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Abstract 
 
We propose a smooth multibidding mechanism for environments where a group of agents 
have to choose one out of several projects. Our proposal is related to the multibidding 
mechanism (Pérez-Castrillo and Wettstein, 2002) but it is “smoother” in the sense that small 
variations in an agent’s bids do not lead to dramatic changes in the probability of selecting a 
project. This mechanism is shown to possess several interesting properties. First, the 
equilibrium outcome is unique. Second, it ensures an equal sharing of the surplus that it 
induces. Finally, it enables reaching an outcome as close to efficiency as is desired. 
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1 Introduction

1.1 Contribution

A mechanism designed to help agents reach (e¢ cient) decisions on contentious issues

typically requires information about agents�preferences for each possible decision. The

multibidding mechanism, proposed by Pérez-Castrillo and Wettstein (2002) allows the

agents to express their relative preference for projects. It proceeds as follows. Each

agent submits a vector of bids, one for each project, with the sole restriction that the

sum of each agent�s bids is zero. Therefore, bids measure relative rather than absolute

valuation. Each agent also nominates one of the projects speci�cally. The project with

the highest aggregate bid (sum of bids made for this project) is chosen. In case there is

more than one such project, there is a rule that gives priority to projects that have been

nominated by some agent. The winning project is carried out, agents pay the promised

bid corresponding to this project, and any surplus is shared among the agents, so that

the mechanism is budget-balanced.

The main property of the multibidding mechanism is that all its Nash (and strong

Nash) equilibrium outcomes are e¢ cient. However, in general environments, the mech-

anism has one major weak aspect that we address in the current paper. Speci�cally,

the set of equilibrium outcomes is quite large, as it consists of all the outcomes where

each agent�s payo¤ is at least the expected payo¤ he would obtain in a situation where

all the projects have the same probability of being developed. Therefore, almost any

(�reasonable�) sharing of the surplus is an equilibrium outcome.

In the present paper, we tackle the issue highlighted above by proposing a smooth

multibidding mechanism. It is close to the original proposal but ours is �smoother� in

the sense that small variations of an agent�s bids do not lead to dramatic changes in the

probability of selecting a project. In the smooth mechanism, each agent only submits a

vector of bids, without nominating any project. All projects can be selected, with each

project�s probability being a function of its aggregate bid as well as the aggregate bids

of the rest of the projects. Projects with a negative aggregate bid have a very low, but

positive, �xed probability of being selected (a function of some parameter "). Each project

with a positive aggregate bid is selected with a probability that is a function of the level
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of its (and others�) positive aggregate bid. We highlight that the present mechanism does

not require the use of a tiebreaking rule. Such a rule plays a crucial role in the initial

mechanism. As such, it is immune to the criticism raised by Ehlers (2009).1

We �rst show that, for a given value of ", the equilibrium outcome is unique. There-

fore, there is no coordination issue with respect to agents�expectation about the �nal

outcome. We then characterize the equilibrium outcome. Although there may be several

equilibrium strategies, the di¤erences among them only concern bids for those projects

that, at equilibrium, end up with negative aggregate bids. We identify the set of projects

with positive equilibrium bids as well as each agent�s bids to any project in this set. Only

projects that are e¢ cient, or whose total valuation is very close to the e¢ cient one, ul-

timately receive a positive aggregate bid. In case some non-e¢ cient project receives a

positive aggregate bid, its level re�ects the degree of ine¢ ciency.

Second, the smooth multibidding mechanism ensures an equal sharing of the surplus

that it induces. Indeed, an agent�s equilibrium payo¤ in the mechanism is the sum of the

value of the average project plus his fair share of the remaining surplus. That is, agents

obtain the same level of utility as in the original multibidding mechanism, and the surplus

is divided in equal parts among the agents. Since e¢ ciency and equity often have the same

importance in collective decision-making, this fairness property is a sensible advantage of

the present mechanism.

We also show that each agent�s expected payo¤ increases as the value of the parameter

" decreases; therefore, the distance to e¢ cient outcomes decreases as well. Moreover, the

probability of choosing an ine¢ cient project converges to zero as the value of the parame-

ter " becomes small. We can bound the level of expected ine¢ ciency as a function of the

parameter ": the maximum level of ine¢ ciency of a project that receives a positive aggre-

gate bid is a linear function of the square root of ". Therefore, the smooth multibidding

mechanism gets as close to e¢ ciency as one wishes

To summarize, the present mechanism exhibits the interesting properties of uniqueness

and fairness of its equilibrium outcome. Moreover, it gets as close to an e¢ cient outcome

1In the mechanism developed by Perez-Castrillo and Wettstein (2002) tiebreaking rules play a crucial

role. Indeed, at equilibrium, such a rule is always used because all projects�equilibrium aggregate bids

are zero. Ehlers (2009) points out that without tiebreaking rules equilibria may fail to exist.
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as wished. Therefore, this mechanism constitutes an interesting alternative to the original

multibidding mechanism in situations where e¢ ciency and equity are policy objectives.

1.2 Applicability of the mechanism and related literature

There are many economic situations where the smooth multibidding mechanism can be

successfully used. A �rst case concerns the complex problem of the location of noxious

facilities, such as prisons, dump sites, nuclear waste repositories, or airports. Many au-

thors address this type of problem; we can refer among other papers to Kunreuther and

Kleindorfer, 1986; Rob, 1989; O�Sullivan, 1993; Ingberman, 1995; Pérez-Castrillo and

Wettstein, 2002; Minehart and Neeman, 2002; and Laurent-Lucchetti and Leroux, forth-

coming.2 Whereas the construction of such facilities may provide large global bene�ts,

their cost is usually borne by the hosting agent. The sitting problems are so severe and

so common that an acronym is used to refer to them: NIMBY (Not In My Back Yard).

Another sensitive decision problem concerns the location of large international re-

search infrastructures. The decision about the city that should host such a facility is

always the subject of hot debate among the candidates and other interested countries and

institutions. In 2002, the European Commission started the European Strategy Forum on

Research Infrastructures (ESFRI) to support and facilitate multilateral initiatives leading

to a better use and development of research infrastructures, including biological archives,

communication networks, research vessels, satellite and aircraft observation facilities, tele-

2Kunreuther and Kleindorfer (1986) showed that sealed-bid mechanisms lead to e¢ cient outcomes

in incomplete information environments where each agent is indi¤erent as to all the outcomes, as long

as he is not the host, when agents use max-min strategies. O�Sullivan (1993) proved that e¢ ciency is

also reached in Bayes-Nash equilibria when there are two agents whose cost parameters are independently

drawn. Ingberman (1995) highlighted the impossibility of reaching e¢ cient majority decisions through an

auction when cost to the agents of using a common facility is related to their distance from it. Rob (1989)

studied mechanisms where a randomized decision rule and an expected compensation for each location are

associated to each cost vector reported by the locations. He showed that the resulting mechanism could

lead to ine¢ cient outcomes. In a complete information scenario, Laurent-Lucchetti and Leroux (2009)

proposed a two-stage mechanism that selects the e¢ cient site and any individually rational division of

the hosting provided the pro�le of bene�ts is known to the planner (otherwise, the mechanism should be

extended to a more complex action space)..
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scopes, synchrotrons, and particle accelerators. Although its 2006 Report presented a �rst

roadmap identifying 35 projects with the scienti�c needs for the next 10-20 years, ESFRI

is silent about how the interested countries should determine the location of the facility.

However, this is a very di¢ cult decision that involves many scienti�c, economic, and social

issues. For each project, supporting countries should work out a procedure to choose the

host of the facility. Therefore, they must �rst decide on a mechanism and then use the

procedure to elect the hosting city.

The previous examples belong to a general class of problems in which a group of

agents has to choose one out of several projects. In some situations, the set of projects

coincides with the set of agents, as is the case if a group of municipalities meet to choose

one of them to host a dump site or a hospital. In another context, the set of agents is

larger than the set of projects, as is typically the case when countries or institutions build

a large international research infrastructure: in such a situation, all countries may not

have an own proposal regarding the speci�cs of the project to be carried out. The main

objective of a mechanism in such situations would be to maximize the aggregate welfare

of all the agents (e¢ ciency). Moreover, such decisions typically require to compensate

(some) agents with monetary transfers. The protocol de�ned in the present contribution

can be considered a valuable option to be considered.

Our proposal is also related to papers that look for mechanisms that agents can use to

choose whether to develop a project and which one to develop (see, for instance, Moulin,

1984, and Jackson and Moulin, 1992); to reach good allocations in economic environments

with public goods and externalities (Varian, 1994a and 1994b); to dissolve a partnership

(McAfee, 1992); to sell (or not) a project to one agent when it a¤ects many (Jehiel et

al., 1996); or to award an indivisible good to one agent (in the spirit of King Solomon�s

dilemma; see, for instance, Glazer and Ma, 1989, and Perry and Reny, 1999).

Our contribution can also expand the set of applications of the multibidding mech-

anism as part of more complex mechanisms implementing solution concepts. Indeed,

variants of the multibidding mechanism have been used in several environments; see

Pérez-Castrillo and Wettstein (2001), Bergantiños and Vidal-Puga (2003, 2010), Macho-

Stadler et al. (2006), Porteiro (2007), Slikker (2007), Ju et al. (2007), Kamijo (2008),

5



Ehlers (2009), Ju and Wettstein, (2009), and Veszteg (2010).3 In the mechanisms pro-

posed in these papers, the multibidding procedure is generally followed by stages where

some agents make proposals to other agents, who can either accept or reject them. The

proposers always have incentives to put forward e¢ cient allocations, since they are the

residual claimants of the surplus. Given that e¢ ciency is ensured independently of the

identity of the proposer, there is no need to resort to the tiebreaking rule in these appli-

cations.

Finally, our paper can also be related to the literature on virtual (or "�) implementa-
tion (Matsushima, 1988, and Abreu and Sen, 1991) in the sense that our objective is not

to achieve an exact implementation of an e¢ cient and fair outcome but to get as �close�

as wished to that allocation.

The paper is organized as follows. In Section 2, we present the environment and the

smooth multibidding mechanism. The equilibrium strategies and outcome are stated in

Section 3. Section 4 studies the main properties of the equilibrium outcome, including

the convergence properties when the parameter " goes to zero. We provide a simple

example in Section 5. Finally, Section 6 concludes the paper. All proofs are included in

the Appendix.

2 The environment and the mechanism

We consider a set of agents N = f1; : : : ; ng which have to choose which project will be
carried out of a set of possible projects K = f1; : : : ; kg. The utility (payo¤) of agent i if
project q is selected is given by viq.

We denote by Vq �
P

i2N v
i
q the sum of agents�utilities if project q is implemented.

Project q is e¢ cient if Vq � Vp for all p 2 K. We denote by E the set of e¢ cient projects,
that is,

E = fq 2 K=Vq � Vp for all p 2 Kg :

Information about all the values viq is complete among the agents; that is, each agent

knows not only the value he assigns to the projects but also the values assigned by

3For further discussions and applications, see Pérez-Castrillo and Veszteg (2007) and Veszteg (2010).
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the other agents. However, the planner does not have information about these values.

Alternatively, even if she did have some information, she would not want to use it. The

planner is interested in designing an impartial mechanism that will treat all the agents in

a symmetric manner.

We propose a smooth multibidding mechanism through which agents in�uence the

probability that projects are selected. We now describe the mechanism, which has a

unique stage.

Each agent i 2 N makes a vector of bids bi �
�
biq
�
q2K in R

k, one bid for each q in K

with
P

q2K b
i
q = 0. All agents make their decision simultaneously. Once the agents have

chosen their bids, the outcome of the smooth multibidding mechanism is the following.

For each q 2 K, Bq �
P

i2N b
i
q denotes the aggregate bid for project q andB � (Bq)q2K

denotes the vector of aggregate bids. The probability that project q be carried out if the

vector of aggregate bids is B is

fq(B) =
g(Bq)P
p2K g(Bp)

;

where we consider the following function g(:):

g(Bp) =
" for all Bp < 0

"+Bp for all Bp � 0
;

with " > 0. That is, the �weight�of each project is a �xed, positive amount " plus its

aggregate bid, in case it is positive. Finally, if project q is chosen, each agent i 2 N
pays his bid for that project, biq, and he receives a fair share of the aggregate bid, Bq.

Therefore, agent i�s utility if project q is implemented is

viq � biq +
1

n
Bq:

If we go back to the example of a set of countries that must select the location of an

international research infrastructure identi�ed by ESFRI, it is usually the case that the

set of possible locations K is a subset of the set of interested countries N . The value viq

represents the utility that country i obtains if the infrastructure is located in country q.

Therefore, we expect viq to be quite high when q = i and much lower if the location q is far

from country i. The bid biq can be interpreted as the extra contribution (in addition to its
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�proportional�share) that country i is ready to provide if the facility is located in country

q: Therefore, bii may re�ect country i�s willingness to pay to host the infrastructure and

�biq is the compensation demanded if location q is inconvenient for this country.
The smooth multibidding mechanism borrows from the multibbiding mechanism of

Pérez-Castrillo and Wettstein (2002) the idea of allowing the agents to express their

relative preference for projects through a vector of bids. However, under the original

mechanism, the probability of selecting any project jumps from 0 to 1 as the aggregate

bid for this project just passes the maximum aggregate bid for the other projects. Under

our proposal, a higher (positive) aggregate bid for a project increases the probability that

it is selected, but the increase is �smooth�. This feature allows us to o¤er a mechanism

that does not require ad hoc tiebreaking rules.

3 The equilibria of the smooth multibidding mecha-

nism

In this section, we �rst derive several properties that are necessarily satis�ed by the Nash

equilibria (NE) of the smooth multibidding mechanism. Second, we use these properties

to provide a characterization of the set of NE.

Consider a vector of agents�bids (bi)i2N and let A denote the set of projects for which

the aggregate bid is positive under this vector of strategies, that is, A � fq 2 K=Bq > 0g.
Similarly, denote by D � fq 2 K=Bq < 0g and O � fq 2 K=Bq = 0g so we have D[O =
KnA. Additionally, we denote a the number of projects in A.4 The probability that

project q 2 K is chosen is given by

fq(B) =

"+Bq
k"+

P
d2ABd

for all q 2 A
"

k"+
P
d2ABd

for all q 2 KnA:

Agent i chooses his vector of bids bi to maximize his expected pro�ts given the bids

4Although the sets A, D, and O depend on the the vector of aggregate bids B, we avoid using the

notations A(B), D(B); O(B), and a(B) for simplicity.

8



chosen by the rest of the agents. Agent i�s pro�ts are

�i(bi; b�i) =
X
p2K

fp(B)

�
vip � bip +

1

n
Bp

�
:

Therefore, agent i chooses bi to solve the following program, which we denote by [P i]:

Maxbi
X
p2K

fp(B)

�
vip � bip +

1

n
Bp

�
s.t.

X
p2K

bip = 0:

We note �rst, that agent i�s program [P i] is well behaved except that the derivative

on the right of function fp(B) with respect to Bq (hence, with respect to biq as well) is

di¤erent from its derivative on the left, at the point Bq = 0.

Denoting by � the Lagrange multiplier of the constraint, the First-Order Conditions

(FOC) of [P i] for any q 2 D are:

@L

@biq
=
@�i

@biq
(bi; b�i) + � = �(n� 1)

n
fq(B) + � = 0, (1)

where we have taken into account that @fp(B)
@Bq

= 0 for all p 2 K and q 2 D. It is worthwhile
to notice that fq(B) is the same for all q 2 D, which supports the following property:
increasing agent i�s bid to a project in D and decreasing another of this agent�s bids to

a di¤erent project in D does not matter, as long as both projects still receive a negative

aggregate bid after the changes.

The FOC for any q 2 A is

@L

@biq
=
@fq(B)

@Bq

�
viq � biq +

1

n
Bq

�
� (n� 1)

n
fq(B)+X

p2Anfqg

@fp(B)

@Bq

�
vip � bip +

1

n
Bp

�
+
X
p2KnA

@fp(B)

@Bq

�
vip � bip +

1

n
Bp

�
+ � = 0 (2)

where
@fq(B)

@Bq
=
(k � 1)"+

P
d2AnfqgBd�

k"+
P

d2ABd
�2 (3)

@fp(B)

@Bq
= � "+Bp�

k"+
P

d2ABd
�2 for all p 2 An fqg (4)
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@fp(B)

@Bq
= � "�

k"+
P

d2ABd
�2 for all p 2 KnA. (5)

Finally, for any q 2 O, it needs to be the case that @L
@biq
� 0 on the left and @L

@biq
� 0 on

the right. In fact, the derivative on the left is the same as the left-hand side of equation

(1), which is independent of q. Therefore, the derivative @L
@biq
� 0 on the left always holds

(it holds with equality). Therefore, we only have to add the following condition:

@L

@biq
=
@fq(B)

@Bq

�
viq � biq +

1

n
Bq

�
� (n� 1)

n
fq(B)+X

p2A

@fp(B)

@Bq

�
vip � bip +

1

n
Bp

�
+

X
p2Kn(A[fqg)

@fp(B)

@Bq

�
vip � bip +

1

n
Bp

�
+ � � 0, (6)

for any q 2 O; where
@fq(B)

@Bq
=
(k � 1)"+

P
d2ABd�

k"+
P

d2ABd
�2 ; (7)

and @fp(B)

@Bq
is given by (4) for any p 2 A, and it is given by (5) for any p 2 Kn(A [ q).

The previous FOCs are necessary (although not su¢ cient) to characterize the NE of

the proposed mechanism given that any equilibrium must be interior.

Next, we use the FOCs of each agent�s program to characterize the set A and the

NE aggregate and individual bids to these projects. Lemma 1 conveys useful information

about the equilibrium aggregate bids for the projects in A.

Lemma 1 In any NE of the smooth multibidding mechanism, if q; q0 2 A then

Bq = Bq0 +
1

(n� 1) (Vq � Vq
0) : (8)

Lemma 1 implies that di¤erences in bids among those projects that receive positive

aggregate bids directly re�ect the di¤erences in total values of the projects.

We now use the previous result and the FOCs to characterize the aggregate bid received

by any project in A.

Proposition 1 In any NE of the smooth multibidding mechanism, if q 2 A then Bq

satis�es h(Bq) = 0, where

h(Bq) � � (n� 1) aB2q �
"
"k (n� 1) + 2

X
d2A

Vd � 2aVq

#
Bq+

"kVq � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vq � Vd)2 : (9)
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The above characterization of the aggregate bids follows from a straightforward rewrit-

ing of the optimality conditions satis�ed necessarily by the agents�individual bids. We

notice that the concave function h(:) starts (at Bq = 0) at a positive value only if Vq

is close enough to the valuation of the projects in A; that is, if Vq is high enough. The

derivative of h(:) also depends on Vq: it is larger when Vq is larger. This derivative h0(:)

can be positive or negative at Bq = 0, depending on Vq and it converges to �1 as Bq

becomes very large. Therefore, h(:) always crosses (once) the horizontal axis if it starts

with a positive value. We also prove in the Appendix that it never crosses the horizontal

axis if h(:) starts at a negative value.

Before we continue the characterization of the equilibrium agents�bids, we turn to

the analysis of the set A, that is, the set of projects that receive positive aggregate bid.

Lemma 1 showed that, for projects in A, aggregate bids increase with total valuation.

The same logic suggests that any project in A should have higher total valuation than

any project outside A (as they receive non-positive aggregate bids). Lemma 2 shows that

this intuition is indeed correct.

Lemma 2 In any NE of the smooth multibidding mechanism, if project q satis�es Vq � Vt
for some t 2 A, then q 2 A.

We can now provide a simple condition to check whether a project receives, at equi-

librium, a positive aggregate bid. That is, Proposition 2 characterizes the set of projects

A.

Proposition 2 In any NE of the smooth multibidding mechanism, q 2 A if and only if
the following condition holds:

"kVq � "
X
p2K

Vp �
1

(n� 1)
X
d2Sq

(Vd � Vq)2 > 0; (10)

where Sq � fp 2 K=Vp � Vqg.

The above result enables to conclude that the valuation of any particular project in

A cannot be too far from that of projects whose total valuation is higher. Only projects

whose total valuation is higher than the average valuation can be in A (otherwise, the
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left-hand side of equation (10) is negative). Moreover, for a �better-than-average�project

to be in A, it is also necessary that the sum of the di¤erences (to the power 2) between

the value of this project and the value of the projects that are more e¢ cient should be

small enough. In particular, only e¢ cient projects will receive positive (aggregate) bids

in situations where the di¤erence between the total values of any e¢ cient project and

the least ine¢ cient project is su¢ ciently large. Finally, the set A only contains e¢ cient

projects if the parameter " is small enough.

Proposition 2 characterizes the set of projects A; whose equilibrium aggregate bids

satisfy h(Bq) = 0. Additionally, equation h(Bq) = 0 characterizes a unique value for the

aggregate bid of any project in A. On the other hand, one implication of the FOCs (specif-

ically, condition (1)) is that any switch in agents�strategy concerning bids to projects out-

side A is irrelevant, as long as the set A is not changed. Therefore, we already have the

main information concerning the characteristics of the NE strategies of the smooth multi-

bbiding mechanism. Theorem 1 provides the full description of the equilibria through a

complete characterization of the equilibrium bids.

Theorem 1 Denote A =
n
q 2 K="kVq � "

P
p2K Vp � 1

(n�1)
P

d2Sq (Vd � Vq)
2 > 0

o
. The

set of bids (bi)i2N , with
P

q2K b
i
q = 0 for all i 2 N , constitutes a NE of the smooth

multibidding mechanism if and only if it satis�es the following properties:

(a) h(Bq) = 0 whenever q 2 A;
(b) biq = v

i
q +

1
n
Bq � 1

k

P
p2K v

i
p � 1

n

�
Vq � 1

k

P
p2K Vp

�
for all i 2 N; whenever q 2 A, and

(c) biq � Bq + viq + n�1
n
Bt � 1

k

P
p2K v

i
p � 1

n
(Vt � 1

k

P
p2K Vp) for all i 2 N and any given

project t 2 A, whenever q =2 A.

There is an intuitive progression from the �rst to the last property in the above

theorem. The set A identi�es the set of projects that shall receive positive bids. Property

(a) then characterizes the aggregate bids of such projects, which will indeed be positive.

Property (b) uses (a) to characterize the corresponding individual bids. Finally, property

(c) follows from (b) and provides a lower bound on the individual bids for projects outside

A, whose aggregate bid shall be non positive.

There are three important remarks regarding the last property. First, property (c)

prevents any agent from having incentives to increase his bid for a project whose aggregate

12



bid is non positive. Second, the statement of this property is actually independent from

the speci�c choice of project t 2 A since the di¤erence n�1
n
Bt � 1

n
Vt is independent from

this choice. Third, property (c) is stronger that the FOC (6) as it concerns not only

projects in O but also in D. Therefore, not all strategies that satisfy the FOCs constitute

a NE.

Theorem 1 enables us to construct a particular vector of bids that satisfy conditions

(a) to (c), which also shows that the set of NE of the smooth multibidding mechanism is

always non empty:

Proposition 3 The set of NE of the smooth multibidding mechanism is non empty. In

particular, the following set of bids (bi)i2N is a NE:

(I) biq is constructed using (b) and (a), for all q 2 A, where A is the non-empty set

identi�ed in Theorem 1;

(II) biq = v
i
q +

n�1
n
Bt � 1

k

P
p2K v

i
p � 1

n
(Vt � 1

k

P
p2K Vp) for all q 2 Kn (A [ fdg), where d

is a particular element of KnA;
(III) bid = �

P
q2Knd b

i
q.

Therefore, we have an easy way to construct a NE for any environment. The proof

of Proposition 3 only requires that condition (c) is also satis�ed for the particular project

d 2 KnA.
The characterization of equilibrium bids is an important point of the analysis, but we

have little information on the practical properties satis�ed by the mechanism (in terms

of equilibrium payo¤s, degree of e¢ ciency). These properties will be provided in the next

section.

4 Properties of the smooth multibidding mechanism

In the present section we provide several properties satis�ed by the equilibrium outcome

of the proposed mechanism.

4.1 Fairness of equilibrium payo¤s

We start with the characterization of the agents�equilibrium payo¤s.

13



Proposition 4 In any NE of the smooth multibidding mechanism, agent i�s pro�ts are

�i =
1

k

X
p2K

vip +
1

n

"X
q2K

fq(B)Vq �
1

k

X
p2K

Vp

#
:

The above equality highlights that an agent�s equilibrium payo¤ is made of two parts.

The �rst part amounts to the value of the average project, 1
k

P
p2K v

i
p. This would corre-

spond to the payo¤ associated with the random assignment mechanism, that is, a mech-

anism that would choose any project with the same probability. We notice that this

mechanism is a benchmark that is used often in practical situations. It basically cor-

responds to a process where agents would �throw a die� to determinate which speci�c

project would be implemented in case they would be indi¤erent between all the potential

projects. It is also the utility level that each agent can secure himself when he plays the

multibidding mechanism (Pérez-Castrillo and Wettstein, 2002). The second part of the

equilibrium payo¤ is the fair share of the surplus. Therefore, not only is the equilibrium

payo¤ of the smooth multibidding mechanism unique (in contrast with the multibidding

mechanism, whose outcome set can be large) but it also implies a fair share of the surplus

(i.e., the additional payo¤ obtained with respect of the average value of the projects).

One implication of Proposition 4 is that agents�interests are aligned: when one agent�s

payo¤increases, the payo¤s of the other agents also increase. Therefore, there is no con�ict

between total pro�ts and individual pro�ts.

4.2 Monotonicity of equilibrium payo¤s

The characterization of the agents�expected payo¤s obtained in the previous sub-section

is also useful because it enables us to check whether the parameter " has a monotone

e¤ect on the optimal payo¤s. Intuitively, one would think that payo¤s should increase

with a decrease in the value of the parameter. This is con�rmed by the next result.

Proposition 5 Any agent�s optimal expected pro�ts increase with a decrease in the value

of the parameter ".

A smaller value of " leads to a higher e¢ ciency level attained by the mechanism and

each agent having higher expected payo¤s. This provides a clear implication for a practical

14



implementation of the mechanism: the value of the parameter " should be positive and

chosen as small as possible, as this would ensure that the agents�expected payo¤s will

come close to their highest possible values.

4.3 Convergence of the mechanism to full e¢ ciency

Before analyzing the convergence of the outcome of the mechanism to the Pareto e¢ cient

outcome, it is interesting to characterize the degree of ine¢ ciency (that is, the distance to

the e¢ cient outcome) that can be sustained in projects with positive equilibrium aggregate

bids. The next result provides an upper bound on this degree.

Proposition 6 In any NE of the smooth multibidding mechanism, for any q 2 A, the
following inequality holds:

V � � Vqp
V �

�
p
(n� 1) (k � 1)

p
";

where V � denotes the value of an e¢ cient project.

Proposition 6 implies that the potential degree of ine¢ ciency of any project with pos-

itive aggregate bid at equilibrium is a linear function of the square root of ". Therefore,

the mechanism will only select e¢ cient projects for situations where the degree of hetero-

geneity in the value of the projects is su¢ ciently large. As soon as the di¤erence between

the value of an e¢ cient project Ve and that of a second-best project Vs is large enough,

then the mechanism will select e¢ cient projects only. Moreover, as the value of the para-

meter " becomes arbitrarily small the degree of heterogeneity required converges to zero.

Therefore, small values of " will ensure that the outcome implemented by the mechanism

approximates a Pareto e¢ cient outcome. This is consistent with the conclusion resulting

from the monotonicity of the agents�expected payo¤s as described in Proposition 5.

Next, we provide additional information on the agents�optimal bids when all selected

projects are e¢ cient. In such a situation, the optimal aggregate bids can be easily char-

acterized, as highlighted by the following result.

Proposition 7 In any NE of the smooth multibidding mechanism, if A = E then

Bq =

�"k +
r
"2k2 + 4" a

(n�1)

�
kVq �

P
p2K Vp

�
2a
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for any q 2 A. Moreover, Bq converges to 0 and fq(B) converges to 1=a as " tends towards
0.

When only e¢ cient projects are selected by the mechanism, the form of the aggregate

bids is simple. According to this expression, the aggregate bid will be higher as the

di¤erence between the value of an e¢ cient project and those of the other projects increases.

Moreover, all e¢ cient projects will be selected with equal probability approximately equal

to 1
a
as the parameter " becomes arbitrarily small. In particular, the probability that an

e¢ cient project is selected converges to 1 as " tends toward 0.

Propositions 6 and 7 enable us to provide a �nal result on the relative e¢ ciency of the

mechanism as the value of the parameter " becomes small. Speci�cally, we show that, for

any equilibrium, the probability of implementing an ine¢ cient project converges to zero.

Therefore, the outcome of the mechanism gets as close to e¢ ciency as one wishes as the

parameter " tends towards zero.

Proposition 8 The outcome of the smooth multibidding mechanism converges to the ef-

�cient outcome as the parameter " converges to zero. In other words, if project q 2 K
denotes an ine¢ cient project, its probability to be implemented at the equilibrium converges

to zero as " becomes small.

The above result con�rms that the e¤ect of a variation of the parameter " is intuitive.

Regarding the actual implementation of the mechanism, small values of this parameter

will ensure that the chance of choosing an ine¢ cient project comes close to zero.

5 Example

Before concluding the paper, it might be useful to highlight the main properties of the

mechanism with a simple example. Let us consider the following situation.

Two agents (1 and 2) have to make a collective decision on the implementation of a

project. There are four potential choices corresponding to the set K = f1; 2; 3; 4g where
the agents�bene�ts are: v11 = 6, v21 = 3; v12 = 4, v22 = 6; v13 = 2, v23 = 1; and v14 = 8,

v24 = 2, respectively. The weighting parameter " is positive; we will highlight how its value

in�uences the outcome of the mechanism.
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At equilibrium of the smooth multibidding mechanism, Project 3 will receive a negative

aggregate bid for any possible " (this follows from Theorem 1 (a)). Project 1 will also

receive negative aggregate bid as soon as " < 1=2. In this case, Proposition 7 provides

the expression for the aggregate bids of projects 2 and 4 (the e¢ cient projects):

B2 = B4 = �"+
p
"2 + 4" > 0;

and Theorem 1 (c) enables one to �nd the equilibrium individual bids for projects 1 and

2. For example, the bids that agents submit for project 2 are

b12 = �2 +
1

2

h
�"+

p
"2 + 4"

i
b22 = 2 +

1

2

h
�"+

p
"2 + 4"

i
.

Notice that, since agents have di¤erent individual valuations for this project, indi-

vidual bids are di¤erent too. Now, the probability that projects 2 and 4 are selected at

equilibrium is

f2(B) = f4(B) =

p
4 + "

2
�p
"+

p
4 + "

� ;
therefore, each f2(B) and f4(B) converges to 1=2 as " converges to zero.

Finally, regarding the agents�equilibrium payo¤s, we know from Proposition 4 that,

for instance, agent 1�s payo¤ is given by the following expressions:

�1 = 5 +
1

2

"
1�p

"+
p
4 + "

� �10p4 + "+ 6p"�� 8#
which corresponds to this agent�s value of the average project (5) plus his fair share of

the collective bene�ts. The collective bene�ts converge towards the total value 10 of an

e¢ cient project minus the total value of the average project 8. Therefore, �1 converges

to 6 as " converges to 0.

6 Conclusion

Relying on the main characteristics of the multibidding mechanism (Pérez-Castrillo and

Wettstein, 2002), we developed a new procedure for choosing e¢ cient projects in situations

where the social planner does not have information on the agents�preferences.
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The present protocol implements a unique equilibrium outcome, satis�es a fairness

property and is immune to the problems highlighted by Ehlers (2009) as the use of

tiebreaking rules is avoided (by making the probability to select a given project con-

tinuous). Moreover, it may come as close to the Pareto e¢ cient outcome as the social

planner wishes.

The resulting outcome of the present mechanism is unique, and satis�es an interesting

trade o¤ between e¢ ciency and equity considerations. As such, this mechanism seems

to be appropriate in situations of collective decision-making where economic e¢ ciency is

not the only relevant property, that is, situations where equity is an equally important

criterion.

7 Appendix

Proof of Lemma 1. Assume A contains at least two projects, otherwise the lemma

holds trivially. The derivative of the payo¤ to any agent i, when adding an in�nitesimal

� to biq and substracting � from biq0 is

1�
k"+

P
d2ABd

� �viq � biq + 1

n
Bq

�
� (n� 1)

n

("+Bq)�
k"+

P
d2ABd

��
1�

k"+
P

d2ABd
� �viq0 � biq0 + 1

n
Bq0

�
+
(n� 1)
n

("+Bq0)�
k"+

P
d2ABd

� :
The previous derivative must be zero at the optimum, that is,

viq � biq �
(n� 2)
n

Bq = v
i
q0 � biq0 �

(n� 2)
n

Bq0. (11)

Summing over N we get Vq� (n� 1)Bq = Vq0 � (n� 1)Bq0, which is equivalent to (8).
Proof of Proposition 1. The FOC for any q 2 D implies � = (n�1)

n
"

(k"+
P
d2ABd)

.

Therefore, we write the FOC with respect to q 2 A (equation (2)) as (after easy simpli�-
cations)

1�
k"+

P
d2ABd

�2
" 
k"+

X
d2A

Bd

!�
viq � biq +

1

n
Bq

�
�
X
p2A

Bp

�
vip � bip +

1

n
Bp

�#
�

"�
k"+

P
d2ABd

�2X
p2K

vip �
(n� 1)
n

Bq�
k"+

P
d2ABd

� = 0; (12)
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or  
k"+

X
d2A

Bd

!�
viq � biq �

(n� 2)
n

Bq

�
�
X
p2A

Bp

�
vip � bip +

1

n
Bp

�
� "

X
p2K

vip = 0: (13)

Summing (13) over i 2 N we obtain 
k"+

X
d2A

Bd

!
[Vq � (n� 1)Bq]�

X
p2A

BpVp � "
X
p2K

Vp = 0;

i.e.,

"kVq � "
X
p2K

Vp � "k (n� 1)Bq +
X
d2A

Bd (Vq � Vd)� (n� 1)Bq
X
d2A

Bd = 0: (14)

Note that we can write the last two terms in (14) asX
d2A

Bd [(Vq � Vd)� (n� 1)Bq] = �
1

n� 1
X
d2A

[(Vq � Vd)� (n� 1)Bq]2 =

� 1

n� 1
X
d2A

(Vq � Vd)2 � (n� 1) aB2q + 2aVqBq � 2Bq
X
d2A

Vd,

where we have used equation (8). Therefore, (14) can be written as h(Bq) = 0.

Proof of Lemma 2. First, supposeKnA contains at least two projects. Take projects
q 2 KnA and t 2 A satisfying Vq � Vt. We know that for any agent i 2 N , changes in�
bip
�
p2KnA do not in�uence his pro�ts as long as Bp � 0 for all p 2 KnA is maintained.

Therefore, if Bq < 0; then agent i can increase biq to b
i
q = biq � Bq and decrease bip to

bip = b
i
p + Bq for some other p 2 KnA. The derivative of the payo¤ to any agent i, when

adding a positive in�nitesimal � to biq and substracting � from bit is

1�
k"+

P
d2ABd

� �viq � �biq �Bq��� (n� 1)n

"�
k"+

P
d2ABd

��
1�

k"+
P

d2ABd
� �vit � bit + 1

n
Bt

�
+
(n� 1)
n

("+Bt)�
k"+

P
d2ABd

� :
The previous derivative can not be positive at the optimum, that is,�

viq � biq +Bq
�
�
�
vit � bit �

(n� 2)
n

Bt

�
� 0 for all i 2 N .

Summing the previous equation over N , we get

Vq � Vt + (n� 1)Bt � 0. (15)
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However, the last inequality cannot hold if Vq � Vt and Bt > 0:
Second, suppose KnA = fqg and pick t such that Vt is the lowest among the elements

in A. Taking into account that Vt � Vq, then Vt � Vp for all p 2 K. For this project t,

h0(Bt) jBt=0= �
"
"k (n� 1) + 2

X
d2A

Vd � 2aVt

#
� �"k (n� 1) < 0

and

h(Bt) jBt=0= "kVt � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vt � Vd)2 � 0.

Therefore, Bt > 0 is not possible.

Proof of Proposition 2. We �rst prove by contradiction that project q does not

belong to A if (10) does not hold. We know that, according to Lemma 2, Sq � A if q 2 A.
Denote by t the project in A with the lowest total valuation: Vt � Vp for all p 2 A. Then

h(Bt) jBt=0= "kVt � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vd � Vt)2 �

"kVq � "
X
p2K

Vp �
1

(n� 1)

2X
d2Sq

(Vd � Vq) � 0:

Also, h0(Bt) jBt=0= �
�
"k (n� 1) + 2

P
d2A Vd � 2aVt

�
< 0 which, together with h00(Bt) <

0; implies that h(Bt) < 0 for all positive Bt. However, this is not possible at equilibrium.

Second, we prove that (10) does not hold if q 2 KnA. Note that (10) cannot happen
for q if fqg = KnA. Therefore, we take q 2 KnA and and suppose that there are at least
two projects outside A. Consider some t 2 A. By the same calculations as in the proof
of Lemma 2, we obtain (see (15)) Vq � Vt + (n� 1)Bt � 0, that is, Bt � 1

(n�1) (Vt � Vq) ;
or, h(Bt) jBt= 1

(n�1) (Vt�Vq)
� 0: This is equivalent to

� a 1

(n� 1) (Vt � Vq)
2 � 1

(n� 1)

"
"k (n� 1) + 2

X
d2A

Vd � 2aVt

#
(Vt � Vq)+

"kVt � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vd � Vt)2 � 0, (16)
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i.e.,

"kVq � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vt � Vd)2 �
2

(n� 1)
X
d2A

Vd (Vt � Vq)+

2

(n� 1)aVt (Vt � Vq)�
1

(n� 1)a (Vq � Vt)
2 � 0:

Using that� (Vt � Vd)2�2Vd (Vt � Vq) = �V 2t �V 2d +2VdVq and 2Vt (Vt � Vq)�(Vt � Vq)
2 =

V 2t � V 2q , the previous inequality is equivalent to

"kVq � "
X
p2K

Vp �
1

(n� 1)aV
2
t �

1

(n� 1)
X
d2A

V 2d +
2

(n� 1)Vq
X
d2A

Vd+

1

(n� 1)aV
2
t �

1

(n� 1)aV
2
q � 0;

i.e.,

"kVq � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vd � Vq)2 � 0: (17)

Given that Sq � A for any q =2 A, it is necessarily the case that equation (10) cannot
hold, as we wanted to prove.

Proof of Theorem 1. The necessity of part (a) comes from propositions 1 and 2.

For part (b), note that from (11), we know that

vip � bip +
1

n
Bp = v

i
q � biq +

1

n
Bq +

(n� 1)
n

(Bp �Bq)

for any q; p 2 A. Therefore, we can write (12) as 
k"+

X
d2A

Bd

!�
viq � biq +

1

n
Bq

�
�
X
p2A

Bp

�
viq � biq +

1

n
Bq +

(n� 1)
n

(Bp �Bq)
�
�

"
X
p2K

vip �
n� 1
n

Bq

 
k"+

X
d2A

Bd

!
= 0,

i.e.,

k"

�
viq � biq +

1

n
Bq

�
� "

X
p2K

vip �
1

n

"
(n� 1)

X
d2A

B2d + k" (n� 1)Bq

#
= 0: (18)

We use (8) to show thatX
d2A

B2d =
X
d2A

�
Bq +

1

(n� 1) (Vd � Vq)
�2
=

aB2q +
2

(n� 1)Bq
X
d2A

Vd �
2

(n� 1)aBqVq +
1

(n� 1)2
X
d2A

(Vd � Vq)2 :
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Therefore, (18) is equivalent to

k"

�
viq � biq +

1

n
Bq

�
� "

X
p2K

vip�

1

n

"
(n� 1) aB2q + 2Bq

X
d2A

Vd � 2aBqVq +
1

(n� 1)
X
d2A

(Vd � Vq)2 + k" (n� 1)Bq

#
= 0

and, using that h(Bq) = 0, we obtain

k"

�
viq � biq +

1

n
Bq

�
� "

X
p2K

vip �
1

n

"
k"Vq � "

X
p2K

Vp

#
= 0,

and part (b) follows. For part (c), from the same calculations as in the proof of Lemma

3, it follows that, for any agent i, any project q 2 O and any t 2 A we have

@L

@biq
=

1�
k"+

P
d2ABd

� �viq � biq�� 1�
k"+

P
d2ABd

� �vit � bit � (n� 2)n
Bt

�
� 0;

as agents do not have incentives to deviate. This implies the following inequality:

viq � biq �
�
vit � bit �

(n� 2)
n

Bt

�
� 0: (19)

Using (b) and rewriting, we check that part (c) follows for any q 2 O. Part (c) is also
implied by (c) for any q 2 D when KnA is a singleton, KnA = fqg, using biq = �

P
d2A b

i
d.

Finally, when KnA contains at least two projects, any agent can unilaterally amend his
bids regarding the projects inK=A to make any project with an initially negative aggregate

bid get one equal to zero. Moreover, the resulting situation is payo¤ equivalent to the

initial one. This implies that condition (19) must hold for all projects q 2 D once we

increase biq to b
i
q so that the Bq = 0, that is, b

i
q = b

i
q � Bq. Therefore, condition (c) must

hold.

We now prove that any vector of bids (bi)i2N satisfying (a) to (c) is indeed a NE by

showing that bi is a best response to b�i.

Any best response bi to b�i must satisfy the FOCs. We denote by Bq = b
i
q+
P

j2Nni b
j
q

for any q 2 K; and by A, a the set and number corresponding to the vector of bids

(bi; b�i). Following the same calculations as in the proof of Lemma 1, FOCs imply

viq � biq �
(n� 2)
n

Bq = v
i
q0 � biq0 �

(n� 2)
n

Bq0 for any q; q
0 2 A. (20)
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Also, whenKnA has at least two elements, calculations similar to those in Lemma 2 imply

viq � biq +Bq � viq0 � biq0 �
(n� 2)
n

Bq0 for any q 2 KnA; q0 2 A. (21)

When KnA only contains one element, that is, KnA = fdg for some d 2 K, then (21)
also holds as it is implied by (20). Indeed, summing (20) over q 2 KnA and taking into
account that bid = �

P
q2A b

i
q and Bd = �

P
q2ABq, we obtainX

q2A
viq + b

i
d +

(n� 2)
n

Bd = (k � 1)viq0 � (k � 1)biq0 � (k � 1)
(n� 2)
n

Bq0 for any q
0 2 A,

that is,

vid � bid +Bd = viq0 � biq0 �
(n� 2)
n

Bq0+X
q2K

viq + 2
(n� 1)
n

Bd � kviq0 + kbiq0 + k
(n� 2)
n

Bq0 for any q
0 2 A.

Therefore, (21) holds if

viq0 � biq0 +
1

n
Bq0 �

1

k

X
q2K

viq +
(n� 1)
n

�
2

k
Bd +Bq0

�
for some q0 2 A:

Since Bd = �
P

q2KnABq, it is necessarily the case that
2
k
Bd+Bq0 � 0 for some q0 2 KnA.

Moreover, viq0 � biq0 + 1
n
Bq0 � 1

k

P
q2K v

i
q for any q

0 2 KnA.5 Therefore, (21) also holds for
d when KnA = fdg.
Now, we take any q0 2 A and rewrite (20) and (21) as

viq +
X
j2Nni

bjq �
(2n� 2)
n

Bq = v
i
q0 +

X
j2Nni

bjq0 �
(2n� 2)
n

Bq0 for any q; q
0 2 A, (22)

viq +
X
j2Nni

bjq � viq0 +
X
j2Nni

bjq �
(2n� 2)
n

Bq0 for any q 2 KnA; q0 2 A. (23)

5Any best response bi must ensure expected pro�ts higher or equal than 1
k

P
q2K v

i
q, which is

the level that agent i can secure with the �safe� strategy bi
q
= �

P
j2Nni b

j
q : pro�ts under b

i are
1
k

P
q2K

�
viq � biq

�
= 1

k

P
q2K v

i
q because Bq = 0 for all q 2 K. Therefore, all the projects q 2 A

must provide this level of pro�ts in case they are chosen; otherwise, agent i would decrease all the bids

on those projects which provide less pro�ts (he would also increase bid, still ensuring that Bd is negative);

this would increase the probability of success of those projects whose pro�ts in case there are chosen is

higher or equal than 1
k

P
q2K v

i
q.
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Equation (23) is a necessary condition for q to be in KnA. Similarly, because Bq is
positive if q 2 A, a necessary condition for q to be in A is (following (22))

viq +
X
j2Nni

bjq > v
i
q0 +

X
j2Nni

bjq0 �
(2n� 2)
n

Bq0 : (24)

Therefore, if q0 2 A, then q 2 A if and only if (24) holds. Equation (24) implies that if
q0 2 A, then q 2 A if viq +

P
j2Nni b

j
q is larger than v

i
q0 +

P
j2Nni b

j
q0. An implication is that

q 2 A if and only if viq +
P

j2Nni b
j
q is larger than some threshold. Also notice that this is

also necessarily true for the set A (possibly with a di¤erent threshold). Therefore, either

A � A or A � A.
We go back to (20), which we rewrite as (25)

(2n� 2)
n

�
biq0 � biq

�
= viq0 � viq �

(n� 2)
n

X
j2Nni

�
bjq0 � b

j
q

�
for any q; q0 2 A. (25)

Taking into account that (25) also holds for bi (instead of bi) if q; q0 2 A, then

biq0 � biq = biq0 � biq for any q; q0 2 A \ A, (26)

that is, bid = b
i
d + � (and also Bd = Bd + �), for some � 2 R, for all d 2 A \ A.

Take some q 2 A. The FOC with respect to biq is (see (13))0@k"+X
d2A

Bd

1A�viq � biq � (n� 2)n
Bq

�
�
X
d2A

Bd

�
vid � bid +

1

n
Bd

�
� "

X
p2K

vip = 0: (27)

First, suppose that � � 0: Then, (24) is more limiting for bi than for bi; therefore, A � A.
Equation (27) becomes0@k"+X

d2A

Bd + a�

1A�viq � biq � (n� 2)n
Bq � 2

(n� 1)
n

�

�
�

X
d2A

(Bd + �)

�
vid � bid +

1

n
Bd �

(n� 1)
n

�

�
� "

X
p2K

vip = 0;
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which we write as 
k"+

X
d2A

Bd

!�
viq � biq �

(n� 2)
n

Bq

�
�
X
d2A

Bd

�
vid � bid +

1

n
Bd

�
� "

X
p2K

vip�0@ X
d2AnA

Bd

1A�viq � biq � (n� 2)n
Bq

�
+
X
d2AnA

Bd

�
vid � bid +

1

n
Bd

�
+

�

0@a �viq � biq � (n� 2)n
Bq

�
� 2(n� 1)

n

0@k"+X
d2A

Bd

1A�X
d2A

�
vid � bid +

1

n
Bd

�
+
(n� 1)
n

X
d2A

Bd

1A+
�2
�
�2a(n� 1)

n
+ a

(n� 1)
n

�
= 0: (28)

The sum of the �rst three terms in (28) is equal to zero, as it corresponds to the FOC of

bi. Then after some calculations, (28) becomes

�

0@(n� 1)
n

[a (Bq + �) + 2k"+
X
d2A

Bd] +
X
d2A

��
vid � bid +

1

n
Bd

�
�
�
viq � biq +

1

n
Bq

��1A �+
X
d2AnA

Bd

��
vid � bid +

1

n
Bd

�
�
�
viq � biq +

1

n
Bq

��
+

0@ X
d2AnA

Bd

1A (n� 1)
n

Bq = 0: (29)

We notice that because of condition (c),
�
vid � bid + 1

n
Bd
�
�
�
viq � bq + 1

n
Bq
�
= 1

n
[Vd � Vq]

for any q; d 2 A (in particular, this is also true if q; d 2 A). Moreover, Lemma 1 implies
that Vd � Vq + (n� 1)Bq = (n� 1)Bd or any q; d 2 A. Therefore, (29) can be written as

(n� 1)
n

X
d2AnA

B2d �
(n� 1)
n

24a� + 2k"+ 2X
d2A

Bd

35 � = 0: (30)

The �rst term in (30) is non-negative; in fact, it is zero if and only if AnA is empty.

Moreover, a� + 2k" + 2
P

d2ABd is positive. Taking into account that � � 0, (29) only

holds if AnA is empty, that is, A = A and � = 0.
Second, suppose that � � 0, which implies (following (24)) that A � A. We take

q 2 A and we rewrite (27):0@k"+X
d2A

Bd + a� +
X
d2AnA

Bd

1A�viq � biq � (n� 2)n
Bq � 2

(n� 1)
n

�

�
�

X
d2A

(Bd + �)

�
vid � bid +

1

n
Bd �

(n� 1)
n

�

�
�
X
d2AnA

Bd

�
vid � bid +

1

n
Bd

�
� "

X
p2K

vip = 0;
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i.e., 
k"+

X
d2A

Bd

!�
viq � biq �

(n� 2)
n

Bq

�
�
X
d2A

Bd

�
vid � bid +

1

n
Bd

�
� "

X
p2K

vip�0@ X
d2AnA

Bd

1A�viq � biq � (n� 2)n
Bq

�
�
X
d2AnA

Bd

�
vid � bid +

1

n
Bd

�
+

a

�
viq � biq �

(n� 2)
n

Bq � 2
(n� 1)
n

�

�
� � 2(n� 1)

n

 
k"+

X
d2A

Bd

!
��

X
d2A

�
vid � bid +

1

n
Bd �

(n� 1)
n

�

�
� = 0; (31)

which, because q 2 A, and after following steps similar to those in the �rst case, givesX
d2AnA

Bd

��
viq � biq �

(n� 2)
n

Bq

�
�
�
vid � bid �

(n� 2)
n

Bq +
(n� 1)
n

Bq

��
�

(n� 1)
n

"
a� + 2k"+

X
d2A

Bd

#
� = 0: (32)

Using (20), we deduce that the �rst term is equal to � (n�1)
n

P
d2AnABdBq. Therefore,

taking into account that � � 0, (32) only holds if A = A and � = 0.
This concludes the proof.

Proof of Proposition 3. We show that bid satis�es condition (c):

bid = �
X
q2Knd

biq = �
X
q2A

biq �
X

q2Kn(A[fdg)

biq =

�
X
q2A

viq �
1

n

X
q2A

Bq +
a

k

X
p2K

vip +
1

n

X
q2A

Vq �
1

n

a

k

X
p2K

Vp�

X
q2Kn(A[fdg)

Bq �
X

q2Kn(A[fdg)

viq � (k� a� 1)
"
(n� 1)
n

Bt �
1

k

X
p2K

vip �
1

n
Vt +

1

nk

X
p2K

Vp

#
:

Therefore, bid � Bd + vid + n�1
n
Bt � 1

k

P
p2K v

i
p � 1

n
(Vt � 1

k

P
p2K Vp) if and only if

� 1
n

X
q2A

Bq �
X
q2KnA

Bq � (k � a)
(n� 1)
n

Bt �
1

n

X
p2K

Vp +
1

n

X
q2A

Vq + (k � a)
1

n
Vt � 0;

which, after easy calculations, gives

1

n

X
q2KnA

[Vt � Vq � (n� 1)Bt � (n� 1)Bq] � 0: (33)
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Notice that the previous inequality is independent of i and holds if Vt�Vq�(n� 1)Bt � 0
for all q 2 KnA (as Bq � 0 for q 2 KnA), that is, if h

�
1

(n�1) (Vt � Vq)
�
� 0 (where we

take the function h(:) corresponding to project t). Therefore, (33) holds if equation (16)

is satis�ed. In the proof of Proposition 2 we have shown that (16) is equivalent to (17):

"kVq � "
X
p2K

Vp �
1

(n� 1)
X
d2A

(Vd � Vq)2 � 0:

Equation (17) holds for the project with the highest Vq among the projects inKnA, as, for
this project,

P
d2Sq (Vd � Vq)

2 =
P

d2A (Vd � Vq)
2 and (17) is equivalent to the condition

that q does not belong to A. Additionally, Vt � Vq � (n� 1)Bt � 0 as well for the other
projects whose Vq is smaller. This concludes the proof.

Proof of Proposition 4. Denote f " = 1

(k"+
P
d2ABd)

the probability that any of the

projects outside A is selected. Using Theorem 1, we derive:

�i =
X
q2K

fq(B)

�
viq � biq +

1

n
Bq

�
=

X
q2A

fq(B)

"
1

k

X
p2K

vip +
1

n

 
Vq �

1

k

X
p2K

Vp

!#
+ f "

X
q2KnA

�
viq � biq +

1

n
Bq

�
: (34)

We elaborate on the second term of (34), also using Theorem 1:X
q2KnA

�
viq � biq +

1

n
Bq

�
=
X
q2KnA

viq +
X
q2A

biq �
1

n

X
q2A

Bq =

X
q2KnA

viq +
X
q2A

viq +
1

n

X
q2A

Bq �
1

k
a
X
p2K

vip �
1

n

X
q2A

Vq +
1

n

1

k
a
X
p2K

Vp �
1

n

X
q2A

Bq =

(k � a)
k

X
q2K

viq �
1

n

X
q2A

Vq +
1

n

1

k
a
X
p2K

Vp:

Therefore,

�i =
X
q2A

fq(B)
1

k

X
p2K

vip +
1

n

X
q2A

fq(B)Vq �
1

k

X
q2A

fq(B)
X
p2K

Vp+

f "
(k � a)
k

X
q2K

viq � f "
1

n

X
q2A

Vq + f
" 1

n

1

k
a
X
p2K

Vp:

Using (k � a)f " +
P

d2A fq(B) = 1, we obtain

�i =
1

k

X
p2K

vip �
1

n

1

k

X
p2K

Vp +
1

n

X
q2A

fq(B)Vq � f "
1

n

X
q2A

Vq + f
" 1

n

1

k
k
X
p2K

Vp,

27



which, after simpli�cation, is the expression in the Proposition.

Proof of Proposition 5. Given Proposition 4, Proposition 5 is equivalent to the

property that the function P (") �
P

q2K fq(B("); ")Vq is decreasing with ". We rewrite

the continuously di¤erentiable function P (") as

P (") =
X
q2A

["+Bq(")]�
k"+

P
d2ABd(")

�Vq + X
q2KnA

"�
k"+

P
d2ABd(")

�Vq:
We deduce that B0q(") is the same for any q 2 A from Lemma 1, and we denote such a

derivative by B0("). Then the sign of P 0(") is the same as that of the following expression:X
d2A

Bd(")
X
q2A

Vq+k"B
0(")

X
q2A

Vq+B
0(")

X
d2A

Bd(")
X
q2A

Vq�k
X
q2A

Bq(")Vq�"aB0(")
X
q2A

Vq�

aB0(")
X
q2A

Bq(")Vq +

"X
d2A

Bd(")� "aB0(")
# X
q2KnA

Vq;

which, after some easy calculations, can be written as

D(") �
"X
d2A

[Bd(")� "B0(")]
#24 X

q2KnA

Vq �
(k � a)
a

X
q2A

Vq

35+
�
B0(") +

k

a

�"X
d2A

Bd(")
X
q2A

Vq � a
X
q2A

Bq(")Vq

#
:

We now analyze the sign of the four elements of D(").

First,
P

q2KnA Vq�
(k�a)
a

P
q2A Vq < 0 given that Vq > Vd for every q 2 A and d 2 KnA.

Second, using Lemma 1 and denoting by B(") and V � the aggregate bid and the value

of any project in E, we �ndX
d2A

Bd(")
X
q2A

Vq � a
X
q2A

Bq(")Vq =

X
d2A

�
B(")� (V

� � Vd)
(n� 1)

�X
q2A

Vq�a
X
q2A

�
B(")� (V

� � Vq)
(n� 1)

�
Vq =

X
d2A

Vd
X
q2A

Vq�a
X
q2A

V 2q � 0;

where the inequality is strict whenever A is larger than E and the proof of the inequality

can be easily done by induction.

Third, we prove that B0(") + k
a
> 0. Using Proposition 1 we obtain

Bq(") =
�"k(n� 1)� [2

P
d2A Vd � 2aVq] +

p
�q(")

2(n� 1)a
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where

�q(") =

"
"k(n� 1) + 2

X
d2A

Vd � 2aVq

#2
+4(n�1)a

"
"kVq � "

X
p2K

Vp �
1

(n� 1)
X
d2A

(Vq � Vd)2
#
:

Therefore,

B0(")+
k

a
=

1

2(n� 1)a

"
�k(n� 1) + 1

2
�0
q(")

1p
�q(")

#
+
k

a
=
k

2a
+

1

4(n� 1)a�
0
q(")

1p
�q(")

> 0

since

�0
q(") = 2k(n� 1)

"
"k(n� 1) + 2

X
d2A

Vd � 2aVq

#
+ 4(n� 1)a

"
kVq �

X
p2K

Vp

#
=

2"k2(n� 1)2 + 4(n� 1)
"
k
X
d2A

Vd � a
X
p2K

Vp

#
> 0,

because the average value of Vd in A is higher than (or equal to) that of Vp in K.

Finally, we check whether
P

q2A [Bq(")� "B0(")] > 0. The inequality is equivalent to

X
q2A

 
�"k(n� 1)� [2

X
d2A

Vd � 2aVq] +
q
�q(")� "

"
�k(n� 1) + 1

2
�0
q(")

1p
�q(")

#!
> 0

i.e.,

X
q2A

"
�2[
X
d2A

Vd � aVq] +
q
�q(")�

"�0
q(")

2
p
�q(")

#
=
X
q2A

1p
�q(")

�
�q(")� "

1

2
�0
q(")

�
> 0:

which, given that
p
�q(") > 0 for all q 2 A; holds if and only if �q(")� "12�

0
q(") > 0, i.e.,"

"k(n� 1) + 2
X
d2A

Vd � 2aVq

#2
+4(n�1)a

"
"kVq � "

X
p2K

Vp �
1

(n� 1)
X
d2A

(Vq � Vd)2
#
�

"k(n� 1)
"
"k(n� 1) + 2

X
d2A

Vd � 2aVq

#
� 2"(n� 1)a

"
kVq �

X
p2K

Vp

#
="

2
X
d2A

Vd � 2aVq

#"
"k(n� 1) + 2

X
d2A

Vd � 2aVq

#
�4a

X
d2A

(Vq�Vd)2+2"(n�1)a
"
kVq �

X
p2K

Vp

#
=

2"(n� 1)
"
k
X
d2A

Vd � a
X
p2K

Vp

#
+ 4

24 X
d2A

Vd

!2
� a

X
d2A

(Vd)
2

35 > 0; (35)
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which is independent of q.

If (35) is satis�ed then we conclude that B � "B0 > 0, which implies that P 0(") < 0,
and Proposition 5 is proven. B�"B0 > 0 holds, for example, when A = E (in which case,
the second term is zero), but it does not necessarily hold otherwise. Now, suppose that

B � "B0 � 0, that is,

"

"
k
X
d2A

Vd � a
X
p2K

Vp

#
� 2

n� 1

24aX
d2A

(Vd)
2 �

 X
d2A

Vd

!235 : (36)

We then rewrite D(") as:

D(") =
X
d2A

Bd(")

24 X
q2KnA

Vq �
(k � a)
a

X
q2A

Vq

35+
"aB0(")

24� X
q2KnA

Vq +
(k � a)
a

X
q2A

Vq

35+ �B0(") + k
a

�24 X
d2A

Vd

!2
� a

X
q2A
(Vq)

2

35 :
It is easily checked that the following equality holds:

a

24� X
q2KnA

Vq +
(k � a)
a

X
q2A

Vq

35 = (k � a)X
q2A

Vq � a
X
q2KnA

Vq = k
X
q2A

Vq � a
X
p2K

Vp:

Plugging this last equality into the expression of D(") and then using (36), we conclude

that the following inequality is satis�ed:

D(") �
X
d2A

Bd(")

24 X
q2KnA

Vq �
(k � a)
a

X
q2A

Vq

35+
B0(")

2

(n� 1)

"
a
X
q2A
(Vq)

2 �
 X
d2A

Vd

!#
+

�
B0(") +

k

a

�24 X
d2A

Vd

!2
� a

X
q2A
(Vq)

2

35 =
X
d2A

Bd(")

24 X
q2KnA

Vq �
(k � a)
a

X
q2A

Vq

35+ k
a

24 X
d2A

Vd

!2
� a

X
q2A
(Vq)

2

35+
B0(")

"
a
X
q2A
(Vq)

2 � (
X
d2A

Vd)
2

# �
2

n� 1 � 1
�
:

We already checked that the �rst two terms of the last expression are negative. We thus

can conclude that the sign of D(") (and that of P 0(")) is negative if the last term of the
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expression is non positive. Provided that n � 3 this is always satis�ed. Finally, notice

that for n = 2 and A 6= E (if A = E; we already know that P 0(") < 0);
P

q2KnA Vq �
(k�a)
a

P
q2A Vq = 0; therefore P

0(") < 0 if and only if�
B0(") +

k

a

�"X
d2A

Bd(")
X
q2A

Vq � a
X
q2A

Bq(")Vq

#
< 0;

which always holds. We can thus conclude the proof.

Proof of Proposition 6. Following Proposition 2, for any q 2 A the value Vq satis�es:

(n� 1)"
"
kVs �

X
d2K

Vd

#
�
X
d2Sq

(Vq � Vd)2 > 0;

which, denoting as V � the value of an e¢ cient project, implies that

(n� 1)"
"
kVq �

X
d2K

Vd

#
� (V � � Vq)2 =

� Vq2 + [2V � + "(k � 1)(n� 1)]Vq �

24"(n� 1) X
d2K=fqg

Vd + V
�2

35 > 0: (37)
The left-hand side of (37) is a polynomial expression of degree two. Let us denote

� � [2V � + "(k � 1)(n� 1)]2 � 4

24"(n� 1) X
d2K=fqg

Vd + V
�2

35 =
"(k � 1)(n� 1)

0@4
24(k � 1)V � � X

d2K=fqg

Vd

35+ 1
1A :

One can notice that � is positive, as V � � Vd for any project d. This implies that

condition (37) (which holds for any q 2 A) is equivalent to the property that Vq lies in
the interval I:

I �
#
V � +

"(k � 1)(n� 1)
2

�
p
�

2
; V � +

"(k � 1)(n� 1)
2

+

p
�

2

"
:

We write the condition Vq � V � + "(k�1)(n�1)
2

�
p
�
2
as

V � � Vq � U �
p
�

2
� "(k � 1)(n� 1)

2
:
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Bound U can be rewritten as follows:

U =
"(k � 1)(n� 1)

2

264
vuuut 4

"(k � 1)2(n� 1)

24(k � 1)V � � X
d2K=fqg

Vd

35+ 1� 1
375 �

"(k � 1)(n� 1)
2

vuuut 4

"(k � 1)2(n� 1)

24(k � 1)V � � X
d2K=fqg

Vd

35 �
U � "(k � 1)(n� 1)

2

s
4

"(k � 1)2(n� 1)(k � 1)V
�:

Therefore, V � � Vq � U , which gives the expression stated in the Proposition.
Proof of Proposition 7. The expression for Bq follows immediately from h(Bq) = 0

once we take into account that Vq = Vd for any q; d 2 A when A = E. It is also immediate
that Bq converges to 0 as " tends towards 0. Finally,

fq(B) =
"+Bq

k"+
P

d2ABd
=
1

a

(2a� k)"+
r
"2k2 + 4" a

(n�1)

�
kVq �

P
p2K Vp

�
k"+

r
"2k2 + 4" a

(n�1)

�
kVq �

P
p2K Vp

� ;

which converges to 1=a as " tends towards 0.

Proof of Proposition 8. Let s 2 K denote a second-best project and 
 � V ��Vs > 0
denote the di¤erence between the value of an e¢ cient project and that of s. We have
V ��Vs
V � = 


V � > 0: Let us consider that the parameter " takes values such that

" <
� 

V �

�2 1

(n� 1)(k � 1) :

Then, by Proposition 6 we deduce that project s does not belong to A for the above

values of the parameter ", which implies that any ine¢ cient project is in KnA as well.
Therefore, for small enough values of ", A = E and, according to Proposition 7, the

probability of selecting an e¢ cient project converges to 1 as the parameter " tends to

zero, which ensures convergence to an e¢ cient outcome as " tends to zero.
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