Beine, Michel; Docquier, Frédéric; Özden, Çağlar

Working Paper
Dissecting network externalities in international migration

CESifo working paper: Labour Markets, No. 3333

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Beine, Michel; Docquier, Frédéric; Özden, Çağlar (2011) : Dissecting network externalities in international migration, CESifo working paper: Labour Markets, No. 3333, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/46319

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Dissecting Network Externalities in International Migration

Michel Beine
Frédéric Docquier
Çağlar Özden

CESifo Working Paper No. 3333
Category 4: Labour Markets
January 2011

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Dissecting Network Externalities in International Migration

Abstract

Existing migrant networks play an important role in explaining the size and structure of immigration flows. They affect the net benefits of migration for future migrants by lowering assimilation costs (‘self-selection’ channel) and increase the probability of potential migrants to obtain a visa through family reunification programs (‘immigration policy’ channel). This paper presents an identification strategy allowing to disentangle these two channels. Then, it provides an empirical illustration based on US immigration data by metropolitan area and country of origin. First, we show that the overall network externality is strong: the elasticity of migration flows to network size is around one. Second, only a quarter of this elasticity is accounted for by the policy channel. Third, the policy channel was stronger in the nineties than in the eighties due to more generous family reunion program. Fourth, the global elasticity and the policy contribution are much greater for low-skilled migrants.

JEL-Code: F220, O150.

Keywords: migration, network/diaspora externalities, immigration policy.

Michel Beine
University of Luxembourg
Luxembourg
michel.beine@unilu.lu

Frédéric Docquier
Catholic University of Louvain
Belgium
frederic.docquier@uclouvain.be

 Çağlar Özden
World Bank, Development Research Group
USA
cozden@worldbank.org

December 22nd, 2010
We thank Cristina Ileana Neagu for remarkable assistance and Suzanna Challen for providing precious information about the US immigration policy. The second author acknowledges financial support from the ARC convention on "Geographical Mobility of Factors" (convention 09/14-019). The findings, conclusions and views expressed are entirely those of the authors and should not be attributed to the World Bank, its executive directors or the countries they represent. This paper benefitted from comments of participants of the Swiss Economic Association (Freiburg, June 2010), the World Bank Trade seminar (Washington DC, August 2010), the Third Migration and Development Conference (Paris, September 2010), the Migration Conference (Ottawa, October 2010). We thank in particular A. Spilimbergo, S. Bertoli, T. Mayer, M. Schiff for useful comments and suggestions. Of course, the usual disclaimer applies.
1 Introduction

Even in the age of instant communication and rapid transportation, immigration to a new country is a costly endeavor. Migrants face significant legal barriers, social adjustment costs, financial burdens and many uncertainties while they are trying reach and settle in their destinations. By providing financial, legal and social support, existing diasporas or social networks affect overall costs and benefits faced by new migrants. As a result, diasporas strongly influence various aspects of migration patterns, especially with respect to the size, skill composition and destination choices.

The goal of this paper is to identify and determine the relative importance of different channels through which diasporas influence migration patterns. These channels may be divided into two general categories. The first one, referred to as the 'self-selection' channel, is the lowering of assimilation costs which generally matter after the migrant crosses the border. Assimilation costs cover a wide range of hurdles faced by the migrants in finding employment, deciphering foreign social and cultural norms and adjusting to a new linguistic and economic environment. All of these obstacles tend to be local in nature and the the support provided by the existing local network can be crucial.\(^1\) The second channel, referred to as the 'policy' channel, is the overcoming of legal entry barriers and they help the migrant at the border before she/he arrives at the final destination. Diaspora members who have already acquired citizenship or certain residency rights in the destination countries become eligible to sponsor their immediate families and other relatives. These family reunification programs are the main routes for many potential migrants in most OECD countries.

The overall effect of diasporas have been clearly recognized in the sociology, demography and economics literatures and extensively analyzed over the last twenty years (such as Boyd, 1989). Regarding assimilation costs, Massey et al. (1993) provided one of the earliest papers, showing show diasporas reduce moving costs, both at the community level (e.g. inflow of people from the same nation helps creating subcultures), and at the family level (increase utility of friends and relatives). As shown by Carrington, Detragiache and Viswanath (1996), this explains why the size and structure of migration flows gradually change over time. In addition, networks provide information and assistance to new migrants before they leave and when they arrive; this facilitates newcomers’ integration in the destination economy or reduces uncertainty. Based on a sample of individuals originating from multiple communities in Mexico and residing in the U.S., Munshi (2003) showed that an individual is more likely to be employed and earn higher wage when her network is larger.\(^2\) At the macro level, Beine et al. (2010) used a bilateral data set on international migration

\(^1\)Bauer et al. (2007) or Epstein (2008) argued that network effects might reflect 'herd behavior' in the sense that migrants with imperfect information about foreign locations follow the flow of other migrants, based on the (wrong or right) supposition that they had better information.

\(^2\)On the contrary, Piacentini (2010) used data on migration and education from a rural region of Thailand to show that networks negatively affect the propensity of young migrants to pursue schooling while in the city.
by educational attainment from 195 countries to 30 OECD countries. They explored how diasporas affect the size and human capital structure of future migration flows. They find that the diasporas are by far the most important determinant, explaining over 70 percent of the observed variability of the size of flows. Regarding selection, diasporas were found to favor the migration of low-skilled relative to the highly-skilled, thus exerting a negative impact and explaining over 45 percent of the variability of the selection ratio. Using micro-data from Mexico, the earlier study of McKenzie and Rapoport (2010) found the same effect, which is also supported by Winters et.al (2001).

In terms of the effect of diasporas in overcoming policy induced migration restrictions, family reunification is the main legal route for many potential migrants in most continental European countries. Even in one of the most selective country such as Canada, about 40 percent of immigrants come under the family reunification and refugee programs, rather than selective employment or skill-based programs (e.g. point systems). Jasso and Rosenzweig (1986, 1989) estimated that each U.S. labor-certified immigrant generated a first-round multiplier around 1.2 within ten years (i.e. sponsored 0.2 relatives). Using a longer perspective, Bin Yu (2007) showed that each newcomer generates an additional inflow of 1.1 immigrant.

The goal of this paper is to empirically decompose the relative importance of these two channels - lowering of assimilation costs and overcoming policy induced legal barriers.

A natural approach is to directly use micro data on the various entry paths migrants use as well as their individual characteristics. Appropriate use of indicators on migration policies along with diaspora characteristics could provide information on the relative importance of kinship-based admission of new migrants. Unfortunately, there is, to the best of our knowledge, no large micro database providing detailed information on the various entry tracks migrants use as well as the corresponding flows for each track. Furthermore, information on changes in immigration laws might not be enough to gauge the importance of family reunification policies over time. For example, many illegal migrants became legal residents after amnesty programs took place in the US in the nineties. Those regularized migrants became eligible to bring their close relatives to the US. This resulted in an increase in the number of migrants coming through family reunification in spite of no significant change in US migration laws. Another issue is that a significant number of highly skilled US migrants used kinship-based tracks for convenience while they were fully eligible to use economic migration tracks such as H1B or special talent visas.\(^3\) Ascribing their migration pattern only to the family reunification track would give a distorted picture of the importance of each migration channel.

As an alternative to the use of data on individual immigration paths, this paper develops a different identification strategy using migration aggregate data available at

---

\(^3\)Some well known scholars in the economic migration literature provide striking examples of that phenomenon.
the city level for the United States. As mentioned earlier, the role of the diasporas in overcoming migration barriers operates at the border before the migrant settles in a given city. Thus, the probability for a migrant to obtain a visa through a family reunification program depends on the total size of the network already living in the United States, not on the distribution of the diaspora across different cities. On the other hand, the assimilation effect is mostly local and matters after the migrant chooses a city. For example, if a migrant lives in New York, the diaspora in Los Angeles is less likely to be of much help to him in terms of finding a job, especially relative to the network present in New York itself. This is the distinction we exploit to identify the relative importance of these two channels. We develop a simple theoretical model showing that, under plausible functional homogeneity of the two network externalities, the two different channels can be identified using U.S. bilateral data by country of origin and by metropolitan area of destination. We then provide several extensions based on educational differences, time dimension, alternative migrant definitions or geographic areas and control of potential endogeneity.

We first show that the overall network effect is strong. The elasticity of migration flows to networks is around one, a result in line with Bin Yu (2007) and Beine et al. (2010). Second, only a quarter of this elasticity is accounted for by the policy channel; the rest is due to the assimilation effect. On average, each immigrant sponsors 0.25-0.30 relative within ten years, a result in line with Jasso and Rosenzweig (1986, 1989). This shows the difficulty for host country government to curb the dynamics of immigration and confine multiplier effects. Third, the policy-selection channel was higher in the nineties than in the eighties due to more generous family reunion programs. Fourth, the global elasticity and its policy contribution are greater for low skilled migrants. Finally, these results are extremely robust to the specification, to the choice of the dependent variable, to the definition of the relevant network and to the instrumentation of network sizes.

The remainder of this paper is organized as following. Section 2 uses a simple labor migration model to explain our identification strategy. Data are described and econometric issues are discussed in Section 3. Results are provided in Section 4. Finally, Section 5 concludes.

2 Model and identification strategy

We use a simple model of labor migration where invididuals with heterogeneous skill types \( s (s = 1, ..., S) \) born in origin country \( i (i = 1, ..., I) \) decide whether to stay in their home country or emigrate to location \( j (j = 1, ..., J) \) in the destination country. In the estimation, the set of destination locations are different cities in the

---

\(^4\)The US Census data is actually disaggregated at the metropolitan area level which might include multiple cities or a city and its surrounding areas. For simplicity, we use the phrase "city" instead of "metropolitan area."
same country, the United States, and, therefore share the same national immigration policy but they differ in other attributes. The individual utility is linear in income but also depends on possible migration and assimilation costs as well as characteristics of the city of residence. The utility of a type-\(s\) individual born in country \(i\) and staying in country \(i\) is given by

\[
    u^s_{ii} = w^s_i + A^s_i + \varepsilon^s_{ii}
\]

where \(w^s_i\) denotes the expected labor income in location \(i\), \(A_i\) denotes country \(i\)'s characteristics (amenities, public expenditures, climate, etc.) and \(\varepsilon^s_{ii}\) is an individual-specific iid extreme-value distributed random term. The utility obtained when the same person migrates to location \(j\) is given by

\[
    u^s_{ij} = w^s_j + A^s_j - C^s_{ij} - V^s_{ij} + \varepsilon_{ij}
\]

where \(w^s_j\), \(A^s_j\) and \(\varepsilon_{ij}\) denote the same variables as above. In addition, two types of migration costs are distinguished as in Beine et al. (2010). On the one hand, \(C_{ij}\) captures moving and assimilation costs that are borne by the migrant. \(C^s_{ij}\), together with \((w^s_j + A^s_j) - (w^s_i + A^s_i)\), would determine the net benefit of migration in a world without any policy restrictions on labor mobility and the self-selection of migrants into destinations. We will assume below that \(C^s_{ij}\) depends on the network size in location \(j\). The network outside \(j\), on the other hand, has no effect on the migrants moving to \(j\). Next, \(V^s_{ij}\) represents policy induced costs borne by the migrant to overcome the legal hurdles set by the destination country’s government’s (policy channel). Since family reunion programs are implemented at the national level, \(V^s_{ij}\) depends on the network size at the country level, not at the city level. Obviously, the main motivation to differentiate between these two types of costs is to identify the role of immigration policy on the size and structure of migration flows.

For simplification, we slightly abuse the terminology and refer to \(C^s_{ij}\) as local moving/assimilation costs and to \(V^s_{ij}\) as national visa costs. It is worth noting that we allow both of these costs to vary with skill type. It is well documented that high-skill workers are better informed than the low skilled, have higher capacity adapt to assimilate or have more transferrable linguistic, technical and cultural skills (see for instance Grogger and Hanson, 2010). In short, high skilled workers face lower assimilation costs. In addition, the skill type also affects visa costs if there are selective immigration programs (such as points-system in Canada, Australia, New Zealand, UK, the H1-B program in the US, etc.) that specifically target highly educated workers and grant them special preferences.

Let \(N^s_i\) denote the size of the native population of skill \(s\) that is within migration age in country \(i\). When the random term follows an iid extreme-value distribution, we can apply the results in McFadden (1974) to write the probability that a type-\(s\) individual born in country \(i\) will move to location \(j\) as

\[
    \Pr \left[ u^s_{ij} = \max_k u^s_{ik} \right] = \frac{N^s_{ij}}{N^s_i} = \frac{\exp \left[ w^s_j + A^s_j - C^s_{ij} - V^s_{ij} \right]}{\sum_k \exp \left[ w^s_k + A^s_k - C^s_{ik} - V^s_{ik} \right]},
\]

5
and the bilateral ratio of migrants in city $j$ to the non-migrants is given by

$$\frac{N_{ij}^s}{N_{ii}^s} = \frac{\exp\left[w_j^s + A_j^s - C_{ij}^s - V_{ij}^s\right]}{\exp\left[w_i^s + A_i^s\right]}$$

Hence, the log ratio of emigrants in city $j$ to residents of $i$ ($N_{ij}^s/N_{ii}^s$) is given by the following expression

$$\ln\left[\frac{N_{ij}^s}{N_{ii}^s}\right] = (w_j^s - w_i^s) + (A_j^s - A_i^s) - \left(C_{ij}^s + V_{ij}^s\right)$$  \quad (1)

Let us now formalize network externalities. As stated above, both $C_{ij}^s$ and $V_{ij}^s$ depend on the existing network size. Local moving/assimilation costs depend on origin country and host location characteristics (denoted by $c_i^s$ and $c_j^s$ respectively), increases with bilateral distance $d_{ij}$ between $i$ and $j$, and decreases with the size of the diaspora network at destination, $M_{ij}$ (captured by the number of people living in location $j$ and born in country $i$) at the time of migration decision of our individual. In line with other empirical studies, we assume logarithmic form for distance and diaspora externality, and add one to the network size to get finite moving costs to destination where the network size is zero. This leads to

$$C_{ij}^s = c_i^s + c_j^s + \delta^s \ln d_{ij} - \alpha^s \ln (1 + M_{ij})$$  \quad (2)

where all parameters ($c_i^s, c_j^s, \delta^s, \alpha^s$) are again allowed to vary with skill type $s$.

Regarding visa costs, we stated earlier that all cities share the same national migration/border policy which, in many cases, are specific to the origin country $i$. For example, migrants from certain countries might have preferential entry, employment or residency rights that are granted to citizens of other countries. An individual migrant’s ability to use the diaspora network to cross the border (for example, via using the family reunification program) depends on the aggregate size of the network in the country,

$$M_i \equiv \sum_{j \in J} M_{ij}.$$

Assuming the same logarithmic functional form for the network externality, the visa cost to each particular location $j$ can be written as

$$V_{ij}^s = v_i^s - \beta^s \ln (1 + M_i)$$  \quad (3)

where $v_i^s$ stands for origin country characteristics, and extent of the network externality $\beta^s$ is allowed to vary with skill type. Inserting (2) and (3) into (1) leads to

$$\ln N_{ij}^s = \mu_i^s + \mu_j^s - \delta^s \ln d_{ij} + \alpha^s \ln (1 + M_{ij}) + \beta^s \ln (1 + M_i)$$  \quad (4)

where $\mu_i^s \equiv \ln N_{ii}^s - w_i^s - A_i^s - c_i^s - v_i^s$ and $\mu_j^s \equiv w_j^s + A_j^s - c_j^s$ are, respectively, origin country $i$’s and destination location $j$’s characteristics which will be captured by
fixed effects in the estimation.\(^5\) \((\alpha^s, \beta^s)\) are the relative contributions of the network externality through the local assimilation and national policy channels.

Estimating (4) with data on bilateral migration flows from the set \(I\) of origin countries to the set \(J\) of locations (sharing common immigration policies) cannot be used to identify the magnitude of the policy channel since \(\ln (1 + M_i)\) is common to all destinations in set \(J\) for a given origin country \(i\). The coefficient will simply be absorbed by the country fixed effects. However, we take advantage of the identical functional form of the assimilation and policy-selection channels to solve this problem. Focusing on the set of destinations \(J\), the aggregate stock can be rewritten as \(M_i = M_{ij} + \sum_{k \neq j} M_{ik}\). It follows that \(\ln (1 + M_i)\) in (4) can be expressed as

\[
\ln (1 + M_i) \equiv \ln (1 + M_{ij}) + \ln (1 + \Pi_{ij})
\]

where \(\Pi_{ij} \equiv (1 + M_{ij})^{-1} \sum_{k \neq j} M_{ik}\). Since we have both the bilateral migration and diaspora data available for the full set of locations in \(J\) for every country \(I\), \(\Pi_{ij}\) can be constructed for each pair. Assuming both externalities are linear (as in Pedersen et al., 2008, or McKenzie and Rapoport, 2010) or follow an homogenous function of degree \(a\) (e.g. \(M^a\)), we are able to perform this transformation. As a result, we can rewrite (4) as

\[
\ln N_{ij}^s = \mu_i^s + \mu_j^s - \delta^s \ln d_{ij} + (\alpha^s + \beta^s) \ln (1 + M_{ij}) + \beta^s \ln (1 + \Pi_{ij})
\]

(5)

Now \(\beta^s\) can be properly identified since \(\Pi_{ij}\) is a real bilateral variable. \(\mu_i^s\) and \(\mu_j^s\) capture all origin country and destination specific fixed effects. As mentioned earlier, \(d_{ij}\) measures the physical pairwise distance between \(i\) and \(j\). We can only properly estimate coefficients \(\alpha^s + \beta^s\) and \(\beta^s\) from the above equation. However, the self-selection (assimilation) mechanism \(\alpha^s\) might be recovered by substracting \(\beta^s\) from \(\alpha^s + \beta^s\).

3 Data and econometric issues

The data in this paper come from the 5% samples of the US Censuses of 1980, 1990 and 2000, which include detailed information on the social and economic status of foreign-born people in the United States. Of this array of information, we utilize characteristics such as gender, education level, country of birth and geographic location of residence in the US identified by metropolitan area. For the diaspora variable, we use all migrants in a given metropolitan area as reported in the 1990 census (or the 1980 census in the relevant sections). For the migration flow variable, we use the number of migrants (depending on the relevant definition) who arrived between 1990 and 2000 according to the 2000 census (or who arrived during 1980-1990 according to 1990 census).

\(^5\)In principle, \(N_{ij}^s\) should be treated as an endogenous variable. We disregard this problem by assuming that each bilateral migration flow \(N_{ij}^s\) is small relative to \(N_{ii}^s\).
We re-group the educational variable provided by the US Census (up to 15 categories in the 2000 Census) to account for only 3 categories: up to Grade 11 (including no education), high-school graduate level (Grade 12), and some college or more. Since an indicator of the location distinguishing where education was obtained is not available, we infer one between the US versus home-country acquired education based on the age at which the immigrant reports to have entered the US. More specifically, we designate individuals as “US educated” if they arrived in the US before they would have normally finished their declared education level. For example, if a university graduate arrived at the age of 23 or older, then he/she is considered “home educated.” We also constructed data on geographic distances between origin countries and U.S. metropolitan areas of destination. The spherical distances used in this paper were calculated using STATA software based on geographical coordinates (latitudes and longitudes) found on the web: www.mapsofworld.com/utilities/world-latitude-longitude.htm, for country capital cities and www.realestate3d.com/gps/latlong.htm as well as Wikipedia for US cities.

As far as the econometric methodology is concerned, equation (5), supplemented by an error term \( \epsilon_{ij}^s \), forms the basis of the estimation of the network effects. The structure of the error term can be decomposed in a simple fashion:

\[
\epsilon_{ij}^s = \nu_{ij}^s + u_{ij}^s
\]

where \( u_{ij}^s \) are independently distributed random variables with zero mean and finite variance, and \( \nu_{ij}^s \) reflects unobservable factors affecting the migration flows.

There are a couple of estimation issues raised by the nature of the data and the specification. These issues lead to inconsistency of usual estimates such as OLS estimates. The first important issue is related to the high prevalence rate of zero values for the dependent variable \( N_{ij}^s \) which is, depending on the period (1980’s or 1990’s), between 50 and 70 percent of the total observations. Consistent with our model, distances and other barriers make migration prohibitive, especially (but not exclusively) between small origin countries and small metropolitan destinations.

The high proportion of zero observations appears in large numbers in many other bilateral contexts, such as international trade, and creates similar estimation problems. The use of the log specification drops the zero observations which constraints the estimation to a subsample involving only the country-city pairs for which we observe positive flows. This in turn tends to underestimate the key parameters \( \alpha^s \) and \( \beta^s \). One usual solution to that problem is to take \( \ln(1 + N_{ij}^s) \) as the dependent variable and to estimate (5) by OLS. This makes the use of the global sample possible. Nevertheless, this adjustment is subject to a second statistical issue, i.e. the correlation of the error term \( u_{ij}^s \) with the covariates of (5). Santos-Silva and Tenreyro (2006) specifically cover this problem and propose some appropriate technique that minimizes the estimation bias of the parameters. This issue has also been addressed by Beine et al. (2010) in the context of global migration flows.

Santos-Silva and Tenreyro (2006) show in particular that if the variance of \( u_{ij}^s \)
depends on $c^*_i, m^*_i, d_{ij}$ or $M_{ij}$, then its expected value will also depend on some of the regressors in the presence of zeros. This in turn invalidates one important assumption of consistency of OLS estimates. Furthermore, they show that the inconsistency of parameter estimates is also found using alternative techniques such as (threshold) Tobit or non linear estimates. In contrast, in case of heteroskedasticity and a significant proportion of zero values, the Poisson pseudo maximum likelihood (herefater Poisson) estimator generates unbiased estimators of the parameters of (5).\footnote{Unsurprisingly, our estimates of $\alpha^s, \beta^s$ and $\delta^s$ using alternative techniques such as the threshold Tobit and OLS on the log of the flows (either dropping or keeping the zero values) turn out to be different from the Poisson estimates. In particular, they lead to much higher values for $\delta^s$, which is exactly in line with the results obtained by Santos-Silva and Tenreyro (2006) for trade flows. Results are not reported here to save space but are unavailable upon request.} Furthermore, the Poisson estimates is found to perform quite well under various heteroskedasticity patterns and under rounding errors for the dependent variable. Therefore, in the subsequent estimates of (5), we use the Poisson estimation techniques and report the estimates for $\alpha^s, \beta^s$ and $\delta^s$.

4 Results

We first estimate (5) with Poisson pseudo maximum likelihood function. We use origin country and destination city fixed effects to capture the variables $\mu^*_i$ and $\mu^*_j$ respectively. We initially ignore skill differences by performing the estimation with aggregate migration flows. Then, we let coefficients vary by education level (sub-section 4.2) and account for income differences at origin that might lead to heterogeneity in the educational quality and other characteristics of the migrant flows (sub-section 4.3). Finally, we present a large set of robustness checks.

4.1 Local and national network externalities

In the first benchmark estimation, we do not differentiate between skill levels and assume that the coefficients ($\mu^*_i, \mu^*_j, \delta^s, \alpha^s, \beta^s$) are homogenous across skill groups. The dependent variable $N_{ij}$ in (5) measures the total migration flows from country $i$ to U.S. metropolitan area $j$ between 1990 and 2000. As explained above, the Poisson estimator takes care of the issues raised by the presence of large number of zeros for the migration flows. We use robust estimates, which is important with the Poisson estimator. Indeed, failure to do that often lead to underestimated standard errors and unrealistic t-statistics above 100. The standard errors are not reported to safe space but they usually lead to estimates of $\delta^s, \alpha^s, \beta^s$ with t-statistics lower than 10.\footnote{Results are also available upon request.}

The use of the full sample involves the inclusion of micro-states with idiosyncratic migration patterns. Many of these countries have fewer than a total of 500 migrants in the United States and, due to imperfect sampling, their distribution across the US
cities is not properly captured in the census data. Following Card (2009), we adjust
the initial sample and leave out micro states which we define in terms of the total size
of their diaspora in the US. We use different threshold values of this criterion: 1040,
2000, 7300 and 10000 migrants in the US which correspond to 135, 113, 104 and 99
source countries, respectively. These samples account between 98.8 and 99.9 percent
of all migrants and the respective results are reported in columns (1)-(4) of Table 1.

The estimate of the national diaspora effect is in line with previous results, such
as in Beine et al. (2010). The key parameters are quite stable across subsamples
which is mainly due to the fact that we capture almost all of the migrants in the
US, although we leave out a number of origin countries. We find that a one percent
increase in the initial stock of diaspora leads to approximately one percent increase
in the bilateral migration flow over a period between 1990 and 2000, given by the
coefficient of $\alpha + \beta$. The results further suggest that the diaspora effect is composed
of about one fourth by the national policy effect ($\frac{\beta}{\alpha+\beta}$) and the rest by the local
assimilation effect ($\frac{\alpha}{\alpha+\beta}$). Our implied multiplier associated with the policy effect is
in line with the one obtained by Jasso and Rozenzweig (1986). Finally, the effect of
the distance is also quite consistent with a coefficient of around -0.5, regardless of the
sample size.

All of the results in columns (1)-(4) were based on the flows of migrants aged over
15 at time of arrival, regardless of current or arrival age. Next, we use alternative
definitions of migration flows and show that our estimates are roughly similar. In
column (5), the migrants are aged between 15 and 65 at time of arrival and are in
the US as of 2000, so it excludes elderly immigrants. In column (6), we take only
male migrants aged between 15 and 65 at the time of their arrival between 1990 and
2000. In both of these cases, the results are fairly robust to the choice of alternative
measures of the migration flows. The main difference is that the national policy effect
is found to be slightly higher for men, indicating the local assimilation effect might
influence male migration less strongly when compared to women.

Our identification strategy rests on the definition of metropolitan areas by the
US Census bureau which defines the location of our local network/diaspora. In other
words, we assume the migrant and his local diaspora network are located within
the same US metropolitan area. In order to test the robustness of this particular
assumption, we modify the definition of the geographic area corresponding to the local
network. We consider that the $M_{ij}$ variable is composed by the number of migrants
from country $i$ living in metropolitan area $j$ as well as in neighboring metropolitan
areas that are located within 100 miles from the center of $j$.

In general, in about 50 percent of the cases, this leads to an increase in the size of the network. Column
(7) provides the estimation results of this change in the geographic area definition.
We find that both effects are roughly similar with the estimates of the comparable
regression, presented in column (4). The assimilation/network effect is relatively

---

8When we modify $M_{ij}$, we end up naturally modifying $\Pi_{ij}$ in (5) as well. More specifically an
increase (resp. decrease) in $M_{ij}$ implies a decrease (resp. increase) in $\Pi_{ij}$.  

---

10
stronger and but the policy effect is somewhat lower than in the benchmark regression.

### Table 1. Overall Network Effects - per sub-samples

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Different diaspora sizes</th>
<th>Alternative mig. definitions</th>
<th>Geogr. area</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>$\alpha + \beta$</td>
<td>0.964</td>
<td>0.965</td>
<td>0.965</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.259</td>
<td>0.250</td>
<td>0.247</td>
</tr>
<tr>
<td>$\delta$</td>
<td>-0.510</td>
<td>-0.498</td>
<td>-0.490</td>
</tr>
<tr>
<td>Total US diaspora</td>
<td>1040</td>
<td>2900</td>
<td>7300</td>
</tr>
<tr>
<td># observations</td>
<td>32912</td>
<td>27346</td>
<td>2168</td>
</tr>
<tr>
<td># incl countries</td>
<td>135</td>
<td>113</td>
<td>104</td>
</tr>
<tr>
<td>% incl US immig.</td>
<td>99.9</td>
<td>99.7</td>
<td>99</td>
</tr>
<tr>
<td>Migrant def.</td>
<td>All</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>City FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: ML Poisson estimates of equation (1). All parameters significant at the 1 percent level; otherwise mentioned; robust estimates; Estimation carried out on migrants aged 15 and over, on the 1990-2000 period; threshold in terms of the size of the total diaspora at destination (across all U.S. metropolitan areas).

### 4.2 Education level

The strength of the diaspora effect tends to decline with the education and the skill levels of the migration flows. The main reason is that unskilled migrants face higher assimilation costs and policy restrictions. Hence they rely more on the diasporas to overcome these barriers. Among recent papers in the literature, McKenzie and Rapoport (2010) use individual data from Mexico and Beine et.al (2010) use bilateral data at the country level to confirm these patterns.

In line with the existing literature, we differentiate between migrant flows based on their education levels to identify different skill categories. There is a certain level of imperfection in the census data since the education level is given by the number of years of completed education as reported by the migrants who come from different countries with different education regimes. Comparison across origin countries is difficult, but, we aggregate these into three different categories as is usually done in the literature (Docquier et al., 2009). These categories are (i) low skilled migrants with less than 11 schooling years; (ii) medium skilled migrants with more than 11 schooling years up to high school degree; (iii) the high skilled migrants who have some college degree or more.

We estimate (5) for these three education levels separately and the results are presented in Columns (1)-(3) of Table 2. We specifically focus on the migrants who
completed their education prior to migration and did not receive any further education in the United States in order to separate out migrants who entered as children with their families and who entered for education purposes on special student visas. In line with previous results, we find that the total diaspora effect \((\alpha + \beta)\) decreases with the education level of migrants, from 1.146 for low skilled to 0.884 for high skilled migrants. Comparing skilled and unskilled migrants, we find the local assimilation effect, given by \(\alpha\), is higher for low skilled migrants relative to high skilled migrants - at 0.763 vs. 0.655. The difference in the policy effect of the diaspora is, however, much more significant - 0.383 vs. 0.229. These results indicate that the diasporas are more important for the low skilled migrants but the effect is even stronger in overcoming national policy barriers in both relative and absolute terms.

The education distinctions we used above do not fully take into account the heterogeneity in the quality of education across origin countries. Migrants from different countries will nominally have the same education levels but a university diploma obtained in Canada would, on average, imply higher human capital level than a diploma obtained in a poorer developing country. Educational quality differences might be especially severe since the results are only for migrants who have completed their education at home.

In an innovative paper, using some measures of the observed skills for immigrants in Canada that obtained their education at home, Coulombe and Tremblay (2009) are able to estimate some skill-schooling gap. This approach provides some measure of the quality relative to the national education quality in Canada. They show that the average gap with Canada can amount to more than 4 years of education for some countries.\(^9\) If the quality of education differs among migrants with the same nominal education levels, the ability to migrate outside family reunification programs or other legal channels might be low. In that case, one could expect the national visa and the local assimilation effects to be higher.

There is no common measure of quality of education by origin country. Nevertheless, Coulombe and Tremblay (2009) show that the skill-schooling gap is highly correlated with the level of GDP per head in the origin country. In line with this approach, we estimate (5) following the World Bank income classification while continuing to use the thresholds in terms of size of the US diaspora. These groups are (i) low income countries, (ii) middle income countries and (iii) high income countries.

Income levels of the origin countries of course capture many effects in addition to the quality of education, such as the level of development of financial markets, ability to finance migration expenses, domestic political conditions, quality of economic institutions and various other push factors. Results of this estimation exercise are reported in Columns (4)-(6) of Table 2. We find that the overall diaspora effect

\(^9\)See also Mattoo, Neagu and Ozden’s (2008) exploration of the brain waste effect where migrants with seemingly similar education levels but from different countries end up at jobs with varying levels of quality in terms of human capital requirements. They conclude that differences in educational quality in the origin country and selection effects explain a large portion of these differences.
decreases with income level from 1.905 for low income countries to 0.968 for high income countries. In line with the previous estimates of columns (1)-(3), we find that most of the variation is driven by the national visa/policy effects. The effect of the diaspora size through the visa effect for high-income countries is a minuscule 0.211. On the other hand, it is 0.439 for middle income and 1.173 for low income countries. These results show clearly that the diaspora plays an important role in providing migrants from low income countries legal access to the US. On the other hand, the assimilation effect shows almost no variation - it is 0.732 for low income countries and 0.757 for high income countries. Finally, low-skill migrants are much more sensitive to distance as seen with the sharp decline in the coefficient of distance with income levels.

Table 2. Results - Education level and quality

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Low skilled</th>
<th>Medium skilled</th>
<th>High skilled</th>
<th>Low Income</th>
<th>Middle Income</th>
<th>High Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha + \beta$</td>
<td>1.146</td>
<td>0.905</td>
<td>0.884</td>
<td>1.905</td>
<td>1.126</td>
<td>0.968</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.383</td>
<td>0.149</td>
<td>0.229</td>
<td>1.173</td>
<td>0.439</td>
<td>0.211</td>
</tr>
<tr>
<td>$\delta$</td>
<td>-0.778</td>
<td>-0.452</td>
<td>-0.493</td>
<td>-1.364</td>
<td>-0.883</td>
<td>-0.171</td>
</tr>
<tr>
<td># obs</td>
<td>25168</td>
<td>25168</td>
<td>25168</td>
<td>2904</td>
<td>12826</td>
<td>10164</td>
</tr>
<tr>
<td># Countries</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>12</td>
<td>53</td>
<td>42</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>City FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: ML Poisson estimates of (5) on countries with less than 7300 migrants. All parameters significant at the 1 percent level, otherwise mentioned; robust estimates.

4.3 Distance thresholds

Distance plays a key role in migration patterns as an important barrier. Furthermore, it has a different impact on migrants with varying skill levels and, as a result, operates as a selection mechanism. This differential impact is reflected in the distance coefficients in the earlier estimations in Table 2. Even though we have country fixed effects which may control for bilateral distances in many gravity estimations, due to the sheer size of the United States, there is still significant variation in terms of the distance and accessibility from origin countries to different American cities. For instance, the Caribbean and Central American countries that are close to the US, will send more migrants to cities in the south compared to the north. In the subsequent estimations, we define far and close countries on the basis of the minimal distance to the US border with a cutoff of 6790 kilometers which is the median distance in terms of pairs of origin countries and US metropolitan areas. We also consider the effect of distance for different education levels - low and high skilled.
First, we find that distance plays a much more important role for migrants coming from far away countries. The coefficient of the distance variable is significantly lower in absolute value when the origin countries are closer to the US and these tend to be Latin American and Caribbean countries. Second, the overall diaspora effect is slightly higher when origin countries are far away but this is not statistically significant. However, there is a difference in terms of the composition. The national policy effect is higher for far away countries while the local assimilation effect is more important for closer countries.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>All skill types</th>
<th>Low skilled</th>
<th>High skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha + \beta)</td>
<td>0.970</td>
<td>1.060</td>
<td>1.152</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.218</td>
<td>0.368</td>
<td>0.336</td>
</tr>
<tr>
<td>(\delta)</td>
<td>-0.331</td>
<td>-1.065</td>
<td>-0.648</td>
</tr>
</tbody>
</table>

Log likelihood

<table>
<thead>
<tr>
<th># Obs</th>
<th>14762</th>
<th>10406</th>
<th>14278</th>
<th>9680</th>
<th>14278</th>
<th>9680</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>City FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: ML Poisson estimates of (5) on the flow of migrants aged 15 and over from countries with more than 10,000 migrants in the US. All parameters significant at the 1 percent level, except those superscripted n (non significant). If not mentioned, robust estimates. Cut off value to define far and close: 6790 kilometers.

We obtain more nuanced results when we compare the importance of distance for different education levels. For unskilled migrants, distance seems to be a very significant deterrent to the extent that it becomes prohibitive. We find that for the unskilled migrants from distant countries, the policy effect is almost non-existing. On the other hand, for skilled migrants from far away countries, the visa effect is much stronger when compared to nearby countries. Finally, we see that the difference in the local assimilation effect between distant and nearby countries becomes small when we control for the skill level. The earlier difference in Columns (1)-(2) is simply due to the skill composition of migrants. In other words, once the migrants pass the border and enter the US, the local assimilation effect of the diaspora does not differ based on the country of origin.

### 4.4 Dropping small cities

In order to assess the robustness of our results, it might also be desirable to measure to what extent our findings are driven by the inclusion of small cities which we define as metropolitan areas with a low number of migrants. One of the reasons of that concern is that small cities exhibit a lot of zero values at the dyadic level for \(\ln(1 + M_{ij})\) and
\[ \ln(1 + \Pi_{ij}), \] leading in turn to spurious correlation between the two variables. To that sake, we reestimate equation (5), dropping small countries and small cities. As before, we drop countries with less than 7300 or 10000 migrants in the US. Further, we also drop small cities having less than 2900 migrants or less than 7000 migrants. Combining the two cut-off values yields four alternative regressions which are reported in Table 4. The results are highly robust to the exclusion of small cities. The value of the assimilation and of the policy effect are hardly affected by the exclusion of small countries and small cities.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Minimal size of total US diaspora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7300</td>
</tr>
<tr>
<td>Parameters</td>
<td>Minimal size of city</td>
</tr>
<tr>
<td></td>
<td>2900</td>
</tr>
<tr>
<td>( \alpha + \beta )</td>
<td>0.965</td>
</tr>
<tr>
<td>( \beta )</td>
<td>0.249</td>
</tr>
<tr>
<td>( \delta )</td>
<td>-0.532</td>
</tr>
<tr>
<td># observations</td>
<td>23716</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
</tr>
<tr>
<td>City FE</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Poisson estimates. All parameters significant at the 1 percent level; otherwise mentioned; robust estimates; Estimation carried out on migrants aged 15 and over, on the 1990-2000 period; threshold in terms of the size of the total diaspora at destination (across all U.S. metropolitan areas).

### 4.5 Flows in the 90’s vs 80’s

Our analysis in the previous sections focused on the effect of the 1990’s diaspora level on the migration flows between 1990 and 2000. Our dataset includes parallel measures for the migration patterns in the 1980’s. It is useful to perform the same estimation on the flows observed in the 1980’s to observe if there has been any important changes in the patterns and the relative effects. One possibility is to combine observations from the 1980’s with those from the 1990’s and adopt a panel approach by pooling the data from the two cross section. Nevertheless, it is very likely that the expected effects (\( \alpha \) and \( \beta \)) will be different over time and prevent us from pooling our data across time.

While it is unclear if there has been any significant cultural shift in the US to change the assimilation effect (\( \alpha \)), the US immigration policy has experienced several modifications between the 1980s and the 1990s. The main change is the strengthening of the family reunification between the 1980’s and the 1990’s with the 1990 US immigration act which clearly expanded opportunities for family reunification. This leads to two additional aspects that are not directly modified with the 1990 law but
exert important effect on the extent of family reunification in the aftermath. The first feature is that the immediate relatives of US citizens are not limited or capped under the law. Therefore, quotas for family reunification that are established in the law can be exceeded in practice if the applications by immediate family members are above the estimated number by the law for a given year. As a result, as more immigrants obtain US citizenship, there is a natural upward trend in the number of people coming under the family reunification scheme *sensu lato*. The second important feature is related to the amnesty or legalization programs undertaken in 1986 via the Immigration Reform and Control Act. As large numbers of undocumented migrants obtain legal resident status, they become eligible to bring additional family members through the legal channels. Those who became citizens were even able to bring their relatives through the uncapped channel. Therefore, these policy developments suggest that the estimated $\beta$ coefficient should have increased between the 1980’s and 1990’s.

Table 5. Flows in the 90’s vs 80’s

<table>
<thead>
<tr>
<th>Parameters</th>
<th>90’s</th>
<th>80’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha + \beta$</td>
<td>0.965</td>
<td>1.146</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.247</td>
<td>0.383</td>
</tr>
<tr>
<td>$\delta$</td>
<td>-0.483</td>
<td>-0.778</td>
</tr>
<tr>
<td>Nobs</td>
<td>23958</td>
<td>25168</td>
</tr>
</tbody>
</table>

Notes: All = All skill types; LS = low skilled; HS = high skilled. ML Poisson estimates of (5) on countries with more than 7300 migrants. All parameters significant at the 1 percent level; robust estimates. Estimation carried out on migration flows of individuals aged 15 and over.

Table 5 reports the estimates obtained for the 1990’s and the 1980’s. For each period, we consider three alternative types of migrants: those with low education level, those with high education and all migrants. Our estimates suggest that the family reunification effects are uniformly stronger for the 1990’s than for the 1980’s for all immigrant categories. Naturally, the change is more important for unskilled migrants, more than doubling within a decade. This is in line with the impacts associated with the legalization programs which primarily effect undocumented migrants. In short, the comparison between the 1980’s and the 1990’s shows that our estimation of the policy effect is in line with what is expected from the evolution of the US immigration policy. On the other hand, the coefficient of $\alpha$ stays around 0.75 for low skilled and 0.65 for high-skilled migrants across both decades, indicating the local assimilation effect did not change considerably.
4.6 Additional econometric issues.

Our benchmark regression model involves a stock-flow relationship. Since immigrant stocks at the beginning of the period includes past migration flows, the current model could also be written as an autoregressive model involving current and past migration stocks. In such a framework, the network effect can be recovered from the estimated autoregressive coefficient. In panel data and cross section framework, the estimation of autoregressive model is nevertheless subject to some bias, known as the Nickell bias (Nickell, 1981). Furthermore, the bias is supposed to be serious for panel data with few periods, like in our case.

A traditional approach to take care of the Nickell bias is to use instrumental variables to predict value of $M_{ij}$ using a variable that is uncorrelated with $N_{ij}$. Tenreyro (2007) proposes a method to combine Poisson estimators with instrumental variables estimator which can be done in the GMM context. Dropping the $s$ subscript for convenience of exposition and aggregating all explanatory variables $c^*_s$, $m^*_i$, $d_{ij}$ and $M_{ij}$ into the $x_{ij}$ vector, the Poisson estimator $\gamma$ solves the following moment condition:

$$\sum_{ij}^n [N_{ij} - \exp(x_{ij}\gamma)]x_{ij} = 0. \quad (7)$$

In order to instrument $x_{ij}$, one can use as an alternative the following GMM estimator denoted by $\psi$:

$$\sum_{ij}^n [N_{ij} - \exp(x_{ij}\psi)]z_{ij} = 0 \quad (8)$$

in which $z_{ij}$ represent the vector of instruments, i.e. variables that are supposed to be correlated with $M_{ij}$ but uncorrelated with $N_{ij}$. In this robustness analysis, we rely on the GMM estimator $\psi$ using two potential instruments. Those instruments are the variables $\ln(1 + M_{ij})$ and $\ln(1 + \Pi_{ij})$ observed in 1950, i.e. about 40 years before the observed diaspora in the benchmark regression. Those variables are well correlated with their values in 1990 (part of the stock of 1990 was already present in 1950). In contrast, the network and policy effects on the flows during the 1990’s associated to migrants already present in 1950 are supposed to be quite limited. One drawback of using such an instrument is that it leads to a change in the available sample. This is first due to the fact that the definition of origin countries and US metropolitan areas has significantly changed between 1950 and 1990. A second reason is the independence of many former colonies during the 50’s and 60’s.\textsuperscript{10} Therefore, in the robustness analysis, we show on comparable samples that our benchmark regressions relying on Poisson regressions are not affected by the potential correlation between $M_{ij}$ and $\nu_{ij}^s$. In other terms, we show that the estimates for $\gamma$ and for $\psi$ are quite close on identical samples.

\textsuperscript{10}For instance, all US migrants coming from former European colonies were identified as migrants coming from the colonizing country.
In practice, we first reestimate the Poisson regressions and use those estimates as a benchmark with respect to the 'IV' (GMM) estimates. Table 6 report the estimates of the Poisson on the restricted sample (column 2) and of the combined Poisson and IV estimates à la Tenreyro in column 3 and 4. In column 3 we use one instrument only, i.e. \( \ln(1 + M_{ij}) \) observed in 1950 while in column 4 we supplement the instrument set with \( \ln(1 + \Pi_{ij}) \) observed in 1950, too.

The results show that our estimates are strikingly robust to the instrumentation procedure. Both the total diaspora effect and the estimated policy effect are very similar across estimation methods. They are also very similar regardless of the inclusion or not of \( \ln(1 + \Pi_{ij}) \) variable observed in 1950.

### Table 6. Instrumenting network sizes

<table>
<thead>
<tr>
<th></th>
<th>Poisson</th>
<th>Poisson+IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \alpha + \beta )</td>
<td>1.029</td>
<td>1.015</td>
</tr>
<tr>
<td>( \beta )</td>
<td>0.338</td>
<td>0.356</td>
</tr>
<tr>
<td>( \delta )</td>
<td>-0.711</td>
<td>-0.750</td>
</tr>
<tr>
<td>Nobs</td>
<td>23541</td>
<td>23541</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>City FE</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: First column: ML Poisson estimates of (5). Two last columns: GMM estimates. All parameters significant at the 1 percent level; robust estimates. Estimation carried out on migration flows of individuals aged 15 and over. Instrument for IV estimates in col 3: local network size observed in 1950. Instruments for IV estimates in col 4: local and national network sizes observed in 1950.

Another potential econometric issue is generated by the presence of unobserved bilateral factors \( \nu_{ij}^s \) influencing the bilateral migration flows \( N_{ij}^s \). In absence of observations for those factors, their effect will be included in the composite error term given by \( \nu_{ij}^s + u_{ij}^s = n_{ij}^s \). If those factors also influence the diaspora \( M_{ij} \), this leads to some correlation between the error term and one covariate, invalidating the use of OLS (and Poisson) estimators. This is known as the reflection problem (Mansky,

---

Footnotes:

11 Note that we checked the robustness of the maximum likelihood estimator. Indeed, the use of the Pseudo Poisson Maximum Likelihood might lead to convergence problems and might generate spurious convergence. Following Santos Silva and Tenreyro (2010), the issue might be addressed through some iterative procedure dropping the insignificant country and city fixed effects.

12 Note that the non observation of \( \nu_{ij}^s \) is also due to the fact that our data is of cross sectional nature. In fact, if one could introduce the time dimension in (5), one could estimate \( \nu_{ij}^s \) through bilateral fixed effects. In our case, the use of time through a panel data framework is not possible because of the clear rejection of the pooling assumption. In fact, it is obvious that some parameters such as the one capturing the visa effect (\( \beta^s \)) are not constant over time. In the robustness analysis, we document the change in the US migration policy and show that the \( \beta^s \) parameter changes between the 1980’s and the 1990’s.
1993). Once again, the solution to that issue is to use instrumental variable, with instruments uncorrelated with \( N_{ij} \) and \( \nu_{ij} \), but correlated with \( M_{ij} \).

The key question is whether the unobservable components are highly persistent over time (more than 50 years). If it is the case, our instrument (correspond variables in 1950) is likely to be correlated with \( \nu_{ij} \), invalidating the exclusion condition. For instance, one often quoted unobserved factor involves climate variables such as average temperature of average rain falls in the sense that they will affect the choice of migrants coming from some countries. It is claimed that contemporaneous migrants (i.e. the \( N_{ij} \) variable) and the previous ones (i.e. the \( M_{ij} \) variable) follow the same climatic pattern. Nevertheless, our data show that it is not the case. Mexican migrants in the 1950’s had obviously a strong preference for nearby metropolitan areas with similar climatic conditions. This is obviously not the case anymore since Mexican migrants have spread out all over the US. Another example involves the Porto Rican migrants who tend to concentrate in New York where the climate is quite different from the one prevailing in Porto Rico.

To sum up, our IV procedure takes care of the reflection problem to the extent that the factors not included in the regression (either because that are omitted or because they are unobservable) are not highly persistent over time, i.e. over a period of 50 years.

4.7 Influence of the homogeneity assumption

Our identification strategy assumes that the functional form for the local assimilation and the visa externalities of the diaspora network are identical. In particular, we assume that both externalities are log-linear. It might also be desirable to assess whether this homogeneity assumption affects our results. One possibility is to estimate directly \( \alpha \) and \( \beta \) in equation (4). Unfortunately, this is not possible if one accounts for unobserved heterogeneity across origin countries via inclusion of the \( \mu_{i} \) in the estimated equation. As an alternative, we can proceed to a two-step estimation of equation (4). In the first step, we estimate the following equation via Poisson maximum likelihood estimation:

\[
\ln N_{ij}^{s} = \mu_{i}^{s} + \mu_{j}^{s} - \delta^{s} \ln d_{ij} + \alpha^{s} \ln (1 + M_{ij}) + \xi_{ij} \tag{9}
\]

where \( \xi_{ij} \) is an error term. This first estimation yields the coefficient for \( \alpha \) for the 1990’s. Interestingly, using a cut-off value of 7300 US migrants to exclude small countries, we get an estimated value for the coefficient of \( \alpha \) equal to 0.719. This is strikingly close the implied value of \( \alpha \) in Table 1, i.e. 0.714. Then, in order to recover the coefficient of \( \mu_{i}^{s} \), we can estimate the value of \( \beta \) with the following country-level regression :

\[
\mu_{i} = \gamma + \beta \ln(1 + M_{i}) + \rho' X_{ik} + \omega_{i} \tag{10}
\]

where \( \omega_{i} \) is an error term and where \( X_{ik} \) are country-specific time-invariant factors that are supposed to be captured by the country fixed effect. The inclusion of the
$X_{ik}$ is supposed to account for the variability in the $\mu_i$ that is unrelated to the policy effect. We consider four potential factors: trade openness captured by the share of export to gdp, gdp per head in 1990, a dummy variable capturing whether the country speaks English or not and a regional dummy as defined by the World Bank official classification. In line with section 4.3., the sign of the GDP/head variable should be expected to be negative as rich countries are shown to have a lower value for the policy effect. The estimation tends to confirm this expectation.

The following exercise should be nevertheless seen as a sub-optimal procedure, aimed only at guessing the importance of the linearity assumption for both externalities. The reason is two-fold. First, the method is a two-step method, which is less efficient than the one step estimation methods like the one used before. Second, the inclusion of observable variables and the estimation of country fixed effects lead to small sample sizes.

Table 10 reports the estimation results. The results suggest that the impact of economic development is negative, as expected. The estimated value of $\beta$ ranges between 0.36 and 0.57. This is slightly higher than in Table 1, leading to policy effect representing about 40% of the total network effect instead of the previously obtained 25%. Nevertheless, given that the procedure is quite different, the results are relatively similar and this robustness check procedure confirms that the local assimilation effect tends to dominate the global policy effect of the diaspora network. All in all, this exercise suggests that our identification strategy yields results that make sense, but that the linearity assumption might lead to a small underestimation of the value and the share of the policy effect.

Table 7. Assessing the linearity assumption: two-step estimation

<table>
<thead>
<tr>
<th>Dep variable:</th>
<th>$\mu_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Constant$</td>
<td>-2.670  -3.799 -4.203 -3.270</td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.569$^b$ 0.577$^b$ 0.537$^b$ 0.363$^c$</td>
</tr>
<tr>
<td>$GDP/head$</td>
<td>-0.119$^a$ -0.136$^a$ -0.119$^a$ -</td>
</tr>
<tr>
<td>$Openness$</td>
<td>-0.026  0.021  -  -</td>
</tr>
<tr>
<td>$English$</td>
<td>0.196  -  -  -</td>
</tr>
<tr>
<td>$Region dummies$</td>
<td>-0.267  -  -  -</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.182  0.163  0.128  0.030</td>
</tr>
<tr>
<td>Obs</td>
<td>97  97  100  105</td>
</tr>
</tbody>
</table>

Notes: First step estimation: see equation (4). Cut-off values of inclusion of origin countries: 7300 migrants. Second step estimated equation: $\mu_i = \xi + \beta \ln(1 + M_i) + \rho X_i + u_i$. Note that the first step estimated $\alpha$ is 0.719. a, b, c: significant at 1%, 5% and 10% level respectively.
5 Conclusion

This paper deals with the network effect in international migration. In particular, it proposes a new approach aimed at disentangling the two main components of the network effect, i.e. the assimilation effect and the policy effect. Using migration data at the city level and at the country level, we are able to isolate the policy effect from the global network effect for the US.

We show that for the US, the average network elasticity is close to unity, with 25% of it associated to the policy effect and 75% of it associated to the assimilation effect. This baseline result is in line with the existing literature (Jasso et al., 1986, 1989) suggesting that the medium-run migration multiplier associated to family reunification lies around 1.3.

Furthermore, we find that the size and the composition of the network effect vary across a set of characteristics of the migrants. The policy effect is larger for unskilled migrants and those coming from low income countries. Furthermore, the policy effect has significantly increased between the 80’s and the 90’s, reflecting a higher share of kinship based migration in the US, favored either by changes in the immigration laws or by other policies such as the legalization programs.

6 References


Card, David (2009), Immigration and Inequality, NBER Working Paper 14683.

Coulombe, Serge, Jean-Francois Tremblay (2009), Migration and Skill Disparities Across the Canadian Provinces, Regional Studies 43 (1), 5-18.


