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A large part of the literature on frictional matching in the labor market assumes bilateral 
meetings between workers and firms. This ignores the frictions that arise when workers and 
firms meet in a multilateral way and cannot coordinate their application and hiring decisions. 
I analyze the magnitude of these frictions. For this purpose, I present an equilibrium search 
model of the labor market with an endogenous number of contacts between workers and 
firms. Workers contact firms by applying to vacancies, whereas firms contact applicants by 
interviewing them. Sending more applications and interviewing more applicants are both 
costly activities but increase the probability to match. In equilibrium, contract dispersion 
arises endogenously and workers spread their applications over the different types of 
contracts. Estimation of the model on the Employment Opportunities Pilot Projects data set 
provides values for the fundamental parameters of the model, including the cost of an 
application, the cost of an interview, and the value of non-market time. These estimates are 
used to determine the loss in social surplus compared to a Walrasian world. Frictions on the 
worker and the firm side each cause approximately half of the 4.7% loss. There is a potential 
role for activating labor market policies, because I show that for the estimated parameter 
values welfare is improved if unemployed workers increase their search intensity. 
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1 Introduction

1.1 Motivation and Summary

In most labor markets, the interaction between firms and workers is of a decentralized nature. In such a
world, matching is often subject to frictions in the sense that it takes time and/or effort to find the right
trading partner. Various authors have proposed equilibrium models which account for such frictions, with
Mortensen & Pissarides (1994) and Burdett & Mortensen (1998) being prominent examples. These models
have been used to analyze a wide spectrum of topics, such as the effects of various government policies.1

An important assumption in most of this literature - either explicit or implicit - is that meetings between
workers and firms are bilateral. In reality however, this is rarely the case. Firms typically receive multiple
applications after posting a vacancy and need time to select the worker that they wish to hire. This screening
may cause a significant delay between the moment at which a worker applies to the job and the point at
which the firm makes the hiring decision.2 Such delays provide the workers with an incentive to send
multiple applications at once in order to reduce the risk of remaining unemployed for a prolonged period of
time.3 Hence, multilateral meetings - rather than bilateral meetings - are a natural feature of decentralized
labor markets.

The distinction between both types of meetings is important since they have different implications for
the nature of the competition between agents. With bilateral meetings, a firm and a worker only compare
each other to the option value of continued search when deciding whether to match or not. When meetings
are multilateral instead, an applicant that would have gotten the job if he had been the only one meeting the
firm, may now be rejected just because another applicant is considered slightly more qualified. Likewise, a
firm wanting to hire a certain worker may now fail to succeed just because the worker prefers a position at
a different firm. Hence, multilateral meetings may introduce additional frictions into the matching process.

These frictions get magnified when sending applications and screening workers are costly activities. A
firm turning down the application of a worker imposes a negative externality since the worker had spent
valuable resources on applying. Similarly, a worker rejecting a job offer imposes a negative externality on
the firm by causing the resources spent on screening to be wasted. These externalities can potentially have
important implications for understanding labor market outcomes or for the desirability of government pro-
grams that aim to increase the search intensity of unemployed workers. It is therefore crucial to understand
the magnitude of these externalities and of the costs that generate them.

In this paper, I analyze these issues, both theoretically and empirically by endogenizing the matching func-
tion. I present an equilibrium model with multilateral meetings between workers and firms in which firms
post contracts to attract applicants. Unemployed workers observe these contracts and decide where to apply.
An important novelty compared to existing models is that both workers and firms can choose how many
agents on the other side of the market they want to contact. Sending many applications reduces the worker’s
probability of remaining unemployed, but is costly. Therefore, a worker will typically decide to apply to
multiple but not all firms. A similar structure holds for the firms. A firm contacts applicants by inviting
them for an interview. Interviewing applicants is a costly but necessary activity before job offers can be
made, hence it reduces the probability for a firm to remain unmatched. As a result, firms typically choose to
interview multiple but not all applicants.

A lack of coordination between individual workers and firms will cause the limited number of contacts
on both sides of the market to result in the two types of frictions outlined above. Throughout this paper, I

1See e.g. Lise et al. (2005), Cahuc et al. (2008), and Albrecht et al. (2009).
2For example, van Ours & Ridder (1992) study vacancy durations in the Dutch labor market and find that after most applications

have arrived, it still takes a firm on average about 3 months to fill the vacancy. Larger values are found for positions requiring
university degrees.

3See for example Morgan & Manning (1985).
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will refer to the first friction (two workers may apply to the same firm; only one can get the job and the other
one has wasted a costly application) as the search friction. I call the corresponding friction on the firm side
(two firms may interview the same candidate; only one can hire him and the other firm has wasted a costly
interview) the recruitment friction.4

Together, these frictions are responsible for the externalities in the labor market. The two fundamental
parameters of the model, i.e. the cost of an application and the cost of an interview, determine the magnitude
of the frictions and the externalities. For example, if the cost of an application is really low, workers will
decide to apply a lot and the search friction will be limited. However, firms now face a lot of competition
for each worker, so the recruitment friction will be severe. On the other hand, if the cost of an interview is
sufficiently close to zero, firms would be able to contact all applicants and the recruitment friction would be
absent.

After specifying the model, I characterize the equilibrium. I show that different types of contracts are
offered by the firm. Some firms offer low wages but contact many applicants, while other firms do the
opposite. The number of contract types is equal to the maximum number of applications that workers send
in any given period and firms are indifferent between all types. Workers face a trade-off between the wage
and the job offer probability. Applications to low wage firms are more likely to turn into job offers than
applications to high wage firms. I show that workers maximize the payoff from their application portfolio
by spreading their applications over the different types of contracts.

The model is estimated on the Employment Opportunities Pilot Projects data set, which contains detailed
information on the recruitment processes of a sample of firms. The estimation provides values for the search
cost and the recruitment cost, as well as the workers’ value of non-market time. An additional application is
found to cost a worker 0.73 hours of his time. Firms incur a cost equal to 1.97 hours of production for each
interview. The value of non-market time is estimated at 0.950. I discuss that this high estimate is necessary
to explain why firms do not spent a larger amount of resources on recruitment.

By simulating the equilibrium for different values of the two cost parameters, the market equilibrium
can be compared with worlds in which one of the frictions or both of the frictions are absent. Social surplus
is 4.7% lower in the market equilibrium than in a Walrasian world. Search and recruitment frictions each
contribute approximately the same amount to this output loss. Each is also responsible for roughly half of
the frictional unemployment arising in equilibrium.

Finally, I consider a social planner’s problem to analyze the effect of UI eligibility rules that specify
a minimum search intensity. The planner chooses a certain minimum level, after which workers decide
whether they comply or not. I show that if unemployed workers increase their search intensity in response
to these rules, firms indeed need to spend more resources on recruitment. Nevertheless, their matching
probability decreases due to the increased competition that they face for any given candidate. However, for
modest increases in the search intensity, social surplus rises.

1.2 Related Literature

This paper adds to the literature in multiple ways. First of all, the paper extends the literature on micro-
founded matching technologies by analyzing a model with an arbitrary number of contacts on both the
supply and the demand side. Let A denote the number of applications per worker and let I be the number
of interviews per firm.5 Various authors have analyzed different combinations of A and I. For example, the
seminal stable matching outcome of Gale & Shapley (1962) can be interpreted as a model with A→ ∞ and

4Albrecht et al. (2004, 2006) discuss both frictions in a theoretical setting, but call them the ‘urn-ball friction’ and the ‘multiple-
application friction’ respectively. See also Gautier & Moraga-Gonzalez (2005).

5In the model described in this paper, both variables are endogenous and have a stochastic nature (see section 2). I abstract
from that here in order to keep the comparison with the existing literature as clear as possible.
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Figure 1: Related literature

I → ∞.6 This case, which has been applied extensively in the analysis of many different markets, would
allow all workers in my model to apply to all firms and all firms to contact all workers.7

The other extreme is a situation with A = 1 and I = 1, i.e. all workers send one application and all firms
can contact one worker. This is the matching technology explored by e.g. Peters (1991, 2000), Acemoglu
& Shimer (2000) and Burdett et al. (2001). Julien et al. (2000) study a model in which workers apply to all
firms, and firms can bid for the services of one worker, i.e. A→ ∞ and I = 1. Albrecht et al. (2004, 2006)
and Galenianos & Kircher (2009) also impose I = 1, but study the case in which workers send multiple
applications simultaneously, i.e. A > 1.8 Gautier & Moraga-Gonzalez (2005), Kaas (2010) and Gautier
et al. (2009) study a similar matching process in a random search setting. Finally, Kircher (2009) studies a
model with A > 1 applications in which firms can contact all their applicants (I→ ∞).

By allowing for arbitrary values of A and I, the model presented here includes the matching technologies
in all the cited papers as special cases. Moreover, it goes beyond these papers by exploring combinations of
A and I that have not been studied before. This is summarized in figure 1. A related but equally important
novelty is that the aggregate matching function in this paper is endogenous. While most of the literature
simply imposes a particular functional form as a technological constraint, the matching function in this
paper arises as the result of optimal decision making on both sides of the market given the costs that agents
face to meet a trading partner. In that sense, the paper is related to Lagos (2000).

The empirical analysis in section 4 will indicate which values of A and I are consistent with the data and
which values of the cost parameters correspond to them. As argued, these values can be used to assess the
efficiency of the decentralized equilibrium and the magnitude of the search and recruitment friction. I do
so in section 4.6. In this sense, the paper is related to contributions by e.g. Ridder & van den Berg (2003),

6The paper by Gale & Shapley (1962) includes a lot more heterogeneity on both sides of the market than most other models. I
do not consider that aspect in this discussion.

7Parallel to the search literature, a large literature on matching has been developed with extensions, refinements and applications
of the original model by Gale & Shapley (1962). See Roth (2008) for a recent overview.

8In a technical appendix to their paper, Albrecht et al. (2006) briefly discuss what happens if firms can contact a second
applicant (I = 2).
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Flinn (2006), and Gautier et al. (2009), who all empirically assess the matching frictions and/or efficiency
in the labor market. Knowledge of A and I is also relevant for further research along the lines of ? who
show that a seller’s optimal sales mechanism depends on whether the meetings with buyers are bilateral (i.e.
A = I = 1) or multilateral (A > 1, I > 1).

Finally, this paper adds to the literature on recruitment decisions by firms. Barron et al. (1985), Barron
et al. (1987) and Burdett & Cunningham (1998) study the determinants of employer search measures using
the same data set as this paper. van Ours & Ridder (1992, 1993) and Abbring & van Ours (1994) analyze
Dutch recruitment data and find evidence for simultaneous rather than sequential search by firms. All these
papers have in common that they consider partial equilibrium models. Villena-Roldan (2008) develops an
equilibrium model in which workers are heterogeneous and firms choose how many applicants to screen.
However, all workers apply only once, which makes the model unsuitable for studying recruitment frictions.

The structure of the paper is as follows. Section 2 introduces the model in a static setting. The dynamic
model is presented in section 3. Section 4 reports the results of the empirical analysis and section 5 con-
cludes. Proofs are relegated to the appendix.

2 Static Model

This section introduces a simple model of two-sided simultaneous search. In order to develop intuition for
the key mechanisms, a number of strong assumptions are made. In particular, 1) the model is static, 2)
the number of applications per worker is exogenous, and 3) workers are homogeneous in their productivity.
These assumptions will be relaxed in the dynamic model in the next section. That model will embed the
static model presented here in the sense that the agents solve it in each period.

2.1 Setting

Consider a labor market with a mass u of unemployed workers and a positive measure v of firms, determined
by free entry. Both types of agents are risk-neutral. All workers supply one indivisible unit of labor, while
each firm has a position that can be filled by exactly one worker. Workers aim to match with firms with
vacancies by sending applications. Both firms and workers are homogeneous in terms of their productivity
while matched.

The period consists of several phases. At the beginning of the period, firms decide whether they want
to enter the market by creating a vacancy. The vacancy cost is kV > 0. In order to attract applications from
workers, entering firms post a contract c. Each firm commits to its contract for the remainder of the period.
A contract consists of two elements, both of which are choice variables to the firm.

The first component of the contract is the fraction w ∈W ≡ [0,1] of output that the firm promises to pay
to the worker that it hires. Specifying a worker’s compensation as a piece rate rather than a fixed amount will
later prove notationally convenient, but is without loss of generality in the setup that I consider. Therefore,
I will typically refer to w as the worker’s wage. The second component of the contract is a recruitment
technology r ∈ R ≡ [1,∞), which can be interpreted as a measure for the amount of time that the firm will
spend on interviewing workers, or alternatively as a measure for the number of recruiters that the firm hires.
The frictions in the labor market are less severe if the firm spends a lot of time on interviewing, as I will
explain below. A higher value of r therefore increases the matching probability of both the firm and the
workers applying to the firm. However, choosing a higher value for r is also more costly for the firm. I
assume that the cost of recruitment technology r equals kR (r−1) ≥ 0.9 Summarizing, a contract c is pair

9The first unit of capacity is free, since it assumed to be included in the entry cost. This assumption is not restrictive, but rules
out a situation in which a large kR dissuades firms from interviewing any candidates which would lead to the collapse of the market.
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(r,w). For future reference, let C =R×W denote the set of possible contracts and v(c) the mass of firms
offering a contract c, with v =

∫
C v(c)dc.

The next phase is the search phase, during which unemployed workers can search for a job by sending
applications. Workers observe all posted contracts and base their search decision on this information. Since
there is a delay between sending the application letters and learning their result, workers may have an
incentive to send multiple applications simultaneously (see Morgan & Manning, 1985). Sending multiple
applications is more costly than applying only once, since each application takes time and effort, but has two
positive effects. First, it reduces the risk of not getting any job offer and remaining unemployed. Second,
if there is wage dispersion in equilibrium, it increases the probability to get a high wage offer. For the
moment, I assume that all workers send A applications in each period, where A is a finite integer larger than
1. Workers decide to which contracts they wish to apply.

After the applications are sent, the recruitment phase starts. During the recruitment phase, each of
the firms will interview a number of applicants. The number of interviews R that a firm can conduct (its
‘interview capacity’) is a random variable which follows a distribution around the firm’s recruitment tech-
nology r. The intuition for this setup is as follows. In reality, a firm can roughly determine the number
of applicants it is able to interview by hiring more or fewer recruiters or by allocating more or less time
to recruitment. However, the exact capacity often also depends on factors that cannot be anticipated by
the firm. For example, some recruiters may unexpectedly not be available at the moment of hiring, or the
screening of a certain candidate takes longer or shorter than foreseen. Having a stochastic element in the
recruitment capacity captures this. For computational reasons, it is convenient to have a distribution that
generates closed-form expressions for variables like the matching probability. As I will show in section 2.3,
a geometric distribution does precisely this. Therefore, I assume that the actual interview capacity follows a
geometric distribution with parameter r−1

r ∈ [0,1]. Hence, the probability that the firm can interview R ∈N1

applicants is given by
( r−1

r

)R−1 1
r , which implies that the expected capacity is exactly equal to the firm’s

investment, i.e. E [R] = r.10

The firm’s interview capacity R is realized at the beginning of the recruitment phase and therefore not
observed by the workers. Note that the actual number of interviews a firm conducts may be constrained
by the number of applicants. If the firm receives a applications, the number of interviews taking place will
be min{a,R}. If the number of applicants exceeds the interview capacity, candidates are chosen randomly
since they all seem identical to the firm. Remaining applicants are rejected. During the interview the firm
learns the outcome of a stochastic process that is iid over all firm-worker pairs. With probability φ ∈ (0,1],
the firm and the worker form a good match and are indeed able to produce output. I call these candidates
‘qualified’. With probability 1−φ however, the match is considered a bad match which would be completely
unproductive. The firm rejects these unqualified applicants.

In the next phase, matches are formed between workers and firms. In order to understand the mechanism
governing this process, consider workers and firms as nodes in a bipartite network. The applications that are
sent create links between the workers and the firms. The rejection of some applicants by the firms during the
recruitment phase destroys some of these links. The matching is now assumed to be stable on the remaining
network in the Gale & Shapley (1962) sense.11 Hence, matches form such that no firm remains unmatched
while one of its qualified candidates is hired by another firm at a lower wage or remains unemployed. If
this were not true, both the firm and the worker could do better by deviating and forming a match together.
Stability can be motivated by a process in which firms offer their job sequentially to the candidates, and

As will become clear, the model now converges to the model in which all firms interview one applicant, as described in Galenianos
& Kircher (2009), for kR→ ∞.

10Compared to a situation in which firms can interview a deterministic number of applicants R̃, the approach followed here has
a second advantage. Estimating the continuous parameter r is computationally much easier than estimating the discrete parameter
R̃.

11In the Gale & Shapley (1962) model, the network is complete. This paper allows for an arbitrary level of sparseness.
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workers are free to reconsider their options.12 Ties are broken randomly.
In the last phase, production and consumption take place. Each worker-firm pair creates Y units of

output, of which the worker consumes a fraction w. The firm obtains the remaining fraction 1−w of output.
To let the notation be as similar as possible to the dynamic model that I introduce in the next section, I
denote the worker’s payoff given a wage w by VE (w) = ω0 +wY , for arbitrary ω0 ≥ 0, and the firm’s payoff
by VF (w) = (1−w)Y . Unemployed workers receive a payoff from unemployed benefits and/or household
production. I denote this outside option by VU ≥ 0. To prevent a collapse of the market, I impose that the
surplus from a match is positive, i.e. VU < ω0 +Y .

In the next section, I derive the workers’ and firms’ optimal strategies. As standard in the literature,
I impose symmetry, i.e. identical agents have identical strategies. Further, I require the strategies to be
anonymous, in the sense that they cannot be conditioned on the identity of a specific worker or firm.

2.2 Expected Payoffs

Consider a worker who has observed all posted contracts and has to decide where to apply. This decision
is not trivial, since the worker does not only care about the wage that he can earn at a particular firm, but
also about the probability that the firm will hire him. The worker realizes that relatively many workers may
apply to firms which post high wages or large investments in recruitment, which implies that the matching
probability at those firms will be lower. This provides the worker an incentive to consider firms with lower
wages or recruitment investments as well. Although the worker can distinguish firms that post different
contracts, the anonymity assumption implies that the worker applies to all firms that post the same contract
with equal probability. The application strategy of the worker can therefore be written as

c = (c1, . . . ,cA) = ((r1,w1) , . . . ,(rA,wA)) ,

where ci indicates to what contract the worker sends his i-th application. It will convenient to assume -
without loss of generality - that w1 ≤ . . .≤wA and that the worker accepts the contract with the higher index
in case of a tie. I denote the distribution of workers’ strategies by G. In other words G(c̃) denotes the
probability that an unemployed worker sends his first application to a contract (r,w) below c̃1 = (r̃1, w̃1), his
second application to a contract below c̃2, et cetera. The support of G is denoted by G.

Let ψ (c) denote the endogenous probability that an application to a firm posting c = (r,w) results in
a job offer. The result of each application is independent of the result of the workers’ other applications.
Therefore, the worker’s job finding probability Ψ0 (c), which equals the probability that the application
strategy c results in at least one job offer, is given by

Ψ0 (c) = 1−
A

∏
i=1

(1−ψ (ci)) . (1)

A worker accepts the job offer that gives him the highest wage. Hence, he ends up in a position paying wi if
he gets a job offer from that firm and if none of the applications to higher wages resulted in an offer. This
happens with probability ∏

A
j=i+1 (1−ψ (c j))ψ (ci). The worker will then receive the value of employment

12In more detail: each firm randomly selects one of its qualified applicants, if any, and offers him the job. The applicant in
question might get multiple offers. He compares them, tentatively accepts the best one and rejects all others. If a firm gets rejected,
it can make new job offers if it still has other qualified applicants. After this, workers again compare all offers, potentially including
the one tentatively accepted in the previous round, accept the best one for the moment and reject all other. The process continues
until no firm can make an offer anymore. All offers that are tentatively accepted at the end of this process become matches between
the worker and firm in question. This is known as the Deferred Acceptance Process, first described by Gale & Shapley (1962). For
finite economies it converges in finite time. Since the labor market described here contains a continuum of agents, I impose stability
by assumption following Kircher (2009).
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at the wage wi, i.e. VE (wi), but has to give up his outside option, i.e. the value of unemployment VU .
Summing over all possible values i ∈ {1, . . .A} gives the expected payoff of the strategy c.

VS (c) =VU +
A

∑
i=1

A

∏
j=i+1

(1−ψ (c j))ψ (ci)(VE (wi)−VU) . (2)

Workers choose the application strategy c that maximizes their expected payoff, i.e.

V ∗S = max
c

VS (c) (3)

Firms with vacancies post a contract c in order to maximize their expected payoff. Denote the distribution
of contracts by F (c), its density by f (c) and its support by F . Let η (c) denote the hiring probability for a
firm posting c, which indirectly depends on the number of firms v(c) posting this specific contract. Then,
firms solve

max
c

VV (c) ,

where
VV (c) =−kV − kR (r−1)+η (c)VF (w) . (4)

The free entry condition implies that firms will continue to enter and post a contract c until the expected
payoff of this strategy becomes zero. Hence, in equilibrium we must have

VV (c)≤ 0, (5)

and v(c)≥ 0, with complementary slackness, for all c ∈ C.

2.3 Queue Lengths

After specifying the expected payoffs, I now turn to the matching probabilities for the workers and the firms.
For this, consider a group of firms all posting same contract c and the group of workers each sending one
or more applications to these firms. The anonymity assumption implies that the workers apply to each of
the firms with equal probability. Hence, the number of applicants that a firm faces is a random variable. If
the number of workers and firms were finite, it would follow a binomial distribution (see Albrecht et al.,
2004). With a continuum of agents on both sides of the market, as I consider here, the number of applicants
per firm converges to the Poisson distribution. This distribution can by characterized by one parameter, the
queue length λ (c), which equals the ratio of the total number of applications sent and the total number of
firms at a given contract c.

Before I describe the matching probabilities in the model presented here, it is instructive to briefly
consider a few special cases, which already have been studied in the literature. For example, consider a
world in which all workers send one application and all firms interview one applicant. Then it can be shown
that the queue length λ (c) determines the matching probabilities for the workers and the firms. After all,
firms can be certain that their job offer will be accepted and hire thus as long as they have at least one
qualified applicant, i.e. with probability φ

(
1− e−λ (c)

)
. Since there are λ (c) as many workers as firms, an

individual worker finds a job with probability φ
(
1− e−λ (c)

)
/λ (c) (compare to e.g. Acemoglu & Shimer,

2000 and Burdett et al., 2001).
If workers start to send multiple applications, the recruitment technology of the firm becomes more

important. If firms can still only interview one applicant, recruitment frictions arise because of congestion.
A firm may offer the job to an applicant who rejects the offer because he got a better offer somewhere
else. Hence, firms do not only care about the probability to have at least one applicant, but also about the
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(endogenous) probability that their job offer will get accepted. I denote this probability by 1−Ψ(c). Hence,
firms now match with probability φ (1−Ψ(c))

(
1− e−λ (c)

)
, while the workers’ job offer probability still

equals φ
(
1− e−λ (c)

)
/λ (c). This is the case analyzed by Galenianos & Kircher (2009), which corresponds

with kR→ ∞ (i.e. r = 1) in the model presented in this paper.
On the other hand, if kR = 0 (i.e. r→ ∞), firms can freely interview all their applicants. In this case,

recruitment frictions do not play a role. The firm may still offer the job to a worker who rejects it because
of a better offer somewhere else, but this worker does not cause congestion since the firm can now go back
to any other applicants it had. Hence, the firm will match as long as it has at least one qualified applicant
without better offers. Kircher (2009) shows that the expected number of such applicants per firm follows a
Poisson distribution with mean

µ (c) = φ (1−Ψ(c))λ (c) . (6)

Clearly, µ (c)≤ λ (c). Both firms and workers only care about the queue length µ (c) now. The firm’s hiring
probability equals 1− e−µ(c) and the workers’ job offer probability φ

(
1− e−µ(c)

)
/µ (c).

For intermediate values of kR, firms will typically interview neither one nor all applicants. The actual
number of interviews that a firm conducts depends on its number of applicants and its interview capac-
ity, both of which are endogenous random variables. However, the following lemma shows that a simple
expression can be derived for the expected number of interviews.

Lemma 1. A firm posting a contract c = (r,w) and with queue length λ (c) will in expectation interview
r
(
1− e−λ (c)/r

)
applicants.

Note that the expected number of interviews equals 1−e−λ (c) for r = 1 and converges to λ (c) for r→∞,
exactly in line with the discussion above. If the firm interviews multiple candidates, it may be able to make
a second offer if the first one gets rejected, provided it still has other qualified applicants. However, if the
firm runs out of qualified applicants, it will remain unmatched for the remainder of the period, even if it
still has applicants which it has not interviewed yet. Hence, congestion caused by recruitment frictions still
arises, but to a lesser extent than for kR→ ∞.

As I will show below, the firms’ hiring probability and the workers’ job offer probability are determined
by a third queue length in this case. I denote this queue length by κ (c). In order to distinguish between the
three different queue lengths, I call λ (c) the gross queue length, µ (c) the net queue length, and κ (c) the
effective queue length.13 The effective queue length κ (c) is defined as a weighted average of the gross and
the net queue length, with 1

r and r−1
r being the respective weights, i.e.

κ (c) =
1
r

λ (c)+
r−1

r
µ (c) . (7)

Note that this definition implies that κ (c) = λ (c) if r = 1 and κ (c)→ µ (c) if r→ ∞.
In order to derive expressions for the workers’ job offer probability ψ (c) and the firms’ hiring probability

η (c), I consider a firm posting a contract c and I assume for the moment that the gross queue length λ (c)
and the net queue length µ (c) are exogenously given. This also pins down the queue length λ (c)− µ (c)
of applicants that will never match with the firm. The actual number of applicants of each type follows
a Poisson distribution. Given realizations for the number of qualified applicants without better offers and
for the number of other applicants, it is straightforward to calculate the matching probabilities. Taking
expectations then yields the following result.

Proposition 1. A firm posting c = (r,w) with gross queue length λ (c), net queue length µ (c), and effective
queue length κ (c) hires with probability

η (c) =
µ (c)
κ (c)

(
1− e−κ(c)

)
. (8)

13Kircher (2009) calls µ (c) the effective queue length, since it is the relevant notion in the world that he describes.
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A worker that applies to the firm gets a job offer with probability

ψ (c) =
φ

κ (c)

(
1− e−κ(c)

)
. (9)

By convention, η (c) = 0 and ψ (c) = φ if κ (c) = 0.

The lemma shows that the job offer probability ψ (c) indeed solely depends on κ (c). The firm’s hiring
probability η (c) depends on κ (c) and, through µ (c), on the probability 1−Ψ(c) that its job offer will get
accepted. Hence, the matching probabilities have the same structure as in the special cases discussed above,
i.e. they only depend on r and w through the queue lengths. This similarity in the structure is an important
result. It implies that in the derivation of the equilibrium, we can build on the insights gained by Galenianos
& Kircher (2009) and Kircher (2009), which means that the model is tractable despite its additional richness.
Note further that equations (8) and (9) indeed collapse to the special cases for r = 1 (i.e. kR→∞) and r→∞

(i.e. kR = 0).
Note that the scope of proposition 1 and lemma 1 is not limited to directed search models, since they

describes the matching technology. The applications that workers have sent during the application phase
have created a network. The structure that is imposed implies that this network can be fully characterized
by the queue lengths. The lemma and the proposition take these variables as given and therefore hold for
other application processes, e.g. random search, as well. The application process however matters for the
equilibrium expressions for the queue lengths. For example, under random search the gross queue length
would be independent of the wage offered by a firm. This is not the case in the directed search setting of this
paper. Firms that post higher wages or better recruitment technologies attract more applicants. Formally,
the gross queue length is defined by the following integral equation

v
∫ w

0

∫ r

1
λ (r̃, w̃) f (r̃, w̃)dr̃dw̃ = u

A

∑
i=1

Gi (c) ∀c ∈ C, (10)

where Gi (c) denotes the marginal distribution of G with respect to ci. The right hand side denotes the total
mass of applications that are sent by the workers to contracts no higher than c. The left hand side represents
the mass of applications received by firms posting a contract no higher than c. Both masses need to be the
same for each possible c.

Equation (6) shows that once the gross queue length λ (c) is known, the acceptance probability is the
only endogenous variable still required to calculate the net queue length µ (c). Consider a worker who
gets a job offer with his i-th application. Let Ĝi (c−i;c) denote the conditional distribution of the remaining
applications, given that the i-th application was sent to contract c. The worker will accept the offer w if and
only if all applications sent to higher wages do not result in a job offer. This is the case with probability
∏

A
j=i+1 (1−ψ (c j)). Finally, let P̂(i;w) denote the conditional probability that the worker who got the offer

w applied there with his i-th application. Then the acceptance probability equals

1−Ψ(c) =
A

∑
i=1

P̂(i;w)
∫ A

∏
j=i+1

(1−ψ (w j))dĜi (c−i;c) . (11)

2.4 Equilibrium Definition and Summary

Before defining the equilibrium, consider the out-of-equilibrium beliefs. It is necessary to specify the firms’
beliefs about the workers’ response to a deviation in the contract posting. In particular, a deviating firm
has to anticipate how many workers will apply, since that will affect the hiring probability. As standard in
literature, I use the market utility condition. The market utility is defined as the highest level of utility from
search that an unemployed worker can achieve by following the optimal application strategy. This is V ∗S ,
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as defined in equation (3). The market utility condition postulates that workers will apply to the deviating
firm in a way that provides them with exactly the same utility as they could have obtained by applying to
non-deviating firms. The intuition is that if the deviant would provide the workers with a higher level of
utility, all workers would have an incentive to apply to this firm, which would drive up the queue length and
reduces the expected payoff. The reverse holds if the deviant offered a lower level of utility. Hence, κ (c)
has to be such that the market utility condition holds.

I now define an equilibrium as follows:

Definition 1. A static equilibrium is a tuple {v,F,G} such that there exists κ (·) satisfying

1. Profit Maximization: VV (c) =V ∗V ≡maxc′VV (c′) for all c ∈ F ;

2. Free Entry: V ∗V = 0 if v > 0 and V ∗V ≤ 0 if v = 0;

3. Utility Maximization: VS (c) =V ∗S ≡maxc′VS (c′) for all c ∈ G.

4. Consistency: κ (·) is consistent with equations (6) to (11) and fulfills the market utility condition.

The first and third condition respectively guarantee optimal behavior by firms and workers. Firms with
vacancies choose the contract c that maximizes their discounted future payoff. Workers choose the appli-
cation portfolio c that maximizes their value of search. The second condition represents free entry. Firms
continue to post a certain contract until its value becomes zero. If no firm posts a specific contract, it must be
the case that the associated value is non-positive. The last condition ensures that the effective queue length
satisfies its requirements.

In the next subsections, I analyze the existence of an equilibrium. I start by analyzing the worker’s
optimal strategy, after which I turn to the firm’s decision problem. I derive the following result.

Summary 1. An equilibrium exists and has the following properties: A different types of contracts are
posted; firms that post a higher wage invest less in recruitment; each worker applies exactly once to each
type of contract.

2.5 Workers’ Application Behavior

An unemployed worker observes all contracts posted by the firms and has to decide to which firms he wishes
to apply. When considering a firm, the worker is concerned about two things: the wage w that he can earn
in the firm and the probability ψ (c) that the firm will hire him. Hence, while observing the contracts, the
wage is of direct interest to him, whereas he only cares about the recruitment technology through the job
offer probability. This probability is a function of the effective queue length κ (c), as shown in equation (9).
Hence, everything else being equal, the worker prefers firms with short effective queue lengths. Whether
the short queue lengths are the result of only few other workers applying to the same firm, i.e. a low λ (c),
or of a good recruitment technology, i.e. a high r, is irrelevant to the worker.14

Since workers only care about the wage and the job offer probabilities, an equilibrium relation exists
between these two variables. This relationship has to be negative, i.e. applications to firms that offer higher
wages are less likely to result in a job offer. After all, a worker would not apply to a certain firm if he can
get a higher wage with a larger probability somewhere else. So, after observing the contracts, the worker

14Since r does not enter the worker’s decision problem directly, the derivation of the worker’s optimal search strategy is anal-
ogous to the analysis in Galenianos & Kircher (2009) and Kircher (2009). I therefore keep the exposition brief and refer to their
papers for additional details. See also Chade & Smith (2006).

11



knows in equilibrium what job offer probability is associated with each one of them. He then chooses the
application portfolio that maximizes his expected lifetime utility. Hence, his A applications must solve

max
(c1,...,cA)∈FA

VU +
A

∑
i=1

A

∏
j=i+1

(1−ψ (c j))ψ (ci)(VE (wi)−VU) . (12)

Note that this optimization problem has a recursive structure. The application to a firm offering wi is
only relevant if all applications to higher wage firms, i.e. the applications to wages wi+1, . . . ,wA, fail to
result in a job offer. This simplifies the derivation of the workers’ optimal strategy considerably. Define Va

as the maximum value for the worker provided by the first a applications and let V0 =VU . Then the worker’s
optimal choice for the i-th application (i ∈ {1, . . . ,A}) solves

max
c∈F

ψ (c)VE (w)+(1−ψ (c))Vi−1. (13)

This recursive structure provides several important insights. First, the worker’s decision where to apply
does not depend on the exact number of applications that he sends. This simplifies the implementation of
heterogeneity in the number of applications. I discuss this in more detail in section 3. Second, note that
this recursive equation describes the equilibrium relationship between the job offer probability ψ (c) and the
wage w. Since ψ (c) only depends on κ (c), it also defines a relationship between κ (c) and w. This implies
that in equilibrium κ (c) and ψ (c) only depend on r through w. The intuition for this result is as follows: if
two firms offer the same wage but a different recruitment technology, then the one with the better technology
is more attractive and will receive more applications. Hence, the gross queue length λ (c) will go up until
workers are again indifferent between both firms. This will be the case if the effective queue length κ (c) is
the same.

Now, let w̄i denote the highest wage that yields utility Vi if the outside option equals Vi−1, i.e.

w̄i = sup{w ∈W|ψ (c)VE (w)+(1−ψ (c))Vi−1 =Vi} ∀i ∈ {1, . . . ,A}

Additionally, define w̄0 as the lowest wage that would receive applications. The following lemma states that
the values w̄i bound the interval to which application i can be sent in equilibrium.

Lemma 2. The optimal application strategy for any worker is to send application i ∈ {1, . . . ,A} to a wage
in the intervalWi ≡ [w̄i−1, w̄i].

This lemma confirms that workers do not necessarily want to send all their applications to the firm
offering the highest wage. Specifically, workers send their first application to a low wage, although higher
wages may be offered as well. The reason is that workers also care about the probability to be hired and
a high wage implies a low job offer probability. The lemma also reveals a second characteristic of the
equilibrium. Note that the first application provides the worker with a value V1. The second application is
sent to a wage w in the intervalW2. By the definition of w̄1, this application by itself provides a value that is
at most V1 (if w = w̄1) and typically strictly less (if w < w̄1). The reason why workers nevertheless want to
send their second application to this interval rather than to the intervalW1 is the fact that the outside option
is different. The outside option to the first application is the value of unemployment VU , whereas failure
of the second application still yields V1 > VU to the worker. Because of this better safety net, the worker
is willing to take more risk with his second application, i.e. apply to a firm that offers a higher wage but a
lower job offer probability.

Since lemma 2 restricts the workers’ application behavior, it has implications for the job offer probability
ψ (c) and the effective queue length κ (c) . For example, no worker will apply to wages below w̄0. Therefore,
the queue length at firms offering such wages equals 0 and the corresponding job offer probability equals
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φ .15 Firms posting wages in [w̄0, w̄1] receive the first application of each worker. This application must
yield a utility V1 to the worker, hence the job offer probability is such that the condition V1 = ψ (c)VE (w)+
(1−ψ (c))V0 holds. In a similar manner conditions for the remaining intervals can be derived. This is
summarized in the following lemma.

Lemma 3. In any equilibrium, the job offer probability ψ (c) satisfies the following conditions

ψ (c) = φ ∀w ∈ [0, w̄0] , r ∈R (14)

ψ (c)VE (w)+(1−ψ (c))Vi−1 = Vi ∀w ∈ [w̄i−1, w̄i] , r ∈R, i ∈ {1, . . . ,A} , (15)

for some tuple (V1, . . . ,VA), V0 = VU , w̄0 = V−1
E (V1), and w̄i = V−1

E

(
V 2

i −Vi−1Vi+1
2Vi−Vi−1−Vi+1

)
. By equation (9), the

conditions (14) and (15) also determine the effective queue length κ (c).

Given a vector of values (V0, . . . ,VA), this lemma describes the workers’ application behavior at all
possible contracts, including the ones not offered in equilibrium. This will prove to be convenient in the
derivation of the firms’ optimal strategies in the next subsection.

2.6 Firms’ Contract Posting

I now analyze the strategy of a firm. Consider a tuple (V0, . . . ,VA) and the associated cut-off values (w̄0, . . . , w̄A−1),
which by lemma 3 describe the application behavior of workers. Firms have to decide what contract
c = (r,w) to post, taking into account this application behavior as well as the strategies followed by the
other firms. The free entry condition implies that firms will continue to choose c until the expected payoff
of this choice becomes zero. Hence, in equilibrium we must have

−kV − kR (r−1)+η (c)VF (w)≤ 0,

and v(c)≥ 0, with complementary slackness, for all c ∈ C.
Lemma 3 implies that we can distinguish between A different types of firms. Specifically, I define a firm

to be of type i ∈ {1, . . . ,A} if it posts a wage in the intervalWi = [w̄i−1, w̄i] and receives the i-th application
of a worker.16 In choosing its optimal strategy, a firm of type i must take into account that a worker may
reject its wage offer because he got a better offer at a different firm. Clearly, the probability Ψ(c) that the
worker rejects the offer is lower for higher type firms and it is zero for the firms offering the highest wages.
Moreover, by lemma 3, we know that this probability is constant within the interval Wi, since workers
send one application to a given interval only. Individual firms take Ψ(c) as given, since it only depends
on the behavior of workers and higher type firms. Denote the rejection probability in interval Wi by Ψi.
Substituting this variable and the equations (6) and (7) into (8) shows that for all wages in the intervalWi

the hiring probability η (c) can be written as

η (c) =
rφ (1−Ψi)

1+(r−1)φ (1−Ψi)

(
1− e−κ(c)

)
. (16)

Note that the first factor on the right hand side is independent of the exact value of w∈Wi, but only depends
on the recruitment technology r. On the other hand, the second factor only depends on the contract through
the effective queue length κ (c).

15A deviant applying to a firm posting a wage below w̄0 faces no competition from other workers and will get an offer if he is
qualified for the job.

16Posting a wage in the interval [0, w̄0] does not lead to any applications and can therefore not be part of an equilibrium strategy.
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By substituting (16) into the firm’s objective function, we can write the optimization problem of a firm
of type i as

max
w∈Wi,r∈R

rφ (1−Ψi)
(
1− e−κ(c)

)
VF (w)

1+(r−1)φ (1−Ψi)
− kV − kR (r−1)

s.t. ψ (c)VE (w)+(1−ψ (c))Vi−1 =Vi,

where the constraint specifies the level of utility that the firm has to provide to the workers in order to attract
applicants. This optimization problem can be solved by exploiting the fact that there exists a one-to-one
relationship between the wage and the effective queue length. Each wage w provides the firm with a certain
queue length κ . Rather than by choosing a wage, the firm can therefore also solve this optimization problem
by choosing an effective queue length. First, using the worker’s payoff function and equation (9), I rewrite
the constraint as

w(κ)≡ 1
Y

(
Vi−1 +

κ

φ

Vi−Vi−1

1− e−κ
−ω0

)
,

which specifies the wage that the firm needs to post in order to attract a certain queue κ . Evaluating the
firm’s payoff function in this expression yields

VF (w(κ)) =VE (1)−Vi−1−
κ

φ

Vi−Vi−1

1− e−κ

Substituting this into the objective function eliminates the wage. Instead, we get an expression that depends
on the effective queue length κ and the recruitment technology r only. To be precise, the firm solves

max
κ∈Ki,r∈R

rφ (1−Ψi)
((

1− e−κ(c)
)
(VE (1)−Vi−1)− κ

φ
(Vi−Vi−1)

)
1+(r−1)φ (1−Ψi)

− kV − kR (r−1) (17)

where Ki ≡ [κ̄i−1, κ̄i] and κ̄i is the effective queue length that corresponds to w̄i.
We can now show that in equilibrium firms of different types will never offer the same wage. As a result,

wage dispersion is a fundamental characteristic of any equilibrium.

Lemma 4. In any equilibrium, for all i, j ∈ {1, . . . ,A}, firms of type i and j 6= i do not post the same contract.
In particular, they do not post the same wage.

The fact that in equilibrium κ does not directly depend on r makes it possible to maximize the objective
function over both variables independently. One can show that the objective function is strictly concave in
both κ ∈ Ki and r ∈ R. This implies that all firms of type i choose the same optimal queue length κ∗i and
recruitment technology r∗i , which are determined by either the solution to the first order conditions or the
boundary values. I summarize this in the following lemma.

Lemma 5. Consider a firm of type i ∈ {1, . . . ,A}. In any equilibrium, the firm’s optimal effective queue
length κ∗i equals

κ
∗
i = max

{
log

φ (VE (1)−Vi−1)

Vi−Vi−1
, κ̄i−1

}
(18)

and the firm’s optimal recruitment technology r∗a is given by

r∗i = max

{√
1−φ (1−Ψi)

φ (1−Ψi)

kV − kR

kR
,1

}
(19)
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This lemma provides several important insights. First of all, note that in equilibrium exactly A different
contracts will be offered. Hence, F = {c∗1, . . . ,c∗A}, where w∗i is the wage that corresponds to κ∗i . Workers
will send one application to each of the A types of contracts. As the lemma shows, firms that post low wages
and are therefore likely to be rejected by applicants (i.e. Ψi is large), will buy more interview capacity than
firms that offer higher wages. Hence, firms face a trade-off between paying a high wage and investing a lot in
recruitment. Further, equation (19) reveals that firms also invest more in recruitment if only few candidates
are qualified (i.e. φ is small), or if the cost per interview kR is small compared to the fixed cost of opening a
vacancy kV , which is in line with intuition.

Note that κ̄0 = 0, which implies that the optimal queue length κ∗1 for the lowest wage firms is given
by the interior solution log φ(VE (1)−V0)

V1−V0
. In general, it is not straightforward to derive whether the interior or

the boundary solution prevails for κ∗i , i ∈ {2, . . . ,A}. Only in special cases such a result can be obtained.
Galenianos & Kircher (2009) show that in a model with one interview per firm (kR→∞), the optimal queue
length equals the boundary value κ̄i−1 for i ∈ {2, . . . ,A}. In a similar model but with an unlimited number
of interviews (kR = 0), the optimal queue length for a type i firm is defined by the solution to the first order
conditions, as shown by Kircher (2009). Such a general result cannot be derived for the model presented
here. Numerical simulations however indicate that for a large range of parameter values for kR, the boundary
solutions arise. Only for kR very close to zero, the interior solution may occur.

Each optimal effective queue length κ∗i is associated with a gross queue length λ ∗i and a net queue length
µ∗i . By combining equations (6) and (19), we can express the optimal recruitment technology as a function
of these queue lengths:

r∗i = max

{√
λ ∗i −µ∗i

µ∗i

kV − kR

kR
,1

}
.

2.7 Equilibrium Outcome and Efficiency

The previous subsections have derived some important characteristics of the equilibrium. In particular, the
optimal recruitment technology for a firm posting the i-th contract has been determined. After substituting
this expression into the firm’s problem, the model is isomorphic to Galenianos & Kircher (2005, 2009).
Hence, an equilibrium can be shown to exist.

Proposition 2. A static equilibrium exists. It satisfies the properties derived in lemma 2 to 5.

As already shown by Galenianos & Kircher (2005, 2009), it is not straightforward to prove uniqueness
of the equilibrium. Numerical simulations however indicate that the equilibrium is in fact unique for a wide
range of parameter values.

For the efficiency properties of the equilibrium we can also build on the insights from the existing
literature. I summarize them here and in figure 2.

Summary 2. The equilibrium exhibits efficient (Walrasian) exchange for A→ ∞ and kR = 0 (i.e. r→ ∞).
If A = 1, A→ ∞ or kR = 0, the equilibrium is constrained efficient. For other combinations of A and kR the
equilibrium is constrained inefficient.

It is well-known that standard directed search models with one application per worker are constrained
efficient in the sense that a social planner subject to the same frictions as the decentralized market cannot
increase welfare (see e.g. Moen, 1997). This changes when workers send multiple applications. Albrecht
et al. (2006) and Galenianos & Kircher (2009) show that if firms can contact only one applicant, the decen-
tralized market equilibrium is not constrained efficient. The inefficiencies however disappear if A→ ∞, as
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Figure 2: Efficiency

follows from Julien et al. (2000) and Kaas (2010).17 Kircher (2009) discusses that for general A constrained
efficiency is only obtained if firms can contact all applicants, i.e. in terms of the current model r→ ∞ or,
equivalently, kR = 0.

The intuition for these results is as follows. Recall that while applying workers only care about the
effective queue length κ (c) at a given firm. Hence, if a firm changes the wage it posts, workers adjust
their application behavior until the new effective queue length at the deviant is such that the market utility
condition holds. However, firms do not only care about the arrival rate of applicants, but also about whether
one of the contacted applicants accepts the job offer. The probability of retaining a contacted worker does
not depend on the number of applicants that the firm has received, so in general the firm is not able to control
both dimensions with the one pricing instrument that it has, i.e. the wage that it posts. Only in special cases
such efficient pricing is possible. If A = 1, job offers will always be accepted and firms only need to focus on
the arrival rate. Reversely, if A→ ∞, the wage set by the firm plays no role in the arrival rate of applicants.
Finally, if r→∞, the probability to have a job offer accepted directly depends on the queue length, since the
firm can offer the job to all workers until one accepts. In terms of the model in this paper, κ (c) and µ (c)
coincide in that case, making efficient pricing possible.18

To conclude, note that if both the recruitment technology r and the number of applications tend to
infinity, i.e. r → ∞ and A→ ∞, the Walrasian outcome is obtained, as shown by Kircher (2009). This
suggests a natural procedure to investigate the magnitude of the frictions in the model. Given parameter
values, total social surplus in the market equilibrium can be calculated. This can be compared to the surplus
generated in the Walrasian outcome. The difference is then a measure for the loss in surplus due to the
frictions. I follow this approach in section 4.6 after discussing and estimating the dynamic version of the
model.

17Both papers consider a world in which firms can contact one worker only. It is however straightforward to show that their
efficiency results extend to environments in which multiple job offers are possible.

18See section 3.3 in Galenianos & Kircher (2009) and section VI in Kircher (2009) for a detailed discussion of this issue.
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3 Dynamic Model

In this section, I extend the simple static model of the previous subsection to a dynamic framework that
can be confronted with the data. I endogenize the workers’ values of employment and unemployment, the
unemployment rate u, and the workers’ search intensity. I further introduce worker heterogeneity to avoid
that too much of the wage dispersion in the data would be attributed to the frictions.

3.1 Setting

The key elements of the model are the same as in the previous section. However, a few elements differ. I
discuss each one of them in this subsection.

First, time is discrete and continues forever. Both firms and workers maximize the sum of expected
future payoffs, discounted at rate β0 ∈ (0,1). Firms are infinitely-lived, but an exogenous fraction τ of the
workers retires at the end of each period. Retired workers have a zero payoff forever after and are replaced
by new unemployed workers in order to keep the size of the labor force constant.19 Besides retirement, job
destruction is a second source of separations. At the end of each period, an exogenous fraction δ ∈ (0,1)
of the matches gets dissolved. Employed workers hit by the shock flow back to unemployment. In the
next period they can - like all other unemployed workers - search for a new job. Hence, a worker who is
employed in the current production phase may be employed at a different firm in the production phase of
the next period after experiencing a very short unemployment spell. Discreteness of the data may cause
this to look like a job-to-job transition, even though the model does not allow for on-the-job search in the
classic sense.20 The labor market is assumed to be in steady state, implying that the unemployment rate at
the beginning of the production phase must satisfy

uΨ0 = (1−u)(δ + τ−δτ)(1−Ψ0) ,

where Ψ0 denotes a worker’s matching probability.
Another new element is that the number of applications per worker is no longer exogenously given.

Instead, workers choose how many firms they wish to contact. Since optimization over a discrete variable
is cumbersome, I choose a specification that is similar to the one described in for the firms’ recruitment
technology.21 Unemployed workers choose a search intensity α ∈ R+ which is a measure for the time
they allocate to searching a job. The search intensity determines the expected number of applications that
a worker can send. However, as with the interview capacity, there is a stochastic element as well, e.g.
because a particular application takes more or less time than initially expected. Hence, the actual number
of applications follows a certain distribution that depends on α . I denote the fraction of workers with
search intensity α that can send a ∈ N0 applications by p(a|α) and the cumulative distribution function
by P(a|α) = ∑

a
i=0 p(i|α). In the empirical part I will assume a particular functional form for p(a|α), but

in this section I keep the analysis as general as possible by only making three assumptions: i) first order
stochastic dominance in α to make α interpretable as a search intensity; ii) P(1|α) < 1 for all α > 0 to
generate simultaneous search; iii) the support of the distribution is bounded to avoid an infinite number of
contracts. In particular, workers send at most A applications per period, where A is a potentially large but
finite integer. I denote the equilibrium distribution of search intensities by H (α) and its support byH.

A last new feature is worker heterogeneity. While firms continue to be homogeneous, I allow workers to
differ in their human capital, which will determine the amount of output that is created in a match. Workers
enter the labor market with human capital equal to y0, which is a draw from a distribution Fy (y) with support

19Retirement is important to keep the cross-sectional distribution of worker types stationary. See below for more details.
20See ? for on-the-job search in a directed search model with one application per period. The combination of simultaneous

search and on-the-job search is computationally challenging.
21See also Kaas (2010) for a similar setup.
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equal to (a subset of) (0,∞) . During his life, a worker experiences deterministic growth of his human capital
according to yt+1 = (1+θ)yt .22 I assume that β0 (1− τ)(1+θ)< 1.

Without further assumptions, the presence of heterogeneity among workers would render the model
intractable. The reason is that when firms face applicants with different productivity levels, the firm’s de-
cision problem becomes much more complex. Always interviewing the most skilled applicant is generally
not the optimal strategy, since that implies that the competition for these workers will be much higher than
for slightly less productive workers. Instead, firms will need to diversify and interview multiple types of
applicants with positive probability, while rejecting applicants with much lower productivity. This implies
that the firm’s strategy is a function of its total pool of applicants, which can be composed in infinitely many
ways.

To maintain tractability, I therefore make a few important assumptions. First, a worker’s human capital
y is public information and a different submarket exists for each type, such that workers with different skills
do not compete with each other.23 I impose this structure exogenously, but it can be generated endogenously
by assuming that firms that create a vacancy need to choose and post a production technology that allows
them to match with one specific type of workers only. I further assume that there is a continuum of workers
of each type, such that the expressions for the matching probabilities given in proposition 1 hold in each
submarket.

Finally, I assume that all relevant periodical costs and payoffs are scaled linearly by the worker’s
type. This guarantees that all Bellman equations are linear in y and therefore that the exact same con-
tracts ((r1,w1) , . . . ,(rA,wA)) are posted in each submarket. Hence, the structure is as follows. In each
submarket, the output of a match equals the amount of human capital y possessed by the worker. The firm
pays a fraction w of the output to the worker and keeps the remainder. Hence, the periodical payoff of the
worker is wy, while the firm obtains (1−w)y. Creating a job for a highly productive worker is more costly
than creating a job for a low-skilled worker, such that a firm opening a vacancy in submarket y incurs an
entry cost kV y. Likewise, the recruitment cost equals kR (r−1)y. Unemployed workers receive a payoff
from household production and/or unemployment benefits equal to hy, where h ∈ (0,1), and incur a search
cost kAαy.

3.2 Payoffs

In the static model, the workers’ and firms’ payoff functions from being matched were taken as exogenous.
In this section I endogenize them by deriving Bellman equations. The assumption that all costs and payoffs,
as well as the change in human capital, are proportional to y implies that the Bellman equations are propor-
tional to y as well. To simplify notation, I therefore specify the Bellman equations in efficiency units, i.e.
per unit of y.

Consider first a worker’s value VE (w) of being employed at a wage w at the beginning of the production
stage. The worker will have a periodical payoff equal to his wage. At the end of this period, he will lose
his job without retiring with probability δ (1− τ). In that case he will be searching for a new job at the
beginning of the next period and receive his value of search (1+θ)VS, which I derive below. If the match
does not get dissolved, the worker obtains (1+θ)VE (w). Hence, the the worker’s value function satisfies
the following Bellman equation

VE (w) = w+β ((1−δ )VE (w)+δVS) ,

where β = β0 (1− τ)(1+θ). Note that VE (w) indeed satisfies the linear structure assumed in the previous
section, with Y = 1

1−β (1−δ ) and ω0 =
βδVS

1−β (1−δ ) .

22It is important to allow for human capital growth since a Mincer equation reveals a strong influence of a worker’s age on his
wage. See section 4.2 for details.

23See van den Berg & Ridder (1998) for a similar approach.
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Next, consider the search decision of a worker looking for a job. In the previous section, the optimal
application portfolio was derived for an exogenous number of applications A. Now, workers jointly choose
their search intensity α and the optimal application portfolio c, which results in an equilibrium distribution of
workers’ strategies J (α,c) with support J . The recursive structure (13) of the application problem however
implies that an individual worker’s choice of which jobs to apply to, i.e. his choice of c, is independent of
his choice of search intensity α . Hence, we can write J (α,c) = G(c)H (α) with J = G×H. Consequently,
the workers’ value of search can can now be calculated by conditioning on the number of applications a first
and subsequently taking the expectation over a.24 Hence, the updated version of equation (2) in efficiency
units equals

VS (α,c) =VU +
A

∑
a=1

p(a|α)
a

∑
i=1

a

∏
j=i+1

(1−ψ (c j))ψ (ci)(VE (wi)−VU) . (2′)

Workers maximize this expression over α and c, such that the value of search equals

VS = max
α,c

VS (α,c)− kAα.

Using this, we can now derive the Bellman equation for the workers’ value of unemployment. During
the production phase an unemployed worker receives a payoff h. In the next period, he obtains the value of
search (1+θ)VS if he does not retire. Hence,

VU = h+βVS.

Next, I turn to the firm’s Bellman equations. A firm employing a worker at a wage w obtains a periodical
payoff 1−w. The match between the worker and the firm continues in the next period if no job destruction
shock or retirement takes place. Otherwise, the firm obtains the value of a vacancy, which in equilibrium
equals zero due to free entry. Therefore,

VF (w) = 1−w+β (1−δ )VF (w) ,

which is consistent with the specification VF (w) = (1−w)Y of the previous section. Finally, a firm with a
vacancy posting a contract c, gets a payoff VV (c) as specified in equation (4).

3.3 Equilibrium

The updated equilibrium definition is as follows:

Definition 2. A dynamic equilibrium is a tuple {u,v,F,G,H} such that there exists κ (·) satisfying

1. Profit Maximization: VV (c) =V ∗V ≡maxc′VV (c′) for all c ∈ F ;

2. Free Entry: V ∗V = 0 if v > 0 and V ∗V ≤ 0 if v = 0;

24Likewise, the gross queue length λ (c) is now defined by

v
∫ w

0

∫ r

1
λ (r̃, w̃) f (r̃, w̃)dr̃dw̃ = u

∫
H

A

∑
i=1

(1−P(i−1|α))Gi (c)dH (α) ∀c ∈ C, (10′)

and the acceptance probability equals

1−Ψ(c) =
A

∑
i=1

A

∑
a=i

P (a, i;w)
∫ a

∏
j=i+1

(
1−ψ

(
w j
))

dĜi (c−i;c) , (11′)

where P (a, i;w) denotes the conditional probability that the worker who got the offer w sent there his i-th out of a applications.
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3. Utility Maximization: VS (α,c) =V ∗S ≡maxα ′,c′VS (α
′,c′) for all c ∈ G and α ∈H.

4. Consistency: κ (·) is consistent with equations (6) to (9), (10′) and (11′), and fulfills the market utility
condition.

5. Steady State: uΨ0 = (1−u)(δ + τ−δτ)(1−Ψ0) with

Ψ0 =
∫
G

∫
H

(
1−

A

∑
a=0

p(a|α)
a

∏
i=1

(1−ψ (ci))

)
dH (α)dG(c) .

The first two conditions concern the firm’s behavior and are the same as for the static equilibrium. The
utility maximization condition now includes the choice of search intensity. The fourth condition guarantees
consistency of κ (·) with the updated definitions of λ (c) and Ψ(c). The last condition equates the number
of workers entering and leaving unemployment.

It is straightforward to see that the new model elements introduced in this section do not fundamentally
change the structure of the equilibrium. Even though the current framework is dynamic and contains worker
heterogeneity, workers and firms in each submarket solve the static model of the previous section period
by period. The equilibrium properties derived in the static version held for any VE (·), VU , and u, so they
continue to hold for the endogenized versions of these objects. The following corollary summarizes this.

Corollary 1. In any dynamic equilibrium, lemma 2 to 5 hold.

Hence, the heterogeneity in the number of applications per worker change the exact equilibrium con-
tracts that are offered and the number of agents trading at each of the contracts, but do not change the fact
that i) still A different contracts are offered; ii) workers applying A times send one application to each type
of contract; and iii) unemployed who send a < A applications, apply to the a types of contracts offering the
lowest wages. Consequently, a worker choosing his search intensity solves maxα VS (α)− kAα , where

VS (α) =
A

∑
i=0

p(i|α)Vi. (20)

The solution to this optimization problem is unique if VS (α) is strictly concave in α . Note that VS (α) can
be rewritten as

VS (α) =V0 +
A

∑
i=1

(1−P(i−1|α))(Vi−Vi−1) .

Hence, strict concavity requires

d2VS (α)

dα2 =−
A

∑
i=1

d2P(i−1|α)

dα2 (Vi−Vi−1)< 0.

In that case, all workers choose the same level of search intensity, as determined by the first order condition
of the optimization problem. Because of the boundedness of VS (α) concavity holds for sufficiently large α .
However, in general it is not obvious that the second derivative is strictly negative for all α . In particular,
it may be positive for low values of α , as pointed out by Kaas (2010) in a similar setting. In that case,
the equilibrium may require that the workers mix between α = 0 and the α implied by the first order
condition. Since the sign of the second derivative depends on the endogenous objects Vi, it is not obvious
which distribution functions give strict concavity. In the empirical part, I will therefore choose a particular
distribution, assume that the condition is satisfied in the equilibrium calculation, and verify this assumption
ex post.
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Endogenous search intensity may be a source of multiplicity of the equilibrium. For example, if the cost
of search kA is low, workers will typically apply a lot. This forces firms to offer high wages, which may
provide workers with an incentive to indeed send many applications. The reverse holds if the cost of an
application is high. Such multiplicity is a potential problem in the estimation. I solve this by estimating the
search intensity α rather than the search cost kA, as I will explain in section 4.4.

To complete the description of the equilibrium, consider the unemployment rate u. Using the intermedi-
ate value theorem, it is straightforward to check that given the workers’ and firms’ optimal strategies, there
is a unique value of u that satisfies the fifth condition of the equilibrium definition above. With this result,
one can now proof the existence of a dynamic equilibrium.

Proposition 3. A dynamic equilibrium exists. It satisfies the properties derived in lemma 2 to 5.

4 Estimation

4.1 Data

The model discussed above has implications for several key variables at the firm level. For given parameter
values, it determines - in expectation - 1) the number of applicants that a firm has, 2) the number of interviews
that the firm conducts, 3) the number of job offers that the firm makes, 4) the wage that the firm pays, 5)
the amount of time that the firm spends on screening and 6) the firm’s vacancy duration. Unfortunately,
the availability of microdata containing information on each of these variables is very limited. To my
knowledge, the only exception is the Employment Opportunities Pilot Projects (EOPP) data set, which
I therefore use in this paper. It contains the information from a two-wave longitudinal survey that was
designed to evaluate the impact of US labor market programs developed by the Office of the Assistant
Secretary for Policy, Evaluation and Research, and funded by the Department of State’s Employment and
Training Administration.25

The Employment Opportunities Pilot Project was introduced in the summer of 1979. It consisted of
an intensive job search program combined with a work and training program, organized at 10 pilots sites
throughout the country. Each pilot site consisted of a small number of neighboring counties. The program
was aimed at unemployed workers with a low family income, and tried to place eligible workers in private-
market jobs at one of the pilot sites during a job search assistance program. If these attempts failed, the
worker was offered a federally-assisted work or training position. The program was in full operation by the
summer of 1980, but was phased out during 1981 by the new Administration.

In order to evaluate the program, a survey was sent to firms at the ten pilot sites and twenty control sites
which where selected on the basis of their similarity to the pilot sites. Table 1 lists all sites included in the
final data set.26 The first wave of the survey took place between March and June 1980. The second wave
was conducted between February and July 1982 and aimed to re-interview all respondents to the first survey.
The response rate was about 70%.

The data set is not representative for the US labor market as a whole. Workers in the sample are relatively
young and due to the nature of the labor market program, low incomes are overrepresented.27 Moreover, the

25Several other authors have used the EOPP data set, e.g. Barron et al. (1985), Barron et al. (1987), and Burdett & Cunningham
(1998). See these papers for additional information about the survey. The papers are different from mine in the sense that they do
not use a two-sided equilibrium search model to analyze the data.

26A few sites were excluded from the final data set for various exogenous reasons.
27Note that this is not a concern if we want to study the effect of frictions on the desirability of active labor market programs.

These programs are often targeted at unemployed workers, among which young, low wage workers are typically overrepresented
as well. Nevertheless, it would certainly be interesting to estimate the model on a more representative sample of workers or on data
from specific, well-defined submarkets, like e.g. the job market for economists, once the data is available. For future research in
this area, surveys like the one conducted Hall & Krueger (2008) could be an important source of information.
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pilot sites are disproportionally concentrated in Gulf Coast cities and underrepresent cities in the Northeast
of the US. Further, the data set does not include workers in government and non-profit organizations. The
probability for a firm in one of the sites to be included in the survey depended on its size and location and
varied between 0.006 for the smallest establishments to close to 1 for establishments with more than 200
employees (see Barron et al., 1985, for more details). The data set contains sample weights to account for
the heterogeneity in the sampling probability.

The survey sent to the firms included various questions on the recruitment process for the last hired
worker. The second survey was a lot more comprehensive than the first one. In particular, the first survey
did not include a question on the number of applicants per vacancy. For this reason, I only utilize the 1982
data in this paper. This data set contains information on all six variables listed above for the firm’s most
recent hire, conditional on the hiring taking place between January 1980 and September 1981.28 Further,
the data set contains a number of worker characteristics, like gender, age, education level, sector, location,
and occupation.29 I use these variables to control for productivity differences, as I explain in more detail in
the next subsection.

Hence, each observation in the data is a tuple (zA,zI,zO,zW ,zT ,zV ,x), respectively denoting 1) the num-
ber of applicants zA at a given firm, 2) the number of interviews zI the firm conducted, 3) the number of job
offers zO it made, 4) the wage zW it paid to the worker it hired, 5) the amount of time zT that the firm spent
screening applicants, 6) the time zV that elapsed between posting and filling the vacancy, and 7) the charac-
teristics x of the worker. I restrict the sample by selecting workers who are 18 years or older and by omitting
observations with missing or unreliable values.30 Information on the number of applicants, interviews and
job offers is missing much more often than information on the wages and the worker characteristics.31 I
therefore create two samples: a large sample with 2156 observations which I will use to control for worker
heterogeneity in the next subsection, and a smaller subset with 640 observations which I will use for the
estimation of the frictional model.

Table 1 displays some descriptive statistics for both samples.32 The table shows that there is considerable
variation in the number of applicants and the number of interviews per firm. The variation in the number of
job offers is somewhat smaller: most firms only need to make one job offer to hire a worker. Firms spend
on average about 6 hours on screening workers and fill vacancies relatively quickly. The average vacancy
duration is 17 days and about 90% of the firms find a worker within a month.

4.2 Worker Heterogeneity

The data does not directly report the workers’ level of human capital. I therefore assume that each worker’s
human capital is a function of his observed characteristics x and a random component εW ∼ N

(
−σ2

W
2 ,σ2

W

)

28The data set contains information on both the last subsidized and the last non-subsidized hire. I restrict the sample to the latter
group.

29Although sometimes seen as job characteristics, I choose to interpret the last three variables as worker characteristics. Workers
have a choice regarding the sector, the region and the occupation in which they work, hence their choice contains information about
their productivity. The sector is coded according to the SIC 1972 (4 digits) and occupations are coded according to the DOT 1977.
I use the first digit of both.

30I omit outliers (top 0.5% of the distribution) in the number of applications, interviews and job offers. This does not affect the
results.

31The data set includes two wage variables. The first one reports the wage of the individual at the survey date, but is by definition
only available if the workers is still employed at the firm. The second wage variable, which reports the wage that the firm would
offer to a new hire in the same position at the moment of the survey. Conditional on observing both, the correlation between the
two variables is more than 90%. I choose the second variable since it is observed more often and because it excludes the influence
of wage increases since the moment of hiring.

32Section 4.5 presents some histograms of the data, while discussing the goodness of fit of the model.
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Variable Mean Std.dev. Variable Mean
Recruitment variables Education
Number of applicants 14.06 22.66 Grade school 0.019
Number of interviews 4.97 6.80 Some high school 0.136
Number of offers 1.20 0.60 High school 0.543
Wage 4.11 1.60 Some college 0.169
Hours of screening 6.16 7.48 College 0.056
Vacancy duration 17.48 27.03 Other education 0.076

Age Location
Age 26.74 9.31 Columbus, OH 0.079

Corpus Christi, TX 0.052
Gender Baton Rouge, LA 0.038
Male 0.519 Mobile, AL 0.044
Female 0.481 Pike, KY 0.005

Weld, CO 0.014
Sector Marathon, WI 0.019
Extraction 0.014 Balance of state, WA 0.019
Construction 0.109 Balance of state, MO 0.011
Manufacturing 0.076 Toledo, OH 0.055
Transport 0.056 Cincinnati, OH 0.076
Wholesale 0.121 San Antonio, TX 0.117
Retail 0.277 Beaumont/Port Arthur, TX 0.027
Financial 0.084 Birmingham, AL 0.100
Service 0.263 Buchanan/Dickenson, VA 0.003

Alamosa, CO 0.024
Occupation Outagamie, WI 0.027
Prof. / Techn. / Managerial 0.059 Skagit/Whatcom, WA 0.024
Clerical / Sales 0.460 St. Francoise, MO 0.015
Service 0.128 New Orleans, LA 0.052
Agricultural 0.005 Lake Charles/Lafayette, LA 0.038
Processing 0.018 Pensacola, FL 0.024
Machine trades 0.081 Harlan, KY 0.004
Benchwork 0.028 Logan/El Paso, CO 0.034
Structural work 0.112 Winnebago, WI 0.022
Miscellaneous 0.111 Skamania, WA 0.014

Grundy, MO 0.007
Dayton, OH 0.059

Descriptive statistics for the variables used in the estimation. The values for the number of applicants,
interviews and offers are based on 640 observations. For all other variables the sample size is 2156
observations. Wages are measured in 1982 dollars. 1 dollar in 1982 has the same buying power as $2.22
in 2009 (Bureau of Labor Statistics, 2009). Age and experience are measured in years. The gender,
education, sector, occupation, and location variables are binary.

Table 1: Descriptive statistics
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in the following way
logy = γ0 + x′γ + εW ,

where γ0 is a constant and γ is a vector of coefficients common to all workers.33 In the estimation, x will
include the worker’s gender, his age, his education level, as well as indicators for the sector, the location and
the type of occupation.

As described in the previous section, y is assumed to be public knowledge to all agents in the model.
Hence, the realization of εW is unknown to the econometrician, but known by all workers and firms. Given
this structure, a worker with human capital y who matches with a firm posting (r j,w j) gets a wage equal to
zW = w jy. Hence, it must hold that

logzW = logw j + logy

= logw j + γ0 + x′γ + εW . (21)

Equation (21) is a standard Mincer equation, augmented with the term logw j, which captures the
worker’s success in the matching process. This term depends on the parameters of the frictional model,
but only serves as the intercept in the equation and is orthogonal to x. The coefficients γ can therefore be
estimated directly by regressing logzW on x and a constant. Subsequently, the residuals zR = logzW − x′γ̂
can be calculated and can be used to estimate γ0 and the variance σ2

W of the random productivity component
along with the other parameters of the frictional model, as I will do in the next subsection.34

I present the results of the productivity regression in table 2. The estimates for γ are very much in line
with what is commonly found in this type of Mincer regressions. The wage is increasing in the education
level and is higher for men than for women. Age has a statistically significant but quantitatively limited
effect on the wage. The estimated coefficient corresponds to an annual growth in human capital of about
0.66%. The relatively high coefficients for the extraction and construction industry are present in the raw
data as well and is most likely the result of the specific sample of workers being selected. Some modest
regional variation in human capital exists.

4.3 Parametrization

Despite its richness along several dimensions, the EOPP data does not contain sufficient information for
non-parametric identification of all elements of the model. I will therefore choose some parameter values
and functional forms exogenously. I describe these assumptions in this subsection.

Application Distribution. With respect to the number of applications, I assume a truncated Poisson dis-
tribution with the search intensity α as its parameter. Hence, the fraction of workers p(a) that sends a
applications satisfies:

p(a|α) =

{
e−α αa

a! for a ∈ {0, . . . ,A−1}
1−∑

A−1
i=0 e−α α i

i! for a = A,

where A is a finite integer and α > 0. Note that if α → 0, all workers send zero applications. On the other
hand, if α → ∞, all workers apply A times. The distribution converges to a regular Poisson distribution for
A→ ∞. The theoretical analysis in the previous sections shows that calculation of the equilibrium requires

33Setting the mean of εW equal to −σ 2
W
2 guarantees that the measurement error does not distort the mean of the human capital,

i.e. E [y] = exp(γ0 + x′γ). Estimating the model with E [εw] = 0 does not yield different results.
34The equilibrium in the frictional model actually depends on γ through the coefficient for age. However, in the estimation

of the frictional model I will exogenously fix β after which the dependence disappears. See the next subsection for details. The
sequential approach also yields larger standard errors for γ̂ than joint estimation, but since the productivity coefficients γ are not the
main parameters of interest the computational advantage of a sequential approach outweighs the loss in precision. The estimation
of the frictional model is unaffected.
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Estimate Std.err. Estimate Std.err.
Demographics Location
Male 0.165 0.023 Corpus Christi, TX -0.004 0.038
Age 0.007 0.001 Baton Rouge, LA 0.017 0.042

Mobile, AL -0.036 0.047
Education Pike, KY 0.073 0.071
Some high school -0.092 0.105 Weld, CO -0.049 0.053
High school 0.022 0.104 Marathon, WI 0.168 0.079
Some college 0.077 0.107 Balance of state, WA 0.124 0.049
College 0.199 0.114 Balance of state, MO -0.036 0.040
Other education 0.037 0.109 Toledo, OH 0.083 0.075

Cincinnati, OH 0.050 0.048
Sector San Antonio, TX -0.052 0.050
Extraction 0.348 0.053 Beaumont/Port Arthur, TX 0.049 0.071
Construction 0.186 0.050 Birmingham, AL 0.028 0.043
Manufacturing 0.103 0.043 Buchanan/Dickenson, VA 0.119 0.076
Transport 0.038 0.047 Alamosa, CO 0.015 0.068
Wholesale -0.003 0.034 Outagamie, WI 0.013 0.047
Retail -0.100 0.026 Skagit/Whatcom, WA 0.172 0.055
Financial 0.080 0.042 St. Francoise, MO -0.025 0.073

New Orleans, LA 0.129 0.051
Occupation Lake Charles/Lafayette, LA 0.110 0.073
Clerical/sales -0.089 0.051 Pensacola, FL -0.172 0.058
Service -0.239 0.059 Harlan, KY -0.073 0.067
Agricultural -0.239 0.137 Logan/El Paso, CO -0.128 0.055
Processing -0.058 0.099 Winnebago, WI -0.025 0.056
Machine trades -0.125 0.068 Skamania, WA 0.160 0.070
Benchwork -0.119 0.071 Grundy, MO -0.046 0.051
Structural work -0.047 0.067 Dayton, OH 0.016 0.041
Miscellaneous -0.123 0.059

Statistics
Constant Number of observations 2156
Constant 1.143 0.130 R2 0.396

Results of the productivity regression. Age is measured in years. The gender, education, sector and
labor market variables are dummies. The reference category is female, grade school, service sector,
professional/technical/managerial occupations, and Columbus, OH.

Table 2: Regression results
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solving for A different wage levels. In order to avoid dimensionality problems, I will set A equal to 15 in the
estimation.

A Poisson distribution is a natural choice, since it is the discrete time equivalent of the Poisson process
typically used in continuous time models. Further, it has the attractive feature that it has discrete support
while depending on a continuous parameter. Estimation of such a continuous parameter is significantly less
cumbersome than estimating a discrete number of applications. As mentioned before, endogenous search
intensity may be a source of multiplicity of the equilibrium. In order to avoid problems with the estimation,
I therefore do not estimate the search cost kA directly, but I treat the search intensity α as a parameter and
estimate that instead. The search cost can then be calculated ex post by equating it to the marginal benefit
of an extra unit of search intensity.

Period Length. In theory, the data contains some information on the length of a period. To see this, suppose
that the number of applications that workers send is deterministic. Then, compare a period of one week in
which workers send one application to a period of two weeks in which workers send two applications. In
both cases, the gross queue length λ is the same given a fixed number of vacancies, but other equilibrium
outcomes are very different. In the first case, no congestion occurs, so firms have less incentive to interview
many candidates. Moreover, no wage dispersion will be present in the data after controlling for observed and
unobserved productivity differences. This is all not true in the second case. However, identification along
these dimensions cannot be established easily and would be very indirect at best. Therefore, I leave this
issue for further research and follow the standard practice in the literature by fixing the length exogenously
to one month.

Discounting and Retirement. I exogenously fix the retirement probability at 2.5% per year, i.e. τ = 0.0021,
which corresponds to an average career of 40 years. Further, I set β equal to 0.931/12. Given the assumed
retirement probability and the human capital growth rate estimated in section 4.2, this value is consistent
with an annual discount rate β0 of 0.948.

Job Destruction. In order to determine the job destruction probability, I use an approach similar to Shimer
(2005, 2007), taking into account the new elements of my model. Recall that unemployment evolves ac-
cording to

ut+1 = ut (1−Ψ0,t+1)+us
t+1,

where us
t+1 ≡ (1−ut)(δt + τ−δtτ)(1−Ψ0,t+1) denotes the number of short-term unemployed workers at

time t +1, i.e. the number of workers who were not unemployed yet at time t. Using data from the Current
Population Survey, Shimer (2005, 2007) constructs time series for both ut and us

t . These can be used to
calculate the workers’ matching probability Ψ0,t+1 according to

Ψ0,t+1 = 1− ut+1−us
t+1

ut
. (22)

An estimate for the job destruction rate can then be obtained via

δt =
1

1− τ

(
us

t+1

1−ut
× ut

ut+1−us
t+1
− τ

)
.

After averaging over the relevant time interval and taking into account the age structure of the sample, I find
δ = 0.063.35

35It is important to stress that δ cannot directly be compared to the estimates for the ‘employment-exit probability’ by Shimer
(2007). First, δ only implies a transition from employment to the pool of workers who will search for a job in the next period.
Unemployment only follows in case that search fails, i.e. with probability 1−Ψ0. Second, Shimer (2007) needs to control for
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Vacancy Creation. The vacancy creation cost kV affects several equilibrium outcomes. First, a higher value
will imply that a lower number of vacancies will be opened in the market. Unfortunately however, no precise
information on the number of vacancies in the US around 1980 is available. Davis et al. (2009) create a
times series by detrending the Conference Board’s Help-Wanted Index using an HP filter, and rescale the
deviations such that they match the mean of the more direct measure of the vacancy rate in the Job Openings
and Labor Turnover Survey (JOLTS) in the overlapping period (2001 - 2007). This gives vacancy rates of
close to 3% for the relevant time period. However, my definition of a vacancy is most likely wider than
the one in the Help-Wanted Index or JOLTS, since in my model any match requires a preceding vacancy.
I therefore determine kV through its effect on the worker’s matching probability Ψ0. With fewer vacancies
available, it will be harder for workers to find a job. An estimate for the workers’ matching probability can
be obtained with equation (22), which yields 0.413. In the estimation of the model, I will constrain kV such
that the matching probability implied by the model equals this value.

Note that the values of τ , δ and Ψ0 jointly imply a steady state unemployment rate of u = 0.084. This is
close to the value observed in the data, i.e. 0.082, meaning that the steady assumption is reasonable despite
the recessive state of the US economy in 1980 and 1981. Note further that the values imply that in each
period a fraction u+(1−u)(δ + τ−δτ) = 0.144 of the labor force is searching for a new job. A fraction
(δ + τ−δτ)Ψ0 = 0.027 of the employed workers move from one job to another without intermittent un-
employment spell. This is in consistent with estimates of monthly job-to-job transition rates by e.g. Fallick
& Fleischman (2004), Nagypal (2008) and Moscarini & Thomsson (2007) which range from 2.2% to 3.2%.
The number of matches in each period is equal to (u+(1−u)(δ + τ−δτ))Ψ0 = 0.059, indicating that
JOLTS indeed does not fully capture the equivalent of a vacancy in my model.

4.4 Estimation Strategy

After making the above assumptions, several parameters remain, including the search cost kA and the in-
terview cost kR. In this subsection, I will discuss how I use maximum likelihood to obtain estimates for
these parameters. The analysis in section 2 shows that in equilibrium we can distinguish between A dif-
ferent firms types in each submarket, each associated with a specific wage w j and recruitment technology
r j, j ∈ {1, . . . ,A}. The data does not tell us the type of a certain firm. The likelihood of an observation
therefore needs to be calculated by initially conditioning on each possible type and subsequently taking the
expectation with respect to the type. Note further that a firm is only included in the data set if it manages
to match with a worker. This creates a selection issue: firms with many applicants or firms with a high
acceptance probability are more likely to be observed. Hence, the likelihood also needs to be conditioned
on the hiring probability η j of a firm. I now discuss each element of an observation separately.

Applicants. A firm of type j faces a number of applicants that is the realization of a Poisson distribution.
The mean is equal to the firm’s gross queue length λ j, which is determined in equilibrium by its choice of

(r j,w j). The firm therefore has exactly zA applicants with probability LA, j (zA) ≡ e−λ j
λ

zA
j

zA! . For the labor
market as a whole, the number of applications received by the firms has to equal the number of applications
that are sent by the workers. The latter figure depends on the number of searchers, which I fixed, and the
distribution of applications P(a|α). Hence, the data on zA identifies α .

Interviews. The number of interviews that a firm conducts depends on its number of applicants and its inter-
view capacity. If we observe that the number of interviews zI is strictly smaller than the number of applicants

time aggregation because he uses a continuous-time model. Here such a correction is not necessary since the period length in
my model corresponds to the frequency of the data (1 month). Finally, I control for the age structure by calculating δ for seven
different age cohorts and averaging over them using the corresponding sample fractions. Ideally, one would control for other sample
characteristics (education, location, occupation) in a similar way, but such data is hard to obtain.
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zA, it follows that the number of interviews was restricted by the capacity. The capacity follows a geometric

distribution with mean r j, hence the probability that the firm has a capacity of zI equals
(

r j−1
r j

)zI−1(
1
r j

)
.

In case we observe that the firm interviews all applicants (i.e. zI = zA), the capacity must have been at

least zA. The probability of this event is given by
(

r j−1
r j

)zI−1
. Hence, the likelihood contribution equals

LI, j (zI|zA) ≡
(

r j−1
r j

)zI−1(
1
r j

)I{zI<zA}
, where I{zI < zA} is an indicator function which equals 1 if the con-

dition zI < zA is satisfied and 0 otherwise. A high value for zI is more likely when r j is high. Hence, zI

contains information on r j. Note that r j depends on kR, kV , φ and Ψ j. Since kV is determined by the number
of vacancies, and Ψ j is determined by the structure of the equilibrium, zI identifies kR for a given value of
φ . Specifically, a higher value of kR leads to fewer interviews.

Job Offers. The number of job offers that a firm needs to make in order to attract a worker follows a
geometric distribution as well. The probability of success (i.e. the worker accepts the offer) is 1−Ψ j.
However, acceptance needs to occur before the firm runs out of qualified applicants. The conditional
probability that the firm hires with the zO-th offer and had zO ≤ q ≤ zI qualified candidates is given by
LO, j (zO|zI) = Ψ

zO−1
j (1−Ψ j)∑

zI
q=zO

(zI
q

)
φ q (1−φ)zI−q.

Wage. The variance σ2
W of the unobserved productivity component follows from the wage residuals. Note

that if a residual zR is observed for a worker who is employed at a type j firm, the worker’s unobserved
productivity component must equal ε̂W, j = zR− γ0− logw j, where γ0 is a constant to be estimated. The
likelihood of this is given by the normal density fε (ε̂W, j). Given the other parameters, the equilibrium
wage rates (w∗1, . . . ,w

∗
A) are fixed. We do not observe which of these wage rates the worker earns, but after

conditioning on each possible value and averaging, the identification of σW is standard.

Screening Time. The cost of recruitment as implied by the model equals kR (r j−1) for a firm of type j. In
order to convert this to time, I assume that a firm-worker pair produces output during 2000 hours a year,
which corresponds to 50 weeks of 5 days of 8 hours. Note that if firms behave according to the model, only
A = 15 different values would be observed for the variable zT . I attribute the excess variation in the data
to measurement error. Hence, I assume that when a firm chooses a recruitment technology r, its reported
screening time zT satisfies

logzT = logkR (r−1)+ εT ,

where εT ∼ N
(
−σ2

T
2 ,σ2

T

)
. Hence, the likelihood contribution of an observation zT equals fε (ε̂T, j) where

ε̂T, j = logzT − logkR (r−1) and the variation in ε̂T, j helps to identify σT .
Note that not only the variation, but also the level of the observed screening times is informative of the

parameters of the model. How much time firms are willing to spend on recruitment depends on the surplus
from a match. This surplus is smaller for higher values of the household production h, since firms are forced
to pay higher wages in that case. The observations zT therefore contain information on h.

Vacancy Durations. The last remaining parameter is the probability φ that an interviewed candidate is found
to be qualified. The data from the current period does not identify this probability, since the number of
qualified applicants is unobserved and since each observation is conditional on matching. Fortunately, an
estimate for φ can be obtained by using the information on vacancy durations. Assuming that firms keep
their vacancy open until it is filled and post the same contract throughout, the model implies that vacancy
durations follow a geometric distribution with parameter equal to the periodical hiring probability η j, which
is increasing in φ . In order to make the data consistent with the model, I group the observed vacancy
durations into bins of 30 days, i.e. the assumed period length. Hence, ẑV = i iff zV ∈ (30(i−1) ,30i]. The
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probability to observe a vacancy duration of ẑV periods conditional on matching in the current period, then
equals LV, j (ẑV ) = (1−η j)

ẑV−1.

Summarizing, the likelihood of an observation is given by

L =
∑

A
j=1 v jLA, j (zA)LI, j (zI|zA)LO, j (zO|zI)LV, j (ẑV ) fε (ε̂W, j) fε (ε̂T, j)

∑
A
j=1 v jη j

,

where v j denotes the measure of firms of type j. I maximize the log of this likelihood, summed over all
observations. The standard errors are calculated with the delta method from the inverse of the Hessian.

4.5 Estimation Results

The results of the estimation are presented in table 3 and figure 3. Panel 1 of figure 3 displays the contracts
(r,w) that are posted in equilibrium. There is contract dispersion and, in line with the theory, I find that that
firms that post higher wages invest less in recruitment.

The second panel of figure 3 shows the density of the posted wages. It is worth noting that this density is
downward sloping, in contrast to what is obtained in estimations of the Burdett & Mortensen (1998) model.
The distribution of the wages earned by employed workers is not shown, but it is virtually identical to the
distribution of the posted wages, since all firms match with probability close to 1, as can been seen in the
last panel. Note further that the estimated amount of frictional wage dispersion is small. Multiple causes
underlie this result. First, limited wage dispersion is a standard finding in well calibrated search models
of the labor market, as shown by Hornstein et al. (2010).36 Second, I limit the amount of dispersion by
allowing for unobserved heterogeneity in human capital in a very flexible way. The model attributes a large
part of the remaining variation in the wages after controlling for worker characteristics to the unobserved
productivity component ε rather than to frictions: I find σW = 0.233. Third, I obtain a high estimate for the
value of home production, which restricts the amount of wage dispersion that can arise. To be precise, I get
h = 0.950. This is roughly in line with the value that Hagedorn & Manovskii (2008) find in their calibration,
but higher than the value used by Shimer (2005) (0.40) or the value found by Hall & Milgrom (2008) (0.71).

The mechanism behind this result is the following. I find that screening is not very costly. An extra unit
of interview capacity requires an additional investment of kR = 0.012 (i.e. 1.2% of monthly production),
which corresponds to 1.97 hours of output or, equivalently, 2% of the vacancy creation cost kV = 0.529.
Nevertheless, firms interview only a few candidates. The average firm chooses r = 4.091, which implies
that the total cost of recruitment amounts to only 6.09 hours of production. For this to be optimal behavior, a
firm’s payoff from a match cannot be too large, implying that the outside option of the workers must be quite
high. Recall also that I use data from a sample of relatively low-skilled workers during a recession in the US
labor market. Hence, a small gap between labor productivity and productivity at home is not unreasonable.

Despite the small amount of wage dispersion, workers are not indifferent between the different contracts.
In particular, the job offer probability varies considerably across firms, with applications to the lowest wage
firms being almost four times as likely to result in an offer as applications to the highest wage firms. Workers
send on average 4.852 applications. In order to determine the cost of an application, we first need to verify
that the gains from search as defined in equation (20) are strictly concave in α . Figure 4 shows that this is
indeed the case: the marginal benefits V ′S (α) are downward sloping. This implies that all workers choose

36The exact magnitude of frictional wage dispersion is still an open question in the literature, which I do not aim to answer here.
Different assumptions about productivity and wages can of course be made. For example, adding on-the-job search would probably
help in generating more wage dispersion, but is left for future research because of the associated computational complexities.
However, it is important to stress that changing the model along such dimensions has a limited effect on the estimates for its key
parameters since wage data is not the main source of their identification.
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Estimate Std.err.
Model parameters
α 4.852 0.145
kR 0.012 0.001
h 0.950 0.005
φ 0.887 0.021
γ0 1.205 0.010
σW 0.233 0.007
σT 1.123 0.032

Statistics
Observations 640
Avg log-likelihood -9.531

Estimation results obtained with maximum likelihood.

Table 3: Estimation results

their search intensity by equating marginal benefit to marginal cost. Hence, the marginal cost kA of an extra
unit of search intensity equals 0.004. This is equivalent to 0.73 hours of household production. The total
time spent on search by an unemployed worker amounts to 3.56 hours per month, which is a bit lower than
other estimates in the literature.37 Recall that a worker matches with probability 0.413, as was imposed
exogenously to aid the identification of the model.

The average firm hires with probability 0.911, which is well in line with the fraction of firms in the
data that fill their vacancy within a month. Correspondingly, I find that the probability φ that a worker is
qualified equals 0.887. This high value is consistent with the fact that firms match with large probability,
even though they interview relatively few applicants. Finally, the standard deviation of the measurement
error in the screening time is estimated at 1.123.

In order to consider the fit of the model, I use the estimated parameter values to simulate data for each of
the dependent variables. Figure 5 displays the densities of the simulated data together with those of the
actual data. It shows that in general the model matches the data quite well. The fit of the number of job
offers and the vacancy durations is particularly good. For the applicants, interviews and screening time, the
model has some difficulties fitting the large amount of dispersion present in the data. It predicts too few
very low and very high values. However, the fit is generally good around the median in each case. For the
unobserved wage component log(w)+ ε , the model slightly underestimates the height of the mode. Note
that the graph confirms that once the unobserved productivity component ε is taken into account the amount
of wage dispersion implied by the model is not smaller than in the data.

4.6 Magnitude of Frictions

The estimation results indicate that both sending applications and conducting job interviews are costly activ-
ities. This means that both search and recruitment frictions arise, causing the externalities described above.
I analyze the magnitude of these frictions by considering the effect of an exogenous change in the search
cost kA and/or recruitment cost kR on social surplus. Because of the efficiency unit assumption, a change in

37For example, Krueger & Mueller (2008) find a value of 16 hours per month using data from the American Time Use Surveys.
Note that their estimate concerns a different time period and a different sample of workers.
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Equilibrium outcomes. The panels display (numbered from left to right, top to bottom): 1) Equilibrium
contracts (r,w) posted in equilibrium; 2) Fraction of firms posting a certain wage; 3) Density of the
number of applications sent by workers; 4) Queue lengths λ (black circles), µ (maroon diamonds) and
κ (orange squares) as a function of the wage; 5) Workers’ job offer probability as a function of the
wage; 6) Firms’ hiring probability as a function of the wage. The dashed lines connecting the dots serve
illustrative purposes only.

Figure 3: Equilibrium outcomes
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The maroon solid line represents the marginal benefits of search for an individual worker, given equilib-
rium behavior by the firms and the other workers. The worker equates marginal benefit to marginal cost
(horizontal light-gray line) in order to determine his search intensity (vertical light-gray line).

Figure 4: Costs and benefits of search

one of the parameters will change the equilibrium in any submarket in the same way. As a result, it is not
necessary to aggregate across the submarkets. We can focus on one particular submarket instead.

The Bellman equation for social surplus depends on a single state variable, the unemployment rate. I
start from the unemployment rate arising in the decentralized equilibrium, which I label u0, and consider
how it evolves over time as the agents in the model adjust their strategies in response to the change in the
cost parameters.

In each period t, the main component of output is the production in the labor market by matched firm-
worker pairs. There is a mass 1− ut of such pairs, each producing 1 unit. Unemployed worker on the
other hand produce in the household. So far, it was irrelevant what components are included in h. When
considering welfare however, it is not the worker’s private value of non-market time but the social value that
is the relevant measure. In particular, if h includes unemployment benefits, then those do not add to total
output, because they are simply a transfer. However, the fraction of h that consists of unemployment benefits
cannot be identified with the model and data used in this paper. Therefore, I assume that unemployment
benefits equal b = 0.4, roughly in line with the highest replacement rates in the US. Household production
and the worker’s value of leisure then add up to h−b.

In the beginning of the next period, a mass ut +(1−ut)(δ + τ−δτ) of workers can search for a new
job. They incur the search cost αkA. A mass vt+1, j of vacancies enters the market, posts a contract (r j,w j),
and pays the associated cost (r j−1)kR + kV . Together, this leads to a new unemployment rate ut+1 at the
beginning of the next production phase. Hence, the Bellman equation equals

S (ut) =(1−ut)+ut (h−b)+β0 (1+θ)×[
−(ut +(1−ut)(δ + τ−δτ))αkA−

A

∑
j=1

vt+1, j ((r j−1)kR + kV )+S (ut+1)

]
, (23)

where
ut+1 = (ut +(1−ut)(δ + τ−δτ))(1−Ψ0)

and α , v j, r j and Ψ0 follow from the workers’ and firms’ decision problems and the equilibrium structure.
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Fit of the model for the distribution of the number of applicants per firm, the number of interviews per
firm, the number of job offers per firm, the posted wages, the screening time and the vacancy duration.
Light-gray bars represent the data and maroon bars the model. All graphs are conditional on the firm
hiring a worker. The wage residual panel shows the distribution of log(w) + ε , i.e. the unexplained
component in the wages after controlling for the effect of the observable characteristics x. The bin width
is 2 for the applications, 1 for the interviews, offers and screening time, 0.1 for the wage residuals,
and 1 period (30 days) for the vacancy durations. The graphs do not display the entire domain of the
distributions; outliers are omitted.

Figure 5: Fit of the model
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kA kR α r u v Ψ0 η S
Estimated equilibrium 0.004 0.012 4.852 4.091 0.084 0.065 0.413 0.911 234.74
Free recruitment 0.004 0 4.44 ∞ 0.042 0.063 0.596 0.987 240.66
Walrasian outcome 0 0 ∞ ∞ 0 0.065 1 1 245.69

Equilibrium outcomes for various combinations of the search cost kA and the recruitment cost kR. The re-
ported values for the recruitment technology r and the hiring probability η are averages across vacancies.
The reported values for u and v are the limit values.

Table 4: Magnitude of the frictions

I solve (23) for three different combinations of kA and kR. The results of this exercise are summarized in
table 4. In the first scenario (‘estimated equilibrium’), I keep both cost parameters at their estimated values.
Since the market was in steady state, ut = u0 for all t ≥ 1 in that case. Social surplus equals 234.74.

In the second scenario (‘free recruitment’), I set the recruitment cost equal to zero, while the applica-
tion cost stays at its estimated value. This leads to an equilibrium in which firms send a finite number of
applications, but firms contact all applicants. Hence, more matches are formed for any given level of search
intensity, which means that the job offer and hiring probability go up. In general, the effect of such an in-
crease in the matching probability on the level of search intensity that workers choose is not obvious.38 Here
I however find that workers start to apply slightly less. Nevertheless, the periodical matching probability for
the workers increases by almost 20 percentage points. The unemployment rate decreases over time by about
50% (4.2 percentage points). Firms match with larger probability and slightly fewer vacancies are opened
Social surplus is now 240.66, approximately 2.5% higher than in the estimated equilibrium.

In the last scenario (‘Walrasian outcome’), I also eliminate the application cost, such that both kR = 0 and
kA = 0. In this Walrasian world, the maximum level of social surplus is obtained. Frictions are completely
eliminated and the matching process is fully efficient. Both firms with vacancies and unemployed workers
match with probability 1. As a result, unemployment disappears completely in the limit. The number of
opened vacancies is at the same level as in the estimated equilibrium.39 This scenario yields a social surplus
of 245.69, which is 2.1% higher than in the scenario with free recruitment and 4.7% higher than in the
estimated equilibrium.40

These results demonstrate the importance of the frictions, not only regarding unemployment but also
with respect to social surplus. A reduction in the cost of search and/or recruitment can generate considerable
welfare gains. The results further indicate that recruitment frictions are roughly equally important as search
frictions in understanding frictional unemployment or the welfare loss compared to a Walrasian world. This
suggests that studies which only include search frictions but ignore recruitment frictions potentially draw
wrong inference about e.g. the desirability of certain labor market policies.

38See Shimer (2004) for a discussion of this issue.
39Recall that u and v are measured at different moments in a model period: v is the number of vacancies posted in the entry

phase, whereas u equals the number of workers still without a job at the beginning of the production phase. In a Walrasian world,
the number of unmatched vacancies at the beginning of the production phase obviously equals zero as well.

40In both scenarios, the increase in surplus consists of two effects: 1) the direct effect of the elimination of the cost (while
holding the equilibrium constant) and 2) the indirect effect via a change in the equilibrium outcomes. The indirect effect greatly
dominates both times, as can be shown by calculating the surplus while only taking the direct effect into account. Starting from
the estimated equilibrium, elimination of the recruitment cost would yield a surplus of 235.34. Likewise, the direct effect of the
elimination of the search cost increases social surplus from 240.66 to 241.16.
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4.7 Policy

As a final exercise, I analyze the effects of unemployment insurance (UI) eligibility criteria. O’Leary (2006)
describes how many states in the US have moved away from specifying explicit criteria on the search inten-
sity of unemployed workers in the law, because firms “do not want repetitive and burdensome employment
applications that are filed merely to meet the UI work search requirements.”41 In order to assess whether
this issue arises in the estimated equilibrium, I consider a scenario in which a government sets the minimum
search intensity α that is required for workers to be eligible for UI benefits. Everything else is determined
by the decentralized market.42 In particular, workers choose whether they want to comply with the rules, or
whether they rather prefer to forgo the benefits. Starting from the estimated equilibrium, I determine how
the labor market evolves after the implementation of the policy and which effect this has on social surplus
as defined in (23). I do this for minimum search intensities between 0 and 10. The results are displayed in
figure 6.

Two results are immediate. First, if the minimum search intensity is not binding because it is set below
the estimated market level of 4.852, the equilibrium does not change. Therefore, I focus on higher values
of α in the discussion below. Second, for any reasonable value of α , workers always decide to comply,
since the gain from getting unemployment benefits (b = 0.4) is much larger than the cost of a few more
applications (kA = 0.004). Other results are less straightforward because of the large number of externalities
included in the model. The top right panel of figure 6 shows that firms respond to the increase in search
intensity by investing more in recruitment. For example, setting α equal to 10 causes firms to choose a
15% higher value of r. This is consistent with the fact that any job offer is now more likely to be rejected.
The increase in r is however not sufficient to completely offset the increase in competition, as shown in the
fourth panel of the figure: the increase in the workers’ search intensity reduces the matching probability of
a firm.

Hence, the firms are now worse off than before along two dimensions, which seems to be in line with
the quote from O’Leary (2006). However, we cannot ignore the effects of the policy on the equilibrium
wages. It turns out that that effect goes in the opposite direction. Wages decrease as a result of the more
intensive search by the workers (not shown in the figure). In fact, this effect dominates, which translates
into additional entry of vacancies (bottom right panel). Workers benefit from the increase in the number
of vacancies since it increases their job finding probability Ψ0 (third panel). As a result, unemployment
falls. This change is considerable: when α is set at 10, the unemployment rate goes down by almost three
percentage points. An unemployed worker is nevertheless worse off than before, in the sense that the value
of unemployment VU decreases. The lower wages and the higher search costs dominate the positive effect
of the better matching possibilities. However, the key question in analyzing the policy is what happens to
social surplus, which includes all gains and losses from the policy. As the top left panel shows, this welfare
measure goes up by about 1%. Although the program aggravates the negative externalities and leads to
higher recruitment costs for the firms, the positive externalities that result from the increase in the workers’
search intensity dominate.

Note that output does not reach a maximum for α in the interval (4.852, 10). In principle, one can extend
the analysis to find the optimal level for the minimum level of search. However, a lot of caution is required
in such an exercise. First, the potential existence of multiple equilibria raises the question how the market
will respond to the policy. For a small change, convergence to an equilibrium ‘nearby’ seem a reasonable

41Similar considerations can be found in different contexts. High-school students in the UK are restricted in the number of
college applications that they can send. Until 2008, students could send six applications. This was reduced to five, after colleges
expressed their preference for such a change in a survey, because “allowing up to six applications was burdensome, particularly as
many students’ fifth and sixth applications were often poorly considered” (Department for Education and Skills, 2006).

42Note that in real life, the rules are often stated in terms of the number of applications instead of the search intensity. I abstract
from that here.
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Figure 6: Effects of policy
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assumption. For larger changes, such an assumption is much more questionable. Second, for large values
of α , the assumption that A = 15 becomes restrictive. This limits the negative impact of the recruitment
friction, which leads to an overestimate of the surplus for such high values of α . Third, the optimal level
of α strongly depends on the level of unemployment benefits b, which is a variable that was not estimated.
For example, if b < 0.06 while maintaining h = 0.950, the conclusion would be the opposite. In that case,
an increase in search intensity decreases social surplus, even though it still leads to a higher number of
matches and a reduction of unemployment. The intuition for this result is clear: if workers are almost
equally productive at home as in a job, the social gains from search are very small. The main conclusion
from the exercise here should therefore be as follows: given the estimated parameter values, a small increase
in the required search intensity is likely to increase steady state output.

5 Conclusion

This paper analyzes the magnitude of frictions in a labor market in which a lack of coordination results in
multilateral meetings between workers and firms. For this purpose, a directed search model is presented in
which both workers and firms decide how many agents on the other side of the market they want to contact.
Firms post a wage and recruitment technology that determines how many applicants they will interview.
After observing these contracts, workers decide how many times and to which firms to apply. Since workers
typically send multiple applications, any firm faces the risk that its job offer gets rejected. Likewise, a
worker’s application may be unsuccessful because the firm decides to hire a different candidate. In such
an environment, it is crucial to understand the costs associated with applying and interviewing, since they
determine the magnitude of the frictions and the negative externalities caused by them.

I show that contract dispersion is a fundamental feature of the equilibrium. Some firms offer low wages
but make large investments in recruitment, while other firms do the opposite. The number of contract types
is equal to the maximum number of applications that workers may send in any given period and firms are
indifferent between all types. Workers face a trade-off between the wage and the probability to get a job
offer. Applications to low wage firms are more likely to turn into job offers than applications to high wage
firms. It is shown that workers maximize the payoff from their application portfolio by spreading their
applications over the different types of contracts.

Estimation of the model then provides values for the cost of search and recruitment. An additional
application is estimated to cost the worker 0.73 hours of his time, while firms incur a cost equal to 1.97
hours of production for each interview. By simulating the equilibrium for different values of the two cost
parameters, the market equilibrium is compared to the frictionless, Walrasian outcome. Social surplus is
4.7% lower in the market equilibrium than in a Walrasian world. Search and recruitment frictions are each
responsible for approximately half of this loss in surplus. Finally, I argue that there is a potential role
for active labor market programs, since programs that marginally increase the level of search intensity of
unemployed workers increase social surplus, even though they negatively affect the firms’ hiring probability.

An interesting avenue for future work would be to allow for more productivity differences among work-
ers and firms. This would make the model suitable to study settings in which heterogeneity plays a larger
role than in the sample that I use here. In such an environment, firms’ choices regarding the recruitment
technology will most likely also have important implications for the amount of sorting in the labor market.
For such work however, the availability of high-quality data on the decisions of both firms and workers will
be essential.
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A Proofs

A.1 Proof of Lemma 1

Proof. Consider a firm with queue length λ and recruitment technology r. The number of applicants i
follows a Poisson distribution with mean λ , while the interview capacity j follows geometric distribution
with parameter ρ ≡ r−1

r . The actual number of interviews is equal to min{i, j}. Hence, the expected number
of interviews equals

∞

∑
i=0

∞

∑
j=1

min{i, j}e−λ λ i

j!

(
r−1

r

) j−1 1
r

=
∞

∑
i=0

e−λ λ i

i!

i−1

∑
j=1

jρ j−1 1
r
+

∞

∑
i=0

ie−λ λ i

i!

∞

∑
j=i

ρ
j−1 1

r

= r
∞

∑
i=0

e−λ λ i

i!

(
1−ρ

i−1
(

ρ +
i
r

))
+

∞

∑
i=0

ie−λ λ i

i!
ρ

i−1

= r
(

1− e−λ/r− λ

r
e−λ/r

)
+λe−λ/r

= r
(

1− e−λ/r
)
.

A.2 Proof of Lemma 1

Proof. Consider the job offer probability ψ first.43 Let ρ = r−1
r . When a worker applies to a firm, he will

in general face a number of competitors, i.e. other applicants at the same firm. Let m denote the number
of competitors who are qualified and will accept the job if offered to them. On the other hand, let n denote
the number of competitors who are either unqualified or will reject the job in favor of a better offer. In
order to simplify terminology, I refer to the first type of competitors as ‘direct competitors’. The second
type is called ‘indirect competitors’, since they only reduce the worker’s matching probability by causing
congestion.

A number of applicants will be selected for an interview. Each applicant is equally likely to be selected
and to be qualified. Therefore, I assume without loss of generality that if the firm has multiple qualified
candidates, it makes offers among them in the same order as in which it conducted the interviews. Hence,
one can interpret the recruitment as a process with multiple rounds, which ends when the firm selects a
qualified applicant who accepts the job, or when the maximum possible number of interviews has been held.

For the worker it is not relevant in which round he gets the job offer. Getting a job offer in round i and
getting one in round j are mutually exclusive events, since the firm will offer the job to each worker at most
once. Hence, the probability that the worker gets a job offer equals the probability that he gets an offer in
round i, summed over all possible i. In order for the worker to get a job offer in round i, several things must
happen: (i) the firm must be able to interview at least i applicants, (ii) only indirect competitors must have
been selected in round 1, . . . , i−1, (iii) the worker gets selected in round i itself and (iv) he is qualified. The
probability that this occurs equals

φρ
i−1 n

m+n+1
· n−1

m+n
· . . . · n+2− i

m+n+3− i
· 1

m+n+2− i
= φρ

i−1 n!
(n+1− i)!

(m+n+1− i)!
(m+n+1)!

,

as long as i≤ n+1 and zero otherwise. Hence, the total probability that the worker gets a job offer equals

ψ̂ (m,n|r) = φ

n+1

∑
i=1

ρ
i−1 n!

(n+1− i)!
(m+n+1− i)!
(m+n+1)!

,

43In this proof, I omit the dependence of the job offer probability, the matching probability and the queue lengths on the contract
c in order to keep notation as simple as possible.
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which goes to 1
m+1 for r→ ∞.

Actually, the number of competitors that a worker faces is a random variable. Both m and n follow
Poisson distributions with respective parameters µ and ν = λ −µ . Hence, the probability to compete with
exactly m direct and n indirect competitors equals

fm,n (m,n|φ µ,ν) = e−µ µm

m!
e−ν νn

n!
.

The ex ante probability to get a job offer therefore equals

ψ =
∞

∑
m=0

∞

∑
n=0

ψ̂ (n,m|r) fm,n (m,n|µ,λ −µ) .

Substituting the expression for ψ̂ (m,n|r) and changing the order of summation yields

ψ = φ
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∑
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The last part of the right hand side can be rewritten as follows

φ
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Substituting this into the expression for ψ and applying a change in the order of summation gives

ψ = φ
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∑
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An expression for the firm’s matching probability η can be derived in a similar way. Consider a firm
with interview capacity R. Suppose that it has m qualified applicants who would accept the job and n
other applicants. The number of workers from the former group selected from the former group follows
a hypergeometric distribution and the firm will match if this number is at least one. In order to derive a
closed-form expression for the matching probability, I follow the same approach as above. The firm hires in
round i with probability

ρ
i−1 n

m+n
· n−1

m+n−1
· . . . · n+2− i

m+n+2− i
· m

m+n+1− i
= ρ

i−1 m ·n!
(n+1− i)!

(m+n− i)!
(m+n)!

,

as long as i≤ n+1 and zero otherwise. Hence, given m and n the total hiring probability equals

η̂ (m,n|r) =
n+1

∑
i=1

ρ
i−1 m ·n!

(n+1− i)!
(m+n− i)!
(m+n)!

,
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which goes to 1 for r→ ∞.
Both m and n follow Poisson distributions with respective parameters µ and ν = λ −µ . Hence, the ex

ante matching probability is equal to

η =
∞

∑
m=1
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n=0

η̂ (n,m|r) fm,n (m,n|µ,λ −µ)

=
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The last part of the right hand side can be rewritten as follows
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which implies

η = µψ

=
µ

κ
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)
.

A.3 Proof of Lemma 2

Proof. The proof is a generalization of the proof provided by Galenianos & Kircher (2009). Consider
application i > 1 and suppose it is not sent to a contract offering a wage in the interval [w̄i−1, w̄i]. Then there
are two possibilities: 1) the application is sent to a contract offering a wage w > w̄i or 2) the application is
sent to a contract offering a wage w < w̄i−1. By the definition of w̄i, the first case would give the worker a
payoff that is strictly lower than Vi, which cannot be optimal. In the second case, the worker could do better
by deviating and sending the application to w̄i−1. Let c̄i denote the contract (r, w̄i), then the utility gain from
deviating equals

(ψ (c̄i−1)VE (w̄i−1)+(1−ψ (c̄i−1))Vi−1)− (ψ (c)VE (w)+(1−ψ (c))Vi−1) =

(ψ (c̄i−1)(VE (w̄i−1)−Vi−2)−ψ (c)(VE (w)−Vi−2))+(ψ (c)−ψ (c̄i−1))(Vi−1−Vi−2)> 0.

The first term is non-negative, since w̄i−1 maximizes ψ (c̄i−1)(VE (w̄i−1)−Vi−2) by definition. The second
term is positive, since w̄i−1 > w implies that ψ (c̄i−1)< ψ (c).

A.4 Proof of Lemma 3

Proof. The proof is a generalization of the proof provided by Kircher (2009). First, note that for wages w
below w̄0 = V−1

E (V1), the market utility cannot be obtained. As a result, κ (c) = 0 and ψ (c) = φ . At w =
V−1

E (V1), the market utility can only be obtained if κ (c) = 0 and ψ (c) = φ . Lemma 2 establishes that the
first application is sent to a wage in the interval

(
V−1

E (V1) , w̄1
]
. As a result, ψ (c)VE (w)+(1−ψ (c))V0 =V1

needs to hold for all wages in this interval in order to satisfy the market utility condition. A similar argument
applies to the other interval. Application i > 1 is sent to the interval [w̄i−1, w̄i], which implies that the
effective queue length κ (c) and the job offer probability ψ (c) are governed by equation (15). The effective
queue length has to be continuous in the wage. This implies that w̄i is determined as the wage at which
equation (15) holds for both i and i+1. Solving the two equations yields

VE (w̄i) =
V 2

i −Vi−1Vi+1

2Vi−Vi−1−Vi+1
.
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A.5 Proof of Lemma 4

Proof. Suppose that the lemma does not hold and that firms of type i offer the same contract (r,w) as firms
of type i+1. By lemma 3, we must then have that w = w̄i. Let ψi denote the associated job offer probability.
If the worker gets a job offer from both firms, but no higher one, if will accept the offer from firm i+1 by
construction. As a result, the acceptance probabilities for both firms are related as follows

1−Ψi = (1−ψi)(1−Ψi+1)< 1−Ψi+1.

Consider first w̄i ∈ [0,1). If the firms of type i offer a marginally higher wage w′ ↓ w̄i, their acceptance
probability jumps up to 1−Ψi+1. Clearly, such a deviation is profitable. Next, consider w̄i = 1. In that case,
the firms make zero profits. At wages slightly below one, the queue length is lower but still positive. This
deviation therefore yields higher profits to the firm.

A.6 Proof of Lemma 5

Proof. Firms solve

max
κ∈Ki,r∈R

rφ (1−Ψi)
(
(1− e−κ)(VE (1)−Vi−1)− κ

φ
(Vi−Vi−1)

)
1+(r−1)φ (1−Ψi)

− kV − kR (r−1) .

Start with the optimization over the effective queue length. The second derivative of the objective function
with respect to κ equals

−rφ (1−Ψi)e−κ (VE (1)−Vi−1)

1+(r−1)φ (1−Ψi)
,

which is strictly negative for all κ ∈ Ki. Consequently, the objective function is strictly concave in the
effective queue length.

The first order condition is given by

rφ (1−Ψi)
(

e−κ̂i (VE (1)−Vi−1)− 1
φ
(Vi−Vi−1)

)
1+(r−1)φ (1−Ψi)

= 0.

Solving for κ̂i yields

κ̂i = log
φ (VE (1)−Vi−1)

Vi−Vi−1

If κ̂i ∈ Ki, the optimal effective queue length is defined by this expression, i.e. κ∗i = κ̂i. On the other hand,
if κ̂i < κ̄i−1, then κ∗i = κ̄i−1.

Next, consider the optimization over the recruitment technology r. In order to simplify notation, define

ṼF,i ≡
(

1− e−κ∗i
)
(VE (1)−Vi−1)−

κ∗i
φ

(Vi−Vi−1) = max
κ∈Ki

(
1− e−κ

)
VF (w(κ)) ,

The optimization problem can then be written as

max
r∈R

rφ (1−Ψi)ṼF,i

1+(r−1)φ (1−Ψi)
− kV − kR (r−1) .

The first derivative of the objective function with respect to r equals

φ (1−Ψi)(1−φ (1−Ψi))

(1+(r−1)φ (1−Ψi))
2 ṼF,i− kR,
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whereas the second derivative is equal to

−2
φ 2 (1−Ψi)

2 (1−φ (1−Ψi))

(1+(r−1)φ (1−Ψi))
3 ṼF,i.

The latter is strictly negative for all r ∈ R, which implies that the objective function is strictly concave.
Solving the first order condition yields

r̂i =

√
1−φ (1−Ψi)

φ (1−Ψi)

√
ṼF,i

kR
− 1−φ (1−Ψi)

φ (1−Ψi)
.

Substituting this into the objective function gives after some manipulation the following relationship√
kV − kR

kR
=

√
ṼF,i

kR
−
√

1−φ (1−Ψi)

φ (1−Ψi)
,

which implies that

r̂i =

√
1−φ (1−Ψi)

φ (1−Ψi)

kV − kR

kR
.

Hence, the optimal recruitment technology r∗i equals r̂i if r̂i > 1, and 1 otherwise.

A.7 Proof of Proposition 2

Proof. The proof closely follows Galenianos & Kircher (2005, 2009).

A.8 Proof of Proposition 3

Proof. The proof closely follows Galenianos & Kircher (2005).
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