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1 Introduction

We start by introducing four motivating examples:

1. Instead of one single contest over 42.195 kilometers, the organizers of the
Leyden marathon organize runs for the classical distance and for the half
distance, the 10k and the 5k. The winner of the whole marathon receives a
prize of 1000 Euros, and the winners of the half marathon, the 10k and the
5k receive prizes of 500, 500 and 250 Euros, respectively. Many races have a
similar setup. For example, the Amsterdam marathon pays prize money to the
winner of the marathon, but only an award to the winner of the half distance.
Similar, to qualify for the prestigious Ironman triathlon in Hawaii, people can
register at a qualification race as professional or as a so-called age-grouper.

2. For the recruitment of junior researchers, many universities do not only open
vacancies for tenure track positions but also for postdoctoral researchers. Those
who are hired for a tenure track position win a different “prize” than those
hired as postdoctoral researchers.

3. A young talented European economist can move to the US to try to win
the Bates Clark medal for best economist in the US under 40, or can move
to Australia to try to win the Young Economist Award from the Economic
Society of Australia.1

4. A gifted swimmer with an arms span of 201 cm, relatively short legs, feet
size 14 and hypermobile ankles can try to win 8 gold Olympic medals for
200m freestyle, 100m and 200m butterfly, 200m and 400m individual medley,
4×100m and 4×200m freestyle relay and 4×100m medley relay, or can try to
win the most prestigious gold Olympic medal for the 100m freestyle.

In each of these examples agents have to decide in which tournament they want to
compete, where in the first and third example participation in multiple tournaments
is impossible. In the first, second and fourth example, a single organizer has split
the total prize money over multiple tournaments.

Since Lazear and Rosen (1981) it has been recognized that tournaments can be
very useful in providing incentives. Lazear and Rosen, but also Green and Stokey
(1983) and Nalebuff and Stiglitz (1983) analyze internal labor markets as tourna-
ments. An important theoretical result is that rank-order tournaments can yield

1We thank Paul Frijters (the 2009 winner of the Young Economist Award from the Economic
Society of Australia) for pointing us to this example.
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optimal level of effort while, in contrast to piece rates, only relative instead of ab-
solute performance has to be observed to provide correct incentives.2

More recent contributions focus on the optimal prize structure of tournaments
(Glazer and Hassin, 1988; Moldovanu and Sela, 2001; see also Clark and Riis, 1998)
or on the optimal structure of tournaments (Moldovanu and Sela, 2006). Moldovanu
and Sela (2001) analyze the question how a fixed amount of prize money should be
divided between several possibly different prizes in a single tournament (a first prize,
a second prize etc.). In their model the agent choosing the highest effort wins the
first prize and agents have private information about their ability (cost of effort).
They show that if the cost function of effort is linear or concave then total effort
is maximized when there is only one large prize. It might be optimal to split the
prize money in more than one prize, but only when the cost function of effort is
sufficiently convex. In a similar framework, Moldovanu and Sela (2006) analyze
whether it is better to organize one pooled contest, or a series of sub-contests whose
winners compete against each other and whose losers are eliminated. The answer
to this question now depends on the objective of the organizer (maximize expected
total effort or maximize expected highest effort) and again on the curvature of the
cost function of effort.3

In this paper we analyze the related but different case in which the organizer of a
tournament has the option to allocate the available prize money over several parallel
tournaments, after which participants have to choose which tournament to enter.
While Moldovanu and Sela mentioned the interest of this issue already 10 years ago,
we are not aware of any other study addressing this question.4 An explanation for
this might be that in their framework, where order statistics play an important role,
incorporating participants’ self-selection into the analysis is not innocuous.

In this paper we adopt the model of Tullock (1980), but allow the total prize
money to be split (in unequal shares) over two tournaments. Azmat and Möller
(2009) also adopt the framework of Tullock. They study the competition between

2The empirical evidence in support of this model comes mainly from laboratory experiments
(Bull et al., 1987; Harbring and Irlenbusch, 2003; Schotter and Weigelt, 1992) and from sports
tournaments (Ehrenberg and Bognanno, 1990; Sunde, 2009). Leuven et al. (2008) argue that due
to sorting the external validity of this evidence is limited.

3Szymanski (2003) provides a survey of different contest forms in sports, and gives many ex-
amples.

4In their concluding section, Moldovanu and Sela (2001) write that “[a]nother interesting ex-
tension would be the study of several parallel contests (with potentially different prize structures),
such that agents can choose where to compete.” And in the concluding section of Moldovanu
and Sela (2006), they state that “[a]nother important avenue for future research is embedding the
present analysis in a model of competition among contest designers. ... Since the contest architec-
ture influences the expected payoffs of the participating agents, it is interesting to analyze which
agents engage in which contests.”
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organizers of tournaments. Organizers choose the prize structure to compete for
homogeneous agents. In our model we allow agents to differ in ability and the total
prize can differs between tournaments. Heterogeneous agents have to decide either
to enter the tournament with the high prize or with the low prize. After learning
who participates in which tournament, all agents decide how much effort to devote
to winning the prize in their tournament.

Within our relatively simple framework we show that when agents select their
tournament many different equilibria can arise. If the difference is prize money
between the tournaments is sufficiently large, higher ability agents are more likely
to sort into the tournament with the high prize than low-ability agents. However,
if this difference is relatively small there may be multiple equilibria also including
equilibria with reversed sorting by ability. Furthermore, we show that splitting
tournaments does not increase total effort devoted by all agents compared to having
only a single tournament. However, splitting the tournament may in some cases
yield more effort from low-ability agents.

The outline of the paper is as follows. Section 2 provides the case where there
is only a single tournament in which all agents participate. In Section 3 we discuss
splitting the prize money over two tournaments. In Section 4 we allow a social
planner to assign agents to tournaments and set the prizes. Section 5 concludes.

2 A simple tournament setting

Consider a setting with two types of agents. There are NL low-ability agents having
high constant marginal costs cL of effort e ≥ 0, and NH high-ability agents with low
marginal costs cH of effort; cL > cH > 0. All agents participate in a tournament,
where only the winner gets a prizeM . Like Tullock (1980), we define the probability
that agent i wins the prize by

pi = ei∑
j ej

This success probability follows from the score function si = log(ei) + εi, where
εi follows an extreme type-I distribution, and the winner of the tournament is the
agent with the highest score.

The expected utility of a risk-neutral agent equals

ui = ei∑
j ej

M − ciei

Agents choose their effort to maximize expected utility. The first-order condition
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for agent i is
∂ui
∂ei

=
∑
j ej − ei(∑
j ej

)2 M − ci = 0

In equilibrium, all low-ability agents should devote the same effort eL, and all high-
ability agents devote effort eH . The optimal effort for both groups is given by

e∗
L =


(NL+NH−1)(cL+cHNH−cLNH)

(NLcL+NHcH)2 M if NH ≤ cL

cL−cH

0 if NH > cL

cL−cH

and

e∗
H =


(NL+NH−1)(cH+cLNL−cHNL)

(NLcL+NHcH)2 M if NH ≤ cL

cL−cH

(NH−1)cH

c2
HN

2
H

M if NH > cL

cL−cH

The condition NH ≤ cL

cL−cH
for positive effort of low-ability agents ensures that

cL + cHNH − cLNH ≥ 0, so that effort both types of agents will never be negative.
Note that this condition does not depend on the size of the prizeM . Obviously, low-
ability agents only participate in the tournament if the number of high-ability agents
is limited. The upper bound for the number of high-ability agents depends on the
relative difference in marginal costs of effort between low-ability and high-ability
agents. Furthermore, if there is only one high-ability agent in the tournament,
low-ability agents will always devote positive effort regardless of the relative cost
difference.

The organizer of the tournament might be interested in the total effort devoted
by all agents, which is given by

NLe
∗
L +NHe

∗
H =


NL+NH−1
NLcL+NHcH

M if NH ≤ cL

cL−cH

NH−1
cHNH

M if NH > cL

cL−cH

Total effort thus linearly increases with the prize M . Furthermore, total effort is
increasing in the number of low-ability agents NL as long as NH ≤ cL

cL−cH
, and

otherwise total effort is unaffected by NL. Increasing the number of high-ability
agents NH always increases total effort. This implies that adding additional agents
to the tournament can never reduce the total effort devoted by all agents.

Using the expressions for total effort, we can easily derive expected utility. The
expected utility of a high-ability agent is

uH =


(cH+cLNL−cHNL)2

(NLcL+NHcH)2 M if NH ≤ cL

cL−cH

1
N2

H
M if NH > cL

cL−cH
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and of a low-ability agent

uL =


(cL+cHNH−cLNH)2

(NLcL+NHcH)2 M if NH ≤ cL

cL−cH

0 if NH > cL

cL−cH

Of course, the expected utility of a high-ability agent is higher than the expected
utility of a low-ability agent provided that there are multiple agents, i.e. NH +NL >

1.

3 Splitting the tournament

Next, we split the prize into two prizes αM and (1 − α)M with 0.5 ≤ α ≤ 1.
The prizes can be won in two different tournaments, and each agent is allowed to
participate in only one of the two tournaments. The game is such that first agents
choose whether they want to participate in the tournament with the high prize
αM or the low prize (1 − α)M . After agents have chosen their tournament, they
observe the tournament choices of all other agents, and determine their level of
effort. Below, we provide a characterization of the equilibria for different values of
α. When choosing the tournament we impose symmetry with respect to the own
group. Agents with the same cost function of effort thus always have the same
strategy.

3.1 All high-prize equilibrium

The first possible equilibrium we consider is the one where all agents (of both types)
choose to participate in the tournament with the high prize αM . The consequence
is that a deviating agent is the only participant in the low-prize tournament. With
minimum effort this agent wins the prize, and (expected) utility of the deviating
agent is therefore (1− α)M .

Recall from the previous section that if a high-ability agent and a low-ability
agent participate in the same tournament, then the high-ability agent has a higher
expected utility. Therefore, if a low-ability agent does not deviate from participating
in the high-prize tournament, the high-ability agent will not deviate either.

If all agents participate in the high-prize tournament, the expected utility of a
low-ability agent is

uL =


(cL+cHNH−cLNH)2

(NLcL+NHcH)2 αM if NH ≤ cL

cL−cH

0 if NH > cL

cL−cH
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Figure 1: All-high-prize equilibrium

Since this should exceed (1 − α)M , two conditions must be satisfied to ensure
that all agents participate in the high-prize tournament. First, NH ≤ cL

cL−cH
to

ensure that low-ability agents have a positive expected utility in the high-prize
tournament. And second, low-ability agents choose the high-prize tournament if
(cL+cHNH−cLNH)2

(NLcL+NHcH)2 αM ≥ (1 − α)M . Rewriting gives the following conditions for the
all high-prize equilibrium

α ≥ (NLcL +NHcH)2

(NLcL +NHcH)2 + (cL + cHNH − cLNH)2
with NH ≤

cL
cL − cH

Note that both conditions do not depend on the total prize M .
If the number of high-ability agents is sufficiently small such that NH ≤ cL

cL−cH
,

then the right-hand side of the first condition is less than or equal to 1. Furthermore,
the right-hand side of the first condition is increasing in both NH and NL implying
that if the number of agents increases, the fraction of the total prize going to the
high-prize tournament should become higher to ensure that all agents choose this
tournament. If the conditions above are satisfied, this equilibrium is unique.

It may be obvious that setting α such that all agents choose to participate in the
high-prize tournament cannot increase total effort devoted by all agents. Recall from
the previous section that total effort of all agents in a single tournament is linearly
increasing in the tournament’s prize. So if all agents participate in a tournament
with a prize αM rather than M as would be in a single tournament, then all agents
reduce their effort proportionally. The same holds for the expected utility of the
agents, which is also a linear function of the prize money in the tournament.

To illustrate when this equilibrium exists we consider a numerical example. In
this example we normalize the marginal costs of effort of the low-ability agents to
one, i.e. cL = 1. We consider two specific cases, first NH = NL = 2, and second

7



NH = NL = 4. So one case with relatively few agents and one case with more
agents. Figure 1 shows for which 0 < cH < 1 and 0.5 ≤ α ≤ 1 the all high-prize
equilibrium arises. This equilibrium is only possible if α is relatively close to 1,
which implies that almost all available prize money should be assigned to the high-
prize tournament. Furthermore, the difference in marginal costs of effort between
the high-ability and low-ability agents should not be too large, which is particularly
true if the number of agents increases. In general the area at which in equilibrium all
agents choose the high-prize tournament becomes smaller as the number of agents
increases.

3.2 Perfect-sorting equilibrium

Next, we consider a second equilibrium in which the low-ability agents choose to
participate in the tournament with the low prize (1 − α)M and the high-ability
agents participate in the tournament with the high prize αM . With this type of
perfect sorting, the optimal effort of the high-ability agents becomes

e∗
H = (NH − 1)cH

c2
HN

2
H

αM

and of the low-ability agents

e∗
L = (NL − 1)cL

c2
LN

2
L

(1− α)M

There are two equilibrium conditions. First, high-ability agents should prefer the
high-prize tournament over competing in the low-prize tournament with all the low-
ability agents. And second, the low-ability agents should not want to deviate to the
high-prize tournament competing with all the high-ability agents.

First, consider the high-ability agents. When participating in the tournament
with the high prize, their expected utility is 1

N2
H
αM . Switching to the low-prize tour-

nament gives an expected utility (cH+cLNL−cHNL)2

(cH+cLNL)2 (1 − α)M . Expected utility from
the high-prize tournament exceeds expected utility from the low-prize tournament
if

α ≥ N2
H (cH + cLNL − cHNL)2

(cH + cLNL)2 +N2
H (cH + cLNL − cHNL)2

This lower-bound restriction is strictly smaller than 1.
To determine the upper bound restriction on α, consider a low-ability agent. For

this agent it should not be beneficial to switch to the high-prize tournament. In
the low-prize tournament the expected utility is 1

N2
L

(1− α)M , and in the high-prize

8



tournament (cL+cHNH−cLNH)2

(cL+cHNH)2 αM . Furthermore, switching can only be beneficial if
NH ≤ cL

cL−cH
, otherwise the low-ability agent devotes no effort in the high-prize tour-

nament. A low-ability agent does not want to switch from the low-prize tournament
to the high-prize tournament if

α ≤ (cL + cHNH)2

(cL + cHNH)2 +N2
L(cL + cHNH − cLNH)2 with NH ≤

cL
cL − cH

If the second inequality is not satisfied, the upper-bound restriction simplifies to
α ≤ 1.

Collecting the restrictions gives the conditions for the perfect-sorting equilibrium:

N2
H (cH + cLNL − cHNL)2

(cH + cLNL)2 +N2
H (cH + cLNL − cHNL)2

≤ α ≤

min( (cL + cHNH)2

(cL + cHNH)2 +N2
L(cL + cHNH − cLNH)2 , 1)

The inequalities show that both the lower bound and the upper bound increase as
the number of high-ability agents NH increases. In the first inequality, the upper
bound decreases in the number of low-ability agents NL, and this is also the case
for the lower bound in both inequalities. If cH becomes larger the lower bound
decreases, as well as the upper bound. The intuition behind this is that if the
marginal costs of effort of the high-ability increase, they become more similar to the
low-ability agents, and, therefore, the prize money should be divided more equally
among both tournaments to have perfect sorting as an equilibrium.

In the perfect-sorting equilibrium, the total effort of all agents is given by

NLe
∗
L +NHe

∗
H = NL − 1

cLNL

(1− α)M + NH − 1
cHNH

αM

It is interesting to compare this to the total effort in a single tournament. Recall
that in the single tournament, we could distinguish two cases. First, if NH ≤ cL

cL−cH
,

both the high-ability and low-ability agents devote positive effort, and total effort
was given by NL+NH−1

NLcL+NHcH
M . To see how splitting the tournament in this case affects

total effort, we should consider

NL − 1
cLNL

(1− α)M + NH − 1
cHNH

αM − NL +NH − 1
NLcL +NHcH

M

All terms in this expression are linear inM . When ignoringM , this can be rewritten

9



Figure 2: Perfect-sorting equilibrium

to
cHN

2
H(cH(NL − 1)− cLNL) + αcLN

2
L(cL(NH − 1)− cHNH)

This is always negative. The first term is negative because high-ability agents have
lower marginals costs of effort than low-ability agents and, therefore, cH(NL − 1) <
cLNL. The second term is only positive if cL(NH − 1) − cHNH > 0, which implies
NH > cL

cL−cH
. However, if this is satisfied, low-ability agents do not devote any effort,

and in that case we should evaluate

NL − 1
cLNL

(1− α)M + NH − 1
cHNH

αM − NH − 1
cHNH

M

If we again ignore M , we can rewrite this expression to

NL − 1
cLNL

− NH − 1
cHNH

The condition NH > cL

cL−cH
implies (NH−1)

cHNH
> 1

cL

(
= NL

cLNL

)
> NL−1

cLNL
. The main conclu-

sion is thus that if the value of α is such that there is a perfect-sorting equilibrium,
total effort is lower than in case of a single tournament.

Let us return to the numerical example discussed in the previous subsection.
Figure 2 shows the areas where perfect sorting is an equilibrium. The figure indicates
that for perfect sorting to be an equilibrium it is either required that the difference in
marginal costs of effort between the high-ability and low-ability agents is relatively
large (cL is low), or (if both groups have relatively similar marginal costs of effort)
the smaller prize should not be too large (α too small). If the difference in marginal
costs of effort is large and the low prize is also substantial, perfect sorting is not an
equilibrium. In that case it becomes beneficial for the high-ability agents to enter
the low-prize tournament, and there is a mixing equilibrium (which we will discuss
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below). Increasing both the number of high-ability and low-ability agents causes the
lower bound to increase. The effect on the upper bound is not monotonic. Recall
that the number of high-ability agents and the number of low-ability agents have an
opposite effect on the direction in which both bounds move.

Non-uniqueness of the perfect-sorting equilibrium

Unlike the equilibrium where all sort into the high-prize tournament, the perfect-
sorting equilibrium is not necessarily unique. When the number of high-ability
agents is low reverse sorting might also be an equilibrium. In that case, all low-
ability agents are in the high-prize tournament, and the high-ability agents are in
the low-prize tournament. A high-ability agent prefers to participate in the low-
prize tournament with only a small number of high-ability agents than to enter the
high-prize tournament with more low-ability agents.

This reverse-sorting equilibrium can only arise if the following conditions are
satisfied. First, it should not be beneficial for high-ability agents to deviate, which
means,

1
N2
H

(1− α)M ≥ (cH + cLNL − cHNL)2

(cH + cLNL)2 αM

Recall that if there is only a single high-ability agent in a tournament, low-ability
agents will devote positive effort. The upper-bound condition for the reverse-sorting
equilibrium is

α ≤ (cH + cLNL)2

(cH + cLNL)2 +N2
H (cH + cLNL − cHNL)2

From this condition it can be seen that if the number of high-ability agents NH is
large, the upper bound is below 0.5 implying that reverse sorting is not an equilib-
rium. However, if NH is small, then the upper bound is above 0.5, which can be
verified by considering the case NH = 1. Furthermore, the upper bound increases
in the number of low-ability agents NL.

Second, also for a low-ability agent it should not be beneficial to deviate, which
implies

1
N2
L

αM ≥ (cL + cHNH − cLNH)2

(cL + cHNH)2 (1− α)M

The lower bound is thus given by

α ≥ N2
L(cL + cHNH − cLNH)2

(cL + cHNH)2 +N2
L(cL + cHNH − cLNH)2

11



Figure 3: Reverse-sorting equilibrium

And, of course, NH ≤ cL

cL−cH
, otherwise the deviating low-ability agent will not de-

vote any effort when entering the low-prize tournament with all high-ability agents.
For the lower-bound condition to exceed 0.5 the number of low-ability agents should
be sufficiently large, i.e. NL >

cL+cHNH

cL+cHNH−cLNH
.

Like in the perfect-sorting equilibrium, we can also show for the reverse-sorting
equilibrium that total effort of all agents is always lower than in case of a single
tournament. The proof is the same as the proof in Subsection 3.2.

Let us again consider the numerical example discussed earlier. Figure 3 shows
for which combinations of cH and α the reverse-sorting equilibrium exists. It is clear
that cH should be relatively close to 1, implying that the marginal costs of effort
of the high-ability agents should be relatively close to the marginal costs of effort
of the low-ability agents. If the difference becomes too large, reverse sorting is no
longer an equilibrium. Furthermore, a substantial part of the total prize should
be assigned to the low-prize tournament. As already mentioned above the area for
which reverse sorting is an equilibrium shrinks rapidly if the number of (high-ability)
agents increases. By comparing the area in which reverse sorting is an equilibrium
with the area in which perfect sorting is an equilibrium (displayed in Figure 2), one
can see that these areas overlap. This means that both equilibria are not necessarily
unique.

3.3 Mixed-strategy equilibria

The numerical example discussed above shows that for some parameter values, there
are multiple pure-strategy equilibria. Also for some parameter values there are no
pure-strategy equilibria. In this subsection we consider mixed-strategy equilibria.
There are a number of mixed-strategy equilibria, which we discuss below. It might
be that both types of agents follow a mixed strategy or that one of the types has a

12



Figure 4: Mixed-strategy equilibrium – where both types mix

pure strategy while the other type has a mixing strategy.
First, consider the possible equilibrium in which both the high-ability agents

and the low-ability agents follow a mixed strategy. If α equals 0.5, the total prize
is divided equally over both tournaments. So both tournaments are the same, and
agents are indifferent in which tournament they participate. A possible equilibrium
is that both a high-ability agent and a low-ability agent choose to enter each of the
two tournaments with probability 0.5. Because both tournaments are ex-ante the
same, none of the agents can improve their outcome by deviating from this mixing
strategy.

There is not only a mixed-strategy equilibrium for α being exactly 0.5, but often
also for higher values of α. Determining for a given value of the parameters the
highest value for α for which it is an equilibrium that both agents have a mixed
strategy is more complicated. Therefore, we use the numerical example discussed
before and show in Figure 4 for which parameter values it is an equilibrium that
both high and low-ability agents mix. The figure shows that for low values of cH a
mixed-strategy equilibrium is possible for higher values of α if there are more agents.
For higher values of cH the figure gets slightly more complicated to interpret. As
we will see below, this has to do with other existing mixed-strategy equilibria. In
particular, whether or not the low-ability agents may choose a pure strategy to enter
the low-prize tournament. Furthermore, it should be noted that this mixed-strategy
equilibrium partly overlaps with the perfect-sorting equilibrium and the reverse-
sorting equilibrium. The intuition is that for values for cH relatively close to one,
α close to 0.5, and two high-ability and two low-ability agents it is an equilibrium
if there are (in expectation) in each tournaments two agents. In that case no agent
would want to change because it would imply competing against two agents rather
than one.
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In a mixed-strategy equilibrium it is difficult to evaluate the (expected) total
effort devoted by all agents. Agents only decide about the effort after they learn
which agents compete in which tournament. Since all agents follow a mixed strategy,
the composition of the tournaments is stochastic and so is total effort. We will show
in Section 4 that total effort will always be lower in mixed-strategy equilibria than
when only having a single tournament.

From the different figures shown so far, it is clear that there are parameter values
for which we have not yet shown any equilibrium. There are two remaining possible
mixed-strategy equilibria. The first is the equilibrium in which all high-ability agents
decide to participate in the high-prize tournament, while the low-ability agents mix
between both tournaments. Recall from Subsection 3.1 that the all high-prize equi-
librium is unique. So a first condition for having a mixed-strategy equilibrium in
which only low-ability agents mix is that α < (NLcL+NHcH)2

(NLcL+NHcH)2+(cL+cHNH−cLNH)2 if NH <
cL

cL−cH
. Furthermore, a low-ability agent should prefer to enter the high-prize tourna-

ment if all other low-ability agents enter the low-prize tournament. From Subsection
3.2 we know that this implies NH < cL

cL−cH
and α > (cL+cHNH)2

(cL+cHNH)2+N2
L(cL+cHNH−cLNH)2 .

This second mixed-strategy equilibrium is thus possible if NH < cL

cL−cH
and

(NLcL +NHcH)2

(NLcL +NHcH)2 + (cL + cHNH − cLNH)2

< α <

(cL + cHNH)2

(cL + cHNH)2 +N2
L(cL + cHNH − cLNH)2

This is exactly the area between the all high-prize equilibrium displayed in Figure
1 and the perfect-sorting equilibrium shown in Figure 2.

The final mixed-strategy equilibrium is one where all low-ability agents sort into
the low-prize tournament and the high-ability agents mix over both tournaments.
Obviously, this equilibrium requires that a high-ability agent should prefer the low-
prize tournament if all other high-ability agents enter the high-prize tournament.
The upper bound for α for this mixed-strategy equilibrium is thus the lower bound
of the perfect-sorting equilibrium, and is given by

α <
N2
H (cH + cLNL − cHNL)2

(cH + cLNL)2 +N2
H (cH + cLNL − cHNL)2

Determining the lower bound of this mixed-strategy equilibrium is more complicated
and should again be done numerically.

In Figure 5 we again consider the example and show for which values of cL and
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Figure 5: Mixed-strategy equilibrium – where only high-ability types mix

α this equilibrium arises. For a setting with only few agents, the value of cH should
be sufficiently small and furthermore α should not be too high. If this is not the
case, there will be a perfect selection equilibrium. Furthermore, if both cH and α

are very low, not only the high-ability agents but also the low-ability agents follow
a mixed strategy. As can be seen from the figure the area indicating the equilibrium
shift substantially if there are more agents in the tournament. The latter implies
that for more parameter values the equilibrium in unique in which both types of
agents use a mixed strategy. Indeed, if there are many agents of both types, the
high-ability agents follow a mixed strategy and enter both the low-prize and the
high-prize tournament. If the number of high-ability agents is sufficiently large,
then even low-ability agents in the low-prize tournament will not devote any effort.
In the limit only the behavior of the high-ability agents is relevant and they mix
over both tournaments.

4 Social planner

So far, we have mainly considered the behavior of agents. We have largely ignored
the organizer of the tournament, although we implicitly assumed that the organizer’s
objective is to optimize total effort of all agents. Below we assume that there is a
social planner, who can not only decide about the value of α, but can also assign
the agents to the tournaments. The social planner might not only be interested
in maximizing total effort, but we also consider a second objective: maximizing
the minimum effort level. For illustration we start by considering the case where
NH = NL = 2. Obviously, the social planner should make sure that all agents are
actually competing, implying that each agent should have at least one competitor.
An agent who does not have any competitor earns a prize without providing any
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effort. Given both objectives of the social planner, this can never be optimal. This
leaves us with four possible assignments:

• All four agents are assigned to a single tournament in which the full prize
money (M) can be won (the pooled tournament).

• One high-ability agent and one low-ability agent are assigned to the high-prize
tournament and one high-ability agent and one low-ability agent are assigned
to the low-prize tournament (two mixed tournaments).

• The two high-ability agents are assigned to the high-prize tournament and
the two low-prize agents are assigned to the low-prize tournament (perfect
sorting).

• The two high-ability agents are assigned to the low-prize tournament and
the two low-prize agents are assigned to the high-prize tournament (reverse
sorting).

We use the results derived earlier to report in Table 1 the maximum total effort and
the maximum minimum effort that can be achieved under each of these assignments.
Above the equation-signs we report the value of α for which these outcomes are
attainable.

It is easy to check that the maximum total effort in the pooled tournament is
always as least as large as the maximum total effort in case of a split tournament.
Consider in particular the case of perfect sorting. The best the social planner can
do in that case is to set α = 1. But if all the prize money goes to the high-prize
tournament in which the high-ability agents participate, it is better to re-assign the
low-ability agents also to the high-prize tournament. As we have shown in Section 2
increasing the number of agents in a tournament will never decrease the total effort
in this tournament.

It is also easy to check that minimum effort under reverse sorting exceeds min-
imum effort under perfect sorting and under mixed sorting.5 Minimum effort un-
der reverse sorting is, however, not necessarily larger than minimum effort in the
pooled tournament. This is only true if cH < 4

5cL: the marginal cost of effort of
the low-ability agents has to be sufficiently above the marginal cost of effort of the
high-ability agents. Otherwise, it is better not to split the prize money and to run
the pooled tournament.6 Whether the pooled tournament induces higher or lower

5In both cases this holds because cL > cH .
6Note, however, that this situation will never occur when agents self-select into tournaments,

since reverse sorting is only an equilibrium if the costs of high-ability and low-ability agents are
sufficiently equal.
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minimum effort than the mixed tournaments or the perfect-sorting tournaments,
also depends on the values of cL and cH . Mixed tournaments dominate the pooled
tournament as long as cH < 3

5cL. Perfect-sorting tournaments dominate the pooled
tournament if 10cHcL − c2

H < 7c2
L, which holds if cH is sufficiently small compared

to cL.
We can generalize the results regarding maximum total effort to other values of

NH and NL. Once the social planner has divided all agents over both tournament,
the optimal strategy would be to assign the full prize to one of the tournaments, i.e.
the tournament with the highest “weight”, because effort within each tournament
is linear in the prize. If the full prize has been assigned to a single tournament, it is
also optimal to assign all agents to this tournament, because more competition can
never reduce total effort. This argument stresses that splitting a tournament can
never increase total effort of all agents and can thus never be the optimal strategy
of a principal or social planner who has the main objective to optimize total effort.
A principal or social planner who divided the prize over multiple tournaments thus
puts in their objective function some weight on the effort of the low-ability agents.

5 Conclusions

To examine how heterogeneous agents choose among two tournaments with different
prizes, we analyzed a model in which agents differ in their constant marginal cost of
effort and in which an agent’s probability to win a tournament is equal to the agent’s
effort relative to the sum of effort of all agents in that tournament. We characterize
different equilibria and show how these are related to parameter values, especially
how the prize money is divided across tournaments, and the difference in marginal
costs between high-ability and low-ability agents.

A pooling equilibrium in which all agents choose for the high-prize tournament
arises if a large share of the prize money goes to the high-prize tournament and if
high-ability and low-ability agents are fairly similar in terms of their marginal costs
of effort. A perfect sorting equilibrium can arise for less extreme values of these
parameters. We also show, however, that this equilibrium is not unique. For some
parameter values, both perfect sorting and reverse sorting are equilibria. We also
characterize three types of mixed strategy equilibria.

A common finding for all equilibria is that total effort will never exceed the total
effort that is provided when all prize money goes to a single pooled tournament.
Hence, a principal who wants to maximize total effort should never split a tourna-
ment in different smaller tournaments. This result is in line with the conclusions

17



Ta
bl
e
1:

O
ut
co
m
es

of
di
ffe

re
nt

as
sig

nm
en
ts

un
de
r
so
ci
al

pl
an

ne
r

Pl
ay
er
s

Pr
iz
e

M
ax

im
um

to
ta
le

ffo
rt

M
ax

im
um

m
in
im

um
eff

or
t

{2
H

+
2L

M
}

3
2c

L
+

2c
H
M

if
c L
≤

2c
H

1 2c
H
M

if
c L
>

2c
H

3(
2c

H
−
c L

)
(2
c L

+
2c

H
)2
M

if
c L
≤

2c
H

0
if

c L
>

2c
H

{ 1H
+

1L
1H

+
1L

α
M

(1
−
α

)M

}
1

c L
+
c H
α
M

+
1

c L
+
c H

(1
−
α

)M
=

1
c L

+
c H
M

c H
(c

L
+
c H

)2
(1
−
α

)M
α

=
0.

5
=

c H
4(
c L

+
c H

)2
M

{ 2H 2L
α
M

(1
−
α

)M

}
1 2c
H
α
M

+
1 2c
L

(1
−
α

)M
α

=
1

=
1 2c
H
M

1 4c
L

(1
−
α

)M
α

=
0.

5
=

1 8c
L
M

{ 2H 2L
(1
−
α

)M
α
M

}
1 2c
L
α
M

+
1 2c
H

(1
−
α

)M
α

=
0.

5
=

(
1 4c
L

+
1 4c
H

)M
m

in
(

1 4c
L
α
M
,

1 4c
H

(1
−
α

)M
)α

=
c
L

c
H

+
c
L

=
1

4(
c L

+
c H

)M

18



in Moldovanu and Sela (2001) who find that splitting one large prize into various
smaller prizes within the same tournament will not increase total effort unless agents’
cost functions are very convex. This suggests that our conclusion depends on our
assumption of constant marginal costs. We have not analyzed this case because
allowing for increasing marginal costs turns our model intractable.

We also find that splitting a tournament in different smaller tournaments may
have a beneficial impact on the effort level of low-ability agents. This is particularly
the case if low-ability and high-ability agents are sufficiently different. A principal
or social planner who cares about the effort of low-ability agents may thus split the
prize over multiple tournaments.

In a related paper, we report about a field experiment in which first years eco-
nomics students at the University of Amsterdam had to choose between three tour-
naments with different prizes (see Leuven et al., 2008). In one tournament the prize
was 5000 euros, in another tournament the prize was 3000 euros, and in one tourna-
ment the prize was 1000 euros. Within each tournament the best performing student
on the final exam of a standard introductory microeconomics course would win the
prize. If we use high school math grades as measure of ability, the observed sorting
pattern is consistent with students playing mixed strategies. Some high-ability stu-
dents chose to enter the low-prize tournament and some low-ability students entered
the high-prize tournament. However, on average, more able students are more likely
to enter the high-prize tournament.
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