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Abstract

Cooperation in prisoner’s dilemma games can usually be sustained only if

the game has an infinite horizon. We analyze to what extent the theoret-

ically crucial distinction of finite vs. infinite-horizon games is reflected in

the outcomes of a prisoner’s dilemma experiment. We compare three dif-

ferent experimental termination rules in four treatments: a known finite

end, an unknown end, and two variants with a random termination rule

(with a high and with a low continuation probability, where cooperation

can occur in a subgame-perfect equilibrium only with the high probabil-

ity). We find that the termination rules do not significantly affect average

cooperation rates. Specifically, employing a random termination rule does

not cause significantly more cooperation compared to a known finite hori-

zon, and the continuation probability does not significantly affect average

cooperation rates either. However, the termination rules may influence

cooperation over time and end-game behavior. Further, the (expected)

length of the game significantly increases cooperation rates. The results

suggest that subjects may need at least some learning opportunities (like

repetitions of the supergame) before significant backward induction argu-

ments in finitely repeated game have force.
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JEL classification C72, C92, D21, D43

∗We are grateful to two referees, William Thomson, Dirk Engelmann, Bradley Ruffle and

Anthony Ziegelmeyer for helpful comments and for financial support from the Economic and

Social Research Council (UK) via the Centre for Economic Learning and Social Evolution

(ELSE).
†Duesseldorf Institute for Competition Economics (DICE), University of Duesseldorf,

Germany, Phone: +49 211 81 15297, Fax: +49 211 8115499, email: normann@dice.uni-

duesseldorf.de.
‡Department of Economics, University College London, Gower Street, London WC1E 6BT,

U.K., Phone: +44 20 7679 5899, Fax: +44 20 7916 2775, email: brian.wallace@ucl.ac.uk

(corresponding author).

1



1 Introduction

The game-theoretic predictions for repeated games crucially depend on whether

a game is finitely or infinitely repeated. In a finitely repeated dilemma game,

cooperation usually cannot occur (Luce and Raiffa 1957), but it can emerge

if the game has infinitely many periods. There are several exceptions to this

rule. Cooperation can be part of a subgame perfect Nash equilibrium in a

finitely repeated game if, for example, the stage game has multiple Nash equi-

libria (Benoit and Krishna 1985; 1987), if there is uncertainty about players’

preferences (Kreps et al. 1982), or if the number of periods to be played is not

common knowledge (Samuelson 1987; Neymann 1999). Also, when players have

other-regarding preferences (for example, if they are inequality averse), coopera-

tion can emerge in finitely repeated games (Fehr and Schmidt 1999; Bolton and

Ockenfels 2000). Nevertheless, a complete-information prisoner’s dilemma game

with a unique equilibrium in the stage game and where players have standard

preferences requires infinitely many repetitions for cooperation to be possible.

Because the issue of finitely vs. infinitely many repetitions is crucial in the-

ory, it needs to be carefully addressed in the design of laboratory experiments.

However, whereas experimentalists have certainly paid close attention to the

design of experimental termination rules, no consensus seems to exist regarding

the most suitable experimental design as far as this point is concerned. As we

will see, experimentalists use different rules and they seem to disagree about

the pros and cons of them. We will also see that there are contradicting results

about how the termination rules affect cooperation.

Which termination rules are used in experiments? The first termination rule,

the finite horizon, is simply to repeat the stage game of the experiment a finite

number of times and to inform participants about the number of repetitions

in the instructions. This rule was used, for example, in the early experiments

of Flood (1952) and Rapoport and Chammah (1965). The second rule (which

we label unknown horizon) is to refrain from informing participants about the

actual length of the experiment (e.g., Fouraker and Siegel 1963). The experi-

menter may tell participants that there will be a “large” number of repetitions,

or that there will be a certain minimum number of periods they will play, but

the actual number of periods is unknown. The third termination rule is to im-

pose a random-stopping rule to terminate the experiment (Roth and Murnighan

1978; Axelrod 1980). The termination mechanism (for example, the throw of a

die or a random computer draw) and the termination probability are explained

in detail in the instructions.

Since experimentalists use these different methods for ending cooperation

experiments, it seems useful to review which properties of the experimental

termination rules they regard as (non-)desirable:
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– Presumably influenced by Luce and Raiffa’s (1957) theoretical result, ex-

perimentalists often saw a need to avoid the unraveling of cooperation that

may occur due to the finiteness of the horizon. If the proposition that co-

operation cannot occur in finitely repeated games has descriptive power in

experiments, then the finite horizon is not suitable for cooperation experi-

ments whereas the random stopping rule and the unknown horizon would

be. Empirically, however, it is well known that stable cooperation does

occur also in finitely repeated games.

– A related concern is to avoid end-game effects. Morehous (1966) observed

that defection rates increase towards the end of the game when the hori-

zon of the game is known to be finite. Thus, even though cooperation

does usually not completely unravel with a finite horizon, some studies

try to avoid this end-game effect by using the random stopping rule or the

unknown horizon. For example, Axelrod’s first tournament had a known

and fixed duration of 200 periods whereas his second tournament used a

probabilistic termination rule so that “end-game effects were successfully

avoided” (Axelrod 1984, p. 42). Murnighan and Roth (1983, p. 284) argue

that “consideration of end-game play is less critical” with the random ter-

mination rule. Holt (1985, p. 320) makes the same point. Alternatively,

rather than avoiding end-game effects with the termination rule, some ex-

perimenters simply discard the finals period(s) of the game from the data

so that no bias due to end-game effects can affect the data analysis.1

– Experimentalists are also concerned about transparency and control. Holt

(1985) prefers to fully inform subjects about the things to come in an ex-

periment. The lack of transparency is an argument against the unknown

horizon. Also, with that termination rule, “subjects must form subjec-

tive probabilities greater than zero that a given period might be the last”

(Roth and Murnighan 1978, p. 191). This rule thus lacks experimental

control. The random termination rule and the finite horizon are transpar-

ent and enable control.

– Another goal mentioned in the literature is to make the theory of infinitely

repeated games applicable to the experiment. With finitely many peri-

ods, the theory is bland; by contrast, the random termination rule “per-

mits the nature of the equilibrium outcomes to be controlled” (Roth and

1For recent references, see Kaplan and Ruffle (2006), Orzen (2008) or Suetens and Potters

(2007).
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Murnighan 1978, p. 191). However, Selten, Mikzewitz and Uhlich (1997)

argue that infinitely repeated games cannot be played in the laboratory.

Participants will be aware that experiments can only be of finite duration

as the experimenter simply cannot continue “forever”. Selten, Mikzewitz

and Uhlich (1997, p. 517) point out that “the stopping probability cannot

remain fixed but must become one eventually”. From this perspective,

efforts to match the theoretical requirements of infinitely repeated games

would miss the point.

In this paper, our aim is to investigate how the termination rules affect

cooperation empirically, rather than adding to the debate of potential (dis-

)advantages of termination rules. We conduct a series of laboratory experiments

comparing different termination rules for repeated-game experiments. How the

experimental designs regarding the termination of the game affect cooperation

rates is of significance for both theorists and experimentalists. For game theo-

rists, it seems to be of some importance to learn to what extent the distinction of

finite vs. infinite horizon is reflected quantitatively in the outcomes of coopera-

tion experiments; observational experience can then be useful for a reflection on

assumptions. For experimentalists, it is essential to learn about the effects of the

experimental designs because they may affect cooperation rates and therefore

bias the experimental results if different studies adopt different designs.

Here is a summary of what we know about how these experimental designs

affect cooperation rates. We have already mentioned that stable cooperation

emerges even with finitely many repetitions but that end-game effects occur.

Selten and Stoecker (1983) further noted that subjects learn to anticipate the

endgame effect in that this effect is shifted to earlier rounds when a supergame

with a finite horizon is repeated several times (see also Andreoni and Miller

1993). In that case, there is more unraveling and backward induction arguments

have more force. Roth and Murnighan (1978) found that a random stopping

rule with higher continuation probability does lead to more cooperation in the

prisoner’s dilemma. However, in the modified setup analyzed in Murnighan

and Roth (1983), this could not be confirmed.2 Engle-Warnick and Slonim

(2004) ran trust game sessions with a known horizon of five periods and sessions

with a random stopping rule with a continuation probability of 0.8. Their

data show that the level of trust does not vary in the two treatments with

inexperienced players even though the supergame was played twenty times. Dal

Bo (2005) found that the continuation probability of the random-stopping rule

matters when various prisoner’s dilemma supergames are repeated ten times.

2The experimental design in Roth and Murnighan (1978) and Murnighan and Roth (1983)

deviates from standard prisoner’s dilemma experiments (like ours). See the discussion in Roth

(1995).
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The (expected) number of periods to be played was one, two and four in Dal

Bo’s experiments. We compare our findings to those of Dal Bo (2005) in the

Discussion below.3

Our research extends these findings by analyzing all three termination rules

for repeated games within a unified framework. Our main treatments focus on a

setting that is frequently applied in social dilemma experiments—a design with

“many” periods (at least 22) and where the supergame is not repeated. For

such a setting, we compare the impact of the termination rules on cooperation

in a prisoner’s dilemma. We employ the finite and known horizon, the unknown

horizon, and the random-stopping rule is analyzed with a high and with a low

continuation probability (where cooperation can occur in a subgame-perfect

equilibrium only with the high probability). We check for the robustness of

these results with additional treatments which have an (expected) length of

only five and ten periods.

Our findings are that the termination rules do not significantly affect average

cooperation rates, but they may influence cooperation over time and end-game

behavior. Further, the (expected) length of the game significantly increases

cooperation rates.

2 Theory and Experimental Design

The stage game underlying our cooperation experiments is the prisoner’s dilemma

in Table 1. This is a standard two-player prisoner’s dilemma with Si = {defect,

cooperate}, i=1 , 2 , as strategy sets (in the experiment, a neutral labeling for

the strategies was used). The static Nash equilibrium of the game in Table 1 is

{defect, defect}.

3Recently, this literature has seen a substantial growth. Related to our research question,

albeit less relevant, are the following findings. Gonzales et al. (2005) have suggested a new

termination method. In public-goods experiments, they contrast a known finite horizon with

various treatments where the termination period is only given by an interval. They find that

asymmetric information about this interval reduces end-game effects but replacing a definite

endpoint by a commonly or privately known symmetric interval does not have a significant

impact on overall cooperation. Bruttel, Güth and Kamecke (2011) analyze prisoner’s dilemma

settings where information about the horizon of the game is not common knowledge and where

cooperation can be part of a subgame perfect equilibrium as a result. Finally, Bruttel et al.

(2011) investigate finitely repeated games with and without multiple equilibria of the stage

game. They find that the nature of the additional equilibrium matters (strict versus non-

strict).

5



defect cooperate

defect 350, 350 1000, 50

cooperate 50, 1000 800, 800

Table 1: The stage game

Our four treatments reflect the above discussion of termination rules. In

treatment Known, the end of the experiment was given to the participants

simply by saying that the experiment would last for 22 periods. In treatment

Unknown, the length of the experiment (28 periods) was not mentioned to the

participants and the instructions merely said that the experiment would last at

least 22 periods. In RandomLow, the instructions said that the experiment

would last at least 22 periods, and then the experiment would continue with a

probability of 1/6.4 In treatment RandomHigh, there were at least 22 periods

and then the experiment would continue with a probability of 5/6.5 A copy

of the instructions is contained in an appendix. In all four treatments, the

matching of participants was fixed over the entire experiment. We have data

from 15 pairs for each treatment.

Additionally, we ran three further treatments designed to test the impact of

the length of the horizon of the game. We will report on the design of these

treatments and the results in section 4 below.

The subgame perfect Nash equilibrium predictions for the treatments are

as follows. The static Nash equilibrium, {defect, defect}, is also the unique

subgame perfect Nash equilibrium of the finitely repeated game in treatment

Known. In Unknown, we cannot control for subjects’ prior on the termina-

tion of the experiment. The static Nash equilibrium may apply but possibly

repeated-game arguments have bite as well. If we ignore Selten, Mikzewitz and

Uhlich’s (1997) argument, we can make predictions based on infinitely repeated

games for the treatments with a random end. From Stahl (1991), {cooperate,

cooperate} is a subgame perfect Nash equilibrium outcome of the infinitely re-

4Feinberg and Husted (1993) induce discounting in an alternative way. They have a ran-

dom stopping rule but additionally they shrink gradually the payoffs in a reduced two-action

Cournot game. Using experienced subjects, they find a quantitatively minor increase of co-

operation with higher discount factors.
5We control for the minimum number of periods rather than the expected number of periods

across treatments because an analysis of the impact of termination rules requires that subjects

play the same number of periods before the termination rule is triggered. In Unknown, we

cannot control for the expected number of periods anyway.
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peated game if and only if the discount factor is larger than 4/13 ≈ 0.31.

Cooperation among rational and risk neutral players may thus only emerge in

RandomHigh. In RandomLow, the unique subgame perfect Nash equilibrium

is {defect, defect}.

The experiments were conducted in the experimental laboratory at Royal

Holloway College (University of London) and University College London using z-

Tree (Fischbacher, 2007). In total, 182 students participated. Average payments

were £7.20 or roughly $14. Sessions lasted about 45 minutes including time for

reading the instructions.

3 Experimental Results

We start by looking at cooperation rates in the four main treatments. Table 2

reports the number of cooperate choices per pair. We refer to the first 22 peri-

ods, so the maximum is 44 cooperate choices.6 Average cooperation rates are

44.2% in Known, 55.0% in Unknown, 55.2% in RandomLow and 59.1% in

RandomHigh.

Treatment cooperate choices per pair rate

Known 44 43 42 42 36 22 13 11 10 9 7 6 3 3 1 44.2%

Unknown 44 43 43 36 35 34 24 21 21 16 13 11 11 9 2 55.0%

RandomLow 43 43 43 43 42 37 30 19 16 14 13 12 8 1 0 55.2%

RandomHigh 44 44 44 43 41 33 32 31 21 17 13 10 7 6 2 59.1%

Table 2: Results by (ordered) pairs

In all treatments, there is a large variation in cooperation rates across the

fifteen pairs. Some pairs cooperate in all (or nearly all) periods, others virtually

never.

In order to take the possible dependence of observations between paired

players into account, we count each participating pair as one observation. Taking

all four treatments into consideration, we find that these cooperation rates do

not differ significantly (Kruskal-Wallis test, H=1.929, d.f.=3, p=0.587). The

four distributions of cooperate choices do not differ according to a median test

6In four out of the six sessions with a random end, play stopped after period 22. The

remaining two sessions had a length of 23 and 26 periods and occurred in RandomHigh.
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either (χ2=1.268, d.f.=3, p=0.737). From this and further robustness checks7,

we conclude that

Result 1 The termination rule does not significantly affect average cooperation

rates.
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Figure 1: Cooperation over time

Figure 1 shows the time path of cooperate choices in the experiments. The

time paths of the four treatments often overlap, so we show the data in two sep-

7We can compare the four treatments pairwise even though the Kruskal-Wallis omnibus test

is not significant, but Mann-Whitney U tests do not indicate significant differences between

distributions. The p values, not corrected for multiple comparisons, range between 0.65 in

RandomLow vs RandomHigh and 0.24 in Known vs RandomHigh. Neither do Kolmogorov-

Smirnov tests indicate significant differences between the distributions (p values, not corrected

for multiple comparisons, range between 0.55 in RandomLow vs RandomHigh and 0.35 in

Known vs RandomHigh).
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arate figures. All treatments start at a level of around fifteen cooperate choices

(or 50%). Known and Unknown stay at this level until about period 12. Af-

ter that, the number of cooperate choices declines in Known but it increases

in Unknown. Treatments RandomHigh and RandomLow seem very similar

although, until period 18, cooperate choices in RandomHigh appear to be in-

creasing whereas they stay at or above the initial level of 15 in RandomLow.

After that, cooperation drops in both Random treatments. We find a negative

and significant time trend in Known (p = 0.002) and RandomLow (p = 0.013)

but no other significant time trend.8

Result 2 There is a negative and significant time trend in treatments Known

and RandomLow.

In all treatments but Unknown, cooperation declines as play approaches

period 22. We follow a standard procedure to test for possible end-game effects.

We compare cooperation rates in periods 10 to 19 to the average rate in peri-

ods 20 to 22 with a related-sample test and separately for all treatments. We

find significantly lower cooperation rates in the last three periods in treatment

Known (matched-pairs Wilcoxon, Z = −3.06, p = 0.002), and RandomLow

(Z = −2.14, p = 0.021), and RandomHigh (Z = −2.38, p = 0.017). In Un-

known, there is more cooperation in the last two periods. While this increase

in not significant (Z = −1.27, p = 0.203), cooperation rates are higher beyond

period 22 such that the cooperation rate over all periods is 58% Unknown. By

contrast, in the one RandomHigh session with 26 periods, cooperation rates

are 5 percentage points lower beyond period 22. We obtain virtually identical

results when we compare periods 11 to 20 to the average rate in periods 21 to

22.

Result 3 A significant end-game effect occurs in all treatments except Un-

known.

4 Treatments with a Shorter Horizon

There is one aspect of our design that, although common to cooperation exper-

iments, could account for the results we found. With at least 22 periods, the

length of our games may be said to be “long”. In shorter games, the impact of

8Time trends are analyzed by calculating Spearman correlation coefficients of cooperate

choices over time separately for each pair. A sign test using the fifteen (statistically indepen-

dent) correlation coefficients for each treatment indicates whether the time trend is significant.
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the termination rule may be more significant. Thus, it seems useful to test the

robustness of our results in additional treatments that vary the length of the

prisoner’s dilemma games. A richer set of treatments with different (expected)

number of periods also allows to test whether the length of the horizon of the

game per se has an impact on cooperation.

Specifically, we conducted two further treatments with a known finite horizon

of five (Known5) and ten periods (Known10), respectively, and we also ran a

treatment called Random5+5 in which there were at least five periods, after

which the experiment would continue with a probability of 5/6. The expected

number of periods was ten in Random5+5 which corresponds to the number

of periods in Known10; and the minimum number of periods in Random5+5

corresponds to Known5. The game theoretic predictions for these treatments

are the same as those derived above for Known and RandomHigh, respec-

tively. In Known5, we had nine pairs participating and in both Known10 and

Random5+5 eleven pairs participated.9

Treatment cooperate percentage per pair rate

Known5 100 50 40 40 20 20 20 20 0 34.4%

Known10 95 90 85 60 25 25 20 20 15 15 5 41.4%

Random5+5 100 100 80 80 50 30 20 20 10 0 0 44.5%

Table 3: Results by (ordered) pairs, cooperation rates in percent.

Table 3 shows the results. As the number of periods differs here, we report

percentages rather than absolute numbers (average over 5 periods in Known5,

10 periods in Known10 and the first 5 periods in Random5+5). The coopera-

tion rates in Known10 and Random5+5 (which have the same expected num-

ber of periods) are very similar in their averages, whileKnown5 exhibits a lower

average. Testing for differences in cooperation with all treatments jointly does

not suggest significant results (Kruskal-Wallis test, H=0.137, d.f.=2, p=0.853),

nor do any pair-wise comparisons.

Cooperation rates in Known5 and Known10 drop to a level of 22% and

18%, respectively, in the last period. This confirms the end-game effect found

9Each of these treatments was played twice. The second round of repeated games was

not announced and was conducted as a “surprise restart”. Subjects were rematched after

the first supergame. In the second run of the experiment, cooperation rates go up by a

moderate but insignificant amount in all treatments (even if we ignore the possible dependence

of observations across the two supergames). Importantly, the differences between treatments

do not get bigger. We thus refrain from reporting further details of the second round.
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above. The negative time trend observed in Result 3 can be confirmed only for

Known10 (p = 0.012) but not for Known5 (p = 0.754). In Random5+5,

cooperation rates are never below 36%, which does not confirm the end-game

effect found above for RandomLow and RandomHigh. There is no negative

time trend in Random5+5 (p = 0.508), although cooperation rates decrease to

40% after period 5 (there were 26 periods in total). As an aside, we note that,

if we discard the data from the last period(s), cooperations rates would be even

more similar between treatments.

Result 4 The termination rule does not significantly affect average cooperation

rates in treatments Known5, Known10, Random5+5.

Finally, we analyze whether the (expected) number of periods has an impact

on cooperation. To do this, we include all treatments (except for Unknown,

where we cannot control for subjects’ beliefs about the length of the game10)

and we use the expected number of periods (as opposed to the actual realization)

in each treatment. It turns out the length of the game matters. In support of

the hypothesis that a longer horizon leads to more cooperation, we can reject

that the data come from the same distribution using a Jonckheere-Terpstra test

(J-T statistic = 1.896, p = 0.029).11

Result 5 The length of the horizon of the game significantly increases coop-

eration rates.

Treatment Known5 Known10 Random5+5 Known RandomLow RandomHigh

Exp. length 5 10 10 22 22.2 27

Coop. rate 34.4% 41.4% 44.5% 44.2% 55.2% 59.0%

Table 4: Expected length of the game and cooperation

10If we include the data from Unknown with the actual game length (which was not known

to subjects), the below result still hold.
11The Jonckheere-Terpstra test is a non-parametric test for more than two independent

samples, like the Kruskal-Wallis test. Unlike Kruskal-Wallis, Jonckheere-Terpstra tests for or-

dered differences between treatments and thus requires an ordinal ranking of the test variable.

See, e.g., Hollander and Wolfe (1999).
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5 Conclusion

In this paper, we analyze three termination rules for repeated-game prisoner’s

dilemmas. We find that the termination rule does not have a significant effect on

average cooperation rates. Employing a random termination rule does not cause

significantly more cooperation compared to a known finite horizon. Comparing

the random termination rule with a low and a high continuation probability,

we find that the continuation probability does not significantly affect average

cooperation rates either, as did Murnighan and Roth (1983).

In treatments with a known finite horizon, there is an end-game effect with

cooperation rates dropping as the experiment approaches the minimum possi-

ble number of periods for the experimental duration. An end-game effect also

occurred with the random termination rule in our treatments with at least 22

periods but not with the shorter horizon. Cooperation over time is also affected

by the termination rule. A known finite horizon and a random stopping rule

with a low continuation probability exhibit a negative time trend. We also find

that the length of the game does affect cooperation rates significantly. This is

consistent with Dal Bo (2005) where this result occurred for both finitely re-

peated games and in games with a random stopping rule (although, in his setup,

this can be rationalized with standard theory). Morehous (1966) and Bruttel et

al. (2009) also find that longer horizons promote cooperation.

Dal Bo (2005) found that the continuation probability of the random-stopping

rule matters. In addition to differences in the base game, there are two differ-

ences to our setting: Dal Bo’s (2005) games were shorter (the expected length

of the games were one, two and four, respectively) and the supergames were

repeated ten times. It is difficult to assess to what extent the two differences

account for differences in the results. However, it appears that treatment differ-

ences in Dal Bo’s (2005) early supergames were not as pronounced as they were

in the later during the experiment, and most of the learning seems to occur in

the first two or three supergames. Thus it seems that subjects do need at least

some learning opportunities before significant backward induction arguments in

finitely repeated game have force. A shorter horizon may support the learning

process. In such settings, the “shadow of the future” matters—whereas it does

not in our longer experiments that were not repeated many times.

The conclusion that subjects learn about the finiteness of the game and that

thus cooperation rates drop if the supergame repeated is consistent with the

possibility that, when subjects read in the instructions that the horizon is fi-

nite, this may not imply that the finite horizon is really common knowledge. If

so, even rational and selfish players may cooperate with finitely many periods

(Samuelson 1987; Neymann 1999; Bruttel, Güth and Kamecke, 2011), as men-

tioned above. With repetitions of the supergame, eventually the finite duration

will become common knowledge and unraveling of cooperation may occur. But

12



this learning process may be slow if there are, in addition, subjects with other-

regarding preferences that try to cooperate even when the game is commonly

known to be finite.
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Appendix

Here are the instructions for the RandomHigh treatment. The instructions for

the other treatments are similar and are available from the authors.

Experimental Instructions

Welcome to the experiment! Take the time to read carefully the instructions. A

good understanding of the instructions and well thought out decisions during the

experiment can earn you a considerable amount of money. All earnings from

the experiment will be paid to you in cash at the end of the experiment. If you

do have any questions, please raise your hand and one of the co-ordinators will

come to you and answer it privately. Please do not talk to anyone during the

experiment.

You are participating in an experiment in which you interact with one other

participant. The person with whom you interact is always the same.

At the beginning of the experiment, each participant is assigned one of two roles,

either A or B. Everybody keeps his or her role throughout the entire experiment.

Before the experiment starts, each participant with role A is randomly matched

with a participant with role B. This matching is then maintained throughout

the entire experiment.

The experiment is repeated for at least 22 rounds. After the 22nd round (and

each subsequent round), a dice roll decides whether the experiment continues or

not. The experiment terminates if a 6 is thrown and continues otherwise. The

computer throws the dice.

Each round is the same.

———

During each round, the following happens: A has to choose between Left

and Right and B has to choose between Up and Down. Decisions are made

without the knowledge of the other participants decision (i.e. they are made

simultaneously). The payoffs are then given in the following table:

So, for example, if A chooses Left and B chooses Down, A receives a payoff of

1000 points and B receives a payoff of 50 points.
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A’s decision

Left Right

B’s decision
Up A: 350, B: 350 A: 50, B: 1000

Down A: 1000, B: 50 A: 800, B: 800

After both A and B have made a decision, both participants are told what

happened in the round, being informed of each participants decision and the

payoffs to each participant. In addition participants will see their own points

total so far.

———

Your total earnings from the experiment will be £1 for each 2000 points you get

during the rounds of the experiment.

At the end of the experiment you will be paid your total earnings in cash and

asked to sign a receipt. You will also be asked to fill in a short online question-

naire.

You have role A
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