

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Kraft, Stefan; Schmid, Friedrich

Working Paper Nonparametric tests based on area-statistics

Discussion Papers in Statistics and Econometrics, No. 2/00

Provided in Cooperation with: University of Cologne, Institute of Econometrics and Statistics

Suggested Citation: Kraft, Stefan; Schmid, Friedrich (2000) : Nonparametric tests based on areastatistics, Discussion Papers in Statistics and Econometrics, No. 2/00, University of Cologne, Seminar of Economic and Social Statistics, Cologne

This Version is available at: https://hdl.handle.net/10419/45478

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

DISCUSSION PAPERS IN STATISTICS AND ECONOMETRICS

SEMINAR OF ECONOMIC AND SOCIAL STATISTICS UNIVERSITY OF COLOGNE

No. 2/00

Nonparametric Tests based on Area-Statistics

by

Stefan Kraft and Friedrich Schmid

August 2000

DISKUSSIONSBEITRÄGE ZUR STATISTIK UND ÖKONOMETRIE

SEMINAR FÜR WIRTSCHAFTS- UND SOZIALSTATISTIK UNIVERSITÄT ZU KÖLN

Albertus-Magnus-Platz, D-50923 Köln, Deutschland

DISCUSSION PAPERS IN STATISTICS AND ECONOMETRICS

SEMINAR OF ECONOMIC AND SOCIAL STATISTICS UNIVERSITY OF COLOGNE

No. 2/00

Nonparametric Tests based on Area-Statistics

by

Stefan Kraft and Friedrich Schmid^{*}

August 2000

Abstract: Area statistics are sample versions of areas occuring in a probability plot of two distribution functions F and G. This paper gives a unified basis for five statistics of this type. They can be used for various testing problems in the framework of the two sample problem for independent observations such as testing equality of distributions against inequality or testing stochastic dominance in one or either direction against nondominance. Though three of the statistics considered have already been suggested in literature, two of them are new and deserve our interest. The finite sample distribution of these statistics can be calculated via recursion formulae. Two tables with critical values of the new statistics are added. The asymptotic distribution of the properly normalized versions of the area statistics are functionals of the Brownian Bridge. The distribution functions and quantiles thereof are obtained by Monte-Carlo-Simulation. Finally, the power of two new tests based on area statistics is compared to the power of tests based on corresponding supremum statistics, i.e. statistics of the Kolmogorov-Smirnov type.

Keywords: Area Statistics, P - P-Plot, Functionals of Brownian Bridge, Monte Carlo Simulation, Nonparametric Tests, Recursion Formulae

^{*}Author for correspondence: Friedrich Schmid, Seminar für Wirtschafts- und Sozialstatistik, Universität zu Köln, Albertus-Magnus-Platz, 50923 Köln, Deutschland; Tel: +49-221-4702813, Fax: +49-221-4705074, e-mail: schmid@wiso.uni-koeln.de

1 Introduction

Using areas in graphs as a basis for the development of statistical measures and indicators has a long tradition in statistics. The most prominent example is, of course, the Gini measure, which can be interpreted as two times the area between the Lorenz curve and the diagonal in a unit square. This paper deals with the comparison of two distribution functions F and G and the well known p - p plot is a pictorial tool for that purpose.

If F and G are equal the p - p plot is just the diagonal in the unit square and deviations from the diagonal can easily be interpreted. Therefore areas occuring in the p - p plot can be taken as a basis for measures of the amount and type of dissimilarity of F and G. The sample versions of these areas which we call area-statistics can be used as test statistics for various testing problems for independent observations.

This paper gives a unified treatment of five area statistics. Though three of them have already been considered in literature, two of them are new and deserve our interest.

The paper is structured as follows. Section 2 gives a detailed derivation of the area statistics and discusses their usefulness for various testing problems, such as testing equality of distributions against inequality or testing stochastic dominance in one or either direction against nondominance. For each of these testing problems a supremum-statistic (i.e. a statistic of the Kolmogorov-Smirnov-type) is available and area statistics can be viewed as their natural competitors.

Section 3 presents a recursive scheme for the computation of the finite sample distributions of the test statistics under F = G. We include tables with critical values for the two statistics which are introduced in this paper and for which tables are not available in the literature.

Section 4 summarises the asymptotic distributions of the properly normalized statistics. These are functionals of a Brownian Bridge whose analytical treatment is difficult. Therefore careful Monte-Carlo simulations are used to get reliable estimates of the distribution functions, moments and critical values.

Section 5 presents some power results for tests based on those two area statistics which appear for the first time. They are compared to the corresponding supremum statistics for selected alternatives.

2 Derivation of Test Statistics

Let X and Y denote two random variables with continous distribution functions F and G and quantile functions F^{-1} and G^{-1} , respectively, where $F^{-1}(p) = \inf\{x|F(x) \ge p\}$ for $0 and <math>G^{-1}$ is defined analogously.

The probability plot of F and G is defined by $p \mapsto G(F^{-1}(p))$ for $p \in (0, 1)$ (see Figure 1 for an example). The p-p-plot is an excellent tool for our purpose because it summarizes in a simple but pictorial way in a unit square the information necessary for a comparison of F and G. Obviously F = G if and only if $G(F^{-1}(p)) = p$ for $p \in (0, 1)$. Deviations from the diagonal can easily be interpreted, e.g. $G(F^{-1}(p)) > p$ for $p \in (0, 1)$ indicates stochastic dominance of F over G i.e. F(x) < G(x) for $x \in \mathbb{R}$. If $G(F^{-1}(p))$ crosses the diagonal at

least once then G and F cross at least once which indicates that there is no dominance of F over G or vice versa.

It can be shown that under appropriate conditions the p-p-plot is a maximal invariant of F and G with respect to a group of strictly increasing transformations, see Holmgren (1995) for details and further discussion of this point. Therefore the p-p-plot should be a good basis for the derivation of test statistics as long as ordinal information is used.

The basic quantities of interest in this paper are the areas

$$A^{+} = \int_{0}^{1} (G(F^{-1}(p)) - p)^{+} dp = \int_{-\infty}^{\infty} (G(x) - F(x))^{+} dF(x)$$

and

$$A^{-} = \int_{0}^{1} (G(F^{-1}(p)) - p)^{-} dp = \int_{-\infty}^{\infty} (G(x) - F(x))^{-} dF(x) .$$

As usual z^+ denotes the nonnegative part of a real number z, i.e., $z^+ = \max\{z, 0\}$ and $z^- = \max\{0, -z\}$. Therefore $z = z^+ - z^-$ and $|z| = z^+ + z^-$. In Figure 1 A^+ and A^- denote the horizontally shaded and vertically shaded areas, respectively.

Let X_1, \ldots, X_m and Y_1, \ldots, Y_n denote two independent samples from X and Y. The sample versions of A^+ and A^- are

$$A_{m,n}^{+} = \int_{-\infty}^{\infty} (\hat{G}_n(x) - \hat{F}_m(x))^+ d\hat{F}_m(x)$$
$$= \frac{1}{m} \sum_{i=1}^{m} \left(\hat{G}_n(X_{(i)}) - \frac{i}{m} \right)^+$$

 and

$$A_{m,n}^{-} = \int_{-\infty}^{\infty} (\hat{G}_n(x) - \hat{F}_m(x))^{-} d\hat{F}_m(x)$$
$$= \frac{1}{m} \sum_{i=1}^{m} \left(\hat{G}_n(X_{(i)}) - \frac{i}{m} \right)^{-}$$

where \hat{F}_m and \hat{G}_n are the empirical distribution functions of the two samples and $X_{(1)} \leq \ldots \leq X_{(m)}$ and $Y_{(1)} \leq \ldots \leq Y_{(n)}$ denote the corresponding order statistics. Using ranks $R(X_{(i)})$ of $X_{(i)}$ in the combined sample we arrive at

$$A_{m,n}^{+} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right)^{+}$$
$$A_{m,n}^{-} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right)^{-}$$

which are nonlinear rank statistics.

 $A_{m,n}^+$ and $A_{m,n}^-$ and some simple functions thereof can be used as test statistics for various testing problems as summarized in the second column of table 1.

Table 1: Testing Problems and Suitable Area and Supremum Statistics

Nullhypotheses and	Area-Statistics	Supremum-Statistics
Alternative Hypotheses		
(1) Equality		
$H_0: F(x) = G(x) \forall x \in I\!\!R$	$A_{m,n}^+ + A_{m,n}^-$	$D_{m,n}^+ + D_{m,n}^-$
$H_1: \operatorname{not} H_0$	(Schmid and Trede (1995))	(Kuiper (1960))
	$A_{m,n}^+ - A_{m,n}^-$	$D_{m,n}^+ - D_{m,n}^-$
	(Wilcoxon (1945))	(Weichselberger (1993))
	$\max\{A^+_{m,n}, A^{m,n}\}$	$\max\{D^+_{m,n}, D^{m,n}\}$
		(Kolmogorov (1933))
(2) One sided stochastic dominance		
$H_0: F(x) \ge G(x) \forall x \in I\!\!R$	$A_{m,n}^+$	$D^+_{m,n}$
H_1 : not H_0	(Schmid and Trede (1996))	(Kolmogorov (1933))
(3) Stochastic dominance in either direction		
$ \begin{aligned} H_0 : F(x) &\geq G(x) \forall x \in I\!\!R \\ \text{or } G(x) &\geq F(x) \forall x \in I\!\!R \end{aligned} $	$\min\{A_{m,n}^+, A_{m,n}^-\}$	$\min\{D^+_{m,n},D^{m,n}\}\ (ext{Schmid and Trede (1996a)})$
$H_1: \operatorname{not} H_0$		

For testing problem (1), i.e. for testing equality of F and G against two sided deviations, the test statistic

$$A_{m,n}^{+} + A_{m,n}^{-} = \int_{-\infty}^{\infty} |(\hat{G}_n(x) - \hat{F}_m(x))| d\hat{F}_m(x)|$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left| \hat{G}_n(X_{(i)}) - \frac{i}{m} \right|$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left| \frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right|$$

can be used. It is the sample version of the sum of the two shaded areas and can be viewed as the L_1 -version of the Cramer-von Mises test. This test was suggested by Schmid and Trede (1995).

Another suitable test statistic for testing (1) is

$$A_{m,n}^{+} - A_{m,n}^{-} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right)$$

This is simply an affine transformation of the Wilcoxon test statistic $\sum_{i=1}^{m} R(X_{(i)})$.

Finally a suitable test statistic for (1) is

$$\max\{A_{m,n}^+, A_{m,n}^-\}$$

i.e the sample version of the maximum of the two shaded areas. This statistic appears for the first time and will be considered further in the next sections.

Concerning testing problem (2) i.e. testing one-sided dominance, Schmid and Trede (1996) suggested $A_{m,n}^+$ as a suitable test statistic.

Testing problem (3) i.e testing dominance in either direction against nondominance (i.e. intersection of distribution functions) requires a different test statistic. If H_0 is true either A^+ or A^- is zero, i.e. $\min\{A^+, A^-\} = 0$. Therefore a suitable test statistic seems to be the sample version of $\min\{A^+, A^-\}$ i.e.

$$\min\{A_{m,n}^+, A_{m,n}^-\}$$
.

This test statistic was not yet considered in literature and will be further investigated in the next sections. Let us close this section by mentioning that the p - p-plot can also serve as the common basis for the derivation of test statistics of the Kolmogorov-Smirnov-type which are based on distances. Indeed let

$$D^{+} = \sup_{x \in \mathbb{R}} (G(x) - F(x)) = \sup_{p \in (0,1)} (G(F^{-1}(p)) - p)$$

and

$$D^{-} = \sup_{x \in \mathbb{R}} (F(x) - G(x)) = \sup_{p \in (0,1)} (p - G(F^{-1}(p)))$$

which are the vertical distances between $G(F^{-1}(p))$ and p and p and $G(F^{-1}(p))$, respectively. The empirical versions are

$$D_{m,n}^{+} = \sup_{x \in \mathbb{R}} \left(\hat{G}_n(x) - \hat{F}_m(x) \right)$$

and

$$D_{m,n}^{-} = \sup_{x \in \mathbb{R}} \left(\hat{F}_m(x) - \hat{G}_n(x) \right)$$

Statistics $D_{m,n}^+$, $D_{m,n}^-$ and $\max\{D_{m,n}^+, D_{m,n}^-\} = \sup_{x \in \mathbb{R}} |\hat{F}_m(x) - \hat{G}_n(x)|$ are the well known K-S-statistics for one and two sided testing problems which are contained in every textbook. $D_{m,n}^+ + D_{m,n}^-$ was introduced by Kuiper (1960) and $D_{m,n}^+ - D_{m,n}^-$ was comprehensively studied by Weichselberger (1993). Finally $\min\{D_{m,n}^+, D_{m,n}^-\}$ was introduced by Mosler (1995) and studied by Schmid and Trede (1996a).

3 Finite Sample Distribution of Test Statistics under F = G

Practical application of the area statistics for testing requires critical values, i.e. quantiles of the test statistic under F = G. As all statistics are simple functions of $A_{m,n}^+$ and $A_{m,n}^-$ it is useful to have a procedure for the computation of the joint probabilities

$$P(A_{m,n}^+ \le \frac{c^{(+)}}{m^2 n}, A_{m,n}^- \le \frac{c^{(-)}}{m^2 n})$$

where

$$c^{(+)} = 0, 1, \dots, \frac{m(m-1)n}{2}$$
 and $c^{(-)} = 0, 1, \dots, \frac{m(m+1)n}{2}$

Remember that

$$A_{m,n}^{+} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right)^{+} \text{ and } A_{m,n}^{-} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{R(X_{(i)}) - i}{n} - \frac{i}{m} \right)^{-}$$

For $k, l \in \mathbb{N} \cup \{0\}$ and $k \leq m$ and $l \leq n$ let $N(k, l, c^{(+)}, c^{(-)})$ be the number of combinations of k x-observations and l y-observations for which

$$A_{m,n}^+ \le \frac{c^{(+)}}{m^2 n}$$
 and $A_{m,n}^- \le \frac{c^{(-)}}{m^2 n}$

Inspecting the structure of $A_{m,n}^+$ and $A_{m,n}^-$ we can see that

$$\begin{split} N(k,l,c^{(+)},c^{(-)}) &= N(k,l-1,c^{(+)},c^{(-)}) \\ &+ N(k-1,l,c^{(+)},c^{(-)}) \cdot \mathbf{1}_{\{lm-kn=0\}} \\ &+ N(k-1,l,c^{(+)}-|lm-kn|,c^{(-)}) \cdot \mathbf{1}_{\{lm-kn>0 \land c^{(+)}-|lm-kn| \ge 0\}} \\ &+ N(k-1,l,c^{(+)},c^{(-)}-|lm-kn|) \cdot \mathbf{1}_{\{lm-kn<0 \land c^{(-)}-|lm-kn| \ge 0\}} \end{split}$$

with

$$1_{\{A\}} = \begin{cases} 1 & \text{if } A \text{ is true} \\ 0 & \text{else} \end{cases}$$

being the usual indicator function.

The initial conditions are

$$\begin{split} N(k,l,c^{(+)},c^{(-)}) &= 0 \quad \text{for } c^{(+)} < 0 \ \lor \ c^{(-)} < 0 \\ N(0,l,c^{(+)},c^{(-)}) &= 1 \quad \text{for } 0 \le c^{(+)} \le \frac{m(m-1)n}{2} \ , \ 0 \le c^{(-)} \le \frac{m(m+1)n}{2} \\ N(k,0,c^{(+)},c^{(-)}) &= 1 \quad \text{for } 0 \le c^{(+)} \le \frac{m(m-1)n}{2} \ , \ c^{(-)} \ge \frac{k(k+1)n}{2} \end{split}$$

 $N(m, n, c^{(+)}, c^{(-)})$ can therefore be computed recursively and we arrive at

$$P(A_{m,n}^+ \le \frac{c^{(+)}}{m^2 n}, A_{m,n}^- \le \frac{c^{(-)}}{m^2 n}) = \frac{N(m, n, c^{(+)}, c^{(-)})}{\binom{m+n}{m}}$$

·

To avoid possible numerical difficulties we propose the following transformation:

$$U(k, l, c^{(+)}, c^{(-)}) := \frac{N(k, l, c^{(+)}, c^{(-)})}{\binom{k+n}{k}}$$

The recursive scheme can now be rewritten as

$$U(k, l, c^{(+)}, c^{(-)}) = U(k, l - 1, c^{(+)}, c^{(-)}) + \frac{k}{k+n} \cdot U(k - 1, l, c^{(+)}, c^{(-)}) \cdot 1_{\{lm-kn=0\}} + \frac{k}{k+n} \cdot U(k - 1, l, c^{(+)} - |lm - kn|, c^{(-)}) \cdot 1_{\{lm-kn>0 \land c^{(+)} - |lm-kn| \ge 0\}} + \frac{k}{k+n} \cdot U(k - 1, l, c^{(+)}, c^{(-)} - |lm - kn|) \cdot 1_{\{lm-kn<0 \land c^{(-)} - |lm-kn| \ge 0\}}$$

The initial conditions are

$$\begin{aligned} U(k, l, c^{(+)}, c^{(-)}) &= 0 & \text{for } c^{(+)} < 0 \lor c^{(-)} < 0 \\ U(0, l, c^{(+)}, c^{(-)}) &= 1 & \text{for } 0 \le c^{(+)} \le \frac{m(m-1)n}{2}, \ 0 \le c^{(-)} \le \frac{m(m+1)n}{2} \\ U(k, 0, c^{(+)}, c^{(-)}) &= \frac{1}{\binom{k+n}{k}} & \text{for } 0 \le c^{(+)} \le \frac{m(m-1)n}{2}, \ c^{(-)} \ge \frac{k(k+1)n}{2} \end{aligned}$$

The marginal distributions of $A_{m,n}^+$ and $A_{m,n}^-$ can be derived by setting $c^{(-)} = \frac{m(m+1)n}{2}$ and $c^{(+)} = \frac{m(m-1)n}{2}$, repectively.

The distributions of $A_{m,n}^+ - A_{m,n}^-$ and $A_{m,n}^- - A_{m,n}^-$ can be derived via convolution.

The distribution of $\max\{A_{m,n}^+, A_{m,n}^-\}$ can be obtained by setting $c^{(+)} = c^{(-)} = c$ $(0 \le c \le \frac{m(m-1)n}{2}).$

Finally the distribution of $\min\{A_{m,n}^+, A_{m,n}^-\}$ is obtained by

$$P(\min\{A_{m,n}^+, A_{m,n}^-\} \le c) = P(A_{m,n}^+ \le c) + P(A_{m,n}^- \le c) - P(\max\{A_{m,n}^+, A_{m,n}^-\} \le c)$$

Tables with critical values (at the 5% – and 10% – level) for the max{ $A_{m,n}^+, A_{m,n}^-$ } and min{ $A_{m,n}^+, A_{m,n}^-$ } statistic are added in the appendix because these statistics appear in literature for the first time and critical values are not yet published.

4 Asymptotic Distribution of Area Statistics

The standard tool for the derivation of asymptotic distributions of test statistics under F = G in nonparametric statistics is the invariance principle for the two sample empirical process

$$\sqrt{\frac{mn}{m+n}}(\hat{F}_m(p) - \hat{G}_n(p)) \qquad p \in [0,1]$$

which states weak convergence of the process to a Brownian Bridge $(B(p))_{0 \le p \le 1}$ on [0,1]under F = G where F denotes the distribution function of a uniform distribution on [0,1]. Continuous functionals of the empirical process converge weakly to the corresponding functional of the Brownian Bridge. The asymptotic distributions of the normalized test statistics considered so far can therefore be easily expressed as functionals of $B(\cdot)$ (see table 2).

Table 2: Asymptotic Distributions of Normalized Area Statistics

Statistic	Asymptotic Distribution
$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \left(A_{m,n}^+, A_{m,n}^-\right)$	$\left(\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right)$
$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \left(A_{m,n}^{+} + A_{m,n}^{-}\right)$	$\int\limits_{0}^{1} B(p) dp$
$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \left(A_{m,n}^{+} - A_{m,n}^{-}\right)$	$\int_{0}^{1} B(p) dp \sim N(0, \sigma^2 = \frac{1}{12})$
$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \max\{A_{m,n}^+, A_{m,n}^-\}$	$\max\left\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right\}$
$\left(\frac{mn}{m+n}\right)^{\frac{1}{2}}\min\{A_{m,n}^+, A_{m,n}^-\}$	$\left \min\left\{ \int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp \right\} \right $

The limiting distribution of $(\frac{mn}{m+n})^{\frac{1}{2}}(A_{m,n}^+ + A_{m,n}^-)$ which is $\int_0^1 |B(p)| dp$ has been investigated analytically by Shepp(1982) and Rice (1982). The asymptotic distribution of $(\frac{mn}{m+n})^{\frac{1}{2}}A_{m,n}^+$ i.e. $\int_0^1 B^+(p) dp$ was investigated by Monte-Carlo Simulation by Schmid and Trede (1996). Perman and Wellner (1996) succeeded in computing the double Laplace transform but did not succeed in inverting analytically this transform.

Table	3:	Moments	and	Quantiles	of the	Asymptotic	Distributions	\mathbf{of}	Test
				S	tatistic	cs			

		Monte-	-Carlo Est	imates	
Asymptotic Distribution	mean	st. dev.	0,9 qu.	0,95 qu.	0,99 qu.
$\int\limits_{0}^{1}B^{+}(p)dp$	0,15659	0,15925	0,38513	0,48288	0,67319
$\int\limits_{0}^{1}B^{-}(p)dp$	0,15663	0,15963	0,38612	0,48671	0,67410
$\int\limits_{0}^{1} \left B(p) ight dp$	0,31322	0,13584	0,49914	0,58214	0,74847
$\int\limits_{0}^{1}B(p)dp$	-0,00004	0,28850	0,36915	0,47350	0,66807
$\max\left\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right\}$	0,27176	0,15154	0,48479	0,57294	0,74432
$\min\left\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right\}$	0,04146	0,03684	0,09313	0,11235	$0,\!15257$

The joint distribution of $\int_{0}^{1} B^{+}(p) dp$ and $\int_{0}^{1} B^{-}(p) dp$ seems to be totally unknown, the same is true for the functionals max $\left\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right\}$ and min $\left\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right\}$. These distributions have been investigated by Monte-Carlo-Simulation in the following way. A path of a Brownian Bridge was approximated at 30000 equidistant points in [0,1] and $\int_{0}^{1} B^{+}(p) dp$ and $\int_{0}^{1} B^{-}(p) dp$ were calculated approximately for that path by a simple quadrature rule. This procedure was repeated independently 100000 times thus obtaining 100000 independent realisations of the joint distribution of $\left(\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\right)$. These realisations were used to approximate moments and quantiles of the asymptotic distributions of

Figure 2: Joint Distribution Function of $\int_{0}^{1} B^{+}(p) dp$ and $\int_{0}^{1} B^{-}(p) dp$

test statistics (see table 3). The Monte-Carlo estimate of the joint distribution function of $\int_{0}^{1} B^{+}(p) dp$ and $\int_{0}^{1} B^{-}(p) dp$ is displayed in figure 2.

The results in the third and fourth row of table 3 can be used to check the correctness of the Monte Carlo simulation. $\int_{0}^{1} B(p) dp \sim N(\mu = 0, \sigma = 0, 28867)$ and the expectation and standard error of $\int_{0}^{1} |B(p)| dp$ is 0,3133 and 0,1360 (see Johnson and Killeen (1983) which conforms well with our simulation.

The distribution of $\int_{0}^{1} B^{+}(p)$ and $\int_{0}^{1} B^{+}(p)$ are identical. Perman and Wellner (1996) succeeded in computing numerically their expectation and standard deviation which are 0,15666 and 0,15955 respectively. This, again, is in good agreement with our simulations. Distribution functions of the min- and max- statistics are displayed in figures 3 and 4.

Figure 3: Distribution Function of $\max\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\}$

Figure 4: Distribution Function of $\min\{\int_{0}^{1} B^{+}(p) dp, \int_{0}^{1} B^{-}(p) dp\}$

5 Properties of the new tests: Comparing power of area and sup statistics

Our attempt to give a unified basis for area statistics resulted in five different statistics. Three of them have already been suggested in the literature. Two of them are new and will be considered further in this section. These are $\max\{A_{m,n}^+, A_{m,n}^-\}$ for testing problem (1) in table 1 and $\min\{A_{m,n}^+, A_{m,n}^-\}$ for testing problem (3). As supremum statistics (i.e. statistics of the K-S-type) are natural competitors to area statistics it is tempting to compare their power in testing problems. Though these tests are nonparametric we compare their power within one parameter families of distributions which allow for power graphs as a function of the parameter. The examples to be presented below show that there are instances when tests based on area statistics perform better than their competitors. A detailed investigation of power of the new test is, however, outside the scope of this paper.

5.1 The statistic $\max\{A_{m,n}^+, A_{m,n}^-\}$

In this section we consider testing problem (1)

 $H_0: F = G$ against $H_1: F \neq G$.

Of course H_0 is rejected when $\max\{A_{m,n}^+, A_{m,n}^-\} > c$, where c denotes the appropriate critical value.

Area statistic max{ $A_{m,n}^+, A_{m,n}^-$ } is compared to the corresponding statistic max{ $D_{m,n}^+, D_{m,n}^-$ } for (see Figure 5)

$$F(x) = 1 - (1 + x^{\beta})^{-2} \quad x > 0 \text{ and } \beta = 1, 5$$

$$G(x) = 1 - (1 + x^{\beta})^{-2} \quad x > 0 \text{ for } \beta > 1, 5$$

and (see Figure 6)

$$F(x) = \Phi(x - \mu) \text{ and } \mu = 0$$
$$G(x) = \Phi(x - \mu) \text{ for } \mu \neq 0.$$

Figure 5 and 6 display power curves (as a function of β and μ respectively) for

$$\max\{A_{m,n}^+, A_{m,n}^-\} \qquad \text{(dashed line)} \quad ,$$
$$\max\{D_{m,n}^+, D_{m,n}^-\} \qquad \text{(solid line)} \quad .$$

The area statistic has clearly higher power for the Singh-Maddala-alternatives (see Figure 5). There is a certain asymmetry in the power curve for the normal-alternatives (see Figure 6) which is probably due to the asymmetry in the distributions of $A_{m,n}^+$ and $A_{m,n}^-$ in $\min\{A_{m,n}^+, A_{m,n}^-\}$ in finite samples.

Figure 5: Power Curves for the Singh-Maddala Distribution $(m = n = 10, \alpha = 0, 05)$

It is well known that the classical Kolmogorov-test based on $\max\{D_{m,n}^+, D_{m,n}^-\}$ is consistent on the whole set of alternatives H_1 (see e.g. Büning/Trenkler (1978)). The same is true for the test based on the area statistic $\max\{A_{m,n}^+, A_{m,n}^-\}$. Indeed for $F \neq G$ we have

$$A := \max\{A^+, A^-\} > 0$$

Further we have with probability 1

$$\lim_{n,m\to\infty} \max\{A^+_{m,n}, A^-_{m,n}\} = \max\{A^+, A^-\} = A > 0$$

and we can conclude

$$\lim_{n,m\to\infty} P\left(\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \max\{A_{m,n}^+, A_{m,n}^-\} > c\right) = 1 \; .$$

5.2 The statistic $\min\{A_{m,n}^+, A_{m,n}^-\}$

In this section we consider testing problem (3)

$$H_0: F(x) \ge G(x) \ \forall x \in \mathbb{R} \text{ or } G(x) \ge F(x) \ \forall x \in \mathbb{R}$$

against

$$H_1: \operatorname{not} H_0$$
.

 H_0 is tantamount to equality or dominance in either direction of F and G whereas H_1 entails absence of dominance, i.e. at least one intersection of F and G.

 $\min\{A_{m,n}^+, A_{m,n}^-\}$ is a suitable test statistic and H_0 should be rejected if $\min\{A_{m,n}^+, A_{m,n}^-\} > c$ where c is an appropriate quantile of the distribution of $\min\{A_{m,n}^+, A_{m,n}^-\}$ under F = G. Figure 6: Power Curves for Normal Distribution $(m = 8, n = 9, \alpha = 0, 1)$

It should be pointed out that the test keeps the level α on the whole null hypotheses because one can see that

$$\alpha \ge \alpha^* = P(\min\{A_{m,n}^+, A_{m,n}^-\} > c || F = G)$$

=
$$\sup_{F,G \text{ in } H_0} P(\min\{A_{m,n}^+, A_{m,n}^-\} > c || F, G) .$$

Area statistic min $\{A_{m,n}^+, A_{m,n}^-\}$ is compared to the corresponding statistic min $\{D_{m,n}^+, D_{m,n}^-\}$ (see Figure 7) for

$$F(x) = x \qquad 0 \le x \le 1$$

$$G_{\delta}(x) = \begin{cases} (2x)^{\delta} & 0 \le x \le 0, 5\\ 1 - \frac{(2(1-x))^{\delta}}{2} & 0, 5 < x \le 1 \end{cases} \text{ and } \delta \neq 1$$

and (see Figure 8)

Figure 7: Power curves for the Delta-distribution $(m = n = 10, \alpha = 0, 05)$

 $F(x) = \Phi(\frac{x}{\sigma})$ and $\sigma = 0$ $G(x) = \Phi(\frac{x}{\sigma})$ for $\sigma \neq 1$.

Figure 7 and 8 display power curves (as a function of δ and σ respectively) for

$\min\{A_{m,n}^+, A_{m,n}^-\}$	(dashed line)	,
$\min\{D^+_{m,n}, D^{m,n}\}$	(solid line $)$.	

For both sets of alternatives we can conclude that the area-statistic outperforms the supstatistic. It has been shown in Schmid and Trede (1996a) that the test based on $\min\{D_{m,n}^+, D_{m,n}^-\}$ is consistent on the whole set of alternatives. The same is true for the test based on the area-statistic $\max\{A_{m,n}^+, A_{m,n}^-\}$. Indeed for $F \neq G$ we have

$$B := \min\{A^+, A^-\} > 0$$

Further, with probability 1

$$\lim_{n,m\to\infty} \min\{A^+_{m,n}, A^-_{m,n}\} = B > 0$$

and therefore

$$\lim_{n,m\to\infty} P\left(\left(\frac{mn}{m+n}\right)^{\frac{1}{2}} \min\{A_{m,n}^+, A_{m,n}^-\} > c\right) = 1 \; .$$

Appendix

Selected critical values of $\max\{A_{m,n}^+, A_{m,n}^-\}$ at the nominal level $\alpha = 0,05$.

The first entry gives the smallest integer c satisfying

 $P(m^2 n \max\{A_{m,n}^+, A_{m,n}^-\} \ge c) \le \alpha$

The second entry gives the true probability of rejection

 $P(m^2 n \max\{A_{m,n}^+, A_{m,n}^-\} \ge c)$

n m	3	4	5	6	7	8	9
2	-	-	$26 \ / \ 0.0476$	$37 \ / \ 0.0357$	$50 \ / \ 0.0278$	$57 \ / \ 0.0444$	$73 \ / \ 0.0364$
3	16 / 0.0500	27 / 0.0286	36 / 0.0357	$46 \ / \ 0.0476$	64 / 0.0333	77 / 0.0485	$100 \ / \ 0.0364$
4	22 / 0.0286	33 / 0.0286	$46 \ / \ 0.0317$	$61 \ / \ 0.0333$	78 / 0.0394	97 / 0.0404	$118 \ / \ 0.0434$
5	$25 \ / \ 0.0357$	39 / 0.0317	$51 \ / \ 0.0476$	$70 \ / \ 0.0455$	$92 \ / \ 0.0404$	$117 \ / \ 0.0365$	136 / 0.0490
6	$28 \ / \ 0.0476$	$45 \ / \ 0.0333$	61 / 0.0411	$79 \ / \ 0.0487$	$106 \ / \ 0.0402$	$129 \ / \ 0.0456$	160 / 0.0500
7	34 / 0.0333	51 / 0.0364	71 / 0.0366	$94 \ / \ 0.0379$	$120 \ / \ 0.0385$	149 / 0.0401	181 / 0.0408
8	$37 \ / \ 0.0424$	57 / 0.0364	76 / 0.0474	$103 \ / \ 0.0420$	133 / 0.0499	$161 \ / \ 0.0453$	$199 \ / \ 0.0428$
9	$40 \ / \ 0.0500$	63 / 0.0378	$86 \ / \ 0.0425$	$112 \ / \ 0.0456$	$141 \ / \ 0.0483$	181 / 0.0404	$217 \ / \ 0.0426$
10	$46 \ / \ 0.0385$	69 / 0.0380	$96 \ / \ 0.0380$	$121 \ / \ 0.0486$	$155 \ / \ 0.0466$	$193 \ / \ 0.0452$	$235 \ / \ 0.0440$
11	49 / 0.0440	75 / 0.0388	$101 \ / \ 0.0453$	$136 \ / \ 0.0405$	$169 \ / \ 0.0452$	$205 \ / \ 0.0496$	$253 \ / \ 0.0447$
12	$55 \ / \ 0.0352$	81 / 0.0390	$111 \ / \ 0.0412$	$145 \ / \ 0.0427$	183 / 0.0440	$225 \ / \ 0.0446$	$271 \ / \ 0.0452$
13	$58 \ / \ 0.0411$	87 / 0.0395	$116 \ / \ 0.0479$	$154 \ / \ 0.0449$	$197 \ / \ 0.0429$	$237 \ / \ 0.0483$	$289 \ / \ 0.0457$
14	61 / 0.0456	93 / 0.0395	126 / 0.0440	163 / 0.0470	204 / 0.0493	$257 \ / \ 0.0441$	307 / 0.0459
15	67 / 0.0380	99 / 0.0400	131 / 0.0496	172 / 0.0489	218 / 0.0478	269 / 0.0473	325 / 0.0462

m	10	11	12	13	14	15
$\frac{n}{2}$	01 / 0.0202	111 / 0.0050	199 / 0 0000	144 / 0.0470	100 / 0.0417	100 / 0.0200
Z	91 / 0.0303	111 / 0.0230	133 + 0.0220	144 / 0.0470	109 / 0.0417	190 / 0.0308
3	$116 \ / \ 0.0455$	$144 \ / \ 0.0357$	$163 \ / \ 0.0484$	$196 \ / \ 0.0393$	$218 \ / \ 0.0471$	$256 \ / \ 0.0392$
4	$141 \ / \ 0.0470$	$166 \ / \ 0.0491$	$197 \ / \ 0.0489$	$235 \ / \ 0.0391$	$267 \ / \ 0.0415$	$301 \ / \ 0.0436$
5	$166 \ / \ 0.0450$	$199 \ / \ 0.0426$	$235 \ / \ 0.0401$	$261 \ / \ 0.0498$	$302 \ / \ 0.0473$	$346 \ / \ 0.0444$
6	$191 \ / \ 0.0430$	$221 \ / \ 0.0482$	$265 \ / \ 0.0415$	$300 \ / \ 0.0463$	$341 \ / \ 0.0497$	$391 \ / \ 0.0447$
7	$216 \ / \ 0.0411$	$254 \ / \ 0.0417$	$295 \ / \ 0.0422$	$339 \ / \ 0.0427$	$379 \ / \ 0.0500$	$430 \ / \ 0.0499$
8	$231 \ / \ 0.0492$	$276 \ / \ 0.0454$	$321 \ / \ 0.0495$	$365 \ / \ 0.0478$	$421 \ / \ 0.0448$	466 / 0.0498
9	$256 \ / \ 0.0465$	$298 \ / \ 0.0484$	$346 \ / \ 0.0491$	404 / 0.0441	$456 \ / \ 0.0460$	$511 \ / \ 0.0476$
10	$281 \ / \ 0.0424$	$321 \ / \ 0.0497$	$373 \ / \ 0.0492$	$430 \ / \ 0.0479$	491 / 0.0467	$556 \ / \ 0.0454$
11	$296 \ / \ 0.0485$	$353 \ / \ 0.0436$	$403 \ / \ 0.0483$	460 / 0.0499	$526 \ / \ 0.0471$	$586 \ / \ 0.0498$
12	$321 \ / \ 0.0457$	$375 \ / \ 0.0461$	$433 \ / \ 0.0457$	$495 \ / \ 0.0474$	$561 \ / \ 0.0474$	$631 \ / \ 0.0475$
13	$339 \ / \ 0.0498$	$397 \ / \ 0.0477$	$463 \ / \ 0.0455$	$521 \ / \ 0.0484$	$596 \ / \ 0.0476$	$665 \ / \ 0.0499$
14	$361 \ / \ 0.0476$	$419 \ / \ 0.0491$	$483 \ / \ 0.0498$	$560 \ / \ 0.0459$	$631 \ / \ 0.0462$	706 / 0.0486
15	$386 \ / \ 0.0452$	$445 \ / \ 0.0497$	$511 \ / \ 0.0491$	$586 \ / \ 0.0480$	666 / 0.0470	736 / 0.0500

Selected critical values of $\max\{A_{m,n}^+, A_{m,n}^-\}$ at the nominal level $\alpha = 0, 10$.

n	m	3	4	5	6	7	8	9
2		8 / 0.1000	11 / 0.0667	$12 \ / \ 0.0952$	$15 \ / \ 0.0714$	$18 \ / \ 0.0556$	19 / 0.0889	$22 \ / \ 0.0727$
3		$13 \ / \ 0.1000$	$19 \ / \ 0.0571$	22 / 0.0714	$25 \ / \ 0.0833$	$28 \ / \ 0.0917$	$31 \ / \ 0.0970$	$37 \ / \ 0.0727$
4		$23 \ / \ 0.0571$	$25 \ / \ 0.1000$	$31 \ / \ 0.0952$	$37 \ / \ 0.0857$	$43 \ / \ 0.0818$	$49 \ / \ 0.0768$	$55 \ / \ 0.0741$
5		$31 \ / \ 0.0714$	$41 \ / \ 0.0556$	$46 \ / \ 0.0794$	$51 \ / \ 0.0931$	$61 \ / \ 0.0770$	$66 \ / \ 0.0894$	$71 \ / \ 0.0999$
6		$40 \ / \ 0.0952$	49 / 0.1000	$59 \ / \ 0.0974$	$67 \ / \ 0.0974$	$-76 \ / \ 0.0985$	$85 \ / \ 0.0982$	$94 \ / \ 0.0979$
7		$57 \ / \ 0.0667$	$64 \ / \ 0.0970$	$78 \ / \ 0.0859$	$92 \ / \ 0.0787$	$99 \ / \ 0.0924$	$113 \ / \ 0.0847$	$120 \ / \ 0.0975$
8		$69 \ / \ 0.0788$	81 / 0.0970	$101 \ / \ 0.0761$	$113 \ / \ 0.0846$	$125 \ / \ 0.0912$	$137 \ / \ 0.0915$	$149 \ / \ 0.0969$
9		82 / 0.1000	$100 \ / \ 0.0965$	$118 \ / \ 0.0919$	$136 \ / \ 0.0891$	$154 \ / \ 0.0865$	$165 \ / \ 0.0996$	$181 \ / \ 0.0945$
10		$106 \ / \ 0.0769$	$121 \ / \ 0.0949$	$146 \ / \ 0.0816$	$161 \ / \ 0.0942$	$179 \ / \ 0.0998$	$201 \ / \ 0.0912$	$216 \ / \ 0.0980$
11		$122 \ / \ 0.0879$	$144 \ / \ 0.0960$	$166 \ / \ 0.0984$	$188 \ / \ 0.0986$	$210 \ / \ 0.0986$	$232 \ / \ 0.0980$	$254 \ / \ 0.0972$
12		$142 \ / \ 0.0923$	$169 \ / \ 0.0940$	$199 \ / \ 0.0894$	$223 \ / \ 0.0965$	$247 \ / \ 0.0948$	$273 \ / \ 0.0993$	$295 \ / \ 0.0967$
13		$170 \ / \ 0.0821$	$196 \ / \ 0.0945$	$226 \ / \ 0.0999$	$259 \ / \ 0.0999$	$287 \ / \ 0.0916$	$313 \ / \ 0.0944$	$339 \ / \ 0.0965$
14		$190 \ / \ 0.0926$	$225 \ / \ 0.0941$	$260 \ / \ 0.0944$	$295 \ / \ 0.0920$	$323 \ / \ 0.0989$	$353 \ / \ 0.0993$	$386 \ / \ 0.0961$
15		$214 \ / \ 0.0956$	$256 \ / \ 0.0942$	$291 \ / \ 0.0997$	$331 \ / \ 0.0956$	$366 \ / \ 0.0999$	$403 \ / \ 0.1000$	$436 \ / \ 0.0956$
	m	10	11	12	13	14	15	
n	m	10	11	12	13	14	15	
$\frac{n}{2}$	m	10 23 / 0.0909	11 26 / 0.0769	12 27 / 0.0989	13 30 / 0.0857	14 31 / 0.1000	15 34 / 0.0882	
$\begin{array}{c} n \\ \hline 2 \\ \hline 3 \end{array}$	m	10 23 / 0.0909 40 / 0.0804	11 26 / 0.0769 43 / 0.0852	12 27 / 0.0989 46 / 0.0901	13 30 / 0.0857 49 / 0.0946	14 31 / 0.1000 52 / 0.0985	$\frac{15}{34 \; / \; 0.0882} \\ 58 \; / \; 0.0821$	
	<i>m</i>	10 23 / 0.0909 40 / 0.0804 57 / 0.0949	11 26 / 0.0769 43 / 0.0852 63 / 0.0901	12 27 / 0.0989 46 / 0.0901 69 / 0.0857	$\begin{array}{r} 13 \\ \hline 30 \ / \ 0.0857 \\ \hline 49 \ / \ 0.0946 \\ \hline 75 \ / \ 0.0819 \end{array}$	14 31 / 0.1000 52 / 0.0985 77 / 0.0971	15 34 / 0.0882 58 / 0.0821 83 / 0.0931	
$ \begin{array}{c} n\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5 \end{array} $	<i>m</i>	10 23 / 0.0909 40 / 0.0804 57 / 0.0949 81 / 0.0846	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934	12 27 / 0.0989 46 / 0.0901 69 / 0.0857 96 / 0.0824	13 30 / 0.0857 49 / 0.0946 75 / 0.0819 101 / 0.0898	14 31 / 0.1000 52 / 0.0985 77 / 0.0971 106 / 0.0967	15 34 / 0.0882 58 / 0.0821 83 / 0.0931 116 / 0.0861	
$ \begin{array}{r} n\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5\\ \hline 6\\ \hline \end{array} $	<i>m</i>	10 23 / 0.0909 40 / 0.0804 57 / 0.0949 81 / 0.0846 103 / 0.0977	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934 112 / 0.0975	12 27 / 0.0989 46 / 0.0901 69 / 0.0857 96 / 0.0824 121 / 0.0953	$\begin{array}{c c} & 13 \\ \hline 30 & / & 0.0857 \\ \hline 49 & / & 0.0946 \\ \hline 75 & / & 0.0819 \\ \hline 101 & / & 0.0898 \\ \hline 130 & / & 0.0953 \end{array}$	14 31 / 0.1000 52 / 0.0985 77 / 0.0971 106 / 0.0967 139 / 0.0949	$\begin{array}{r} 15\\ \hline 34 \ / \ 0.0882\\ \hline 58 \ / \ 0.0821\\ \hline 83 \ / \ 0.0931\\ \hline 116 \ / \ 0.0861\\ \hline 148 \ / \ 0.0945 \end{array}$	
$ \begin{array}{r} n \\ 2 \\ $	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894 \end{array}$	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934 112 / 0.0975 141 / 0.0998	12 27 / 0.0989 46 / 0.0901 69 / 0.0857 96 / 0.0824 121 / 0.0953 155 / 0.0926	$\begin{array}{c} 13\\ \hline 30 \ / \ 0.0857\\ \hline 49 \ / \ 0.0946\\ \hline 75 \ / \ 0.0819\\ \hline 101 \ / \ 0.0898\\ \hline 130 \ / \ 0.0953\\ \hline 163 \ / \ 0.1000\\ \end{array}$	14 31 / 0.1000 52 / 0.0985 77 / 0.0971 106 / 0.0967 139 / 0.0949 176 / 0.0932	$\begin{array}{r} 15\\ \hline 34 \ / \ 0.0882\\ \hline 58 \ / \ 0.0821\\ \hline 83 \ / \ 0.0931\\ \hline 116 \ / \ 0.0861\\ \hline 148 \ / \ 0.0945\\ \hline 190 \ / \ 0.0881 \end{array}$	
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 $	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline \end{array}$	$\begin{array}{c c} & 11 \\ \hline 26 & / & 0.0769 \\ \hline 43 & / & 0.0852 \\ \hline 63 & / & 0.0901 \\ \hline 86 & / & 0.0934 \\ \hline 112 & / & 0.0975 \\ \hline 141 & / & 0.0998 \\ \hline 178 & / & 0.0999 \\ \hline \end{array}$	12 27 / 0.0989 46 / 0.0901 69 / 0.0857 96 / 0.0824 121 / 0.0953 155 / 0.0926 193 / 0.0887	$\begin{array}{c c} & 13 \\ \hline & 30 \ / \ 0.0857 \\ \hline & 49 \ / \ 0.0946 \\ \hline & 75 \ / \ 0.0819 \\ \hline & 101 \ / \ 0.0953 \\ \hline & 163 \ / \ 0.1000 \\ \hline & 205 \ / \ 0.0914 \end{array}$	14 31 / 0.1000 52 / 0.0985 77 / 0.0971 106 / 0.0967 139 / 0.0949 176 / 0.0932 217 / 0.0936	$\begin{array}{c c} 15\\\hline 34 & / & 0.0882\\ \hline 58 & / & 0.0821\\\hline 83 & / & 0.0931\\\hline 116 & / & 0.0861\\\hline 148 & / & 0.0945\\\hline 190 & / & 0.0881\\\hline 229 & / & 0.0957\\\hline \end{array}$	
n 2 3 4 5 6 7 8 9 15	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline \end{array}$	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934 112 / 0.0975 141 / 0.0998 178 / 0.0999 217 / 0.0890	$\begin{array}{c c} 12\\ \hline 27 & / & 0.0989\\ \hline 46 & / & 0.0901\\ \hline 69 & / & 0.0857\\ \hline 96 & / & 0.0824\\ \hline 121 & / & 0.0953\\ \hline 155 & / & 0.0926\\ \hline 193 & / & 0.0887\\ \hline 226 & / & 0.0996\\ \hline \end{array}$	$\begin{array}{c c} & 13 \\ \hline & 30 \ / \ 0.0857 \\ \hline & 49 \ / \ 0.0946 \\ \hline & 75 \ / \ 0.0819 \\ \hline & 101 \ / \ 0.0898 \\ \hline & 130 \ / \ 0.0953 \\ \hline & 163 \ / \ 0.1000 \\ \hline & 205 \ / \ 0.0914 \\ \hline & 244 \ / \ 0.0960 \\ \hline \end{array}$	$\begin{array}{c c} 14 \\\hline & 31 \ / \ 0.1000 \\\hline 52 \ / \ 0.0985 \\\hline 77 \ / \ 0.0971 \\\hline 106 \ / \ 0.0967 \\\hline 139 \ / \ 0.0949 \\\hline 176 \ / \ 0.0932 \\\hline 217 \ / \ 0.0936 \\\hline 262 \ / \ 0.0924 \\\hline \end{array}$	$\begin{array}{r} 15\\ \hline 34 \ / \ 0.0882\\ \hline 58 \ / \ 0.0821\\ \hline 83 \ / \ 0.0931\\ \hline 116 \ / \ 0.0861\\ \hline 148 \ / \ 0.0945\\ \hline 190 \ / \ 0.0881\\ \hline 229 \ / \ 0.0957\\ \hline 274 \ / \ 0.0995\\ \hline 274 \ / \ 0.0995\\ \hline \end{array}$	
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline 231 & / & 0.0991\\ \hline 231 & / & 0.0991\\ \hline \end{array}$	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934 112 / 0.0975 141 / 0.0998 178 / 0.0999 217 / 0.0890 256 / 0.0917	$\begin{array}{c c} 12\\ \hline 27 & / & 0.0989\\ \hline 46 & / & 0.0901\\ \hline 69 & / & 0.0857\\ \hline 96 & / & 0.0824\\ \hline 121 & / & 0.0953\\ \hline 155 & / & 0.0926\\ \hline 193 & / & 0.0887\\ \hline 226 & / & 0.0996\\ \hline 271 & / & 0.0960\\ \hline 271 & / & 0.0960\\ \hline \end{array}$	$\begin{array}{c c} & 13 \\ \hline 30 & / & 0.0857 \\ \hline 49 & / & 0.0946 \\ \hline 75 & / & 0.0819 \\ \hline 101 & / & 0.0898 \\ \hline 130 & / & 0.0953 \\ \hline 163 & / & 0.1000 \\ \hline 205 & / & 0.0914 \\ \hline 244 & / & 0.0960 \\ \hline 287 & / & 0.0997 \\ \hline \end{array}$	$\begin{array}{c c} 14 \\\hline & 31 \ / \ 0.1000 \\\hline 52 \ / \ 0.0985 \\\hline & 77 \ / \ 0.0971 \\\hline 106 \ / \ 0.0967 \\\hline & 139 \ / \ 0.0949 \\\hline & 176 \ / \ 0.0932 \\\hline & 217 \ / \ 0.0936 \\\hline & 262 \ / \ 0.0924 \\\hline & 311 \ / \ 0.0916 \\\hline \end{array}$	$\begin{array}{c c} 15\\\hline 34 & / & 0.0882\\ \hline 58 & / & 0.0821\\\hline 83 & / & 0.0931\\\hline 116 & / & 0.0861\\\hline 148 & / & 0.0945\\\hline 190 & / & 0.0881\\\hline 229 & / & 0.0957\\\hline 274 & / & 0.0995\\\hline 326 & / & 0.0947\\\hline 326 & / & 0.0947\\\hline \end{array}$	
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline 231 & / & 0.0991\\ \hline 276 & / & 0.0964\\ \hline \end{array}$	11 26 / 0.0769 43 / 0.0852 63 / 0.0901 86 / 0.0934 112 / 0.0975 141 / 0.0998 178 / 0.0999 217 / 0.0890 256 / 0.0917 298 / 0.0917	$\begin{array}{c c} 12 \\ \hline 27 & / & 0.0989 \\ \hline 46 & / & 0.0901 \\ \hline 69 & / & 0.0857 \\ \hline 96 & / & 0.0824 \\ \hline 121 & / & 0.0953 \\ \hline 155 & / & 0.0926 \\ \hline 193 & / & 0.0887 \\ \hline 226 & / & 0.0996 \\ \hline 271 & / & 0.0960 \\ \hline 320 & / & 0.0929 \\ \hline \end{array}$	$\begin{array}{c c} & 13 \\ \hline 30 & / & 0.0857 \\ \hline 49 & / & 0.0946 \\ \hline 75 & / & 0.0819 \\ \hline 101 & / & 0.0898 \\ \hline 130 & / & 0.0953 \\ \hline 163 & / & 0.1000 \\ \hline 205 & / & 0.0914 \\ \hline 244 & / & 0.0960 \\ \hline 287 & / & 0.0997 \\ \hline 342 & / & 0.0918 \\ \hline \end{array}$	$\begin{array}{c c} 14 \\\hline & 31 & / & 0.1000 \\\hline & 52 & / & 0.0985 \\\hline & 77 & / & 0.0971 \\\hline & 106 & / & 0.0967 \\\hline & 139 & / & 0.0949 \\\hline & 176 & / & 0.0932 \\\hline & 217 & / & 0.0936 \\\hline & 262 & / & 0.0924 \\\hline & 311 & / & 0.0916 \\\hline & 358 & / & 0.0999 \\\hline & 444 & / & 0.0916 \\\hline \end{array}$	$\begin{array}{c c} 15\\\hline 34 & / & 0.0882\\ \hline 58 & / & 0.0821\\ \hline 83 & / & 0.0931\\ \hline 116 & / & 0.0861\\ \hline 148 & / & 0.0945\\ \hline 190 & / & 0.0881\\ \hline 229 & / & 0.0957\\ \hline 274 & / & 0.0995\\ \hline 326 & / & 0.0947\\ \hline 376 & / & 0.0998\\ \hline \end{array}$	
$ \begin{array}{c} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline 231 & / & 0.0991\\ \hline 276 & / & 0.0964\\ \hline 321 & / & 0.0991\\ \hline \end{array}$	$\begin{array}{c c} 11\\ \hline 26 & / & 0.0769\\ \hline 43 & / & 0.0852\\ \hline 63 & / & 0.0901\\ \hline 86 & / & 0.0934\\ \hline 112 & / & 0.0975\\ \hline 141 & / & 0.0998\\ \hline 178 & / & 0.0999\\ \hline 217 & / & 0.0890\\ \hline 256 & / & 0.0917\\ \hline 298 & / & 0.0917\\ \hline 343 & / & 0.0971\\ \hline 343 & / & 0.0971\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 13 \\ \hline 30 & / & 0.0857 \\ \hline 49 & / & 0.0946 \\ \hline 75 & / & 0.0819 \\ \hline 101 & / & 0.0898 \\ \hline 130 & / & 0.0953 \\ \hline 163 & / & 0.1000 \\ \hline 205 & / & 0.0914 \\ \hline 244 & / & 0.0960 \\ \hline 287 & / & 0.0997 \\ \hline 342 & / & 0.0918 \\ \hline 391 & / & 0.0955 \\ \hline \end{array}$	$\begin{array}{c c} 14 \\\hline & 31 & / & 0.1000 \\\hline & 52 & / & 0.0985 \\\hline & 77 & / & 0.0971 \\\hline & 106 & / & 0.0967 \\\hline & 139 & / & 0.0949 \\\hline & 176 & / & 0.0932 \\\hline & 217 & / & 0.0936 \\\hline & 262 & / & 0.0924 \\\hline & 311 & / & 0.0916 \\\hline & 358 & / & 0.0999 \\\hline & 411 & / & 0.0990 \\\hline & 411 & / & 0.0990 \\\hline \end{array}$	$\begin{array}{c c} 15\\\hline 34 & / & 0.0882\\ \hline 58 & / & 0.0821\\ \hline 83 & / & 0.0931\\ \hline 116 & / & 0.0861\\ \hline 148 & / & 0.0945\\ \hline 190 & / & 0.0881\\ \hline 229 & / & 0.0957\\ \hline 274 & / & 0.0995\\ \hline 326 & / & 0.0947\\ \hline 376 & / & 0.0948\\ \hline 439 & / & 0.0946\\ \hline \end{array}$	
$ \begin{array}{c} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline 231 & / & 0.0991\\ \hline 276 & / & 0.0964\\ \hline 321 & / & 0.0999\\ \hline 365 & / & 0.0977\\ \hline 1400 & / & 0.0971\\ \hline \end{array}$	$\begin{array}{c c} 11\\ \hline 26 & / & 0.0769\\ \hline 43 & / & 0.0852\\ \hline 63 & / & 0.0901\\ \hline 86 & / & 0.0934\\ \hline 112 & / & 0.0975\\ \hline 141 & / & 0.0998\\ \hline 178 & / & 0.0999\\ \hline 217 & / & 0.0890\\ \hline 256 & / & 0.0917\\ \hline 298 & / & 0.0917\\ \hline 343 & / & 0.0971\\ \hline 391 & / & 0.0987\\ \hline \end{array}$	$\begin{array}{c c} 12 \\ \hline 27 & / & 0.0989 \\ \hline 46 & / & 0.0901 \\ \hline 69 & / & 0.0857 \\ \hline 96 & / & 0.0824 \\ \hline 121 & / & 0.0953 \\ \hline 155 & / & 0.0926 \\ \hline 193 & / & 0.0887 \\ \hline 226 & / & 0.0996 \\ \hline 271 & / & 0.0960 \\ \hline 320 & / & 0.0929 \\ \hline 361 & / & 0.0992 \\ \hline 417 & / & 0.0994 \\ \hline \end{array}$	$\begin{array}{c c} & 13 \\ \hline 30 & / & 0.0857 \\ \hline 49 & / & 0.0946 \\ \hline 75 & / & 0.0819 \\ \hline 101 & / & 0.0898 \\ \hline 130 & / & 0.0953 \\ \hline 163 & / & 0.1000 \\ \hline 205 & / & 0.0914 \\ \hline 244 & / & 0.0960 \\ \hline 287 & / & 0.0918 \\ \hline 391 & / & 0.0955 \\ \hline 443 & / & 0.0963 \\ \hline \end{array}$	$\begin{array}{c c} 14 \\\hline 31 & / & 0.1000 \\\hline 52 & / & 0.0985 \\\hline 77 & / & 0.0971 \\\hline 106 & / & 0.0967 \\\hline 139 & / & 0.0949 \\\hline 176 & / & 0.0932 \\\hline 217 & / & 0.0936 \\\hline 262 & / & 0.0924 \\\hline 311 & / & 0.0916 \\\hline 358 & / & 0.0999 \\\hline 411 & / & 0.0990 \\\hline 469 & / & 0.0990 \\\hline 469 & / & 0.0990 \\\hline \end{array}$	$\begin{array}{c c} 15 \\\hline 34 & / & 0.0882 \\\hline 58 & / & 0.0821 \\\hline 83 & / & 0.0931 \\\hline 116 & / & 0.0861 \\\hline 148 & / & 0.0945 \\\hline 190 & / & 0.0881 \\\hline 229 & / & 0.0957 \\\hline 274 & / & 0.0995 \\\hline 326 & / & 0.0947 \\\hline 376 & / & 0.0998 \\\hline 439 & / & 0.0946 \\\hline 495 & / & 0.0991 \\\hline \end{array}$	
$ \begin{array}{c} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	<i>m</i>	$\begin{array}{c c} 10\\ \hline 23 & / & 0.0909\\ \hline 40 & / & 0.0804\\ \hline 57 & / & 0.0949\\ \hline 81 & / & 0.0846\\ \hline 103 & / & 0.0977\\ \hline 134 & / & 0.0894\\ \hline 161 & / & 0.0999\\ \hline 199 & / & 0.0926\\ \hline 231 & / & 0.0991\\ \hline 276 & / & 0.0964\\ \hline 321 & / & 0.0999\\ \hline 365 & / & 0.0977\\ \hline 419 & / & 0.0997\\ \hline 419 & / & 0.0997\\ \hline \end{array}$	$\begin{array}{c c} 11\\ \hline 26 & / & 0.0769\\ \hline 43 & / & 0.0852\\ \hline 63 & / & 0.0901\\ \hline 86 & / & 0.0934\\ \hline 112 & / & 0.0975\\ \hline 141 & / & 0.0998\\ \hline 178 & / & 0.0999\\ \hline 217 & / & 0.0890\\ \hline 256 & / & 0.0917\\ \hline 298 & / & 0.0917\\ \hline 343 & / & 0.0971\\ \hline 391 & / & 0.0987\\ \hline 444 & / & 0.0999\\ \hline 444 & / & 0.0999\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 13 \\ \hline & 30 & / & 0.0857 \\ \hline & 49 & / & 0.0946 \\ \hline & 75 & / & 0.0819 \\ \hline & 101 & / & 0.0953 \\ \hline & 130 & / & 0.0953 \\ \hline & 163 & / & 0.1000 \\ \hline & 205 & / & 0.0914 \\ \hline & 244 & / & 0.0960 \\ \hline & 287 & / & 0.0918 \\ \hline & 391 & / & 0.0955 \\ \hline & 443 & / & 0.0963 \\ \hline & 501 & / & 0.0999 \\ \hline & 501 & / & 0.099 \\ \hline & 501 & / & 0.09$	$\begin{array}{c c} 14 \\\hline 31 & / & 0.1000 \\\hline 52 & / & 0.0985 \\\hline 77 & / & 0.0971 \\\hline 106 & / & 0.0967 \\\hline 139 & / & 0.0949 \\\hline 176 & / & 0.0932 \\\hline 217 & / & 0.0936 \\\hline 262 & / & 0.0924 \\\hline 311 & / & 0.0916 \\\hline 358 & / & 0.0990 \\\hline 459 & / & 0.0950 \\\hline 533 & / & 0.0953 \\\hline \end{array}$	$\begin{array}{c c} 15 \\\hline 34 & / & 0.0882 \\\hline 58 & / & 0.0821 \\\hline 83 & / & 0.0931 \\\hline 116 & / & 0.0861 \\\hline 148 & / & 0.0945 \\\hline 190 & / & 0.0881 \\\hline 229 & / & 0.0957 \\\hline 274 & / & 0.0995 \\\hline 326 & / & 0.0947 \\\hline 376 & / & 0.0998 \\\hline 439 & / & 0.0991 \\\hline 567 & / & 0.0999 \\\hline 567 & / & 0.0999 \\\hline \end{array}$	

Selected critical values of min $\{A_{m,n}^+, A_{m,n}^-\}$ at the nominal level $\alpha = 0,05$.

n m	3	4	5	6	7	8	9
2	-	-	2 / 0.0476	-	3 / 0.0278	$3 \ / \ 0.0222$	4 / 0.0182
3	-	4 / 0.0286	5 / 0.0179	4 / 0.0238	5 / 0.0500	6 / 0.0364	7 / 0.0091
4	4 / 0.0286	-	6 / 0.0238	7 / 0.0143	$8 \ / \ 0.0273$	9 / 0.0121	$10 \ / \ 0.0252$
5	$8 \ / \ 0.0179$	8 / 0.0476	$6 \ / \ 0.0397$	$11 \ / \ 0.0390$	$12 \ / \ 0.0366$	$13 \ / \ 0.0420$	$14 \ / \ 0.0420$
6	-	-	$13 \ / \ 0.0346$	$13 \ / \ 0.0325$	16 / 0.0361	$19 \ / \ 0.0213$	$19 \ / \ 0.0412$
7	12 / 0.0417	$13 \ / \ 0.0485$	16 / 0.0480	$19 \ / \ 0.0402$	22 / 0.0117	$23 \ / \ 0.0476$	$26 \ / \ 0.0430$
8	$15 \ / \ 0.0485$	17 / 0.0242	19 / 0.0490	$23 \ / \ 0.0376$	$27 \ / \ 0.0385$	$25 \ / \ 0.0379$	31 / 0.0432
9	$19 \ / \ 0.0273$	$23 \ / \ 0.0490$	$25 \ / \ 0.0465$	28 / 0.0460	$33 \ / \ 0.0485$	35 / 0.0491	37 / 0.0305
10	$22 \ / \ 0.0455$	25 / 0.0470	31 / 0.0240	35 / 0.0480	40 / 0.0472	$43 \ / \ 0.0395$	46 / 0.0474
11	27 / 0.0467	32 / 0.0491	38 / 0.0492	42 / 0.0444	47 / 0.0448	$51 \ / \ 0.0465$	55 / 0.0464
12	$31 \ / \ 0.0374$	37 / 0.0462	43 / 0.0486	49 / 0.0378	$53 \ / \ 0.0491$	61 / 0.0369	$64 \ / \ 0.0455$
13	36 / 0.0482	43 / 0.0466	51 / 0.0434	57 / 0.0471	$63 \ / \ 0.0480$	68 / 0.0488	74 / 0.0480
14	43 / 0.0456	49 / 0.0461	57 / 0.0489	63 / 0.0467	71 / 0.0398	77 / 0.0500	84 / 0.0498
15	$49 \mid 0.0257$	$58 \ / \ 0.0454$	66 / 0.0372	$73 \ / \ 0.0478$	80 / 0.0495	$89 \ / \ 0.0499$	$94 \ / \ 0.0499$
m	10	11	19	13	14	1	5
	10	11	12	10	14		
2	3 / 0.0455	4 / 0.0385	5 / 0.011	$10 5 \ / \ 0.0$	286 5 / 0.	0250 5 / 0	0.0441
3	7 / 0.0420	8 / 0.0330	8 / 0.041	18 9 / 0.0	375 9 / 0.	0471 10 / 0	0.0233
4	11 / 0.0180	12 / 0.0264		55 14 / 0.0	252 15 / 0.	0196 15 / 0	0.0490
5	16 / 0.0236	17 / 0.0449	18 / 0.048	$51 19 \ / \ 0.0$	$472 20 \ / \ 0.$	0482 21 / 0	0.0355
6	19 / 0.0485	22 / 0.0433		$\frac{26}{25}$ $\frac{25}{0.0}$	491 27 / 0.	0468 28 / 0	0.0439
-7	$\frac{27}{0.0451}$	30 / 0.0443		$\frac{35}{33} + \frac{33}{0.0}$	494 36 / 0.	0307 38 / 0	0.0474
8	$\frac{35}{10.0467}$	$\frac{36}{0.0473}$		$\frac{96}{76}$ $\frac{42}{51}$ $\frac{100}{200}$	$\frac{482}{494}$ $\frac{45}{90}$	$\frac{0385}{0400}$ $\frac{47}{55}$	0.0441
9	42 / 0.0498	44 / 0.0491	46 / 0.04	$\frac{76}{22}$ $\frac{51}{0.0}$	484 53 / 0.	0498 55 / 0	0.0494
10	0.0295	04 / 0.0496	- 07 / U.U49	92 01 / U.U	402 00 / 0.	0490 0770	0.0900
10	$ c_0 / c_0 d_{c_0}$	67 / 0 0000	69 / 0.04	79 79 /00	170 76 / 0	0400 01 / 4	0.0494
	60 / 0.0462	67 / 0.0232	68 / 0.047	73 72 / 0.0	478 76 / 0.	0488 81 / 0	0.0484
12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	478 76 0. 478 89 0. 405 102 0.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0484 0.0432 0.0470
12 13 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 67 & 0.0232 \\ \hline 74 & 0.0496 \\ 85 & 0.0500 \\ \hline 07 & 0.0402 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0488 & 81 & / & 0 \\ 0492 & 94 & / & 0 \\ 0477 & 108 & / & 0 \\ 0205 & 122 & / & 0 \\ \end{array}$	$ \begin{array}{r} 0.0484 \\ 0.0432 \\ 0.0479 \\ 0.0487 \end{array} $
$\begin{array}{r} 12 \\ \hline 13 \\ \hline 14 \\ \hline 15 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 68 & 0.04' \\ \hline 73 & 0.04! \\ 91 & 0.04! \\ \hline 103 & 0.04! \\ \hline 118 & 0.04' \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 0.0484 \\ 0.0432 \\ 0.0479 \\ 0.0487 \\ 0.0389 \end{array} $

Selected critical values of min $\{A_{m,n}^+, A_{m,n}^-\}$ at the nominal level $\alpha = 0, 10$.

n	m	3	4	5	6	7	8	9
2		1 / 0.1000	1 / 0.0667	2 / 0.0476	2 / 0.0714	2 / 0.0833	3 / 0.0222	$3 \ / \ 0.0545$
3		1 / 0.1000	$\frac{3}{0.0857}$	4 / 0.0536	$\frac{4}{0.0238}$	4 / 0.1000	5 / 0.0727	4 / 0.0864
4		4 / 0.0286	5 / 0.0000	6 / 0.0238	7 / 0.0143	7 / 0.0848	9 / 0.0121	8 / 0.0867
5		6 / 0.0536	7 / 0.0714	6 / 0.0397	9 / 0.0671	10 / 0.0707	10 / 0.0995	12 / 0.0784
6		7 / 0.0833	9 / 0.0667	10 / 0.0758	13 / 0.0325	13 / 0.0897	13 / 0.0929	16 / 0.0603
7		10 / 0.0833	12 / 0.1000	14 / 0.0859	$\frac{15}{0.0967}$	$\frac{15}{0.0728}$	19 / 0.0894	21 / 0.0827
8		12 / 0.0909	13 / 0.0949	17 / 0.0894	19 / 0.0972	$\frac{22}{0.0876}$	$\frac{25}{0.0379}$	$\frac{26}{0.0977}$
9		13 / 0.0955	19 / 0.0797	22 / 0.0804	$\frac{22}{0.0931}$	$\frac{26}{0.0934}$	29 / 0.0967	$\frac{28}{0.0760}$
10		19 / 0.0874	23 / 0.0839	26 / 0.0789	$\frac{29}{0.0943}$	$\frac{31}{0.0988}$	$\frac{35}{10.0945}$	37 / 0.0989
11		22 / 0.0989	27 / 0.0952	$\frac{31}{95}$ / 0.0902	$\frac{34}{0.0986}$	38 / 0.0968	$\frac{42}{10.0956}$	46 / 0.0905
12		28 / 0.0769	29 / 0.0819	$\frac{35}{49}$ / 0.0957	$\frac{37}{0.0925}$	44 / 0.0992	49 / 0.0836	55 / 0.0759
13		31 / 0.0982	37 / 0.0895	42 / 0.0928	$\frac{47}{0.0980}$	51 / 0.0994	$\frac{56}{0.0962}$	61 / 0.0970
14		$\frac{36}{40}$ / 0.0779	41 / 0.0997	48 / 0.0963	$\frac{53}{0.0951}$	$\frac{57}{0.0883}$	$\frac{65}{72}$ / 0.0905	69 / 0.0989
10		40 / 0.0840	47 / 0.0902	51 + 0.0920	01 / 0.0902	07 / 0.0985	75 / 0.0984	79 / 0.0929
<u>n</u>	m	10	11	12	13	14	15	25
$\frac{n}{2}$	m	10 3 / 0.0455	11 3 / 0.0769	12 3 / 0.0659	13 3 / 0.0952 	14 3 / 0.0833	15 3 4 / 0.07	35
n 2 3	m	10 3 / 0.0455 6 / 0.0734	11 3 / 0.0769 6 / 0.0879	12 3 / 0.0659 7 / 0.0418	$\frac{13}{3 \ / \ 0.0952} \\ \frac{7 \ / \ 0.0839}{11 \ / \ 0.0952}$	14 3 / 0.0833 7 / 0.1000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 97
$ \begin{array}{c} n\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5 \end{array} $	<i>m</i>	10 3 / 0.0455 6 / 0.0734 9 / 0.0809	11 3 / 0.0769 6 / 0.0879 10 / 0.0689	12 3 / 0.0659 7 / 0.0418 9 / 0.0747	$\begin{array}{c c} & 13 \\ \hline & 3 \ / \ 0.0952 \\ \hline & 7 \ / \ 0.0895 \\ \hline & 11 \ / \ 0.0895 \end{array}$	14 3 / 0.0833 7 / 0.1000 11 / 0.0797	15 3 4 / 0.07 0 7 / 0.07 7 12 / 0.08	35 97 85
$ \begin{array}{c} n\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5\\ \hline c \end{array} $	<i>m</i>	10 3 / 0.0455 6 / 0.0734 9 / 0.0809 11 / 0.0666	11 3 / 0.0769 6 / 0.0879 10 / 0.0689 13 / 0.0991 10 / 0.0927	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772	$\begin{array}{r} 13 \\ \hline 3 \ / \ 0.0952 \\ \hline 7 \ / \ 0.0839 \\ \hline 11 \ / \ 0.0895 \\ \hline 15 \ / \ 0.0962 \\ \hline 22 \ / \ 0.0762 \\ \hline \end{array}$	14 3 / 0.0833 7 / 0.1000 11 / 0.079' 16 / 0.098'	15 3 4 / 0.07 0 7 / 0.07 7 12 / 0.08 7 16 / 0.07	$\frac{35}{97}$ 85 54
$ \begin{array}{r}n\\\hline 2\\\hline 3\\\hline 4\\\hline 5\\\hline 6\\\hline 7\end{array} $	<i>m</i>	10 3 / 0.0455 6 / 0.0734 9 / 0.0809 11 / 0.0666 17 / 0.0979 22 / 0.0980	11 3 / 0.0769 6 / 0.0879 10 / 0.0689 13 / 0.0991 18 / 0.0976	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772 19 / 0.0699 25 / 0.0078	$\begin{array}{r} 13 \\ \hline 3 \ / \ 0.0952 \\ \hline 7 \ / \ 0.0839 \\ \hline 11 \ / \ 0.0895 \\ \hline 15 \ / \ 0.0962 \\ \hline 22 \ / \ 0.0740 \\ \hline 27 \ / \ 0.0967 \end{array}$	14 3 / 0.083 7 / 0.1000 11 / 0.079 16 / 0.098 23 / 0.0854	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 14$
$ \begin{array}{r} n\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5\\ \hline 6\\ \hline 7\\ \hline 8 \end{array} $	<i>m</i>	10 3 / 0.0455 6 / 0.0734 9 / 0.0809 11 / 0.0666 17 / 0.0979 22 / 0.0980 20 / 0.0771	11 3 / 0.0769 6 / 0.0879 10 / 0.0689 13 / 0.0991 18 / 0.0976 24 / 0.0937 20 / 0.0096	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772 19 / 0.0699 25 / 0.0978 22 / 0.0723	$\begin{array}{c c} & 13 \\ \hline & 3 \ / \ 0.0952 \\ \hline & 7 \ / \ 0.0839 \\ \hline & 11 \ / \ 0.0895 \\ \hline & 15 \ / \ 0.0962 \\ \hline & 22 \ / \ 0.0740 \\ \hline & 27 \ / \ 0.0967 \\ \hline & 24 \ / \ 0.0907 \end{array}$	14 3 / 0.0833 7 / 0.1000 11 / 0.079 ³ 16 / 0.098 ³ 23 / 0.085 ⁴ 29 / 0.0629 27 / 0.085 ⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{35}{97} {85} {54} {13} {44} {90} $
n 2 3 4 5 6 7 8 0	<i>m</i>	10 3 / 0.0455 6 / 0.0734 9 / 0.0809 11 / 0.0666 17 / 0.0979 22 / 0.0980 29 / 0.0771 24 / 0.0913	11 3 / 0.0769 6 / 0.0879 10 / 0.0689 13 / 0.0991 18 / 0.0976 24 / 0.0937 30 / 0.0996 27 / 0.0030	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772 19 / 0.0699 25 / 0.0978 33 / 0.0732 27 / 0.0073	$\begin{array}{c c} & 13 \\ \hline & 3 & / & 0.0952 \\ \hline & 7 & / & 0.0839 \\ \hline & 11 & / & 0.0895 \\ \hline & 15 & / & 0.0962 \\ \hline & 22 & / & 0.0740 \\ \hline & 27 & / & 0.0967 \\ \hline & 34 & / & 0.0997 \\ \hline & 42 & / & 0.0957 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 3 4 / 0.07 0 7 / 0.07 7 12 / 0.08 7 16 / 0.07 4 22 / 0.09 9 31 / 0.09 4 38 / 0.09	$ \frac{35}{97} 85 54 13 44 90 06 6 $
n 2 3 4 5 6 7 8 9 10	<i>m</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 3 / 0.0769 6 / 0.0879 10 / 0.0689 13 / 0.0991 18 / 0.0976 24 / 0.0937 30 / 0.0996 37 / 0.0920 44 / 0.0982	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772 19 / 0.0699 25 / 0.0978 33 / 0.0732 37 / 0.0973 47 / 0.0960	$\begin{array}{c c} & 13 \\ \hline & 3 \ / \ 0.0952 \\ \hline & 7 \ / \ 0.0839 \\ \hline & 11 \ / \ 0.0895 \\ \hline & 15 \ / \ 0.0962 \\ \hline & 22 \ / \ 0.0740 \\ \hline & 27 \ / \ 0.0967 \\ \hline & 34 \ / \ 0.0997 \\ \hline & 42 \ / \ 0.0957 \\ \hline & 50 \ / \ 0.0960 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 96 \\ 70 \\ 70 \\ \end{array} $
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	<i>m</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 3 / 0.0659 7 / 0.0418 9 / 0.0747 15 / 0.0772 19 / 0.0699 25 / 0.0978 33 / 0.0732 37 / 0.0973 47 / 0.0960 55 / 0.0983	$\begin{array}{c c} & 13 \\ \hline & 3 \ / \ 0.0952 \\ \hline & 7 \ / \ 0.0839 \\ \hline 11 \ / \ 0.0895 \\ \hline 15 \ / \ 0.0962 \\ \hline 22 \ / \ 0.0740 \\ \hline 27 \ / \ 0.0967 \\ \hline 34 \ / \ 0.0997 \\ \hline 42 \ / \ 0.0957 \\ \hline 50 \ / \ 0.0980 \\ \hline 59 \ / \ 0.0055 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 96 \\ 79 \\ 62 \\ \end{array} $
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	<i>m</i>	$\begin{array}{c c} 10\\\hline & 3 \ / \ 0.0455\\\hline & 6 \ / \ 0.0734\\\hline & 9 \ / \ 0.0809\\\hline & 11 \ / \ 0.0666\\\hline & 17 \ / \ 0.0979\\\hline & 22 \ / \ 0.0980\\\hline & 29 \ / \ 0.0771\\\hline & 34 \ / \ 0.0913\\\hline & 41 \ / \ 0.0588\\\hline & 49 \ / \ 0.0949\\\hline & 57 \ / \ 0.0909\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 12 \\\hline 3 & / & 0.0659 \\\hline 7 & / & 0.0418 \\\hline 9 & / & 0.0747 \\\hline 15 & / & 0.0772 \\\hline 19 & / & 0.0699 \\\hline 25 & / & 0.0978 \\\hline 33 & / & 0.0732 \\\hline 37 & / & 0.0973 \\\hline 47 & / & 0.0960 \\\hline 55 & / & 0.0983 \\\hline 61 & / & 0.0829 \\\hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 96 \\ 79 \\ 62 \\ 86 \\ \end{array} $
$ \begin{array}{r} n \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ \hline 9 \\ \hline 10 \\ \hline 11 \\ \hline 12 \\ \hline 13 \\ \hline \end{array} $	<i>m</i>	$\begin{array}{c c} 10\\\hline & 3 & / & 0.0455\\\hline & 6 & / & 0.0734\\\hline & 9 & / & 0.0809\\\hline & 11 & / & 0.0666\\\hline & 17 & / & 0.0979\\\hline & 22 & / & 0.0979\\\hline & 22 & / & 0.0980\\\hline & 29 & / & 0.0771\\\hline & 34 & / & 0.0913\\\hline & 41 & / & 0.0588\\\hline & 49 & / & 0.0949\\\hline & 57 & / & 0.0909\\\hline & 55 & / & 0.0975\\\hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 96 \\ 79 \\ 62 \\ 86 \\ 80 \\ \end{array} $
$ \begin{array}{r} n \\ \hline 2 \\ 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ 9 \\ \hline 10 \\ \hline 11 \\ \hline 12 \\ \hline 13 \\ \hline 14 \\ \end{array} $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 3 / 0.083; 7 / 0.1000 11 / 0.079' 16 / 0.098' 23 / 0.0854 29 / 0.0629 37 / 0.0844 44 / 0.0955 53 / 0.0934 63 / 0.0939 73 / 0.0928 84 / 0.0973 85 / 0.0909	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 96 \\ 79 \\ 62 \\ 86 \\ 80 \\ 70 \\$
$ \begin{array}{r} n \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \end{array} $	<i>m</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 3 / 0.0833 7 / 0.1000 11 / 0.079' 16 / 0.098' 23 / 0.0854 29 / 0.0629 37 / 0.0844 44 / 0.0955 53 / 0.0934 63 / 0.0939 73 / 0.0928 84 / 0.0978 85 / 0.0939	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 35 \\ 97 \\ 85 \\ 54 \\ 13 \\ 44 \\ 90 \\ 90 \\ 96 \\ 79 \\ 62 \\ 86 \\ 80 \\ 70 \\$

References

- [1] Büning, H. and W. Trenkler (1978), Nichtparametrische statistische Methoden, Berlin.
- [2] Holmgren, E.B. (1995), The p p-plot as a method for comparing treatment effects, in: Journal of the American Statistical Association, Vol. 90.
- [3] Johnson, B.McK. and T. Killeen (1983), An explicit formula for the C.D.F. of the L_1 Norm of the Brownian Bridge, in: *The Annals of Probability, Vol.11, No. 3.*
- [4] Kolmogorov, A.N. (1933), Sulla determinazione empirica di una legge di distribuzione, in: Giorn. dell'Inst. Ital. degli Att., No. 4.
- [5] Kuiper, N.H. (1960), Tests concerning random points on a circle, in: Nederl. Akad. Wetensch. Proc. Ser. A, 63.
- [6] Mosler, K. (1995), Testing whether two distributions are stochastically ordered or not, in: Grundlagen der Statistik und ihre Anwendungen: Festschrift für Kurt Weichselberger, ed. by H. Rinne, B. Rüger and H. Strecker, Heidelberg.
- [7] Perman M. and J.A. Wellner (1996), On the distribution of Brownian Areas, in: *The* Annals of Applied Probability, Vol.6, No.4.
- [8] Randles, R.H. and D.A. Wolfe (1979), Introduction to the Theory of Nonparametric Statistics, New York.
- [9] Shepp, L.A. (1982), On the integral of the absolute value of the pinned Wiener Process, in: The Annals of Probability, Vol. 10, No. 1.
- [10] Rice, S.O. (1982), The integral of the absolute value of the pinned Wiener Process

 calculation of its probability density by numerical integration, in: The Annals of
 Probability, Vol. 10, No. 1.
- [11] Schmid, F. and M. Trede (1995), A distribution free test for the two sample problem for general alternatives, in: *Computational Statistics & Data Analysis, No. 20.*
- [12] Schmid, F. and M. Trede (1996), Testing for first-order stochastic dominance: a new distribution-free test, in: The Statistician 45, No. 3.
- [13] Schmid, F. and M. Trede (1996a), Testing for first-order stochastic dominance in either direction, in: Computational Statistics, No. 11.
- [14] Shorack, G.R. and J.A. Wellner (1986), Empirical Processes with Application to Statistics, New York.
- [15] Weichselberger, A. (1993), Ein neuer nichtparametrischer Anpassungstest zur Beurteilung der Lage von Verteilungen, Göttingen.
- [16] Wilcoxon, F. (1945), Individual comparisons by ranking methods, in: *Biometrics*, No.1.

Discussion Papers in Statistics and Econometrics

Seminar of Economic and Social Statistics University of Cologne

No.	Author Trede, M.	Title Statistical Inference in Mobility Measurement: Sex Differences in Earnings Mobility			
	Bomsdorf, E.	Allgemeine Sterbetafel 1986/88 für die Bundesrepublik Deutschland und Allgemeine Sterbetafel 1986/87 für die DDR – ein Vergleich			
	Heer, B.; Trede, M.; Wahrenburg, M.	The Effect of Option Trading at the DTB on the Underlying Stocks' Return Variance			
	Schmid, F.; Trede, M.	Testing for First Order Stochastic Dominance: A New Distribution Free Test			
1/95	Trede, M.M.	The Age-Profile of Earnings Mobility: Statistical Inference of Conditional Kernel Density Estimates			
2/95	Stich, A.	Die axiomatische Herleitung einer Klasse von dynamischen Ungleichheitsmaßen			
3/95	Bomsdorf, E.	Ein alternatives Modell zur Reform des Einkommensteuer- tarifs			
4/95	Schmid, F.; Trede, M.	Testing for First Order Stochastic Dominance in Eithe Direction			
5/95	Brachmann, K.	Nichtparametrische Analyse parametrischer Wachstums- funktionen — Eine Anwendung auf das Wachstum des glo- balen Netzwerks Internet			
6/95	Brachmann, K.; Stich, A.; Trede, M.	Evaluating Parametric Income Distribution Models			
7/95	Koshevoy, G.A.; Mosler, K.	Multivariate Gini indices			
8/95	Brachmann, K.	Choosing the optimal bandwidth in case of correlated data			
9/95	Heer, B.; Trede, M.	Taxation of Labor and Capital Income in an OLG Model with Home Production and Endogenous Fertility			
10/95	Stich, A.	Insurance and Concentration: The Change of Concentration in the Swedish and Finnish Insurance Market 1989 – 1993			
1/96	Barth, W.; Bomsdorf, E.	Besteht Long-Memory in Devisenkursen? — Eine semiparametrische Analyse			
2/96	Schmid, F.; Trede, M.	Nonparametric Inference for Second Order Stochastic Dominance			
3/96	Schmid, F.; Trede, M.	A Kolmogorov-Type Test for Second Order Stochastic Dominance			

Discussion Papers in Statistics and Econometrics

Seminar of Economic and Social Statistics University of Cologne

No.	Author	Title
4/96	Stich, A.	Inequality and Negative Income
5/96	Stich, A.	Poverty and Life Cycle Effects. A Nonparametric Analysis for Germany
6/96	Eurich, A.; Stich, A.; Weidenfeld, G.	Die Entwicklung der Anbieterkonzentration auf dem deutschen Erstversicherungsmarkt von 1991 bis 1994
1/97	Stich, A.	Simultaneous Inference for Proportions in Arbitrary Sampling Designs
2/97	Trede, M.	Making Mobility Visible: A Graphical Device
3/97	Mosler, K.; Seidel, W.; Jaschinger, C.	A Power Comparison of Homogeneity Tests in Mixtures of Exponentials
1/98	Dyckerhoff, R.; Holz, H.; Mosler, K.	Checking for orthant orderings between discrete multivariate distributions: An algorithm
2/98	Schluter, C.; Trede, M.	Statistical Inference for Inequality Measurement with Dependent Data
1/99	Lucas, A.	Disparitätsmessung aus klassierten Daten mittels Schätzung von entropiemaximalen Dichtefunktionen
2/99	Maasoumi, E.; Trede, M.	Comparing Income Mobility in Germany and the US using Generalized Entropy Mobility Measures
3/99	Koshevoy, G.; Mosler, K.	Price Majorization and the Inverse Lorenz Function
4/99	Schluter, C.; Trede, M.	Local versus Global Assessment of Mobility
1/00	Heer, B.; Trede, M.	Efficiency and Distribution Effects of a Revenue-neutral Income Tax Reform in Germany
2/00	Kraft, S.; Schmid, F.	Nonparametric Tests based on Area-Statistics
3/00	Schluter, C.; Trede, M.	Statistical Inference for Tail Behaviour of Lorenz Curves