Wolter, Frank

Working Paper — Digitized Version

Perspectives for the international location of the steel industry

Kiel Working Paper, No. 60

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

Suggested Citation: Wolter, Frank (1977) : Perspectives for the international location of the steel industry, Kiel Working Paper, No. 60, Institut für Weltwirtschaft (IfW), Kiel

This Version is available at:
http://hdl.handle.net/10419/46762

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Kieler Arbeitspapiere
Kiel Working Papers

Working Paper No. 60
Perspectives for the International Location of the Steel Industry
by
Frank Wolter

Institut für Weltwirtschaft an der Universität Kiel
Kiel Institute of World Economics
Department I
2300 Kiel, Düsternbrooker Weg 120

Working Paper No. 60
Perspectives for the International Location of the Steel Industry
by
Frank Wolter

October 1977

Kiel Working Papers are preliminary papers written by staff members of the Kiel Institute of World Economics. Responsibility for contents and distribution rests with the author.
Perspectives for the International Location of the Steel Industry

by

Frank Wolter

Introduction

1. Lasting steel crises in Western European and North American countries and increasing efforts of developing countries in establishing national steel industries are contrasting features of today's international steel scene [1]. Has comparative advantage in steel production shifted from the former to the latter countries? Developing countries seem to think so. Their discontent with the structural changes in the world economy which have emerged in the aftermath of World War II have led to demands for a New International Economic Order whose core targets encompass the introduction of an integrated raw material program and the enlargement of the developing countries' share in world industrial production to 25 p.c. in 2000 [2]. To achieve the industrialization target, priority sectors, among which is the steel industry, have been selected. In the present analysis an attempt is made to identify the determinants and to trace the probable shifts of this industry's international location which are to be expected from an economic point of view.

2. Still today, world production and trade in iron and steel originates predominantly in industrialized countries (Table 1). As one of the basic manufactured inputs for quite a number of industries such as
Table 1 - Regional Distribution of World Steel Production, 1966 - 1976 (p.c.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Market Economies</td>
<td>66.8</td>
<td>67.2</td>
<td>66.3</td>
<td>65.4</td>
<td>60.3</td>
<td>60.2</td>
</tr>
<tr>
<td>of which: EC and North America</td>
<td>51.3</td>
<td>45.3</td>
<td>43.4</td>
<td>43.0</td>
<td>38.2</td>
<td>39.0</td>
</tr>
<tr>
<td>Centrally Planned Economies</td>
<td>29.8</td>
<td>29.3</td>
<td>29.6</td>
<td>30.1</td>
<td>34.7</td>
<td>32.4</td>
</tr>
<tr>
<td>Developing Market Economies</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1</td>
<td>4.5</td>
<td>5.0</td>
<td>7.4</td>
</tr>
<tr>
<td>of which: Latin America</td>
<td>55.0</td>
<td>56.4</td>
<td>61.7</td>
<td>54.4</td>
<td>56.8</td>
<td>54.9</td>
</tr>
<tr>
<td>Brazil</td>
<td>21.8</td>
<td>23.3</td>
<td>24.9</td>
<td>23.3</td>
<td>25.8</td>
<td>29.1</td>
</tr>
<tr>
<td>World</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

^aDeveloping market economies = 100.
^bArgentina, Brazil, Mexico, Chile.

Source: Statistisches Bundesamt Wiesbaden, Eisen und Stahl, var. iss. - Own calculations.

Steel was among the first commodities to be produced industrially on a large scale and has remained keeping a prominent place in the production structure of the advanced countries. Since the mid 1960s, however, distinct shifts in the international location of this industry are indicated:

- The developed market economies tended to lose shares in world steel production. This trend, however, mainly was due to the performance of the "old" steel nations, the (enlarged) European Community and North America, whose share went down from about 51 p.c. in the mid 1960s to 39 p.c. in 1976. The younger steel nations...
among the advanced countries, such as Japan, South Africa or Spain, still succeeded in increasing their world market shares.

In contrast to developments in the old steel nations, developing countries significantly enlarged their steel production in relative terms. By now, their importance as a group is similar to that of Japan in the early 1960s. This trend is particularly noteworthy as the developing countries' share in steel production increased distinctly faster than that for overall industrial production (3).

Modest increases in world production shares are observable for centrally planned economies. In the mid 1970s, these countries supply about one third of world steel production.

Although these trends are masked by cyclical influences, in particular the recent steel crisis in advanced economies, they may imply a longer run international relocation of the steel industry on a large scale.

Determinants of Location

3. The reasons for the changing regional pattern of world steel production may be reasonably traced back to changing demand conditions. Apart from substitution processes which affect the steel industries in all countries, empirical investigations indicate varying degrees of steel intensity in the overall development process. The secular trends from primary (agricultural) production to secondary (industrial) production in the earlier phases of development, and from secondary to tertiary (service) production in the later phase in
economic development which have been revealed imply decreasing steel intensity in the long-run growth process. This conjecture can be substantiated by an international cross section analysis in which apparent steel consumption per capita is explained by per capita income. In this test, a functional relationship was selected to allow for increasing or decreasing per capita steel consumption with rising per capita income - whatever the empirical data would show. The regressions yielded the following result:

\[\ln \text{APSTCON} = -4.412 - 0.00017 \text{PCI} + 1.40001 \ln \text{PCI} \]

\[n = 30 \quad R^2 = 0.92 \]

where \(\text{APSTCON} \) denotes apparent steel consumption per capita in kg, \(\text{PCI} \) denotes per capita income in 1968 US-$, and \(\gamma_y = -0.00017 \text{PCI} + 1.40001 \) is the implicit income elasticity of demand.

The result corroborates the posited relationship: Up to an income level of about US-$ 2400, the development stage of countries like Israel or Japan in the early 1970s, steel demand increases faster than per capita income and afterwards expands progressively slower than overall growth. As the developed market economies (on average) have surpassed this critical income level and the developing countries are still far from having reached it the observed production trends seem to coincide with respective demand conditions.

4. Although the influence of demand on location should (and will) not be neglected, a relatively slow growth of domestic demand must not necessarily imply worsening supply conditions. For, as a tradable, steel
need not be consumed where it is produced. Indeed, the position of developed market economies in world exports is stronger than their production shares would suggest (Table 2). In the course of time, they even could improve their position on the world market, to the

Table 2 - Regional Distribution of Steel Exports (SITC 67), 1966 - 1975

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Market Economies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81.7</td>
<td>82.6</td>
<td>85.2</td>
<td>88.3</td>
<td>86.5</td>
</tr>
<tr>
<td>Centrally Planned Economies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.3</td>
<td>14.1</td>
<td>11.3</td>
<td>8.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Developing Market Economies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: UN, Monthly Bulletin of Statistics, var.iss. - Own calculations.

disadvantage of centrally planned economies. Developing countries emerge as marginal suppliers although their international competitiveness obviously increased during the period under consideration. Of course, these trade patterns are heavily influenced by barriers to international trade, which prevail to a particular extent in the steel industry. Apart from an effective tariff protection which mostly exceeds the average for all industries;
such barriers consist of "voluntary" export restraint agreement and a host of non-tariff barriers to trade which, on balance, are likely to protect the established steel producers vis-a-vis newcomers [6]. The most recent development in this respect is the cartel of the EC steel producers which inhibits growing imports from other than EC sources. Although it has been established because and for the duration of the severe steel recession, one might wonder whether it will be entirely abolished later on. Additional moves towards increasing protection under the name of "orderly marketing" have been very recently demanded by the U.S. government [7].

5. Such moves towards protection in the old steel nations may be also interpreted as a signal of structural weakness. To elaborate on this conjecture we shall now address ourselves to the question whether there is such thing as a "normal" pattern of development for the steel industry in the overall economic growth process. The hypothesis to be tested posites that the contribution of the steel industry to gross domestic product systematically changes as development — approximated by per capita income — proceeds. As the steel industry belongs to those branches in which scale economies are relevant in mass production, population as proxy for the domestic market size is introduced as an additional explanatory variable. The analysis was carried out by an international cross section for 1973, using the same functional relationship as applied in the demand analysis. Data were available for 53 countries from United Nations' Yearbook of Industrial Statistics. Before coming to the results it should be noted, however, that such cross section analyses for the production structure do not have any normative significance. They simply reveal the average experience of the sample countries which might also have been provoked by inefficient economic
policies. In particular, such analyses should not be used for planning purposes because this procedure might involve "the risk of transforming the misallocations of the past to the future" \[8\].

Rather these analyses should be looked upon as a tool useful for diagnosis.

6. Graph 1 illustrates the regression results which, indeed, are revealing \([9]\):

- Accordingly, up to an income level of approximately US-$ 3,400 the steel industry can be considered as a growth industry with accelerating relative growth rates in the earlier phases of industrialization and decelerating relative growth rates in later phases. After the "critical" development stage has been passed, steel production becomes a shrinkage branch.

- Domestic market size seems to exert considerable influence on the relative size of the steel industry. The regression results indicate an elasticity of the steel industry's value added per capita with respect to population of 0.9.

- Although the explanatory power of the model is quite satisfactory (as is evident from \(R^2\), 68 p.c. of the steel industry's development path is explained by the exogenous variables employed), the value of the coefficient of determination indicate that additional factors determine the steel industry's location (which will be taken up below).

In summary, the regression results strongly suggest that comparative advantage in steel production is associated with earlier development stages than those that the most advanced countries in the world economy presently enjoy. Apart from relatively unfavourable (domestic) demand conditions for steel, producers in
Graph 1 - THE PATTERN OF DEVELOPMENT OF THE IRON AND STEEL INDUSTRY, INTERNATIONAL CROSS SECTION ESTIMATE, 1973

Share of iron and steel industry (ISTC 371) in GDP

Population: 50 Millions

\[\ln \text{VAISCAP} = -21.88099 - 0.00066 \ln \text{PCI} + 3.0998 \ln \text{PCI} + 0.9192 \ln \text{POP} \]

\[(-6.432)(-1.531)(+6.399)(+3.753) \]

\[n = 53 \quad R^2 = 0.68 \quad R^2 = 0.56 \]

Population: 10 Millions

Development stage as measured by per capita income (US$)

For definitions see para. 6 and footnote 9.

these countries might well suffer from unfavourable and worsening supply conditions. In turn, this would imply that comparative advantage has shifted to the young steel nations and, hence, that in the longer-run these countries will emerge as the dominant steel producers. For an examination of this hypothesis the product cycle model seems to be particularly useful.

7. According to the product cycle model highly advanced countries enjoy comparative advantage in innovative (R&D intensive) and skill intensive activities, semi-industrial countries in standardized production lines and less developed countries in labour-intensive mature industries \(^{10}\). Apart from income elasticities of demand and the degree of standardization three more factors exert major influence on the international location of industry. First, the availability of natural resources in individual countries may offer comparative advantage for those industrial activities which intensively use such raw materials \(^{11}\). Second, in industrialized countries environment has become a scarce production factor, reflected by increasingly strict environmental protection laws there. Such developments offer advantageous location for emission intensive industries in those economies which still possess a relatively cheap environment \(^{12}\). And third, scale economies accrue to a number of industries favouring their location in countries with a large domestic market. This latter influence, however, loosens in importance in a more open world economy \(^{13}\). Calculations of relative factor requirements for the West German steel industry which may be considered representative \(^{14}\) reveal the following characteristics (Table 3):
Table 3 - Indicators for Factor Requirements of West Germany's Steel Industry (Manufacturing = 100)^a

<table>
<thead>
<tr>
<th>Industry Characteristic</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Capital Intensity^b</td>
<td>194.0</td>
</tr>
<tr>
<td>Skill Intensity^c</td>
<td>90.1</td>
</tr>
<tr>
<td>Innovativeness^d</td>
<td>17.2</td>
</tr>
<tr>
<td>Raw Material Intensity^e</td>
<td>122.7</td>
</tr>
<tr>
<td>Energy Intensity^f</td>
<td>264.9</td>
</tr>
<tr>
<td>Pollution Intensity^g</td>
<td>137.4</td>
</tr>
</tbody>
</table>

Data refer mainly to 1970. - ^bCapital stock per employee. - ^cSkilled employees in p.c. of total employees. - ^dR&D expenditures in p.c. of sales. - ^eInput from agriculture, forestry and mining in p.c. of value added. - ^fInput of fuel, electricity, gas and water in p.c. of value added. - ^gCosts of environmental protection measures in p.c. of sales. Data refer to the U.S.

- A slightly below average skill-, and distinctly below average research and development intensity;

- An above average physical capital-, raw material-, energy- and "pollution"-intensity.
Judged from these figures, and quite in line with the result of the normal pattern analysis, steel seems not to belong to those sophisticated or knowledge intensive industries which have their proper location in high-wage countries. It has to be noted, however, that the skill intensity of this branch seem to vary in the individual sub-sectors; in particular, research and development departments, rolling mills and plants for special steels seem to be characterized by above average skill intensity \[15\]. Hence, the comparative disadvantage of the old steel nations may mainly refer to mass steel production.

8. The worsening competitiveness of steel plants located in the advanced countries is mainly effected by two factors. First, as steel is a highly standardized commodity whose production technology is universally available these producers are exerted to increasing competition from semi-industrial countries which can produce steel with lower wages \[16\]. As a consequence, steel producers of highly advanced countries successively lose world market shares and, unless highly protected, also shares on the domestic market. Concerning world market shares, this effect is readily observable for the old steel nations, the European Community and North America (Table 4). Second, and even more important, the relatively slow growth of domestic demand (para. 3) and concomitant slow production expansion in the advanced countries has unfavourable effects on average production technology. When technology is embodied in new equipment a negative vintage effect can be expected for the slow growing of stagnating steel industries in highly advanced countries as compared to the young steel nations with quickly expanding production (para. 6).
Table 4 - World Market Shares in Rolled Steel, European Community and North America, 1966 - 1975 (p.c.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC, North America</td>
<td>60.1</td>
<td>55.6</td>
<td>54.1</td>
<td>54.8</td>
<td>50.3</td>
</tr>
<tr>
<td>World(^a)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

\(^a\)Including Intra-EC trade.

9. In order to test this proposition, the average technology of the steel industry has been calculated on a regional basis for steel producers of the European Community and North America, other developed market economies (mainly young steel nations), centrally planned economies, developing countries and Brazil (Table 5). Technology is measured by production processes; at prevailing price levels oxygen converters and electric furnaces are regarded as relatively efficient processes \([17]\). In turn, the share of "other" production processes in total can be considered as a useful tool to indicate the vintage of technology: the larger this share the older average technology. The results of the calculations, first of all, reveal that over time the "more efficient" processes have been increasingly adopted in all regions. Significant differences for the level of average technology, however, are observable which fit nicely to the above hypothesis:
Table 5 - Raw Steel Production by Process and Region, 1965, 1970, 1975

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Process</th>
<th>Continous Casting<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oxygen</td>
<td>Electric</td>
</tr>
<tr>
<td>EC and North America</td>
<td>1965</td>
<td>18.3</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>44.4</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>41.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Other MDCs<sup>b</sup></td>
<td>1965</td>
<td>46.9</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>71.0</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>74.5</td>
<td>20.3</td>
</tr>
<tr>
<td>Centrally Planned</td>
<td>1965</td>
<td>3.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Economies<sup>c</sup></td>
<td>1970</td>
<td>16.8</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>24.4</td>
<td>10.7</td>
</tr>
<tr>
<td>Developing Countries<sup>d</sup></td>
<td>1965</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>13.1</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>23.0</td>
<td>24.8</td>
</tr>
<tr>
<td>Brazil</td>
<td>1965</td>
<td>25.5</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>36.6</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>43.9</td>
<td>24.2</td>
</tr>
</tbody>
</table>

^aIn p.c. of raw steel production.
^bAustria, Japan, Finland, Norway, Portugal, Sweden, Spain, South Africa, Turkey, Yugoslavia.
^cBulgaria, Eastern Germany, Hungary, Poland, Romania, USSR.
^dArgentina, Brazil, Chile, Colombia, India, Mexico, Peru, Uruguay, Venezuela.

Source: Wirtschaftsvereinigung Eisen- und Stahlindustrie, Statistisches Jahrbuch, var.iss. - Own calculations.

Most strikingly, developed market economies other than the old nations possess the most productive steel industries. Also, Brazil, which is a relatively young steel nation as well, seems to have a technologically more efficient steel industry than average EC and North American producers.
- Developing countries as a group still prove to be less efficient than the old steel nations, although over time the modernization of their steel industries seems to have been proceeding at a faster rate.

- Centrally planned economies in spite of relatively quick expansion have rather inefficient steel industries in international comparison. In 1975, they still produce two-thirds of their production with relatively old technologies; over time, the relative position vis-à-vis market economies deteriorated. This example, however, is not apt to falsify the vintage hypothesis. Rather, systemic incentives to risk aversion and rigidities in central planning in these countries seem to inhibit the rapid diffusion of new technology.

10. In addition to the evidence offered in Table 5, a more systematic analysis strongly supports the vintage hypothesis \[18\]. An international cross section analysis reveals that between 1958/60 and 1967/69 (1969 being the last year for which data were available)

- individual countries' world market shares for steel increased the more, the more rapidly these countries adopted the oxygen steel process, and

- that individual countries adopted the oxygen steel process the more rapidly the stronger their steel industries expanded.

This can be inferred from the following regression results yielded (n = 28):
\[d_{WMSS} = 0.270 + 0.802 \cdot d_{ROX} \]
\[(+ 7.097) \quad R^2 = 0.89 \]

\[d_{ROX} = 0.037 + 0.814 \cdot d_{RP} \]
\[(+ 9.576) \quad R^2 = 0.87 \]

where \(d_{WMSS} \) denotes increase in world market shares of steel;
\(d_{ROX} \) denotes relative (as compared to the sample's average) change of oxygen steel production
and \(d_{RP} \) denotes relative change of total crude steel production of the sample countries between 1958/60 and 1967/69.

As steel production expanded particularly quickly in semi-industrial and young industrial countries (Table 1, Graph 1), the observed vintage effect (Table 5) has resulted. The estimates also underline that the inroads young suppliers - mainly Japan in the 1960s and early 1970s; recently also countries such as Spain, South Korea and South Africa - made into the European Communities' and United States' steel markets is based on comparative advantage rather than on "unfair" business practices.

11. Recent developments in steel technology will additionally influence the future regional pattern of steel production as they open up efficient production possibilities on a smaller scale. Electric furnace operations can and will be established economically for the processing of locally available scrap. As a worldwide increase in electric furnace operations, in the longer-run, will inevitably drive up relative scrap prices (although the elasticity of scrap may improve due to better collection and recycling techniques) the competitive application of the conventional electric furnace process, however, presumably will be limited. Nevertheless, the increasing application
of this process will tend to lead to a regionally more evenly distributed steel production. Larger impacts may be expected from the combination of direct reduction - electric furnace - continuous casting operations. As it is the most energy-intensive steel technology \[19\] it will be most efficiently adopted in countries with an elastic natural gas supply.

12. Finally, raw material availability is a further source of bringing about changes in the international location of the steel production, developing countries are particularly well endowed except for coking coal (Table 6). As technological developments have brought and presumably will bring coke rates down, partly by substituting it as fuel and reductant, the relatively inelastic coke supply might not be too much of a bottleneck for establishing steel industries in these countries. Considering the characteristics of the steel industry (Table 3) and the factor-price relations in developing countries, it is, however, at least open to doubt whether the steel industry is a suitable activity for countries in the early stage of industrialization as a general rule. In most developing countries, steel production will have high opportunity costs both in terms of potential growth and employment. Therefore, the general identification of the steel industry as one of the priority sectors of industrialization in developing countries (Lima Declaration and Plan of Action on Industrial Development, Second General Conference of UNIDO, March 1975) may be looked upon as the beginning of a costly path of development. To substantiate, Graph 2 shows calculations of "revealed" comparative advantage \[20\] of total developing countries', Latin America's and Brazil's iron and steel industries vis-à-vis those of developed market economies. As a reference
Table 6 - Regional Distribution of Estimated World Reserves of Natural Resources Relevant for Steel Production

<table>
<thead>
<tr>
<th>Natural Resource of</th>
<th>Dimension</th>
<th>World</th>
<th>Developing Countries</th>
<th>of which:</th>
<th>of which:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>LDCs</td>
<td>Total</td>
<td>LDCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latin</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>America</td>
<td>Brazil</td>
</tr>
<tr>
<td>Coal</td>
<td>Mio. tons</td>
<td>8134374</td>
<td>1193293</td>
<td>1193293</td>
<td>35570</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>14.7</td>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td>Coking Coal</td>
<td>Mio. tons</td>
<td>429732</td>
<td>22167</td>
<td>22167</td>
<td>2530</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>5.2</td>
<td>100</td>
<td>11.4</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Bill. m³</td>
<td>62846</td>
<td>28846</td>
<td>28846</td>
<td>2355</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>45.9</td>
<td>100</td>
<td>8.2</td>
</tr>
<tr>
<td>Oil</td>
<td>Mio. tons</td>
<td>74280</td>
<td>58679</td>
<td>58679</td>
<td>4049</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>79.0</td>
<td>100</td>
<td>6.9</td>
</tr>
<tr>
<td>Hydraulic Reserves</td>
<td>G²</td>
<td>2261</td>
<td>1419</td>
<td>1419</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>62.8</td>
<td>100</td>
<td>23.2</td>
</tr>
<tr>
<td>Growing Stocks in</td>
<td>Mio. m³</td>
<td>395020</td>
<td>122267</td>
<td>122267</td>
<td>82195</td>
</tr>
<tr>
<td>Forest</td>
<td>p.c.</td>
<td>100</td>
<td>31.0</td>
<td>100</td>
<td>67.2</td>
</tr>
<tr>
<td>Iron Ore</td>
<td>Mio. tons</td>
<td>689000</td>
<td>209827</td>
<td>209827</td>
<td>121886</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>30.5</td>
<td>100</td>
<td>58.1</td>
</tr>
<tr>
<td>Manganese Ore</td>
<td>Mio. tons</td>
<td>3000</td>
<td>1206</td>
<td>1206</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>p.c.</td>
<td>100</td>
<td>40.2</td>
<td>100</td>
<td>37.6</td>
</tr>
</tbody>
</table>

aData refer to estimates mostly around 1970.

system both manufacturing (Graph 2a) and total tradables (Graph 2b) have been chosen. Of course this measure is a crude guide to supply conditions as it also reflects industry-specific commercial and trade policies, obligopolistic practices and demand conditions both in developing and developed countries. With these reservations in mind, it is obvious that
Graph 2 - REVEALED COMPARATIVE ADVANTAGE² OF THE DEVELOPING COUNTRIES', LATIN AMERICA'S AND BRAZIL'S IRON AND STEEL INDUSTRIES IN TRADE WITH DEVELOPED MARKET ECONOMIES, 1966-74

2a: MANUFACTURED EXPORTS AS REFERENCE

2b: TOTAL EXPORTS AS REFERENCE

Measured as $RCA = 100 \cdot \ln \left(\frac{X_{jt} \cdot M_{jt}}{m_{jt} \cdot X_{jt}} \right)$, where X_{jt} and m_{jt} refer to region j's exports and imports of iron and steel products (SITC 67), and X_{jt} and t_{jt} refer to region j's exports and imports in manufactures (SITC 5-8; graph 2a) or total exports and imports (SITC 0-9; graph 2b) at period t, respectively.

the calculations do not offer any clue for comparative advantage in steel production of developing countries as a whole or developing countries of Latin America as a group. A different result, however, emerges for Brazil's steel industry which for both reference systems and at any point in time reveals a superior performance to that of the other country groups. While compared to total tradable (and due to the abundant endowment with natural resources) a relative disadvantage in steel production is indicated, the reverse is true if compared with manufacturing. This observation is consistent with results arrived at in other studies which apply international price comparisons and the much more sophisticated domestic resource cost concept to determine comparative advantage.

Conclusions

From the above analysis the following perspectives for long-term shifts in the international competitiveness of the steel industry seem to be warranted:

a) Steel producers in the United States and Western Europe increasingly will lose in international competitiveness of mass steel production. At prevailing relative wage levels (and their expected changes) they do not possess a comparative advantage in the production of such standardized commodities as steel. In addition to worsening supply conditions, relatively unfavourable demand conditions, environmental protection measures, and the relative scarcity of steel relevant natural resources add to adjustment pressure. Such pressure will be less pronounced in rolling mill operations where, apart from higher skill requirements, proximity to customers yield economic advantages. The competitive edge of the most advanced countries will remain in the production of "specialities", the development of
new steel technology (continuous processes at all stages; direct reduction; iron ore preparation; soft coke; nuclear energy as alternative energy input), in the development of special steel products and their applications, in the development of capital goods for the steel industry; and in the international selling and construction of steel plants.

b) While comparative advantage in steel production is not associated with high-income levels in international comparison, it is neither with very low ones. Particularly due to its skill requirements, its physical capital intensity and its requirements for infrastructure, the steel industry is no first best candidate to start industrialization. Hence, the bulk of developing countries can reasonably be expected not to become competitive internationally in steel production on a larger scale. The same applies to centrally planned economies - albeit for other reasons (para. 9; [23]).

c) Semi- or young industrial countries will enjoy increasing international competitiveness in mass steel production. Basically, their competitiveness stems from their wage advantage, given the universal availability of steel technology. It is reinforced by relatively rapid capacity expansion which is based on their capability to attract international demand as well as on relatively income elastic domestic markets for steel. By vintage effects such expansion results in a relatively efficient average technology which adds to competitive advantage [24]. Such semi-industrial economies include also some countries at a still rather low level of per capita income but provided with a relatively elastic supply of capital, industrial skills and an abundant endowment of natural resources and energy. Here, among others (particularly Middle-East countries) Brazil seems to be a case in point.
d) Large domestic markets tend to become less important for the establishment of steel production due to the availability of new steel technologies. A slight trend towards a regionally more even distribution of steel production can be expected from the increasing establishment of mini mills. A longer term upward movement of relative scrap prices may, however, limit this process.

14. It can be hardly doubted that the steel industries under adjustment pressure will try hard to defend their location. Defensive investment such as the recently envisaged modernization program sponsored by the European Community's Commission will be one strategy; moves towards more effective protection will surely be the second line. Especially here, the young steel nations should try to counter-act by international negociations - not only in their own interest but also in that of the consumers everywhere.
References

[1] Unless otherwise stated, throughout the paper developing countries refer to Latin America, Asia and Oceania except Japan, New Zealand and Australia and Africa except South Africa; centrally planned economies refer to Comecon Countries, North Korea, North Vietnam, Mongolia, P.R. of China and Albania; and developed market economies refer to all other countries.

[9] In the regression function the following abbreviations have been employed: VAISCAP for value added of iron and steel industry per capita (in 1973 US-§); PCI for per capita gross domestic product (in 1973 US-§); POP for population (in mill.). The exogenous variables have been regressed on value added per capita for technical convenience. The per capita value added figures can be easily transformed into shares of the steel industry in GDP as given in Graph 1.
From the example of the Japanese steel industry one might deduct that the availability of natural resources is no necessary success condition for establishing raw material intensive industries. Rather, the product cycle hypothesis seems to be the governing principle. See also below.

This is not to say that developing countries should imitate the advanced countries' example concerning pollution. However, in most developing countries environment is in such abundance that polluting industries might produce for many years to come without much harm. Also, there is a trade off between growth and employment on the one hand and pollution on the other hand.

It has been shown elsewhere that prices on steel are determined externally, i.e. by the world market, and wages in the steel industry internally, i.e. by wage developments in other industrial branches. F. Wolter, Strukturelle Anpassungsprobleme, op. cit., pp. 76 sqq.
Of course, this is a rough, but reasonable approximation, only. For the relative advantages of the several production processes see UNIDO, Draft World-Wide Study, op. cit., pp. 135.

The results are taken from F. Wolter, Strukturelle Anpassungsprobleme, op. cit., pp. 69 sqq.

According to a recent IISI study the cumulative energy requirements (in 10^3 Kcal) per ton of crude steel are 3700 for the BF-BOF Process, 1400 for the Scrap of EF Process and 4900 for the DR-EF-Process.

B. Balassa, Trade Liberalization and "Revealed" Comparative Advantage, "The Manchester School of Economic Studies", Vol. 33 (1965). The measurement chosen here differs from that originally proposed by Balassa and is advantageous because it is at the same time continuous, unbounded and symmetric. Positive values of the applied measure indicate comparative advantage, negative values comparative disadvantage.

The negative RCA-values for 1973 and 1974 seem rather to be due to temporary bottlenecks in domestic steel capacity than to indicate comparative disadvantage.

This is not to say that these countries might not try to reverse their declining world market share. If so, it must, however, be doubted whether such efforts would be in line with comparative costs.

Of course, this does not imply that all countries at a development stage of, say 1000 to 3400 US-$ do provide advantageous locations for steel production as the domestic market size, natural resource endowment, energy supply etc. have to be properly taken into account. Rather, the analysis suggests such countries as first best candidates for advantageous steel locations.
Kieler Arbeitspapiere - (Kiel Working Papers):

3. W. Koschorreck, Antidumpingrecht im Bereich der Bundesrepublik Deutschland. Kiel, November 1973, 26 S.

15. H.R. Krämer, Nichttarifäre Handelsschranken im öffentlichen Auftragswesen der Bundesrepublik Deutschland. Kiel, März 1974, 48 S.

17. S. Haldt, Die zentralamerikanische Integrationsbevölkung, ein Erfolg? Kiel, Mai 1974, 40 S.

18. R.-J. Langhammer, Probleme und Perspektiven von Gemeinschaftsunternehmen im Rahmen einer regionalen Integration von "least developed countries". Kiel, Mai 1974, 29 S.

42. **S. Heldt**, Förderung der internationalen Arbeitsteilung mittels regionaler Zusammenschlüsse? Das Beispiel des CACM. Kiel, April 1976, 21 S.

47. **S. Nehring**, Einige Rahmenüberlegungen zum internationalen Ressourcentransfer - Dargestellt an Thesen zum "integrierten Rohstoffprogramm". Kiel, Juli 1976, 15 S.

59. **B. Lebert**,