Dalen, Dag Morten; Locatelli, Marilena; Strøm, Steinar

**Working Paper**

Longitudinal analysis of generic substitution

CESifo Working Paper, No. 3176

**Provided in Cooperation with:**
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Dalen, Dag Morten; Locatelli, Marilena; Strøm, Steinar (2010) : Longitudinal analysis of generic substitution, CESifo Working Paper, No. 3176, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/46569

**Terms of use:**
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Longitudinal Analysis of Generic Substitution

Dag Morten Dalen
Marilena Locatelli
Steinar Strøm

CESifo Working Paper No. 3176
Category 11: Industrial Organisation
September 2010

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Longitudinal Analysis of Generic Substitution

Abstract

Using an extensive longitudinal dataset extracted from the Norwegian Prescription Database (NorPD) containing all prescriptions written in the period January 2004 to June 2007, we selected two particular drugs (chemical substances) used against cholesterol. The two brand-name products on the Norwegian markets were Provachol (atc code C10AA03) and Zocor (atc code C10AA01). The generics are Provastatine and Simastatine. The model accounts for taste persistence and is estimated on panel data. We find that prices have a negative impact on transitions in the sense that an increase in the brand price will reduce the transition from generics to brand and likewise an increase in the generic price will reduce the transition from brand to generics.


Keywords: generics, substitution, microdata, random utility model, longitudinal data.

Dag Morten Dalen
BI Norwegian School of Management
dag.m.dalen@bi.no

Marilena Locatelli
University of Turin
Department of Economics
Turin / Italy
marilena.locatelli@unito.it

Steinar Strøm
The Frisch Centre
Oslo / Norway
steinar.strom@econ.uio.no

12/06/2010
We wish to acknowledge the services of the NorPD (and particularly of Kari Furu) in providing data. This research is supported by grants from the Norwegian Research Council. Financial support to M. Locatelli from The Frisch Centre, Oslo is gratefully acknowledged.
1. Introduction

In Dalen et al (2010) we estimated the choice between brand-name and generic drugs based on cross-section data. We extracted the entire population of prescriptions in February 2004 and 2006 on 23 different chemical substances. In February 2004 we had 102,201 observations and in February 2006 we had 210,877 observations. The observations gave us the choice of brand or generics among these patients in these two cross-sections. From the estimated model we derived price elasticities which were the elasticities of the brand products with respect to the brand price. The average of these elasticities was -0.36 in 2004.

In the present paper we exploit the longitudinal dimension of the data and estimate a dynamic model on monthly observations from May 2004 until June 2007 of drug choices for 109 patients in Norway. From the model we derive transition probabilities that give the transition from brand-name drug to generics and vice versa. We selected only one drug; a drug used against cholesterol. The two brand-name products on the Norwegian markets for statines in the period May 2004 to June 2007 were Provachol (atc code C10AA03) and Zocor (atc code C10AA01). The generics are Provastatine and Simastatine. From the model we derived elasticities of the probabilities of shifting from brand to generics with respect to the price of generics and of the probabilities of shifting from generics to brand with respect to the brand price. The average of the elasticities over patients and periods were -0.27 and -0.46 respectively which are not that different from the estimates of the price elasticity derived from the cross-section estimates referred to above which also covered not only statines but 22 other substances.

In addition to the expected price effects we found that the older a male doctor is the more likely it is that he continues to prescribe the brand-name product. The dynamic model allows for taste persistence and the correlation of is calculated across patients and across time.

The paper is organized as follows. Section 2 presents the model. Section 3 gives the data, estimates are given in Section 4 and Section 5 concludes.
2. The model

The model we employ is based on a dynamic choice model developed by Dagsvik (2002). Let $U_{nj}(t)$ denote the utility of patient $n$ of using drug $j$ at time $t$. $j = B$(brand-name), $G$(generics). Let $B_{nt}$ be the choice set. We will assume that \( \{U_{nj}(t), j \in B_{nt}\} \) is a random utility process. Let \( \{v_{nj}(t) + \varepsilon_{nj}(t)\} \) be the period-specific utility in contrast to $U_{nj}(t)$ which are utilities that account for “taste-persistence”. The $\varepsilon_{nj}(t)$ are assumed to be independent of $v_{nj}(t)$ and they are assumed to be iid extreme value distributed, that is $\Pr(\varepsilon_{nj}(t) \leq x) = \exp(-\exp(x))$.

The model extends the common logit model to deal with correlation in preferences or rather taste persistence. It should be noted that this is not the same as state dependence. With the latter the choice you have made in the past has a direct impact on the current choices. This is not the case here; the assumption is simply that preferences may be correlated. In Dagsvik (2002) it is shown that

\[ U_{nj}(t) = \max(U_{nj}(t-1) - \theta, v_{nj}(t) + \varepsilon_{nj}(t)) \]

The coefficient $\theta$ may be interpreted as a preference discount factor:

If $\theta = 0$ there is a complete strong taste persistence, and if $\theta = \infty$ there is no taste persistence at all and $U_{nj}(t) = v_{nj}(t) + \varepsilon_{nj}(t)$.

The expected value of $U_{nj}(t)$ is given by

\[ EU_{nj}(t) = \ln \sum_{r=t_0}^{t} \exp(v_{nj}(r) - (t - r)\theta) \]

or
We observe that if covariates are constant over time the correlation from $t$ to $t-1$ is approximately equal to $e^{-\theta}$.

As shown in Dagsvik (2002) the model can be employed to yield transition probabilities, which in our case will be between brand-name products and generics. Thus the transition probabilities are the following:

\[
Q_{nBGt} = \text{probability that patient } n \text{ transit from Brand-name drug in period } t-1 \text{ to Generics in period } t
\]

\[
Q_{nBBt} = \text{probability that patient } n \text{ stay on Brand-name drug in period } t-1 \text{ and in period } t
\]

\[
Q_{nBBt} = 1 - Q_{nBGt}
\]

\[
Q_{nGBt} = \text{probability that patient } n \text{ transit from Generics in period } t-1 \text{ to Brand-name drug in period } t
\]

\[
Q_{nGGt} = \text{probability that patient } n \text{ stay on Generic in period } t-1 \text{ and in period } t
\]

\[
Q_{nGGt} = 1 - Q_{nGBt}.
\]

The transition probabilities have the following structure:

\[
Q_{nBGt} = \frac{\exp(v_{nGr})}{\sum_{r=t_0}^{t} \left[ \exp(-r \theta_n) \right] \left[ \exp(v_{nGr}) + \exp(v_{nBr}) \right]}
\]
The deterministic part of the utility function, $v_{jnt}$, $j=B,G$ is assumed to depend linearly on the price of the drug, age and gender of patient. Because of the loyalty among patients and doctors we expect that $\theta_n$ will have a low value indicating strong taste persistence. $\theta_n$ may depend on characteristics such as age and gender of doctors and patients. However, here we assume it to be a constant.

t_0=\text{date of entry of the drug to the market}. Because the data we use are detailed register data that started in January 2004, $t_0$ is set equal to this date.

The model is estimated by a standard maximum likelihood procedure. The likelihood is:

$$L = \prod_n \prod_t Q_{BGnt}^{y_{nt}} (1-Q_{BGnt})^{1-y_{nt}} Q_{GBnt}^{z_{nt}} (1-Q_{GBnt})^{1-z_{nt}}$$

where:
We assume that the deterministic part of the utility function depends on the price of the drug, and the interaction between age and gender of both patient and doctor. We expect that price has a negative impact on demand. Furthermore we expect that male patient, in particular when they are getting older are less likely to make generic substitution, and that the describing doctor is less likely to accept generic substitution if they are males, in particular when they are getting older. Thus we assume:

\[
(12) \quad v_{nt}^{G} = \alpha_{G} + \beta_{1} P_{nt}^{G}
\]

\[
(13) \quad v_{nt}^{B} = \alpha_{B} + \beta_{1} P_{nt}^{B} + \beta_{2} Patientage_{nt} \times Male_{n} + \beta_{3} Doctorage_{nt} \times Male_{n}
\]

where

\[
P_{nt}^{G} = \text{price of generic}
\]

\[
P_{nt}^{B} = \text{price of brand}
\]

The prices may vary across time and patients. It should be noted, however, that for all individuals social security cover part of the expenses on *statines*. This is accounted for in the paper.

From the structure of the model we easily see that we can only identify \( \alpha_{B} - \alpha_{G} = \alpha \).

Our expectation with respect to the sign of the coefficients are \( \beta_{1} < 0, \beta_{2} > 0, \beta_{3} > 0 \).

The model implies the following price-elasticities:
(a) $\text{ElQ}_{nBGr} : P_{nGr} = \beta P_{nGr} Q_{nBBr}$; for $t > t_0$

(b) $\text{ElQ}_{nBBt} : P_{nGr} = \beta P_{nGr} Q_{nBBr}$; for $t > t_0$

(c) $\text{ElQ}_{nBBt} : P_{nBt} = \beta P_{nBt} Q_{nBBr}$; for $t > t_0$

(d) $\text{ElQ}_{nBBt} : P_{nBt} = \beta P_{nBt} \frac{Q_{nBBr} Q_{nBBr}}{Q_{BBnt}}$; for $t > t_0$

(e) $\text{ElQ}_{nGGr} : P_{nGr} = \beta P_{nGr} Q_{nBBr}$; for $t > t_0$

(f) $\text{ElQ}_{nGGr} : P_{nGr} = \beta P_{nGr} \frac{Q_{nBBr} Q_{nBBr}}{Q_{nGGr}}$; for $t > t_0$

(g) $\text{ElQ}_{nGGr} : P_{nBt} = \beta P_{nBt} Q_{nGGr}$; for $t > t_0$

(h) $\text{ElQ}_{nGGr} : P_{nBt} = \beta P_{nBt} Q_{nGGr}$; for $t > t_0$

3. The data

Our data were extracted from the Norwegian Prescription Database (NorPD) at the Norwegian Institute of Public Health. The NorPD (Norwegian title: Reseptregisteret) was established on 1st January 2004. The Database monitors all drugs that are dispensed by prescription in Norway, and provides information about the patient (age, sex, and insurance status), the physician (age, sex, and speciality), the pharmacy (location), and the dispensed drug (price, package size, strength, product name). Using other sources of information provided by the Norwegian Medicines Control Authority (list of pharmacies and a list of drugs approved for the Norwegian market), we get additional information about pharmacy ownership, identity of the main wholesaler and producer name and price of the drugs. The latter is used to identify brand-name drugs and generics.

In the data set only the price of the drug chosen ($p_{dd}$) is reported that may be brand or generic. To generate the price of the drug not chosen ($p_{not}$) we have done as follows. First we generated a dummy variable ($b_{chosen}$) that identify if the drug is brand or generic. It is equal to one if the drug name is Pravachol or Zocor (alone or in combination); atc_code is C10AA03 or C10AA001, 0 otherwise. Then, we generated the

---

2 See Furu (2001)
mean price ($p_{ddd}$) over the chosen drug that has same $atc\_code$, same strength ($strength$), same pharmacy identifier ($id\_n\_ph$) and same date of transaction ($months$). At last we generated the alternative price ($p_{not}$) equal to the mean price just computed, conditioned on $b$ (1 or 0). It happens that there are groups in which only brand is chosen or only generic is chosen. In these cases we could not compute the alternative price and we then set $p_{not}$ equal to missing. It also happens that in some groups there is just only one observation useful to compute the average. Also in this case we set the value of $p_{not}$ to missing. To sum up:

\[
p_{\text{generic}} = p_{ddd} \cdot (1 - b_{\text{choice}}) + p_{not} \cdot b_{\text{choice}};
\]
\[
p_{\text{brand}} = p_{ddd} \cdot b_{\text{choice}} + p_{not} \cdot (1 - b_{\text{choice}});
\]

where: $p_{\text{generic}}$ is the price of the generic drug; $p_{\text{brand}}$ is the price of the brand drug, $p_{ddd}$ is the price of the chosen drug and $p_{not}$ is the price of the drug not chosen, and $b_{\text{choice}}$ is a dummy variable equal to 1 if brand is chosen and 0 otherwise.

In the sample there are at least 28 prescriptions by patients over the 37 months. We observe drug prescriptions from May 2004 (first prescription considered) to June 2007 (month 5 to 42), a total of 37 months.

After the selections listed above, we get 3898 observations that refer to 109 patients. The panel is unbalanced since for each patient there are a different number of prescriptions from May 2004 to June 2007.

The following statistics, show that at minimum a patient has 28 prescriptions, and at maximum 52 prescriptions.

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Mean no of prescriptions</th>
<th>Std.Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>35.76</td>
<td>6.33</td>
<td>28</td>
<td>52</td>
</tr>
</tbody>
</table>

The number of prescriptions by patient is not equal to the number of months since there may be more than one prescription per month.
Table 2 gives the description of the variable while Table 3 gives the descriptive statistics.

### Table 2 Description of the variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_ddd</td>
<td>price (in NOK) per daily dose (i.e. p_ddd = no_packages * p_packages/no_ddd)</td>
</tr>
<tr>
<td>p_not</td>
<td>price of not chosen</td>
</tr>
<tr>
<td>b</td>
<td>Dummy: b = 1 if brand (drug_name is equal to &quot;Pravachol&quot; and atc_code is equal to &quot;C10AA03&quot; or drug_name is equal to &quot;Zocor&quot; and atc_code is equal to &quot;C10AA01&quot;), b = 0 if generic (i.e. Pravastatin and Simvastatin)</td>
</tr>
<tr>
<td>p_generic</td>
<td>Price per daily dose of generic drug</td>
</tr>
<tr>
<td>p_brand</td>
<td>Price per daily dose of brand drug</td>
</tr>
<tr>
<td>age_d</td>
<td>Age of the doctor</td>
</tr>
<tr>
<td>age_p</td>
<td>Age of the patient</td>
</tr>
<tr>
<td>patient_m</td>
<td>Dummy: 1 if male, 0 otherwise</td>
</tr>
<tr>
<td>patient_f</td>
<td>Dummy: 1 if female, 0 otherwise</td>
</tr>
<tr>
<td>doctor_m</td>
<td>Dummy: 1 if male, 0 otherwise</td>
</tr>
<tr>
<td>doctor_f</td>
<td>Dummy: 1 if female, 0 otherwise</td>
</tr>
<tr>
<td>months</td>
<td>months of drug prescription ranges from 5 (May 2004) to 42 (June 2007)</td>
</tr>
</tbody>
</table>

### Table 3. Descriptive Statistics  (number of observations 3898 – 109 patients)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_ddd</td>
<td>2.7184</td>
<td>1.9349</td>
<td>0.5679</td>
<td>9.7388</td>
</tr>
<tr>
<td>p_not</td>
<td>3.6193</td>
<td>2.1647</td>
<td>0.8693</td>
<td>9.6857</td>
</tr>
<tr>
<td>b</td>
<td>0.1637</td>
<td>0.3700</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>p_generic</td>
<td>2.3705</td>
<td>1.1450</td>
<td>0.5679</td>
<td>7.0850</td>
</tr>
<tr>
<td>p_brand</td>
<td>3.9671</td>
<td>2.5000</td>
<td>0.8694</td>
<td>9.7388</td>
</tr>
<tr>
<td>age_d</td>
<td>50.5872</td>
<td>9.3071</td>
<td>29.0000</td>
<td>68.0000</td>
</tr>
<tr>
<td>age_p</td>
<td>78.4254</td>
<td>8.6641</td>
<td>50.0000</td>
<td>91.0000</td>
</tr>
<tr>
<td>doctor_f</td>
<td>0.1329</td>
<td>0.3395</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>doctor_m</td>
<td>0.8671</td>
<td>0.3395</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>patient_f</td>
<td>0.4115</td>
<td>0.4922</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>patient_m</td>
<td>0.5885</td>
<td>0.4922</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>months</td>
<td>28.9690</td>
<td>8.6594</td>
<td>5.0000</td>
<td>42.0000</td>
</tr>
</tbody>
</table>
4. Results

Table 4 gives the estimates. We observe that price has the expected negative impact on demand and the impact is significant different from zero. The interaction of male doctors and age has a positive and significant impact on the use of brand products. Patient’s age interacted with gender has no significant impact.

The preference discount factor is positive and significant which indicates that preferences are correlated over time, given the covariates in the deterministic part of the utility function.

**Table 4. Estimates.**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameters</th>
<th>Estimates</th>
<th>t-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(\alpha)</td>
<td>3.2152</td>
<td>15.337</td>
</tr>
<tr>
<td>Price</td>
<td>(\beta_1)</td>
<td>-1.1913</td>
<td>-2.841</td>
</tr>
<tr>
<td>Patient age x Male</td>
<td>(\beta_2)</td>
<td>-0.0373</td>
<td>-0.965</td>
</tr>
<tr>
<td>Doctor age x Male</td>
<td>(\beta_3)</td>
<td>0.2096</td>
<td>3.967</td>
</tr>
<tr>
<td>Preference discount factor</td>
<td>(\theta)</td>
<td>3.7475</td>
<td>4.249</td>
</tr>
<tr>
<td>No of observations</td>
<td></td>
<td>3898 (109 patients)</td>
<td></td>
</tr>
<tr>
<td>Mean log-likelihood</td>
<td></td>
<td>-433.126</td>
<td></td>
</tr>
</tbody>
</table>

Correlation matrix of the estimated parameters

\[
\begin{bmatrix}
\alpha & \beta_1 & \beta_2 & \beta_3 & \theta \\
\alpha & 1.000 & -0.454 & -0.003 & -0.118 & 0.572 \\
\beta_1 & -0.454 & 1.000 & -0.279 & -0.228 & 0.123 \\
\beta_2 & -0.003 & -0.279 & 1.000 & -0.352 & -0.048 \\
\beta_3 & -0.118 & -0.228 & -0.352 & 1.000 & -0.029 \\
\theta & 0.572 & 0.123 & -0.048 & -0.029 & 1.000
\end{bmatrix}
\]

From Table 5 we observe that all elasticites have the expected sign, which of course come the fact that \(\beta_1<0\). The only two sizeable elasticities are the most important ones. The elasticity of transiting from brand to generics (statines) with respect to the generic price is on average equal to -0.2732. The elasticity of transiting from generics to brand (statines) with respect to the brand price is on average equal to -0.4625. The brand price has thus a stronger impact on the the transition than the generic price. In Figur 1 we show how the elasticities vary across the 37 months. We observe that the two most important elasticities referred to above indicate that price responses were strongest at the beginning of the period (May 2004) and at around month 20 (January 2006).
Table 5. Elastisites of the transition probabilities with respect to prices; averaged over patients and periods.

a) for transition from brand to generic as a consequence of an increase in generic drug price (see eq. 14 a)
b) from brand to brand as a consequence of an increase in generic drug price (see eq. 14 b)
c) for transition from brand to generic as a consequence of an increase in brand drug price (see eq. 14 c)
d) from brand to brand as a consequence of an increase in brand drug price (see eq. 14 d)
e) for transition from generic to brand as a consequence of an increase in generic drug price (see eq. 14 e)
f) from generic to generic as a consequence of an increase in generic drug price (see eq. 14 f)
g) for transition from generic to brand as a consequence of an increase in brand drug price (see eq. 14 g)
h) from generic to generic as a consequence of an increase in brand drug price increase (see eq. 14 h)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq. 14 a) EI(\text{QBGnt:}_\text{P}_G)</td>
<td>-0.2732</td>
<td>-0.8416</td>
<td>-0.0658</td>
<td>0.1293</td>
</tr>
<tr>
<td>eq. 14 b) EI(\text{QBBnt:}_\text{P}_G)</td>
<td>0.0092</td>
<td>0.0006</td>
<td>0.1189</td>
<td>0.0111</td>
</tr>
<tr>
<td>eq. 14 c) EI(\text{QBGnt:}_\text{P}_B)</td>
<td>0.0101</td>
<td>0.0006</td>
<td>0.1405</td>
<td>0.0142</td>
</tr>
<tr>
<td>eq. 14 d) EI(\text{QBBnt:}_\text{P}_B)</td>
<td>-0.0003</td>
<td>-0.0008</td>
<td>-0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>eq. 14 e) EI(\text{QGBnt:}_\text{P}_G)</td>
<td>0.0092</td>
<td>0.0006</td>
<td>0.1189</td>
<td>0.0111</td>
</tr>
<tr>
<td>eq. 14 f) EI(\text{QGGnt:}_\text{P}_G)</td>
<td>-0.0002</td>
<td>-0.0006</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>eq. 14 g) EI(\text{QGBnt:}_\text{P}_B)</td>
<td>-0.4625</td>
<td>-1.1406</td>
<td>-0.1011</td>
<td>0.2878</td>
</tr>
<tr>
<td>eq. 14 h) EI(\text{QGGnt:}_\text{P}_B)</td>
<td>0.0101</td>
<td>0.0006</td>
<td>0.1405</td>
<td>0.0142</td>
</tr>
</tbody>
</table>
Figure 1. Mean elasticity of probability vs. month
a) for transition from brand to generic as a consequence of an increase in generic drug price (see eq. 14a)
b) from brand to brand as a consequence of an increase in generic drug price (see eq. 14 b)
c) for transition from brand to generic as a consequence of an increase in brand drug price (see eq. 14 c)
d) from brand to brand as a consequence of an increase in brand drug price (see eq. 14 d)
e) for transition from generic to brand as a consequence of an increase in generic drug price (see eq. 14 e)
f) from generic to generic as a consequence of an increase in generic drug price (see eq. 14 f)
g) for transition from generic to brand as a consequence of an increase in brand drug price (see eq. 14 g)
h) from generic to generic as a consequence of an increase in brand drug price increase (see eq. 14 h)
In Table 6 we report the mean of the correlation of utilities across patients (and time). When the drug type is the same, the correlation is mainly due to the coefficient $\theta$, the preference discount factor. When the drug types are different (B and G) the correlation is also affected by the fact that the characteristics of the different drug types differ. Figure 2 gives the variation across all 109 patients. Table 7 report the same correlation across time and Figure 3 show how these correlations varied over the 37 months.

Table 6. Mean correlation of utilities for the 109 patients.

<table>
<thead>
<tr>
<th>$j=B$, $i=B$</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j=G$, $i=G$</td>
<td>0.023417</td>
<td>0.0007232</td>
<td>0.0219913</td>
<td>0.0260024</td>
</tr>
<tr>
<td>$j=B$, $i=G$</td>
<td>0.277621</td>
<td>0.1257965</td>
<td>0.1303722</td>
<td>0.8622116</td>
</tr>
</tbody>
</table>

Figure 2. Mean correlation of utilities: (a) mean correlation of transition from brand to brand (b) mean correlation of transition from generic to generic, (c) mean correlation of transition from brand to generic
Table 7. Mean correlation of utilities across time

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=B, i=B</td>
<td>0.0218287</td>
<td>0.0034909</td>
<td>0.0117883</td>
<td>0.0252339</td>
</tr>
<tr>
<td>j=G, i=G</td>
<td>0.0219159</td>
<td>0.0033689</td>
<td>0.0117883</td>
<td>0.0253417</td>
</tr>
<tr>
<td>j=B, i=G</td>
<td>0.2536082</td>
<td>0.0523233</td>
<td>0.094179</td>
<td>0.3145396</td>
</tr>
</tbody>
</table>

Figure 3. Mean correlation of utilities across time: (a) mean correlation of transition from brand to brand (b) mean correlation of transition from generic to generic, (c) mean correlation of transition from brand to generic.
5. Conclusions

Using an extensive longitudinal dataset extracted from the Norwegian Prescription Database (NorPD) containing all prescriptions written in the period January 2004 to June 2007, we selected two particular drugs (chemical substances) used against cholesterol. The two brand-name products on the Norwegian markets were Provachol (atc code C10AA03) and Zocor (atc code C10AA01). The generics are Provastatine and Simastatine. The model accounts for taste persistence and is estimated on panel data. We find that prices have a negative impact on transitions in the sense that an increase in the brand price will reduce the transition from generics to brand and likewise an increase in the generic price will reduce the transition from brand to generics.

References


CESifo Working Paper Series
for full list see www.cesifo-group.org/wp
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de)

3115 John Beirne, Guglielmo Maria Caporale and Nicola Spagnolo, Liquidity Risk, Credit Risk and the Overnight Interest Rate Spread: A Stochastic Volatility Modelling Approach, July 2010

3116 M. Hashem Pesaran, Predictability of Asset Returns and the Efficient Market Hypothesis, July 2010

3117 Dorothee Crayen, Christa Hainz and Christiane Ströh de Martínez, Remittances, Banking Status and the Usage of Insurance Schemes, July 2010

3118 Eric O’N. Fisher, Heckscher-Ohlin Theory when Countries have Different Technologies, July 2010

3119 Huw Dixon and Hervé Le Bihan, Generalized Taylor and Generalized Calvo Price and Wage-Setting: Micro Evidence with Macro Implications, July 2010

3120 Laszlo Goerke and Markus Pannenberg, ‘Take it or Go to Court’ – The Impact of Sec. 1a of the German Protection against Dismissal Act on Severance Payments -, July 2010

3121 Robert S. Chirinko and Daniel J. Wilson, Can Lower Tax Rates be Bought? Business Rent-Seeking and Tax Competition among U.S. States, July 2010

3122 Douglas Gollin and Christian Zimmermann, Global Climate Change and the Resurgence of Tropical Disease: An Economic Approach, July 2010

3123 Francesco Daveri and Maria Laura Parisi, Experience, Innovation and Productivity – Empirical Evidence from Italy’s Slowdown, July 2010

3124 Carlo V. Fiorio and Massimo Florio, A Fair Price for Energy? Ownership versus Market Opening in the EU15, July 2010

3125 Frederick van der Ploeg, Natural Resources: Curse or Blessing?, July 2010

3126 Kaisa Kotakorpi and Panu Poutvaara, Pay for Politicians and Candidate Selection: An Empirical Analysis, July 2010

3127 Jun-ichi Itaya, Makoto Okamura and Chikara Yamaguchi, Partial Tax Coordination in a Repeated Game Setting, July 2010

3128 Volker Meier and Helmut Rainer, On the Optimality of Joint Taxation for Non-Cooperative Couples, July 2010

3129 Ryan Oprea, Keith Henwood and Daniel Friedman, Separating the Hawks from the Doves: Evidence from Continuous Time Laboratory Games, July 2010
Mari Rege and Ingeborg F. Solli, The Impact of Paternity Leave on Long-term Father Involvement, July 2010

Olaf Posch, Risk Premia in General Equilibrium, July 2010


Emin Karagözoglu and Arno Riedl, Information, Uncertainty, and Subjective Entitlements in Bargaining, July 2010

John Boyd, Gianni De Nicolò and Elena Loukoianova, Banking Crises and Crisis Dating: Theory and Evidence, July 2010

Michael R. Baye, Dan Kovenock and Casper G. de Vries, The Herodotus Paradox, July 2010

Martin Kolmar and Hendrik Rommeswinkel, Group Contests with Complementarities in Efforts, July 2010

Carolina Manzano and Xavier Vives, Public and Private Learning from Prices, Strategic Substitutability and Complementarity, and Equilibrium Multiplicity, July 2010

Axel Löffler, Gunther Schnabl and Franziska Schobert, Inflation Targeting by Debtor Central Banks in Emerging Market Economies, July 2010

Yu-Fu Chen and Michael Funke, Global Warming and Extreme Events: Rethinking the Timing and Intensity of Environmental Policy, July 2010

Lawrence M. Kahn, Labor Market Policy: A Comparative View on the Costs and Benefits of Labor Market Flexibility, July 2010

Ben J. Heijdra, Jochen O. Mierau and Laurie S.M. Reijnders, The Tragedy of Annuitization, July 2010

Erkki Koskela, Outsourcing Cost and Tax Progression under Nash Wage Bargaining with Flexible Outsourcing, July 2010

Daniel Osberghaus and Christiane Reif, Total Costs and Budgetary Effects of Adaptation to Climate Change: An Assessment for the European Union, August 2010

Philip E. Graves, Benefit-Cost Analysis of Environmental Projects: A Plethora of Systematic Biases, August 2010

Sabrina Di Addario and Daniela Vuri, Entrepreneurship and Market Size. The Case of Young College Graduates in Italy, August 2010

Shoshana Amyra Grossbard and Alfredo Marvão Pereira, Will Women Save more than Men? A Theoretical Model of Savings and Marriage, August 2010
Jarko Fidrmuc, Time-Varying Exchange Rate Basket in China from 2005 to 2009, August 2010

Ilja Neustadt and Peter Zweifel, Is the Welfare State Sustainable? Experimental Evidence on Citizens’ Preferences for Redistribution, August 2010

Marcus Dittrich and Andreas Knabe, Wage and Employment Effects of Non-Binding Minimum Wages, August 2010

Shutao Cao, Enchuan Shao and Pedro Silos, Fixed-Term and Permanent Employment Contracts: Theory and Evidence, August 2010

Ludger Woessmann, Cross-Country Evidence on Teacher Performance Pay, August 2010

Lorenzo C. G. Pozzi, Casper G. de Vries and Jorn Zenhorst, World Equity Premium Based Risk Aversion Estimates, August 2010

Volker Grossmann, Thomas M. Steger and Timo Trimborn, Dynamically Optimal R&D Subsidization, August 2010

Alexander Haupt, Tim Krieger and Thomas Lange, A Note on Brain Gain and Brain Drain: Permanent Migration and Education Policy, August 2010

António Afonso and Christophe Rault, Long-run Determinants of Sovereign Yields, August 2010

Franziska Tausch, Jan Potters and Arno Riedl, Preferences for Redistribution and Pensions. What can we Learn from Experiments?, August 2010

Martin Kolmar and Andreas Wagener, Inefficient Group Organization as Optimal Adaption to Dominant Environments, August 2010

Kai Carstensen, Klaus Wohlrabe and Christina Ziegler, Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production, August 2010

Horst Rottmann and Timo Wollmershäuser, A Micro Data Approach to the Identification of Credit Crunches, August 2010

Philip E. Graves, Appropriate Fiscal Policy over the Business Cycle: Proper Stimulus Policies Can Work, August 2010

Michael Binder and Marcel Bluhm, On the Conditional Effects of IMF Program Participation on Output Growth, August 2010

Michael Binder, Qianying Chen, and Xuan Zhang, On the Effects of Monetary Policy Shocks on Exchange Rates, August 2010

Felix J. Bierbrauer, On the Optimality of Optimal Income Taxation, August 2010
3164 Nikolaus Wolf, Europe’s Great Depression – Coordination Failure after the First World War, September 2010

3165 Dan Kovenock and Brian Roberson, Conflicts with Multiple Battlefields, September 2010


3167 Jørgen Juel Andersen, Jon H. Fiva and Gisle James Natvik, Voting when the Stakes are High, September 2010

3168 Michael Hoel, Is there a Green Paradox?, September 2010


3170 Gil S. Epstein, Yosef Mealem and Shmuel Nitzan, Political Culture and Discrimination in Contests, September 2010

3171 Sara Fisher Ellison, Jeffrey Greenbaum and Wallace P. Mullin, Diversity, Social Goods Provision, and Performance in the Firm, September 2010

3172 Silvia Dominguez-Martinez, Randolph Sloof and Ferdinand von Siemens, Monitoring your Friends, not your Foes: Strategic Ignorance and the Delegation of Real Authority, September 2010

3173 Marcus Dittrich and Beate Schirwitz, Union Membership and Employment Dynamics: A Note, September 2010

3174 Francesco Daveri, Paolo Manasse and Danila Serra, The Twin Effects of Globalization – Evidence from a Sample of Indian Manufacturing Firms, September 2010

3175 Florian Blöchl, Fabian J. Theis, Fernando Vega-Redondo and Eric O’N. Fisher, Which Sectors of a Modern Economy are most Central?, September 2010

3176 Dag Morten Dalen, Marilena Locatelli and Steinar Strøm, Longitudinal Analysis of Generic Substitution, September 2010