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Abstract 
 
This paper analyzes the dynamic incentives for technology adoption under a transferable 
permits system, which allows for strategic trading on the permit market. Initially, firms can 
invest both in low-emitting production technologies and trade permits. In the model, 
technology adoption and allowance price are generated endogenously and are inter-dependent. 
It is shown that the non-cooperative permit trading game possesses a pure-strategy Nash 
equilibrium, where the allowance value reflects the level of uncovered pollution (demand), 
the level of unused allowances (supply), and the technological status. These conditions are 
also satisfied when a price support instrument, which is contingent on the adoption of the new 
technology, is introduced. Numerical investigation confirms that this policy generates a 
floating price floor for the allowances, and it restores the dynamic incentives to invest. Given 
that this policy comes at a cost, a criterion for the selection of a self-financing policy (based 
on convex risk measures) is proposed and implemented. 
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1 Introduction

There is a wide array of pollution control instruments available to environmental regulators. Economists
distinguish mainly between two types of instruments: command–and–control and market–based instru-
ments. The most common command–and–control instruments are technological standards and emission
standards. Market–based instruments provide incentives to reduce emissions through price control, and
regulated companies are free to choose their emission and abatement levels. The most commonly used
market–based instruments are emission taxes and transferable permits. Under permits, in comparison to
a tax schedule, a regulated firm must hold one permit for each unit of pollution it emits. When a firm is
non–compliant, there is a penalty levied against it for each uncovered unit of the pollutant. Further, regu-
lated firms can exchange unused allowances with other firms at a market price. Such a price is determined
endogenously by market mechanisms.

A key consideration when choosing a policy is the incentives it provides to regulated companies to
invest in new technologies or adopt alternative, low pollution–emitting technologies. Some specific types
of investments (such as fuel switching in electricity production) notwithstanding, the adoption of low
pollution–emitting technologies consistently reduces further emissions. This has clear consequences on the
future needs of permits and, more importantly, on the future incentives to adopt new technologies. Most of
the current literature relies on calculating the aggregate cost savings achieved by regulated firms that have
adopted the new technologies, but neglects the impact of aggregate reductions on the amount of unused
allowances available for exchange. Moreover, such an analysis does not showcase an individual firm’s
incentives to adopt low pollution–emitting technology. In particular, this approach ignores the fact that
some firms can free–ride on a decreasing allowance price caused by other firms’ investments in abatement
or low pollution–emitting technologies. The dynamic incentives to adopt new technologies endogenously
depend on the future value of the allowances, which itself depends on the future supply and demand of
permits.1 Biglaiser et al. (1995) have investigated this aspect. The authors show that under a system of
tradable permits, technology adoption is distorted because individual regulated companies have a significant
effect on the aggregate supply of permits. They, however, assume that companies are price–takers, and
do not investigate the impact on the incentives for technology adoption of strategic exchanges of permits.
As shown by Kennedy and Laplante (1999), under imperfect competition standard results might have to
be revised. Determining the firms’ optimal compliance strategy in the presence of strategic exchange of
permits is part of the contributions of this paper.

We first examine a pollution–constrained economy, where we assume that the regulator does not an-
ticipate the adoption of new technology and he commits to the type of policy instrument and its level
for a sufficiently long period of time. We present a relatively tractable model where regulated firms can
determine their compliance strategies by choosing (not necessarily in a mutually exclusive fashion) between
investment in low pollution–emitting technologies or in exchange of permits. Firms are characterized by
their uncertain incomes and pollution profiles. In particular, the firms’ emissions are subject to economic
shocks and contingent on the types of new technologies that have been set in place. The adoption of new
technologies is assumed to affect only the amount of pollution emitted for given output or input, and does
not otherwise affect production. We move away from the price–taker assumption and argue that it may
very well be in the sellers’ best interest to strategically reduce the availability of permits and, consequently,
increase the allowance exchange value. This model accounts for such strategic trading behaviors. In par-
ticular, we construct a non–cooperative permit trading game and show it possesses a pure–strategy Nash
equilibrium. The expected equilibrium exchange value of permits is determined by the unique solution of
the trading game. Moreover, the value of a permit reflects the economic uncertainty, the current level of

1Recent studies on technological change in economic models of environmental policy emphasize the need to consider
technology adoption and technology innovation as endogenous decision variables rather than as exogenous processes. We
refer to Edenhofer et al. (2006), Loeschel (2002), and Requate and Unold (2003) for further discussions. In this paper we
concentrate on the incentives for the adoption of readily available low pollution–emitting technologies. Readers interested in
the incentives for technology diffusion and technology innovation are referred to Fischer et al. (2003), Requate (2005) and
references therein.
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uncovered pollution (demand), the current level of unused allowances (supply), and the current level of
technology adoption.

The incentives to invest in new technologies or adopt alternative low pollution–emitting technologies
are also generated endogenously. In general, technology adoption depends on the (uncertain) future supply
and demand of permits. More specifically, the incentives for a firm in permit excess hinge on the firm’s
potential profits, i.e. on the ability to sell unused permits; the incentives for a firm in the need for permits
depend on the firm’s potentially avoided penalty costs, i.e. on its ability to reduce emissions by the use of
new technologies. An extremely low allowance price makes sales of permits unprofitable and the meeting
of compliance by purchasing permits a definitely cheap alternative. A too–low allowance price, therefore,
kills the incentives to adopt new technologies. The regulator may wish to intervene by adjusting the level
of the policy in order to address this issue. However, the possibility of a regulator’s intervention raises
concerns about the time consistency of the policy, thus undermining its credibility. In light of this problem
and in the spirit of Laffont and Tirole (1996), we implement a policy instrument that largely reduces the
need of intervention by the regulator and restores the dynamic incentives to adopt low pollution–emitting
technologies. The new policy consists of a price support instrument: the regulator offers each firm a
fixed amount of money (contingent on the firm’s technology status at a specific date) per unused allowance
permit. This instrument, which we have dubbed European–Cash–4–Permits, can be considered a minimum
price guarantee of sorts. Biglaiser et al. (1995) and Kennedy and Laplante (1999) envisioned a similar type
of policy, where the policy regulator buys back permits to adjust the supply in response to technology
adoption choices.

In the second part of the paper we construct the non–cooperative permit trading game in the presence
of European–cash–for–permits. We show that this game possesses a pure–strategy Nash equilibrium.
Moreover, we prove that the price support instrument generates a floating price floor as soon as one
of the firms has adopted a new technology. Our numerical results echo the conclusions of Laffont and
Tirole (1996). By controlling the policy level –the levels of the penalty and the price support– we show
that the regulator influences (i) the number of firms that adopt the new technologies, (ii) the timing of
such adoptions. For instance, by increasing price support and accepting higher policy costs, the regulator
increases the number of firms that adopt the low pollution–emitting technologies and he also induces earlier
technology adoption. Evidently, the implementation of such a policy has a cost. Based on the fact that
the penalty payments generate potential incomes, we define a policy to be self-financing when tax–payers’
funds are not required to cover the payments of the European–Cash–4–Permits. Within this framework,
we numerically assess how likely it is (in terms of a convex risk measure) that the regulator will have to
access tax-payers’ funds, instead of using penalty payments.

2 The Model

In this section we present our model of a pollution–constrained economy under a tradeable–permits sys-
tem. We assume that the environmental agency (the regulator) does not anticipate the adoption of new
technologies. The regulator chooses a credible emission reduction target, the overall length of the com-
mitment period and the enforcement structure. We consider a dynamic and discrete–time setting, where
the interval [t, t+ 1] denotes one regulated period. Time t = 0 represents the starting point of our analy-
sis. The duration of the entire regulated time frame (or phase) is T periods. Regulated firms can adopt
low pollution–emitting production technologies and exchange permits.2 Technology–adoption decisions are
made at time t, and their consequences manifest themselves at time t+ 1. The exchange of permits takes
place at time t+ 1. The risk-averse firms are characterized by their pollution emission profiles before and
after adopting new technologies, as well as by the costs of such investments. We work under the assumption
that firms cannot borrow allowances against their future endowments; nor can they bank permits for future
periods. Later we modify the policy by introducing a price support instrument, which will be a competitive

2Throughout the paper we sometimes use the terms “investment” and “implementation” as an alternative to adoption.
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alternative to banking. Finally, we assume the firms have access to a bank account that provides a riskless
rate of return r ≥ 0, which for the sake of simplicity we assume to be constant over [0, T ].

2.1 The regulator’s choice variables

We consider an economy that consists of a group of polluting firms (I = {1, . . . ,m}), which operate under
a tradable permits scheme. This system is designed, policed, monitored and enforced by the regulator,
whose intention is to control pollution and promote the adoption of low pollution–emitting technologies
by implementing a credible policy. Ideally, a sufficiently ambitious scheme should achieve the desired
targets: a schedule for the allocation of permits decreasing over time sets the cap; a strict enforcement
structure, a fine control for non–compliant firms, and a price attached to allowances set potential (positive
and negative) payoffs from the trade of permits. Eventually, the mechanism that controls the incentive to
adopt low pollution–emitting technology is determined by the potential extra profits and voided compliance
costs of firms. Obviously, this incentive should depend on the allocation schedule, the penalty level and
the length of the phase.

Let us start by describing the allowances’ schedule. It is not important for the problem at hand whether
the permits are issued by auction or through some sort of grandfathering scheme, provided that the initial
distribution to regulated companies does not create asymmetric market power. The regulator issues firm
i a number N i(t) of emission permits at the beginning of each period, and we denote the total per–period
cap by:

N(t) :=
∑
i∈I

N i(t), t ∈ {0, . . . , T − 1}, and N i(t) ∈ R.

We will assume throughout this work that permits are infinitely divisible; in other words, a firm endowed
with N i(t) permits may sell any real number between zero and N i(t) permits. We believe that given the
very large number of unitary permits that firms receive in reality, this is quite a mild assumption, which
simplifies the mathematical analysis significantly.

In principle, the regulator must send the appropriate signals required to steer investors towards building
a low–pollution economy. This corresponds to the identification of a sufficiently ambitious cap in terms of
permitted aggregated emissions. A decreasing target N(t) ought to set the desired trend of the permit price,
which should ideally increase through time and should favor the adoption of more expensive technologies
as time goes by and new technologies become available. In order to model the evolution of N(t), while
keeping our model tractable, we introduce

f(α,β)(x) = β(x+ 1)α

and the parametric family of (non–increasing) functions:

A :=
{
f(α,β) | β,−α ∈ N

}
.

Then the sequences {N i(t)} = {f(αi,βi)(t)}, for f(αi,βi) ∈ A represent the permit streams that may be
issued by the regulator. We stress that the parametric determination of the allocation of allowances is
done for computational simplicity, and does not play a role in the theoretical results that we present below.

Let us now consider the second policy parameter: the penalty. In any permits scheme, there will always
be a penalty for non–compliance. In our model, at the end of the [t, t + 1]–th period, for each ton of
pollution emitted that cannot be offset by an allowance, the regulated firms must pay a penalty P. In
this paper we assume that the penalty is an alternative to compliance, as first discussed by Jacoby and
Ellerman (2004). Consequently, the costs of technology adoption incurred by rational agents should not
be greater than the expected future compliance costs. In such situations, firms would be better off paying
the total penalty for uncovered future emissions rather than investing in technology adoption. In order to
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ignite sufficient investments in low–polluting, innovative technologies and abatement activities, therefore,
the profitability of these investments needs to be fostered. In other words, the investment costs should
be at least offset by those of not complying with the regulations. The regulator has no control over the
investment costs, but he chooses the magnitude of the penalty. Underpricing P would imply that firms
preferred to pay a penalty and maintain the status quo of emissions, rather than investing to reduce their
pollution footprints; whereas a prohibitively high P might have a severe economic effect on the regulated
sectors.3

Since the allowance schedule is set ex–ante, the deterioration or improvement of the economy may
encourage the regulator to adjust the level of the policy. This would clearly undermine its credibility.
With the aim of reducing the need of interventions on the part of the regulator and of restoring the
dynamic incentives to adopt low pollution–emitting technologies, we implement a price support instrument
in Section 4. This type of instrument, also investigated by Laffont and Tirole (1996) and Biglaiser et al.
(1995), takes in this work the form of a free–of–charge put–type option contract written on the final holdings
of permits. More precisely, at the end of each regulated period, contingent on the adoption of the new
technology, a firm can receive a pre–set amount of money, Pg, for each extra allowance. We call this
instrument European–Cash–4–permits (EC4P) and we assume that such a product is issued period–to–
period, i.e. the titles have a time to maturity of at most one period. It should be pointed out that relaxing
the banking constraint might be considered a competitive alternative to EC4Ps. Such a provision would
promote the adoption of new technologies by rewarding early investments. However, a large quantity of
banked permits would exacerbate the need for regulator’s interventions in response to unexpected shocks
of the economy, thus undermining the merits of the EC4Ps.

The first objective of the regulator is to appropriately determine a credible triple (T, {N(t)}, P ) (which
need not be unique) so as to curb pollution and to promote firms’ incentives to adopt low pollution–
emitting technologies in a dynamic fashion. Secondly, in the presence of the European cash–4–permits,
the regulator identifies an incentive–equivalent set {N(t), P, Pg, T} such that the policy is credible and,
possibly, self–financing (more on this property in Section 5).

2.2 The firms’ characteristics

Regulated firms are characterized by uncertain emissions and income profiles. The cost of new technology
adoption is firm–specific. We assume such investment can only occur once during the regulated phase [0, T ],
and that it is non–reversible. In order to keep our model tractable, we consider the following binomial
dynamics for the (cumulative) emissions Qi of firm i in unit of pollution:

Qi(t+ 1) =

{
ui(t) ·Qi(t), with probability q(t).
di(t) ·Qi(t), with probability 1− q(t),

and Qi(0) is given. Figure 1 shows a possible evolution of the cumulative emissions. The factors ui(t)
and di(t) denote the production regime of firm i from time t to t + 1; since Qi represents cumulative
emissions, we impose ui > di ≥ 1. Adoption of low–emitting technology is assumed to affect only the
amount of pollution emitted for given output or input, and does not otherwise affect production. The
firms’ emissions are subject to economic shocks and the implementation of new technologies, among other
variables. The former affect a firm’s production and are assumed to be exogenous, with the demand for
a firm’s products contingent on phenomena that are beyond its grasp (a widespread crisis, for example).
When demand is high, firm i’s cumulative emissions grow by the factor ui, whereas a lower demand is
represented by cumulative emissions that increase only by a factor of di. On the other hand, the adoption
of new technologies is determined endogenously, for example, when potential profits from sales of extra
permits or voided penalty costs due to reduced emissions sufficiently compensate investment costs, then

3We refer to Cohen (1999), Keeler (1991) and references therein for a comprehensive discussion about the effects of different
levels of enforcement and monitoring.
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firms choose to adopt the new technology. Thus, the incentive to adopt low pollution–emitting technologies
depends on the investment costs, the penalty level, the expected supply and demand for permits and,
implicitly, the expected permit price. As a consequence, in our model both technology adoption and
allowance price are generated endogenously and, more importantly, inter–dependently. In particular, the
allowance price level at time t depends on the current level of technology adoption, on the current level of
uncovered pollution (demand), and the current level of unused allowances (supply). On the other hand,
the incentives to adopt new technologies hinge on unanticipated economic shocks and the future values of
allowances, the latter being a function of the future permits supply and demand.

In order to describe how the adoption of new technologies systematically influences future pollution
emissions, we define the stochastic processes:

µio(t) =

{
uio(t), with probability q(t)
dio(t), with probability 1− q(t),

and

µin(t) =

{
uin(t), with probability q(t)
din(t), with probability 1− q(t).

Here µio denotes the possible production regimes of firm i under the old technology (hence the subscript
“o”) and µin is the analogue under the new technology. As before, we impose that µio, µ

i
n ≥ 1. Under the

possibility of technology adoption, the dynamics of the cumulative emissions processes can be expressed as

Qi(t+ 1) = µiςQ
i(t),

where ς ∈ {u, d}. The probability densities (q(t), 1− q(t)) correspond to the likelihood of exogenous shocks
that production may experience, then µit equals either µio(t) or µin(t). As described above, one may interpret
these shocks as high or low demand phases determined by external factors, which justifies the use of the
same probability density for all firms, as well as the fact that the density is independent of the firms’
production technologies. We assume that associated with each firm there is a constant cost function Ci

defined via
Ci(µio) := 0, and Ci(µin) := Cin,

which indicates the investment cost in which firm i must incur to adopt the new, cleaner technology.4

Moreover, since production is assumed not to be affected by the adoption of new technology, the firms’
aggregate profits from production over [t, t+ 1] are given by

Si(t+ 1) =

{
(1 + ρ)t+1Siu, with probability q(t).
(1 + ρ)t+1Sid, with probability 1− q(t),

where Si(0) is given, Siu, S
i
d > 0 remain constant over the whole regulated phase, and the appreciation of

products is incorporated via the coefficient (1 + ρ)t+1, with ρ > r.

Throughout the remainder of the paper, we shall refer to the quantities Qi(0), µio(t), µ
i
n(t), q(t), Cin,

Si(0), Siu, S
i
d, r and ρ as the model’s primitives.

3 Analyzing Firms’ Strategic Trading Behavior without Price
Support Contracts

In this section we analyze the impact of the regulator’s decisions, i.e. the triple
(
T, {N i(t)}i∈I , P

)
, on the

firms’ incentives to adopt the new technologies in the presence of a stand–alone market for permits. As

4The adoption of the new technologies generates a permanent reduction in pollution emission per unit of input or output.
Therefore, it is reasonable to assume the investment cost to be a lump-sum. The case of a costly choice of different levels of
permanent reduction is left for future research.
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mentioned before, the decisions regarding technology adoption take place at the start of each regulated
period, whereas the exchange of permits occurs at the end of the period. Each firm’s decisions are made
taking into consideration its expected permit positions and technology status, both at the end of the period
and throughout the remaining duration of the phase. Later we consider the inclusion of specific instruments
written on the levels of allowances held at the end of each period.

The analysis of the dynamic incentives to adopt new technologies generated by a policy can best be
analyzed from the perspective of a regulated firm. However, past literature has concentrated on calculating
the aggregate cost savings achieved by regulated firms adopting new technologies. Such an analysis does
not showcase an individual firm’s incentives to adopt a low pollution–emitting technology. Conversely, in
our model the firms’ expected (extra) profits and (reduced) losses from participating in a permits system
are analyzed given a specific set of parameters

(
T, {N i(t)}i∈I , P

)
. We stress that the regulator’s decisions

are made ex–ante; in other words, any information generated throughout the regulated phase provides no
feedback to the system’s structure. The densities {(q(t), 1−q(t)), t ∈ {0, . . . , T −1}} correspond, therefore,
to the a priori beliefs of the regulator. In order to deal with the possible adoption of new technologies, we
define the stopping times

τ i := min
{
t ∈ {0, . . . , T − 1} | µi(t) = µin(t)

}
.

To avoid ambiguities we write Qio(t) when production takes place under the old technology, and analogously
for Qin(t). Under a permit scheme, a firm is only liable for the amount of non–offset emissions during each
period [t, t+1]; that is for the difference between the allocated permits and ∆ςQ

i(t+1) := Qiς(t+1)−Qi(t),
where ς ∈ {u, d} specifies whether production over [t, t + 1] takes place in a high or low output regime.
Given the dynamics specified above, the cumulative emissions over one period are:

∆ςQ
i(t+ 1) =


Qi0
(∏t−1

s=0 µ
i
o(s)

)(
µio(t)− 1

)
, if t < τ i,

Qi0
(∏t−1

s=0 µ
i
o(s)

)(
µin(t)− 1

)
, if t = τ i,

Qi0
(∏τ i−1

s=0 µio(s)
∏t−1
τ i µin(s)

)(
µin(t)− 1

)
, otherwise.

Below we use the notation h := (h1, . . . , hm), (hi ∈ {n, o}) (the technology vector) to indicate the tech-
nology under which the firms operate, and h−i stands for “the technologies of all firms but the i-th one”.
Hence, at time t ∈ {1, . . . , T − 1} the expected position (in units of allowances) of firm i at time t + 1 is
given by:

E
[
∆ςQ

i(t+ 1, h)
]
−N i(t), (1)

where ∆ςQ
i(t + 1, h) represents the pollution emissions to be offset at time t + 1, contingent on the

technology vector being h and the state of the economy being ς.

Remark 3.1 Notice first that the technology vector represents a possible combination of the firms’ technol-
ogy adoption strategies. Second, computing the expected cumulative emissions conditioned on the informa-

tion up to time t, i.e. E
[
∆ςQ

i(t+ 1)|Ft
]
, is nothing more than a two–terms sum. When this is evaluated

at time t = 0 (as is the case of the regulator) one faces t + 1 possible states for each combination of the
technology vector h.

3.1 The firms’ payoffs

As a consequence of the fact that the output quantity is assumed to be unaffected by the technology
investment, the technology adoption and the exchange of allowances are the only compliance alternatives
of the firms. Let us start by discussing the first compliance strategy. At the beginning of each regulated
period, each firm that has not adopted a new technology must decide whether it adopts (n) or not (o). This
choice is made evaluating the impact of such investment on the firm’s expected payoff stream, considering
all possible technological paths. Each firm’s payoff is clearly affected by the future exchange value of the
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Figure 1: A possible evolution of a firm’s cumulative emissions in a four–period long phase, where the firm
adopts the new technology at time t = 1.

allowances, which depends on supply and demand balance of the permit market. To better understand
this, let us analyze the different possible permit positions of the firms. In general, a low permit price makes
the technology adoption a non–viable strategy. Firms in permit shortage would find compliance by means
of allowance purchase a cheaper alternative; firms in permit excess would find it unprofitable to offer their
unused permits. Conversely, a high permit price increases potential profits from the sale of extra permits
and raises potential compliance costs due to uncovered emissions. In practice, each firm tries to answer
the following questions: would the cost of reducing emissions be less than the potential revenues from
allowance sales plus avoided penalties? Or would waiting to adopt the new technology and perhaps offset
emissions by purchasing cheap allowances be a better strategy? This might provide incentives for some
firms to free–ride on the other firms’ investments. We stress that decisions about technology adoption are
taken under emission uncertainty and in the presence of imperfect competition on the permit market, as
described below.

The second compliance alternative, the exchange of allowances, is highly dependent on the firms’ tech-
nology status. The adoption of the new technology reduces emissions and, contingent on the allowance
structure N(t), possibly generates excess of unused permits. As observed by Biglaiser et al. (1995), a high
number of firms that have adopted the low pollution–emitting technologies has a significant effect on the
aggregate emissions, thus increasing the potential supply schedule. Quite naturally, in the presence of
upward shifts in permit supply, one would expect a low exchange value of the allowances. However, this
last statement holds only if sellers automatically offer the entire bulk of their unused allowances. It may
be in the self–interest of firms in allowance excess to limit their offers, keep the exchange value of permits
high and, possibly, collect higher revenues. On the contrary, firms in permit shortage face severe penalties
if they fail to deliver an amount of allowances equal to their emissions. Hence, it is in the buyers’ best
interest to offset all their emissions for any price lower than the penalty level. The firms in permit shortage
are, therefore, expected to submit all their demand to the exchange.
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Remark 3.2 Markets for permits are characterized as the exchanges of purely intermediaries titles, where
strategic retention of allowances might take place in order to drive the price up. Hence, all what can be
transferred, xi(t + 1, h) := E

[
∆Qi(t + 1, h)

]
− N i(t), is not necessarily allocated. A negative transfer,

xi(t) < 0, indicates a need for permits. Therefore, the quantities xi(t) do not necessarily satisfy the
traditional market clearing condition (

∑
i∈I x

i(t) = 0) at every period t ∈ {1, . . . , T}.

The discussion above describes two interacting dynamics: the incentives to adopt new technologies and
the presence of strategic trading behavior among the firms that are in permit excess. As a consequence of
the latter, the analysis of the endogenous technological adoption includes a (non–cooperative) game among
firms on the supply–side of the market. The analysis stops either when (or if) all firms operate under the
low pollution–emitting technology, or when the regulated phase comes to an end.

3.1.1 Strategic permits trading and the structure of the allowances’ price

In the present framework, permits are submitted to an exchange and traded exclusively at the end of each
period. So far, the only force driving the exchange value of an allowance at the end of each regulated period
is the supply and demand balance for permits at that point in time. In principle, the exchange value of
the allowance increases as supply (demand) decreases (increases). Below we describe in more detail such
dynamics.

We first look at the expected number of available allowances, for a given technology vector h. The
generation of the allowance exchange value at the end of each period will then follow from the knowledge
of the state of the world. We start by defining

xi(t+ 1, h) := E
[
∆Qi(t+ 1, h)

]
−N i(t).

This quantity represents the expected position in number of emissions of firm i contingent on the technology
vector h. Let

s(t+ 1, h) :=
{
i ∈ I

∣∣xi(t+ 1, h) < 0
}
,

and
d(t+ 1, h) :=

{
i ∈ I

∣∣xi(t+ 1, h) ≥ 0
}
,

be the supply and demand sides of the market (in terms of the firms’ expected emissions positions),
respectively. The expressions

S(t+ 1, h) := −
∑

i∈s(t+1,h)

xi(t+ 1, h) and D(t+ 1, h) :=
∑

i∈d(t+1,h)

xi(t+ 1, h),

represent the (expected) number of unused permits, i.e. the aggregate supply, and the (expected) number
of non–offset emissions, i.e. the aggregate demand, respectively. Both expressions are contingent on the
technology vector h. We introduce the supply–demand ratio that is later used to determine the allowances’
value:

R(t+ 1, h) :=

{
− S(t+1,h)
D(t+1,h) , if D(t+ 1, h) > 0,

0, otherwise.

To account for a lower sensitivity of the allowance value in case of extreme permit demand, i.e. the ratio
is close to 0, or extreme permit supply, i.e. the ratio is close to 1, we define for a > 0 the parameterized
family of (reaction) functions ηa : [0, a]→ [0, 1] as

ηa(x) :=

{
exp

{
x2

x2−a2

}
, if x ∈ [0, a),

0, otherwise.

Figure 2 shows the graph of the function ηa(x) for a = 1.5
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Figure 2: The plot of η1.

Under a permits scheme, firms in permit shortage face severe penalties, whereas firms in permit excess
might profit from the sale of unused permits. By virtue of such a mechanism, it is in the buyers’ best
interest to offset all their emissions for any price lower than the penalty level. More interestingly, since
a lower aggregate supply implies a higher exchange value, it may very well be in the sellers’ best interest
to reduce the availability of permits. In fact, firms in permit excess must reach a compromise between
offering a higher number of cheap permits, or less of them, but at a higher value.6 Such an exchange
strategy is part of the sellers’ strategic choice. Moreover, each (selling) firm’s profit depends not only on
its choices, but also on those of the remaining firms on the sell–side. We then face a non–cooperative ms–
person game (where ms := #SE(t+1, h)) when we analyze sellers’ decisions on their own supply schedule.7

The exchange value of the allowances at time t + 1 (constructed on the base of firms’ expected permits
positions), given the technology vector h is:

Π(t+ 1, h) := P · ηR(t+1,h)

(
−

eS(t+ 1, h)

D(t+ 1, h)

)
= P · exp

{ eS(t+ 1, h)2

eS(t+ 1, h)2 −D(t+ 1, h)2

}
. (2)

where the quantity eS(t+ 1, h) represents the total number of unused permits submitted to the exchange
and available for sale.

Remark 3.3 Since we assume that the penalty is an alternative to compliance, this quantity represents an
upper bound for the price of an allowance. In particular, one should observe that the indifference buy–price
for an allowance that safeguards a firm that is in permits shortage from paying the penalty P is precisely
P . Hence, by construction 0 ≤ Π(t+ 1, h) ≤ P.

Before we proceed with our analysis, we shortly analyze an empirical example.

Example 3.4 Let us consider the evolution of the allowance price in the first regulated phase of the Eu-
ropean Union Emission Trading Scheme. Figure 3 represents the evolution of the allowance price on an
exchange market during Phase I. By the end of April 2006, it had become apparent that the number of

permits required to offset the expected emission, E
[∑

i∈I
∑T
t=0Q

i(t)
]
, where T corresponds to beginning of

5The functions ηa are the right halves of scaled mollifiers (see Evans (1998)). They are infinitely smooth at 0 and a, with
derivatives of all orders at these points equal to zero.

6Notice that this trade–off follows partly from the non–linearity in prices introduced by the functions ηa(x).
7We assume there is no collusion between firms.
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2008, was largely overestimated. In other words, the total number of allocated permits, N =
∑2008
t=2005N(t),

was largely sufficient. Hence, the large downwards jump in the proximity of April 2006. However, the
allowance exchange value remained for some time far away from zero. Arguably, this reflects the unwilling-
ness of firms in permit excess to offload their surplus at low valuation levels. By refraining from offering
the entire amount of extra permits, firms in permits need faced a relatively high sustained allowance price
for quite some time.
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Figure 3: Spot price of the EU Allowance Unit from 2005 until 2008 on the European Climate Exchange
(ECX).

3.1.2 Determining the aggregate supply eS(t+ 1, h) and the permit price Π(t+ 1, h)

In order to analyze how sellers choose their supply schedules, we consider the income generated from the
permit exchange of firm i ∈ s(t+1, h) as a function of the supply vector

(
exi(t+1, h), ex−i(t+1, h)

)
, i.e. the

number of allowances the i–th firm would submit to the exchange, and those that would be submitted by
the other firms on the sell–side. Namely

Ψi
(
exi, ex−i

)
:= exiP · ηR

(
−

eS−i + exi

D

)
, (3)

where eS−i =
∑
j∈s\{i}

exj , and we have omitted the arguments (t+1, h) to keep the notation as uncluttered

as possible. Equation (3) represents the trade–off described above: sellers have to choose between offering a
higher number of cheap permits, or less of them, but at a higher value. Once all sellers’ offers are collected,
the low–side or high–side of the market is determined. The terms low– and high–side of the market denote
whether supply (or demand) exceeds or not demand (or supply), respectively. It is in the interest of sellers
that the supply remains the high–side of the market.

Below, we follow the well–worn trail of studying the best–response correspondences of each seller’s
response to the remaining sellers’ submission of allowances to the exchange, and we show the existence of
Nash equilibria of this strategic interaction. To this end we have the following:
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Lemma 3.5 For any supply vector
(
exi, ex−i

)
, the mapping ex̃i 7→ Ψi

(
ex̃i, ex−i

)
is maximized at a single

point. In other words, the correspondence

Φi(exi, ex−i) = argmax
{

Ψi
(
ex̃i, ex−i

) ∣∣ ex̃i ∈ [0, xi]
}

is single valued.

Proof. We assume that D > 0, otherwise there is no demand for allowances, hence no market, and the
maximizer is trivial. We must show that the mapping

x 7→ x exp

{(K1 + x

K2

)2/((K1 + x

K2

)2

− b
)}

,

where b =
(
K1+xi

K2

)2

, K1 =e S−i and K2 = D is maximized at a single point of [0, xi]. By rescaling

if necessary, we may assume without loss of generality that K2 = 1. Moreover, we may assume that
K1 + xi ≤ 1, given that under the previous assumption ηR ≡ 0 for any value larger than 1. Initially we
assume that K1 + xi = 1, i.e. firm i has the ability, given K1, to fully satisfy the demand for allowances.
Since in such a case the values of the mapping under investigation are strictly positive on (0, xi), we need
only to seek interior maximizers. The first order conditions yield the equation

L(x) := (K1 + x)4 − 4(K1 + x)2 + 2K1(K1 + x) + 1 = 0.

We have that L(0) = (K1 − 1)2 > 0, and L(xi) = −2 + 2K1 < 0. It follows from the Intermediate Value
Theorem that L has a root xi0 in (0, xi). To show uniqueness, we note that L′′ changes sign only once on
[0,∞), which given the general shape of the graph of a fourth–degree polynomial implies there are only
two roots in this interval. Since L(xi) < 0 and limt→∞ L(t) =∞, we conclude that the remaining root lies
beyond x = xi. If it were the case that K1 + xi < 1, then either xi0 ≤ K1 + xi, in which case the previous
result holds, or the maximizer is precisely xi. 2

Notice that of the three requirements to apply Kakutani’s Fixed–point Theorem (see for example Meyerson
(1991)), Lemma 3.5 takes care of the non–vacuity and the convexity. We then need an upper–semicontinuity
result, which we present in the following.

Lemma 3.6 Let the mapping Φ : Rms → Rms be defined via

Φ(xi1 , . . . , xims ) :=
⊗

Φi(xij , x−ij )

for (xi1 , . . . , xims ) ∈
⊗

[0, xij ], then Φ is continuous.

Proof. For x ∈ [0, xi], the mapping

K1 7→ x exp

{(K1 + x

K2

)2/((K1 + x

K2

)2

− b
)}

is continuous. Notice that x−ij is a relevant statistic for Φi(xij , x−ij ) only through
∑
k 6=j x

ik , and clearly
the mapping

(xi1 , . . . , xims ) 7→
⊗∑

k 6=j

xik

is continuous. It follows immediately that the mapping (xij , x−ij ) 7→ Φi(xij , x−ij ) is continuous over⊗
[0, xij ], which finalizes the proof.

2

Lemmas 3.5 and 3.6, together with Kakutani’s Fixed–point Theorem imply that the mapping

(x1, . . . , xms) 7→ Φ(x1, . . . , xms)

has a fixed point. In other words, we have proved the following
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Theorem 3.7 The (non–cooperative) game G =
{

[0, xih],Ψi
}
i∈S possesses a pure–strategy Nash Equilib-

rium.

Moreover, the Nash equilibrium mentioned in Theorem 3.7 is unique. This follows from the fact that it
coincides with the unique solution of the system of equations:

DyijΨ(yij , y−ij ) + λij = 0, λij (yij − xij ) = 0,
∑
j

xij ≤ 1, j = 1, . . . ,ms,

where the λij ’s are the Lagrange multipliers associated to the constraints yij − xij ≤ 0. From now on
∗xij (t + 1, h) will represent the j–th entry of the Nash–equilibrium that results from the solution of the
game among the firms in permit excess, contingent on the technology vector h. The expected equilibrium
exchange value of an allowance, contingent on the technology vector h is:

Π∗(t+ 1, h) := P · ηR(t+1,h)

(
−
∗S(t+ 1, h)

D(t+ 1, h)

)
.

A further comment should be made regarding the generation of prices in the case where some of
the constraints yij − xij ≤ 0 prove to be binding. If xij = ∗xij , then the following point is of course
moot. Otherwise, if some firms are not able to increase their supply schedules up to the (unconstrained)
equilibrium level, then the firms that still have availability of permits have extra room to increase their
exchange offers. Interestingly, the additional potential number of permits does not restore the original
aggregate supply of the unconstrained problem, i.e. the aggregate supply of permits (in equilibrium) in the
presence of binding constraints is bound above by that of the unconstrained problem. When some firms’
supply–constraints bind, therefore, the equilibrium price increases. Moreover, the firms with non–satiated
constraints collect higher profits than in the unconstrained case by virtue of a lower (aggregate) supply.
We formalize these claims in the following

Lemma 3.8 Let {∗xij (t + 1, h)} be the equilibrium supply profile of the game G =
{

[0, 1],Ψi
}
i∈SE

, then

the equilibrium supply profile {x̃ij (t + 1, h)} of the constrained game G̃ =
{

[0, xih],Ψi
}
i∈SE

(with xih < 1),

and the corresponding price Π̃(t+ 1, h) satisfy:

1. If xih <
∗xi(t+ 1, h), then x̃i(t+ 1, h) = xih.

2. If xih >
∗xi(t+ 1, h), then x̃i(t+ 1, h) >∗xi(t+ 1, h).

3. Π̃(t+ 1, h) > Π∗(t+ 1, h).

Proof. The first point follows from the fact that the best–response path of a firm whose supply–constraint
is binding reaches and is absorbed by the corresponding xih. Next we assume #s = 2 for notational
simplicity. Since for a fixed x1, the expression

1− 2x1(x1 + x2)

((x1 + x2)2 − 1)2
,

which corresponds to the first order conditions of firm 1, is decreasing in x1, if x1
h <

∗ x1(t + 1, h), then
x̃2(t+1, h) > ∗x2(t+1, h). In what follows we drop the arguments (t+1, h) for clarity. The question remains
whether or not the increased supply by firm 2 over the unconstrained–equilibrium level fully compensates
the decreased supply of firm 1, as to leave aggregate supply unchanged. The answer is no. If firm 2 were
to offer ∗x1 − x̃1 + ∗x2, we would have

1−
2
(∗
x1 − x̃1 + ∗x2

)(∗
x1 + ∗x2

)((∗
x1 + ∗x2

)2 − 1
)2 = 1−

2 ∗x2
(∗
x1 + ∗x2

)((∗
x1 + ∗x2

)2 − 1
)2 −

(∗
x1 − x̃1

)(∗
x1 + ∗x2

)((∗
x1 + ∗x2

)2 − 1
)2 < 0.

The inequality follows from the fact that the first two terms on its left hand side add up to zero (the first
order condition for the unconstrained equilibrium) and ∗x1− x̃1 > 0. We conclude that x̃1 + x̃2 <∗ x1 + ∗x2,
which in turn implies Π̃(t+ 1, h) > Π∗(t+ 1, h). 2
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3.1.3 The mechanics of exchange order execution

In this section we study how exchanges of allowances are executed in the permits market. We need,
therefore, to specify how buy– and sell–orders are matched. Offers are submitted to an exchange and
allowances are traded exclusively at the end of each period, hence the state of the economy is known at the
time of trading. Notation is carried on from the previous section, but we refer now to realized positions.
All orders are submitted to a centralized exchange market, in which they are randomly (and uniformly)
matched one–by–one. Since it is in the interest of sellers that the supply side remains the high–side of the
market and they can strategically keep it that way, we can expect that the buy side of the market will be
the low one. As a consequence, all of the sellers’ orders get executed. Furthermore, the probability that
the orders of firm i ∈ d(t+ 1, h) are matched is

−x
i(t+ 1, h)

D(t+ 1, h)
.

In other words, firm i’s access to the sell–side of the market corresponds to its relative contribution to the
aggregate demand schedule. In view of the latter, the executed orders of firm i are:

Xi(t+ 1, h) =
xi(t+ 1, h)

D(t+ 1, h)
·e S(t+ 1, h).

3.1.4 The firms’ expected payoffs over [t, t+ 1] from permit exchange.

Recalling the discussion at the beginning of Section 3.1, the decisions regarding the adoption of new
technologies and trading permits have inter–connected dynamics. In fact, although allowances are traded
on the exchange market at the end of each regulated period, it is the firms’ expected payoffs that play
the crucial role of determining the τ is. Hence, it is the firms’ expected payoffs that drives the dynamic
incentives to adopt the low pollution–emitting technology. In this section we analyze the firms’ payoffs
over a single period. This will be the building block for our study of the firms behavior regarding the
dynamic adoption of the new technology. We assume that the firms’ expectations on how their orders will
be matched correspond to those presented in Section 3.1.3.

Let φi(t+ 1, h) denote the (expected) payoff for firm i, contingent on the technology vector being h. If
i ∈ s(t+ 1, h), then firm i would expect to sell |∗xi(t+ 1, h)| allowances, and its profit would be

φi(t+ 1, h) = Π∗(t+ 1, h) · |∗xi(t+ 1, h)|+ ∆Si(t+ 1).

On the other hand, if i ∈ d(t+ 1, h), then

Xi(t+ 1, h) =
xi(t+ 1, h)

D(t+ 1, h)
·∗ S(t+ 1, h),

and the firm’s expected profit would be

φi(t+ 1, h) = ∆Si(t+ 1)− P · xi(t+ 1, h)
D(t+ 1, h)− ∗S(t+ 1, h)

D(t+ 1, h)
−Π∗(t+ 1, h) ·Xi(t+ 1, h).

The quantity xi(t+ 1, h)
(
D(t+ 1, h)−S(t+ 1, h)

)
/D(t+ 1, h) represents the number of emissions that are

not offset by allowances, and for which the the prescribed penalty would be levied.

3.1.5 The firms’ expected payoffs over [t0, T ].

In this section we describe the mechanism that governs the firms’ investment decisions. We stress once
again that the incentive to adopt the new technology depends on the firm’s potential profits and avoided
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this firm adopts at time t0 −→


0 1 0 ··· 0

1 0 ··· ··· 0

0 0 0 ··· 1



Figure 4: A possible representation of a path matrix with three remaining firms, #O(t0) = 3, and where
the second firm adopts the new technology at time t0. We denote such a matrix M2

n(t0).

penalty costs. In order to quantify this amount, each firm computes its corresponding expected payoff for
the remainder of the regulated phase, which shall be denoted by [t0, T ], over all possible technology vector
scenarios (see Remark 3.1). Let us first introduce the following definition:

O(t0) :=
{
i ∈ I | µi(t0 − 1) = µio(t0 − 1)

}
.

where O(t0) represents the set of firms that have not invested in the new technology up to time t0 − 1.
When i ∈ O(t0), firm i must make the choice at time t = t0 to invest or wait. A family of firm–specific and
concave utility functions is used to assess if the adoption of new technology at time t = t0 is economically
viable or not:

Υi : {0, . . . , T − 1} × {n, o} → R.

These are constructed within the von Neumann–Morgenstern expected utility paradigm using as basis the
concave functions

U i : R→ R.

In order to model all the possible scenarios over the [t0, T ] period, we consider the matrices of dimension
#O(t0) × (T − t0), where each row contains a single 1 and the rest of its entries are 0’s.8 We shall call
such matrices path matrices. Each possible matrix with this structure denotes a possible way in which
technology adoption may be undertaken by the #O(t0) firms that can still make such decision. A 1 in the
(j, t)–th entry represents technology adoption of firm j at time t. Figure 4 represents one of such possible
matrices. We make the distinction between those matrices whose (i, 0)–th entry is 1 (firm i adopts the
new technology at time t0) and those whose (i, 0)–th entry is 0 (firm i has decided to wait), and we denote
these sets Mi

n(t0) and Mi
o(t0) respectively. In terms of cardinality, #Mi

n(t0) = (T − t0)#O(t0)−1. This is
not the case for Mi

o(t0). The cardinality of this set is (T − t0)#O(t0) − (T − t0)#O(t0)−1. We recall that if
the (j, T − t0)–th entry of a path matrix is 1, then the matrix represents a scenario where the j–th firm
would not adopt low–emitting technology before the end of the phase.

Let M ∈ Mi
n(t0), in order to compute firm i’s payoff (should this matrix represent the way in which

adoptions are undertaken), we construct a sequence of technology vectors
{
hM (t)

}T−1

t=t0
by defining their

entries via:

hM (t)j =

{
n, if M(j, t) = 1,
o, if M(j, t) = 0 or j /∈ O(t0).

Notice that if M ∈Mi
n(t0), then hM (t0)i = 1.

Remark 3.9 Notice first that, conditional on the information generated until time t = t0, the emissions
levels Qi(t0) are deterministic. However, the quantities Qi(t) (t > t0), which are required to compute the
firms’ future payoffs, are random. Hence, a path matrix M describes a possible evolution of the techno-
logical vector given the past decisions, and therefore a possible evolution of the xi’s. This in turn implies

8Since a 1 in the (T − t0)–th column denotes that the corresponding firm did not adopt the new technology before the end
of the phase, there is no loss of generality in assuming the matrices are row–stochastic.
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that, a priori, each choice of M determines a particular stream of expected prices generated by the firms’
expected positions in terms of emissions. Only at the end of each period the quantities “realized emissions
minus holdings in permits” generate a unique exchange price for the permits. Since information generated
throughout provides no feedback to the dynamic incentives structure of the permits system, all of regulator’s
decisions are based on the streams {Π∗(t, h), t ∈ [1, T ]}.

For the evaluation of firms’ incentives to adopt the new technologies, we use the payoffs expected values,
corresponding to the possible hM (t)’s. The payoff we are seeking is then:

PiM (t) =

T−1∑
t=t0

φi(hM (t), t)− (1 + r)T−t0Ci. (4)

The first term of the sum above represents the per–period payoff stream associated to the path matrix M ;
whereas (1 + r)T−t0Ci is the cost of change, taken to time t = T. When M ∈Mi

o(t0) the situation is quite
similar, except the possible adoption of the new technology at some future period. This is the time t = τ i,
which was defined previously. The payoff associated to this M is:

PiM (t) =

τ i−1∑
t=t0

φi(hM (t), t) +

T−1∑
t=τ i

φi(hM (t), t)− (1 + r)T−τ
i

Ci. (5)

The only difference between expressions (4) and (5) is the fact that in the latter τ > t0 and accordingly
the future cost of change kicks in after t = t0. For k ∈ {o, n}, we define the payoffs vector associated to
Mi

k(t0) as the vector with entries PiM (t) (M ∈ Mi
k(t0)) ordered in increasing fashion, and we denote the

latter by Vik(t0). Firm i then assigns the following rating to the technological option k :

Υi(t0, k) :=
(
1/#Mi

k(t0)
)#Mi

k(t0)∑
j=1

U i
(
Vik(t0)j

)
.

If Υi(t0, n) ≥ Υi(t0, o), then firm i adopts the low–emitting technology at time t0, otherwise it waits.

Remark 3.10 The concavity of U i represents firm i’s pessimism, and Υi(t0, k) is its expected utility under
the assumption that all states of the world (represented by the elements of Mi

k(t0)) are equiprobable.

We postpone the presentation of some examples until Section 4.3. There we first discuss the permit
exchange dynamics. Then, we compare the evolution of the technological vectors -timing and level of
technology adoption- within the framework presented above, and under the presence of a price support
instrument (the European Cash–4–Permits) that we introduce below.

4 Promoting Dynamic Technology Adoption

Since the allowance schedule is set ex–ante, the deterioration of the economy or its improvement may provide
incentives for the regulator to adjust the level of the policy. This would clearly undermine the credibility
of the policy. Following Laffont and Tirole (1996), we implement a price–support instrument. More
precisely, we introduce a free–of–charge option contract that we call European–Cash–4–Permits (EC4P
for shorthand). The EC4P is a put–type option contract written on the final holdings of permits and
contingent on the technology status. Biglaiser et al. (1995) and Kennedy and Laplante (1999) have proposed
a similar type of policy, where the regulator has the ability to buy back permits. The rationale behind the
introduction of such a policy instrument is to sustain the credibility of the policy by reducing the need for
the regulator’s intervention, and ultimately restore the dynamic incentive to adopt low pollution–emitting
technologies. It should be noted that under this policy the outstanding number of permits is modified via
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actions of the firms, and not due to direct intervention by the regulator. One may think of the EC4Ps as
a (floating) minimum price guarantee contingent on the technology status. At maturity, this instrument
guarantees a per–permit amount of money, Pg, if and only if the firm ends in permit excess and contingent
on adoption of new technology.

We assume that the adoption of low–emitting technologies is perfectly verifiable by the regulator, thus
ruling out moral hazard. All firms that have adopted the new technology have access to EC4Ps. In fact,
their investment entitles these firms to as many EC4P options as allowances they hold. These options,
however, are non–transferable, and they can only be exercised within the regulated period they are issued.
The regulator establishes the minimum price guarantee, Pg, that a firm operating under the new technology
receives per each allowance returned together with an EC4P contract. The level Pg, which clearly ranges
between zero and the penalty P, is a new policy variable under the regulator’s control. Below we show that
the presence of EC4Ps creates a (floating) price floor for the exchanged permits. The rationale behind this
price floor is the fact that the indifference sell–price for an allowance offered by a firm that adopted the
new technology, and which is in permit excess is precisely Pg. This mechanism may restore the incentive
to adopt new technology.

4.1 The impact of the EC4P on the aggregate supply and the permit price

The introduction of the EC4P has an impact on the number of the permits that firms in permit excess will
submit to the exchange and, therefore, affects the allowance exchange value. We maintain the notation
xi(t+ 1, h), D(t+ 1, h) and S(t+ 1, h) used in the previous sections. If firm i has adopted low pollution–
emitting technology and it is in permit excess, then the quantity xi(t+1, h) can be divided into exi(t+1, h)
and cxi(t + 1, h). The former indicates the number of permits submitted to the exchange, and the latter
those that are “cashed–4–permits”.

In parallel to Section 3.1.2, we must now study the generation of allowance prices considering how firms
in permit excess balance their positions in EC4P and market–exchanged permits. Assume that firm i is in
permit excess and that it operates under new technology. Then given that the other firms in excess have
submitted eT s−i =

∑
j 6=i

exj permits into the exchange market, firm i’s choice of exi yields a profit

4Ψi
(
exi, ex−i

)
:= Pg(x

i − exi) + exiP · ηR
(
−

eS−i + exi

D

)
. (6)

Notice that the mapping x 7→ Pg(x
i − x) has constant slope −Pg. A too high choice of Pg could then

result in exi ≡ 0 being the optimal exchange strategy for all firms that are in permit excess, and which
operate under the new technology. It is clear that the condition Pg < P should hold, otherwise the
regulator would offer arbitrage opportunities to some regulated firms. In fact this condition is sufficient
to guarantee that markets will not shut down, in the sense that it will not be optimal for all the firms to
submit zero–supply schedules and exercise their EC4P. The latter claim follows from the fact that

d

dx
4Ψi
(
x, 0
)∣∣∣
{x=0}

= P − Pg.

If all other firms were to exercise their EC4Ps, the marginal utility of firm i at zero would be increasing in
its submissions in the exchange, and it would find it suboptimal to abstain from trading permits.

For the ease of exposure, let us now split the sets s(t+ 1, h) into so(t+ 1, h) and sn(t+ 1, h). These sets
represent, respectively, the firms that would be (contingent on h) in permit excess at the end of the period
[t, t+ 1] and that would operate under the old technology throughout the period, and those that would be
in permit excess, but which had already adopted the new technologies. Firms that belong to so(t + 1, h)
simply operate as before; however, those in sn(t + 1, h) will not submit permits into the exchange unless
they can make at least Pg per unit of allowances traded. We again assume without loss of generality that
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total demand equals one, so that the payoff of a firm in sn(t + 1, h), which submits exi to the exchange,
given that the other firms in permit excess have submitted K1 is:

4Ψi
(
exi, ex−i

)
= Pg(x

i − exi) + exiP · exp

{
(K1 + exi)2

(K1 + exi)2 − 1

}
.

Similarly to Lemma 3.5, we have the following

Lemma 4.1 For i ∈ sn(t+ 1, h), and any supply vector ex−i, the mapping x 7→4 Ψi
(
x, ex−i

)
is maximized

at a single point of [0, xi).

Proof. As in the proof of Lemma 3.5, we first assume that K1 + xi = 1. Let

f(x) := Pg(x
i − x) + xP · exp

{
(K1 + x)2

(K1 + x)2 − 1

}
and

g(x) := f ′(0)x+ Pgx
i.

The graph of the function g in simply the tangent to the graph of f at x = 0. We observe that for x ∈ (0, xi),

g(x)− f(x) = (f ′(0) + Pg)x− xP · exp

{
(K1 + x)2

(K1 + x)2 − 1

}
= xP · exp

{
(K1)2

(K1)2 − 1

}
− xP · exp

{
(K1 + x)2

(K1 + x)2 − 1

}
> 0.

In other words, the graph of f is strictly under the graph of its tangent at x = 0. We also have that

f ′(0) = −Pg + P · exp
{

(K1)2

(K1)2−1

}
. If this quantity were to be non–positive, then f would be maximized

at x = 0. On the other hand, if f ′(0) > 0 and f ′(xi) < 0, then there is xi0 ∈ (0, xi) such that f ′(xi0) = 0.

Moreover, x 7→ xP ·exp
{

(K1+x)2

(K1+x)2−1

}
is a quasiconcave (thus single–cusped) mapping, hence so is x 7→ f(x).

We may then conclude that xi0 is unique. The case where K1 + xi < 1 follows in a similar fashion, but
f(xi) > 0. Nevertheless, f remains quasiconcave, hence maximized at a single point.

2

With Lemma 4.1 at hand, the analysis of the existence of equilibria of the game G =
{

[0, xih], 4Ψi
}
i∈S

is analogous to that of Section 3.1.2, and the corresponding equilibrium will be denoted by {4xi}i∈S . We
may then conclude the existence of a (unique) equilibrium price 4Π∗(t + 1, h), which in turn keeps our
description of the mechanics of trading mostly unchanged. The notable difference being that a firm in
permit excess operating under the new technology, has a profit

4φi(t+ 1, h) = 4Π∗(t+ 1, h, ) · |4xi(t+ 1, h)|+ Pg|xi(t+ 1, h)− 4xi(t+ 1, h)|+ ∆Si(t+ 1).

contingent on the technology vector h. Furthermore, as shown in Figure 5, we have the following

Proposition 4.2 Under identical primitives and identical triples
(
T, {N i(t)}i∈I , P

)
, the following holds

for all t ∈ [0, T ] :
4Π∗(t+ 1, h) ≥ Π∗(t+ 1, h).

Proof. It suffices to show that under any circumstance, the best response of a firm that is in permit
excess is lower or equal (in terms of units or permits submitted to the exchange) with EC4Ps than it
would be without EC4Ps. Trivially firms that find themselves in permit excess, but which have not change
technology, will have the same best responses as before to a given submission level K1. We assume that the
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best responses of firm i to K1 are interior (i.e. they belong to (0, xi)), since otherwise we find boundary
solutions where xi is submitted. Below we write the first order conditions for the interior solutions. The
case of no EC4P corresponds to the solution of the equation

exp

{
(K1 + x)2

(K1 + x)2 − 1

}(
1− 2x(K1 + x)

((K1 + x)2 − 1)2

)
= 0, (7)

whereas in the presence of EC4P we must find the root of

exp

{
(K1 + x)2

(K1 + x)2 − 1

}(
1− 2x(K1 + x)

((K1 + x)2 − 1)2

)
=
Pg
P
. (8)

Since the mapping x 7→ − 2x(K1+x)
(K1+x)2−1)2 is decreasing, the root of Equation (8) on (0, xi) is smaller than that

of Equation (7). By virtue of Lemma 3.8, we know that any additional permits submitted by firms who
are not eligible to cash–4–permits will not restore the total supply to its pre–EC4P levels, which concludes
the proof.

2

Remark 4.3 By construction, if i ∈ s(t+ 1, h), for any h we have that

4φi(t+ 1, h) ≥ φi(t+ 1, h).

The equality corresponds to the cases of boundary solutions or firms in permit excess that operate under
the old technologies. From Proposition 4.2, we also get that if i ∈ d(t+ 1, h) then

4φi(t+ 1, h) ≤ φi(t+ 1, h).

4.2 The evolution of the technological vector with EC4P

In the previous section we have shown that the Nash–games played at the beginning of each period, and
which serve to set the expected allowance prices and govern the evolution of the technological vector, are
still well defined in the EC4P–setting. It should be kept in mind that the payoff functions 4Ψi depend
on the technology vector h. Furthermore, Proposition 4.2 indicates that it is in the interest of those firms
operating under the new technology to reduce permits availability for exchange purposes. Such a strategy’s
impact on prices increases the compliance costs when firms are in permit shortage, which in turn affects
the evolution of the technological vector.

It is not straightforward to compare (in general) the evolution of the technological vectors h(t) and
4h(t), under identical primitives and identical triples

(
T, {N i(t)}i∈I , P

)
. The caveat is that, depending on

the allocation schedule and the emissions processes, firms may switch back and forth from being on the
supply–side to being on the demand–side of the market. This results in the following phenomenon: over
some periods the introduction of EC4Ps benefit a certain firm, whereas the latter might be worse off over
other periods (in comparison to its position had the EC4Ps not been introduced).

The regulator must take into account these dynamics when introducing the EC4P into the policy.
There is a delicate balance between the policy level ({N i(t)}i∈I , P, Pg) and the cost for adopting the low
pollution–emitting technology. As we show in Section 4.3, the policy regulator can carefully choose such
parameters and control the timing and adoption level of the new technologies.

4.3 Discussion

In this section we analyze our findings and discuss the dynamic incentives to adopt low pollution–emitting
technologies employing a numerical example. Our main point of interest is to investigate how the presence
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of EC4Ps affects the strategic trading behavior of firms in permit excess and the firms’ overall incentives
to adopt new technologies.

We consider a five–firm, eight–period scenario. The penalty P has been set to 10 and Pg = 5. Later
we analyze the effect of different levels of Pg. Recalling the parametric family introduced in Section 2.1,
Figure 5(a) shows the allocation schedule for α ∈ [−1.5,−0.4] and β ∈ [20, 25]. Figure 5(b) a possible
evolution (a path)9 of the price process where uo ∈ [1.13, 1.15], do ∈ [1.05, 1.07], un ∈ [1.08, 1.10], and
dn ∈ [1.02, 1.04]. The initial emission level is the same for each firm, Q(0) = 100, the time-constant
probability is q = 0.5, and the vector-cost to adopt the new technology is Cn ∈ [100, 80]. Having chosen
these parameters, the first (last) firm is characterized by higher (lower) emissions and higher (lower) costs
for technology adoption.
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(a) Firm–wise allocation of permits.
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(b) A possible realization of the permit price.

Figure 5: The left diagram represents the unique allocation path of permits to 5 regulated firms. The right
diagram represents a possible path of the exchange value of allowances with EC4P (stars) and without
EC4P (points).

Notice the higher allowance value in Figure 5(b) in the presence of EC4Ps (stars). Figures 6(a) and 6(b)
represent the individual evolution of the technological vector. Here a downwards jump indicates adoption
of low pollution–emitting technology. Similarly, Figures 7(a) and 7(b) show the evolution of the technology
vector in aggregate terms. Notice the higher aggregate level of technology adoption, as expected, in the
presence of EC4Ps.

9Recall that viewed from t = 0, the allowances price process is a random variable.
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(a) Firm–wise technological adoption without EC4P

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

Regulated phase − Periods

2x
−

i−
th

 fi
rm

 th
at

 a
do

pt
s 

th
e 

ne
w

 te
ch

no
lo

gy

(b) Firm–wise technological adoption with EC4P

Figure 6: Evolution of the realized firm-specific technology vector without EC4P (left diagram) and with
EC4P (right diagram).
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(a) Aggregate technology adoption without EC4P
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(b) Aggregate technology adoption with EC4P

Figure 7: Evolution of the realized firm-specific technology vector in aggregate terms without EC4P (left
diagram) and with EC4P (right diagram).

Next we look at the impact that different levels of Pg have on the level of technology adoption. In our
example we keep the same parameters as above, save for Pg, which varies between 1.5 and 4.5. It does
not come as a surprise that the higher the level of the policy, Pg, the higher the aggregate level of firms
adopting new technologies. What is interesting to observe is that by controlling the policy level, (P, Pg),
the regulator is also able to affect the timing of the technology adoption. Figure 8(d) shows that by
increasing price support, from Pg = 3.5 to Pg = 4.5, the regulator can accelerate the adoption of the new
technologies. However, this decision would increase the cost of the policy. It is part of regulator’s task,
therefore, to balance the trade–off between inducing rapid technology adoption and having to pay too high
a cost for all the EC4P’s that might be cashed. This last problem is further analyzed in Section 5 below.
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(a) Aggregate technology adoption for Pg = 1.5
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(b) Aggregate technology adoption for Pg = 2.5
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(c) Aggregate technology adoption for Pg = 3.5
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(d) Aggregate technology adoption for Pg = 4.5

Figure 8: Evolution of the realized technology vector in aggregate terms with different levels of Pg.

5 A Self–financing Policy with EC4Ps

In this section we discuss an approach to perform a cost analysis of a policy that includes EC4Ps. The
purpose of introducing this additional instrument is to establish a credible policy that dynamically promotes
technology adoption. This, however, comes at the expense of the payments to be made to firms that exercise
their EC4Ps. Yet, the regulator collects funds from the firms that make penalty payments, which may be
used to (partially) cover the cashed EC4Ps.10 Below we present a methodology to assess the likelihood
that the collection of such payments renders the policy self–financing, i.e. that tax–payers’ funds are not
required to cover the cost of its implementation. We use translation–invariant risk measures (an example
of which is value–at–risk) to perform an analysis of how plausible it is that a policy turns out to be
self–financing. A summary of important properties of risk measures is provided in Appendix A.

The first task at hand is to specify the probability space over which the risk measures will be defined.
To this end, let

Ω :=
{

(a1, . . . , aT ) | ai ∈ {u, d}
}

be the space of paths of the state of the economy over [0, T ]. For example, (u, d, . . . , d) ∈ Ω denotes the

10We are not considering the costs for running, monitoring and controlling the permit system.
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scenario where the economy is in “up” mode over [0, 1], and then remains in “down” mode over (1, T ]. We
pair Ω with the power σ–algebra 2Ω, which consists of all subsets of Ω. Since we are working under the
assumption that states of the economy at different dates are independent (i.e. “up” today has no impact
on either “up” or “down” tomorrow), the probability density (q(t), 1−q(t)) used by the regulator naturally
induces a reference measure Q on Ω via

Q{(a1, . . . aT )
}

= q1 · · · qT ,

where

qi =

{
q(t), if a1 = u(t)
1− q(t), otherwise.

In fact, if q(t) ≡ q, then Q{(a1, . . . aT )
}

= qn(1−q)T−n, where n is the number of “ups” and, consequently,
T−n is the number of “downs”. Let XI and X0 be, respectively, the amount of money the regulator collects
from penalty payments and the aggregate payments made to EC4P holders during the phase. Notice that
for each ω ∈ Ω, XI(ω) and XO(ω) are well defined via the market mechanisms described in the previous
sections. Moreover, by construction XI , XO ∈ L∞(Ω, 2Ω,Q).

Recall that a law invariant (convex) risk measure is a (convex) mapping ρ : L∞(Ω, 2Ω,Q) → R such
that ρ(X) = ρ(Y ) holds for any two X,Y in L∞(Ω, 2Ω,Q) that have the same distribution under Q. From
this point on we assume that choices of risk measures are made from the family of law–invariant ones.
For a given ρ, the assessment ρ(XI −XO) provides a measurement of whether or not the permits system
endowed with EC4Ps will be self–financing; namely, if ρ(XI−XO) ≤ 0, then the mechanism is deemed to be
acceptable. An important observation is that for fixed

{
T, {N(t)}

}
, the parameters P and Pg completely

determine XI −XO, and therefore
ρ(XI −XO) =: f(P, Pg).

The function f(·, ·) provides a measure of the losses the regulator might face when he chooses the penalty
level P and the minimum price guarantee Pg for the EC4P.

The distribution of the random variable XI −XO depends both on the evolution of the technological
vector and the expected emissions. Since decisions regarding technology adoption are made on the grounds
of expected positions, the evolution of h is independent of the realizations of the states of the economy.
It does not, however, depend exclusively on the expected (emissions and permits) positions. In fact, the
choice of P and Pg has a stark influence on the evolution of h and, implicitly, on the future expected
positions. In other words, the dynamic incentive to adopt the new technology, and therefore how the
technology vector evolves, depends (from the firms’ point of view) on the potential extra profits (a function
of unused permits and Pg) and avoided costs (a function of non–offset emissions and P ).

Below we use value–at–risk and average value–at–risk to analyze the examples presented in Section 4.3
for different levels of Pg. To this end we have performed 2000 Monte Carlo simulations to approximate the
cumulative distribution functions (CDFs) and probability distribution functions (PDFs) of XI−XO. Since
we are working with law–invariant risk measures, these distribution functions are sufficient to (numerically)
compute ρ(XI−XO). In Table 1 we report the V@Rλ(XI−XO) and AV@Rλ(XI−XO) for some standard
confidence levels λ.

Remark 5.1 As it has been pointed out previously, our main aim in this paper is to study the influence
of the regulator’s decisions on the dynamic evolution of the technological vector. On this same token, the
introduction of ρ as a tool to measure the likelihood of the policy being self–financing is not done in the
spirit of minimizing social costs. In the numerical implementations in Section 4.3, we compare the effect
of different levels of P and Pg on the distribution of XI − XO (and therefore on ρ), and simultaneously
on the adoption of low pollution–emitting technologies. It might be the case that a choice of primitives that
yields very rapid technology adoption of all firms is too socially costly. The analysis of such scenario is not
undertaken here.
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V@Rλ(XI −XO) AV@Rλ(XI −XO)/100
Pg Pg

λ 1.5 2.5 3.5 4.5 1.5 2.5 3.5 4.5
0.10 −30.8 −274.6 −397.0 −704.5 955 137 −231 −5034
0.05 −123.5 −344.6 −476.3 −798.1 468 65 −217 −5315
0.01 −187.5 −424.9 −594.9 −944.7 74 15 −208 −5557

Table 1: V@Rλ(XI −XO) and AV@Rλ(XI −XO) for standard confidence levels λ = {0.10; 0.05; 0.01}.
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(a) CDF for Pg = 1.5
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(b) CDF for Pg = 2.5
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(c) CDF for Pg = 3.5
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(d) CDF for Pg = 4.5

Figure 9: Cumulative distribution functions for different levels of Pg.

Remark 5.2 A feature of a self–financing policy is that the payments made to firms that have adopted
new technologies via cashed EC4P titles are financed by those that have not (adopted). In layman’s terms,
the “dirty” firms subsidize the “clean” ones.
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(b) PDF for Pg = 2.5
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(c) PDF for Pg = 3.5
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Figure 10: Probability density functions for different levels of Pg.

6 Conclusions

The value of allowances, and more generally the design of the policy, typically determines the incentive of
regulated companies to invest in new technologies or adopt alternative low pollution–emitting technologies.
Given that such investment costs are in part sunk, it is important for regulated companies to correctly
foresee future allowance allocations and penalties on non-offset emissions so as to plan their compliance
strategy.

In the first part of this work we have studied how, in the presence of imperfect competition, a system
based on transferable permits affects incentives to reduce emissions. In the model the allowance value
is generated endogenously and reflects the current level of uncovered pollution (demand), the current
level of unused allowances (supply), and the current level of adoption of the low emitting–technologies
(the technology vector h). Since companies are not assumed to be price–takers, it may very well be in
the sellers’ best interests to reduce the availability of permits and, consequently, increase the allowance
exchange value. Thus, strategic trading behaviors are accounted for in the model. In particular, we
have constructed a non-cooperative permit trading game and we have shown it possesses a pure-strategy
Nash equilibrium. Furthermore, the adoption profiles of new technologies are also generated endogenously.
Technology adoption depends on unanticipated macroeconomic shocks and the future values of allowances,
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the latter being a function of future permits supply and demand. Assuming that the regulator does not
anticipate the adoption of new technology, and that he has made a commitment to the type, level and
length of his policy instruments (N, P and T ), we have investigated the number of regulated firms that
adopt low pollution–emitting technologies, as well as the timing of such adoptions.

Under transferable permits, it would be desirable for the regulator to intervene in the market in response
to economic shocks or the occurrence of technology adoption. By adjusting the level of the policy, the
regulator would attempt to restore the dynamic incentive to invest. In the second part of the paper we
have proposed the introduction of a policy instrument that attempts to preserve the credibility of the policy,
ideally reducing the need for intervention by the regulator. In the spirit of Laffont and Tirole (1996) and
Biglaiser et al. (1995), we have introduced a price support instrument that is offered by the regulator to firms
that have adopted the new technologies. Again, we have constructed the corresponding non-cooperative
permit trading game, we have shown it possesses a pure-strategy Nash equilibrium, and we have proved that
this new policy instrument creates a floating price floor that can be considered as a (floating) minimum
price guarantee. Echoing the conclusions of Laffont and Tirole (1996), we have shown that European–
Cash–for–permits provisions, i.e. the possibility of cashing unused permits for a fixed amount, have quite
attractive properties. Evidently, this policy has a cost. Recalling that the penalty payments generate
potential incomes, we have introduced the notion of self-financing policies when tax-payers’ funds are not
required to cover the payments of the European–Cash–for–permits. Based on this definition, and using
different pairs (P, Pg), we have numerically assessed how likely it is (in terms of convex risk measures) that
the regulator will have to access tax-payers’ funds, instead of using penalty payments. Numerical findings
confirm that by controlling the policy level, (P, Pg), the regulator can also affect the timing of technology
adoption by increasing price support, Pg, and, accepting higher policy costs. This prevents delays in the
adoption of the new technologies.

The investment technology is modeled here somewhat rigidly (adopt or not adopt the new technology).
There are several other situations that could be considered. First, we could allow a more continuous choice
in abatement. In such a model this is possible through a costly choice of different levels of abatement.
Secondly, investments create purely private benefits. One could investigate the situation where investing
in new technologies would generate innovations in abatement technologies which are public goods.

A Convex risk measures on L∞.

This appendix contains some results on risk measures defined on L∞(Ω,F ,P). 11 Up to a change in sign,
convex risk measures coincide with robust utility functionals. The latter are an extension to von Neumann–
Morgenstern expected–utility functionals, and they were introduced to address issues of agent irrationality,
à la Allais paradox.

Definition A.1 (i) A monetary measure of risk on L∞(Ω,F ,P) is a function ρ : L∞(Ω,F ,P) → R
such that for all X,Y ∈ L∞(Ω,F ,P) the following conditions are satisfied:

• Monotonicity: if X ≤ Y then ρ(X) ≥ ρ(Y ).

• Cash Invariance: if m ∈ R then ρ(X +m) = %(X)−m.

(ii) A risk measure is called coherent if it is convex and homogeneous of degree 1, i.e., if the following
two conditions hold:

• Convexity: for all λ ∈ [0, 1] and all positions X,Y ∈ L∞(Ω,F ,P):

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y )

11We refer the reader to section 4.3 in Föllmer and Schied (2004) for detailed discussions on this topic.
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• Positive Homogeneity: For all λ ≥ 1

ρ(λX) = λρ(X).

(iii) The risk measure is called law invariant, if

ρ(X) = ρ(Y )

for any two random variables X and Y which have the same law.

(iv) The risk measure ρ on L∞(Ω,F ,P) has the Fatou property if for any sequence of random variables
X1, X2, . . . that converges almost surely to a random variable X we have

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

The intuition behind the property of translation invariance is the following: if X represents an uncertain
future position, and if a position is deemed acceptable if its image under ρ is non–positive, then ρ(X) is
the amount of cash that makes position X acceptable. In other words, ρ(X) is a capital requirement .

A risk measure % that has the Fatou property may be represented it via a Legendre–Fenchel transform.
Namely, if we define M1(P) to be the set of probability measures on Ω that are absolutely continuous
(w.r.t P) then given ρ there exists a penalty function α :M1(P)→ R ∪ {+∞} such that

ρ(X) = sup
Λ∈M1(P)

{
EP[−X]− α(Λ)

}
. (9)

The idea behind such representation is the following: although P should reflect the true distribution of
events in Ω, this could prove to be wrong. As a consequence, one moves away from simply evaluating
EP[X], and instead they perform a robust evaluation as in Equation (9). The larger α(Λ) is, the less likely
that the scenario represented by a given Λ is believed to occur. For instance, if α(Λ) = +∞ for all Λ 6= P,
then an agent who assesses risk using the corresponding measure is simply risk–neutral. Any other choice
of α denotes a certain degree of risk aversion, which is intuitively represented by the curvature of the graph
of the convex functional ρ. Notice that α fully characterizes ρ, but it needs not be unique.

For Y ∈ L∞(Ω,F ,P), the upper quantile function of Y is defined as

qY (t) := sup
{
l ∈ R

∣∣P(Y ≤ l) > t
}
.

Given a confidence level λ ∈ (0, 1], the value–at–risk at level λ of a position Y is

V@Rλ(Y ) := qY (λ).

Given λ ∈ (0, 1], the average value–at–risk of level λ of a position Y is defined as

AV@Rλ(Y ) := − 1

λ

∫ λ

0

qY (t)dt.

If Y ∈ L∞(Ω,F ,P), then we have the following characterization

AV@Rλ(Y ) = sup
Q∈Qλ

−EQ[Y ]

where

Qλ =

{
Q << P | dQ

dP
≤ 1

λ

}
.

It turns out to be the case that the Average Value of Risk can be viewed as a basis for the space of all
law–invariant, coherent risk measures with the Fatou property. More precisely, we have the following result.

27



Theorem A.2 The risk measure % : L∞(Ω,F ,P) → R is law–invariant, coherent and has the Fatou
Property if and only if % admits a representation of the following form:

%(Y ) = sup
µ∈M

{∫ 1

0

AV@Rλ(Y )µ(dλ)− β(µ)

}
where M is a set of probability measures on the unit interval and β plays the role of a penalty function.
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