pro Jahr; Alternative B: Input 1,5 Millionen dmt pro Jahr, Output 50 Millionen lbs pro Jahr.

Quelle: Black (1980) a. a. O. - Langer, Ernst (1979) - Angaben eines Industrieunternehmens - Eigene Berechnungen.

b Preisbasis 1979

^C Frischwasser

d Holzkohle zur Reduktion

e davon im Bergbau und für den Transport 2,12 kWh/lb

davon im Bergbau und für den Transport 1,21 kWh/lb

Tabelle A8
Umrechnungsfaktoren für Energiebilanzen

Energieträger	Mengeneinheit	kWh
Schweres Heizöl	gal (US) bbl short ton	16,67 700,00 4.167,00
Dieselöl, leichtes Heizöl	gal (US)	15,77
Kohle, Koks, Elektroden	lb metric ton	1,44 3.175
Dampf	1b	0,139

Quelle: John Dasher, The energy picture in nickel production, in Mining Magazine - May 1976, S. 379

Tabelle A9 - Fixe Kosten und variable Kosten in US \$ (1979) pro Tonne Manganknollen - Schätzungen 1965 - 1980

к о	stenstu	d i e				
	Autor(en) der Kosten- schätzung	Erscheinungs- jahr (Preisbasis im Original)	Anzahl der Metalle ^a	Jahres- kapazität (Mio jato)	Fixe Kosten in US \$ (1979) pro Tonne Man- ganknollen Jahreskapazität	Spezifische variable Koste in US \$ (1979) pro Tonne Man- ganknollen Jahreskapazitä
1	Mero J. L.	1965 (1963)	4	1,22		90
2	Hess H. D.	1965 (1964)	5	1,50	125 bis 163	
3	Sorenson P. E., Mead W. J.	1968 (1968)	4	1,80	251	84
4	Dorstewitz G.	1971 (1970)	4	1,25	107	85
	Drechsler H.	1972 (1970)				
5	Fall A		3	1,00	306	56
6	Fall B		4	1,00	363	84
. 7	Fall C		3	2,00	245	48
8	Fall D		4	2,00	291	73
9 .	Kaufmann R., Rothstein A. J.	1973 (1974)	•	1,00	202 bis 303 ^C	104 bis 143
10	Dubs M.	1974 (1974)	•	3,00		42 bis 58
11	Moncrieff A., Smale Adams K.	1974 (1974)	3	3,00	144 ^d	51
	Pearson J. S.	1975 (1974)				
12	Fall A	•	4	0,91	213	63
13	Fall B		4	0,91	32	29
	Arthur D. Little	1977 (1976)				
4	Kennecott-Project		4	2,72	196 ^d	70
5	INCO-Project		5	2,72	273 ^d	80
6	OMA-Project		5	0,91	445 ^d	169
17	Nyhardt J. D.	1978 (1976)	3	2,72	233	46
	Diederich F., Müller W., Schneider W.	1979 (1976)	3	2,72	396	115
	AMR	1979 (1978)			·	
19	Fall A		4 ^e	3,00	450	95
20	Fall B		4 ^f	3,00	493	121
21	Fall C		3	3,00	374	78

					· · · · · · · · · · · · · · · · · · ·	
	stenstu					
Lfd.	Autor(en) der Kosten- schätzung	Erscheinungs- jahr (Preisbasis im Original)	Anzahl der Metalle ^a	Jahres- kapazität (Mio jato)	in US \$ (1979) pro Tonne Man- ganknollen Jahreskapazität	Spezifische variable Kosten in US \$ (1979) pro Tonne Man- ganknollen Jahreskapazität
	Arthur D. Little	1979 (1978)				
22	"Ammonia Leach Without Manganese"		4 ^g	2,72	254	89 .
23	"Ammonia Leach With Manganese"		5	2,72	361 ^h	128
24	"Pyrometallurgical	н	5	2,72	311 ^h	97
	Black J. R. M.	1980 (1979)				
25	INCO		4	3,00	453	143
26			3	3,00	306	80
27	Cuprion		4	3,00	421	137
28			3	3,00	239	62
29	Sulfuric Acid		4	3,00	473	143
30			3	3,00	290	69
31	Hydrochloric Acid		4	3,00	521	110
32	INCO		4	1,00	697	225
33	Cuprion		4	1,00	646	203
34	Sulfuric Acid		4	1,00	728	212
35	Hydrochloric Acid		4	1,00	668	155
					<u> </u>	

- a
- 5 bedeutet Nickel, Kupfer, Kobalt, Mangan, Molybdän 4 bedeutet Nickel, Kupfer, Kobalt, Mangan (sofern nicht anders angegeben) 3 bedeutet Nickel, Kupfer, Kobalt
- b ohne Forschungs- und Entwicklungsaufwand, sofern nicht anders angegeben
- spezifischer Kapitalaufwand insgesamt ohne nähere Angabe, ob Forschungs- und Entwicklungs- aufwand darin enthalten С
- d ohne Forschungs- und Entwicklungsaufwand, ohne Prospektion und Exploration
- е 221.900 Tonnen Mangan Output
- f 665.600 Tonnen Mangan Output
- g Nickel, Kupfer, Kobalt, Molybdän
- h in den Investitionen sind nur Anlagen und Einrichtungen zur Erzeugung einer geschmolzenen manganhaltigen Schlacke enthalten
- keine Angabe

Quelle: Tabelle A2 - Eigene Berechnungen

ANHANG B

Fixe und variable Durchschnittskosten bezogen auf die Fördermenge an Manganknollen

1*. Im Abschnitt II Ziffer 11 ff wurden auf die Metallproduktion bezogene Durchschnittskosten ermittelt. Im folgenden werden - wegen der breiteren Datenbasis - die variablen und fixen Kosten auf den Output des Bergbausektors, das heißt auf die jährlich geförderte Menge Manganknollen bezogen. Errechnet wurden: (1) fixe Kosten pro Jahrestonne Manganknollen in US\$ (1979) und (2) variable Kosten pro Jahrestonne Manganknollen in US\$ (1979). Die Ergebnisse sind in den Schaubildern A 1 und A 2 dargestellt.

Durchschnittliche fixe Kosten pro Jahrestonne Manganknollen 2*. Auffällig ist im Schaubild A 1 die große Streubreite der Schätzungen. Die wichtigsten Gründe für die beachtlichen Differenzen der Schätzwerte für die spezifischen fixen Kosten wurden bereits genannt (Ziffer 10):

- a) Unterschiede bei den zugrundegelegten Betriebsgrößen,
- b) unterschiedliche Technologien zur Gewinnung und Förderung der Manganknollen und
- c) unterschiedliche Verfahren zur Verhüttung der Manganknollen.
- 3*. Eine Vorstellung über die Größenordnung der Kostendifferenzen infolge unterschiedlicher Betriebskapazitäten läßt sich aus den Berechnungen von Black [1980] gewinnen: die fixen Kosten pro Jahrestonne Manganknollen betragen bei einem 3 Mio-Jahrestonnen-Betrieb etwa zwei Drittel bis vier Fünftel der entsprechenden fixen Kosten eines Tiefsee-Berg-

baubetriebes mit nur 1 Mio Jahrestonnen Manganknollen¹.

4*. Die Schätzungen über die bergbaulichen Fixkosten (Kosten der Anlagen zur Gewinnung und Förderung der Manganknollen) weichen besonders stark voneinander ab. Die Schwankungsbreite der spezifischen fixen Kosten für den Bergbausektor reicht (1979er Preise) von 3,2 US\$ ∠Pearson, 1979, Fall B7 bis 175 US\$ ∠Sorenson and Mead, 19687. Die Angabe von Pearson mit 3,2 US\$ pro Jahrestonne Manganknollen bei einer Betriebskapazität von 0,91 Mio Jahrestonnen ist die einzige

$$c_2 = \frac{c_1}{(Q_1/Q_2)^{Q_1/Q_2}}$$

wobei

Q₁ = 1 Million Tonnen Jahreskapazität

Q₂ = 2 Millionen Tonnen Jahreskapazität

 C_1 = Fixe Kosten eines 1 Million-Jahrestonnen-Betriebs

C₂ = Fixe Kosten eines 2 Millionen-Jahrestonnen-Betriebs

Nach den von A.D. Little [1977] veröffentlichten Schätzungen ergeben sich ähnliche Vergleichswerte. Hierbei ist allerdings zu beachten, daß sich nicht nur die Betriebsgrößen unterscheiden, sondern auch die Verhüttungsverfahren. Drechsler [1973, S. 84] berechnet die fixen Kosten für einen Betrieb mit 2 Mio Jahrestonnen Kapazität auf der Basis der entsprechenden Kosten eines Betriebes mit 1 Mio Jahrestonnen, mittels der Formel:

Schätzung, die uns für das sogenannte Continuous-Line-Bucket-System $(CLB)^{1}$ vorliegt.


5*. Die Fülle von Kombinationsmöglichkeiten zwischen den verschiedenen Gewinnungsgeräten und Fördertechnologien spiegelt sich auch in den Schätzungen für die fixen Kosten wider. Da alle Schätzungen mit einem mehr oder weniger großen Unsicherheitsfaktor versehen sind, soll an dieser Stelle nicht näher darauf eingegangen werden, welche Abbauanlage die niedrigsten fixen Kosten erfordert².

Zur Aufnahme der Manganknollen am Meeresboden wurden bzw. werden verschiedene Gewinnungsgeräte (mechanische Sammeleinrichtungen, Einrichtungen mit festen oder einstellbaren Schleppsaugknöpfen u.a.) entwickelt und erprobt. Beschreibungen der verschiedenen Gewinnungs- und Fördereinrichtungen enthält beispielsweise Chaziteodorou [1976/77]. Chaziteodorou weist darauf hin, daß "das jeweilige Kostenbild eines technologischen Verfahrens sich in Abhängigkeit von einer Vielzahl variabler Einflußfaktoren, insbesondere von Lagerstättenfaktoren gestaltet" (siehe Chaziteodorou, 1976/77, Seite 58). Chaziteodorou kommt nach einer Rentabilitätsbewertung der verschiedenen Abbaumöglichkeiten u.a. zu dem Schluß: "Die Fließfördertechnologien (kontinuierliches Fördern auf hydraulischem und hydropneumatischem Wege) sind wirtschaftlich eindeutig führend". (siehe Chaziteodorou, [1976/77] Seite 75).

¹ Beim CLB-System sind viele Schürfkübel an einem Endlosseil befestigt. Dieses Endlosseil wird über eine Windenanlage an Bord eines Schiffes so in Rotation versetzt, daß die Schürfkübel am Meeresboden schleifen und die dabei aufgenommenen Manganknollen auf das Schiff fördern. Das CLB-System wurde von Yoshio Masuda entwickelt und wird von der sogenannten Continuous-Line-Bucket-Group in der Praxis erprobt. Zu dem CLB-System vgl. Yoshio Masuda [1975]. den anderen vorliegenden Kostenanalysen wird davon ausgegangen, daß die Manganknollen mit einem Gewinnungsgerät vom Meeresboden aufgenommen werden und anschließend hydraulisch oder hydropneumatisch in einem Rohrstrang auf das Förderschiff transportiert werden. Bei diesen Methoden wird also entweder ein Feststoff (Manganknollen)-Wasser-Gemisch oder ein Feststoff-Wasser-Luft-Gemisch (Air-Lift-System) auf das Förderschiff gepumpt, Das Konsortium Ocean Management Inc., an dem auch die deutsche Gruppe AMR (Arbeitsgemeinschaft meerestechnisch gewinnbare Rohstoffe) beteiligt ist, ist bisher das einzige Unternehmen, das beide zuletzt genannten Fördertechnologien in der Praxis erprobt hat.

- 6*. Die Kostenanalysen von Black ermöglichen einen Vergleich der fixen Kosten zwischen dem 3-Metall-Verfahren und dem 4-Metall-Verfahren im Hüttensektor. Danach sind für die (zusätzliche) Gewinnung des Mangans im Hüttensektor Fixkosten erforderlich, die das 0,6 bis 1,1-fache der Werte betragen, die für die Gewinnung von Kupfer, Nickel und Kobalt insgesamt (3-Metall-Verfahren) in Ansatz gebracht werden¹.
 - 7*. Schaubild A 1 läßt außer der beachtlichen Streubreite der verschiedenen Schätzungen auch einen Anstieg dieser Werte im Zeitablauf erkennen. Dieser Anstieg der fixen Kosten dürfte zum überwiegenden Teil darauf zurückzuführen sein, daß die technischen Schwierigkeiten und demzufolge auch die Kosten einer Förderung und Verhüttung von Manganknollen anfangs unterschätzt wurden. Die Erfahrungen, die vor allem aufgrund der Förderversuche und in jüngster Zeit auch aus den Verhüttungsversuchen gewonnen wurden, haben offenbar zu einer Überarbeitung der technischen Lösungsansätze geführt, die letztendlich auch in höheren Kostenschätzungen ihren Niederschlag gefunden haben.

Bezieht man für einen 3 Mio-Jahrestonnen-Betrieb die fixen Kosten im Hüttensektor für die (zusätzliche) Gewinnung des Mangans auf die entsprechenden fixen Kosten des 3-Metall-Verfahrens, so ergeben sich für die verschiedenen Verhüttungstechnologien folgende Quotienten: INCO-Smelting-Process 0,6; Kennecott-Cuprion-Process 1,1; High Temperature Sulfuric Acid Leach Process 0,8. [Black 1980 - eigene Berechnungen].

- 8*. Für eine kurze abschließende Betrachtung der fixen Kosten sollen nur Schätzungen der aktuellsten Kostenuntersuchungen (1979, 1980) herangezogen werden. Aus den Daten der Tabelle A 2 errechnen sich folgende Durchschnittswerte:
 - Für ein Tiefseebergbau-Projekt mit einer Jahreskapazität von 3 Millionen Tonnen Manganknollen betragen die fixen Kosten 302 US\$ (1979) pro Jahrestonne Manganknollen beim 3-Metall-Verfahren und 469 US\$ pro Jahrestonne Manganknollen beim 4-Metall-Verfahren;
 - für ein Tiefseebergbau-Projekt mit einer Jahreskapazität von 1 Million Tonnen Manganknollen werden fixe Kosten von 685 US\$ (1979) pro Jahrestonne Manganknollen beim 4-Metall-Verfahren geschätzt.

Demnach erreichen die fixen Kosten beim 4-Metall-Verfahren im Vergleich zum 3-Metall-Verfahren etwa den 1 1/2-fachen Betrag. Mit einer Erhöhung des Produktionskapazität von 1 Million Jahrestonnen auf 3 Millionen Jahrestonnen Manganknollen verringern sich die fixen Kosten um etwa ein Drittel. Mit diesem letztgenannten Ergebnis stimmt die Beobachtung überein, daß die Tiefseebergbau-Konsortien bei ihren Projektüberlegungen derzeit überwiegend von einer Produktionskapazität von 3 Millionen Jahrestonnen Manganknollen ausgehen¹.

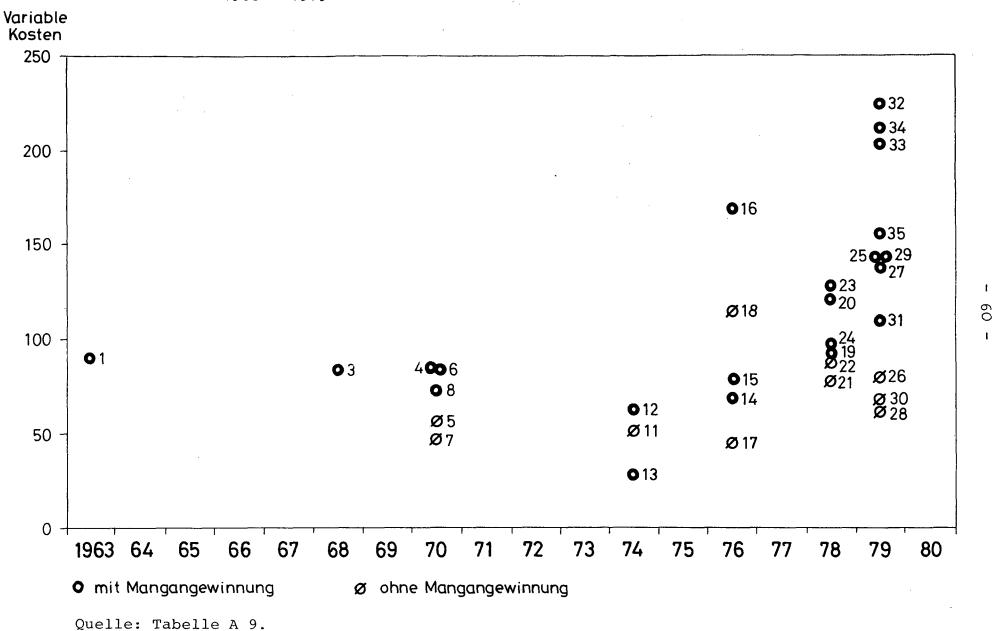
Durchschnittliche variable Kosten pro Jahrestonne Manganknollen

9*. Ebenso wie die Schätzwerte für die fixen Kosten sind auch die Schätzwerte der variablen Kosten im Zeitablauf gestiegen und streuen je nach Betriebsgröße, Gewinnungsund Fördertechnik sowie dem in Betracht gezogenen Verhüttungsverfahren relativ breit (Schaubild A 2). So errechnen sich beispielsweise aus den Daten der Kostenschätzungen von Black im Durchschnitt für ein Projekt mit
einer Jahreskapazität von 1 Million Tonnen Manganknollen
variable Kosten von 200 US\$ und für ein 3 Millionen Jahrestonnen-Projekt variable Kosten von rund 135 US\$ (1979) je
Tonne Manganknollen. Nach den Schätzungen von Drechsler
[1970] verringern sich bei einer Verdopplung der Produktionskapazität von 1 Million Jahrestonnen auf 2 Millionen
Jahrestonnen die durchschnittlichen variablen Kosten um
etwa 15 vH.

wobei

Drechsler legte bei seiner Umrechnung der Betriebskosten eines 1 Millionen-Jahrestonnen-Betriebs auf einen 2-Millionen-Jahrestonnen-Betrieb folgende Formel zugrunde:

 $c_2' = c_1' (Q_1/Q_2)^{0,2}$


Q₁ = 1 Million Tonnen Jahreskapazität

 $Q_2 = 2$ Millionen Tonnen Jahreskapazität

C₁ = Betriebskosten eines 1 Millionen-Jahrestonnen-Betriebs

⁽vgl. Drechsler, [1973], Seite 83)

Schaubild A 2 - Variable Kosten in US \$ (1979) pro Tonne Manganknollen (Schätzungen),
1963 - 1979

10*. Den Einfluß der Gewinnungs- und Fördertechnik auf die Streuung der variablen Kosten verdeutlicht die folgende Beobachtung: Die durchschnittlichen variablen Kosten (Preise von 1979) im Bergbau-Sektor schwanken zwischen 0,5 US\$ (Pearson, Fall B) und 26,9 US\$ (Sorenson and Mead) pro Tonne Manganknollen¹.

Die Kostenanalysen von Black [1980] ermöglichen eine Gegenüberstellung der Verhüttungskosten der 3-Metall-Verfahren mit den 4-Metall-Verfahren. Danach verursachen die 4-Metall-Verfahren im Verhüttungsprozeß durchschnittliche variable Kosten, die etwa 2 bis 2,5 mal so hoch liegen wie die Vergleichswerte der 3-Metall-Verfahren².

Für die variablen Kosten insgesamt (Bergbau, Transport, Aufbereitung und Verhüttung) ergibt sich nach den Schätzdaten von Black bei Anwendung der 4-Metall-Verfahren im Durchschnitt ein rund doppelt so hoher Wert wie bei der Anwendung der 3-Metall-Verfahren.

Die betreffenden Faktoren für 3 Millionen-Jahrestonnen-Betriebe betragen beim: INCO-Smelting-Process 1,95; Kennecott Cuprion-Process 2,55; High Temperature Sulfuric Acid Leach Process 2,38.

Der untere Wert ist die einzige vorliegende Schätzung für das CLB-Forderverfahren. Wenn auch an diesem sehr niedrigen Schätzwert Zweifel angebracht erscheinen, so lassen die Daten dennoch vermuten, daß die hydropneumatischen und mehr noch die hydraulischen Fördersysteme höhere variable ZKosten als das CLB-System erfordern.

Literaturverzeichnis

AMR (Arbeitsgemeinschaft meerestechnisch gewinnbare Rohstoffe) Summary of Project Data for a 3 Mio DMT Nodule per Year Project, Four Metal Case, unveröffentlicht, Frankfurt, 1979

Andrew, Benjamin V.

Relative Costs of U. S. and Foreign Nodule Transport Ships, 1978

Barons
"Mining the Deep", Sept. 13, 1971

- BGR, DIW (Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, und Deutsches Institut für Wirtschaftsforschung, Berlin) Nickel, Untersuchungen über Angebot und Nachfrage mineralischer Rohstoffe, Stuttgart 1978
- Black, John Roland Howard The Recovery of Metals from Deepsea Manganese Nodules and the Effects on the World Cobalt and Manganese Markets, Massachusetts 1980
- Boin, Udo Grenzen und Möglichkeiten des Meeresbergbaus für die Gewinnung mineralischer Rohstoffe am Beispiel der Manganknollen, In: Erzmetall Bd 32 (1979) H. 5, S. 237 - 240
- Seerechtskonvention verhindert freien Investitionswettbewerb, In: Handelsblatt 9. 6. 1980
- Brooks, David B.

"Deepsea Manganese Nodules: From Scientific Phenomenon to World Resources", Natural Resources Journal, July 1968, pp 401 - 423

Chaziteodorou, Georg

Grundlagen des Meeresbergbaus, Ein Beitrag zur Gewinnung und Förderung von festen mineralischen Rohstoffen aus dem Meer, Stuttgart 1976/77

Clauss, G.

Theoretical and Experimental Investigations of Deep Sea Ocean Mining Systems and Their Economic Evaluation, Paper presented at the Second International Ocean Development Conference, Tokyo, October 1972, pp 1925 -1955. As reported in United Nations "Economic Implications of Seabed Mineral Development in the International Area: Report of the Secretary General, A/Conf. 62/25 (22 May 1974) p.67

Dasher, John

The energy picture in nickel production, In: Mining Magazine, May 1976, S. 389 f

Deep Ocean and Offshore Mining, Mining Engineering, April 1975

- Delach, M., Horn B. and Horn D.

 "Ocean Manganese Nodules: Metal Values and Mining Sites", Technical Report Nr. 4, National Science Foundation, Waschington D. C., 1973
- <u>Diederich</u>, F. u. a.

 Analysis of the MIT Study on Deep Ocean Mining Critical Remarks on Technologies and Cost Estimates,
 Aachen/Frankfurt 1979
- Dorstewitz, G.

 Meeresbergbau auf Kobalt, Kupfer, Mangan und Nickel,
 Essen 1971
- Drechsler, Herbert David

 A Study in Industrial Organization: The Potential Seabed Nodule Mining Industry, Columbia 1972
- <u>Dubs</u>, M. A., <u>Flipse</u>, J. E. and <u>Greenwald</u>, R. J.
 "Pre Production Manganese Nodule Mining Activities and Requirements", In: U. S. Congress, Senate Subcommittee on Minerals, Materials and Fuels, Committee on Interior and Insular Affairs, Mineral Resources of the Deep Seabed, 93 d. Cong. 1st. sess. May-June 1973, pp. 602 709
- Ensign, C. O.
 "Economic Barriers Delay Underseas", Mining Engineering
 18 (1966) No. 9, Seiten 59 62 / 73
- Evans, D. J. I., Shoemaker R. S., Veltman M., (Editors)
 International Laterite Symposium, New York 1979
- Gallagher, John T.

 Efficient Estimating of Worldwide Plant Costs, In:
 Chemical Engineering, June 2, 1969, S. 196 202
- Guthrie K. M.

 Data and techniques for preliminary ...: Capital Cost Estimating, In: Chemical Engineering, March 24, 1969, S. 114 142
- Hess, M. D.
 The Ocean: Mining's newest frontier, Energy Mining Journal 166, 1965, Nr. 8, S. 79 96

- Hilmy, Joseph
 - "Old Nick", An Anatomy of the Nickel Industry and its Future, Commodity Note No. 13, World Bank, Washington, September 1979
- Jenisch, Uwe

Die Seerechtskonferenz vor der 10. Session, In: Außenpolitik, Zeitschrift für internationale Fragen, 32. Jgg. H. 1/81, Hamburg 1981

Johnson, Robert J.

Costs of Overseas Plants, In: Chemical Engineering, March 10, 1969, S. 146 - 152

Kamphausen, Dieter

Rohstoffgewinnung aus der Tiefsee und Strukturveränderungen im terrestrischen Bergbau von Entwicklungsländern, In: DIW, Vierteljahresheft 3, 1978

- <u>Kaufman</u>, Raymond, <u>Rothstein</u>, Arnold J.
 Deep Sea Ventures
- Deep Sea Ventures Inc., "The Approaching Maturity of Deep Ocean Mining The Pace Quickens", In: U. S. Congress, Senate, Subcommittee on Minerals, Materials and Fuels; Committee on Interior and Insular Affairs, Mineral Resources of the Deep Seabed, 93. d. Cong. 1st sess. May June 1973, pp.201 222
- -- "Recent Developments in Deep Ocean Mining", Marine Technol. (1970) S. 935 962
- Kaufmann, Alwin

"The Economics of Ocean Mining", Marine Technological Society Journal, July - August 1970, S. 58 - 65

Kennecott Copper Corporation

Comparative Economies of Recovery of Metals from Ocean Nodules, 1976

Kohn, Philip M.

CE cost indexes maintain 13-year ascent In: Chemical Engineering, May 8, 1978, S. 189 - 190

Langer, Ernst

Ferronickel Production at Morro do Niquel, Minas Gerais, Brazil, In: Evans D. J. I., Shoemaker R. S., Veltman M. (ed.) International Laterite Symposium, S. 397 - 411

Leipziger, Danny M., <u>Mudge</u>, James L.

Seabed Mineral Resources and the Economic Interests of Developing Countries, Cambridge, Massachusetts, 1976, Chapter 6, The Economies of Manganese Nodules, S. 145 ff

- Little, Arthur D., Inc.
 - Technological and Economic Assessment of Manganese Nodule Mining and Processing, Cambridge, Massachusetts, November 1977; revised version, November 1979.
- Masuda, Yoshio

Das Continuous-Line-Bucket-(CLB)-System im Tiefsee-Einsatz. Ein Vergleich dieses Fördersystems mit anderen Gewinnungsverfahren, Braunkohle, Heft 1/2, Jan./Febr. 1975

Mero, John L.

The Mineral Resources of the Sea, New York 1965

- -- "Seafloor Minerals", Chemical Engrs. 1968 Nr. 7, S. 60-81
- Mikesell, Raymond

Financing for Expanding Free World Mine Producing Capacity Through 1990

- Mohide, T. P., Mason J. D., Warden C. L.

 Towards a Nickel Policy for the Province of Ontario,
 Mineral Policy Background Paper No. 4, Ontario 1977
- Moncrieff, A., Smale-Adams

 The Economies of First Generation Manganese Nodule Operations, Philadelphia: American Mining Congress, October 1974
- Müller-Ohlsen, Lotte

 Die Weltmetallwirtschaft im industriellen Entwicklungsprozeß. (Kieler Studie 165), Tübingen 1981
- N. N.

 Gesetz zur vorläufigen Regelung des Tiefseebergbaus vom 16. August 1980, Im Bundesgesetzblatt 1980, Teil I, Bonn, den 22. August 1980
- N. N. "Ocean Bottom Minerals", Ocean Ind. 3 (1968) Nr. 6, S. 61 73
- Norden, Robert B.

 CE Cost Indexes: A Sharp Rise Since 1965, In: Chemical Engineering May 5, 1969, S. 134 138
- Nyhart, J. D. u. a.

 A Cost Model of Deep Ocean Mining and Associated Regulatory Issues, Massachusetts 1978
- Pasho, D.W.

Ocean Mining Status of Technology, Ottawa 1979

- Pearson, John S.

 Ocean Floor Mining, Park Ridge, New Jersey, London 1975
- Prewo, Wilfried
 Tiefseebergbau: Goldgrube, Weißer Elefant oder Trojanisches Pferd? In: Die Weltwirtschaft, 1979, H. 1,
 Tübingen 1979, S. 183 197

- Sisselmann, Robert, associate editor

 Ocean miners take soundings on legal problems,
 development alternatives
- Sorenson, Philip E. and Mead, Walter J.

 A Cost Benefit Analysis of Ocean Mineral Resource
 Development: The Case of Manganese Nodules
 In: American Journal of Agricultural Economies,
 Dec. 1968
- Spangler, M. B.
 "The National Interest A Care Study of Cupro-Nickel
 Nodules of the Deep Sea", Marine Technol. 2 (1970) S. 341
- Statham, Bo
 Deep Seabed Mining, In: INCO Triangle, Toronto, Dec. 1980
- Die Bemühungen um ein Regime des Tiefseebodens. Das Schicksal einer Idee. In: Zeitschrift für ausländisches Öffentliches Recht und Völkerrecht, Stuttgart, Bd.38 (1978), Nr. 3-4, S. 745-300
- Wright, R. L.

 Ocean Mining: An Economic Evaluation, professional staff study, Ocean Min. Adm., Dept. Int. Mag. 1976, In: Deep Seabed Mining "Hearings" Sub-Comm. on Oceanography of the Comm. on Merchant Marine and Fisheries, House of Rep., 95th Cong., 1st sess. on H. R. 3350 and H. R. 4582, H. R. 4922, H. R. 5624, H. R. 6846 and H. R. 6784 (Wash. D. C. GPO, 1977)

Sonstiges (Zeitschriften und Firmenberichte):

Australian Mineral Industry Quarterly

Chemical Engineering, mehrere Jahrgänge

Engineering and Mining Journal

Falconbridge Dominicana, Annual Report, 1fd. Ausgaben

Handelsblatt

Metal Bulletin

Metallwirtschaft und Metallmarkt

Mining Annual Review

Mining Congress Journal

Mining Magazine

NfA, Nachrichten für den Außenhandel