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Abstract

The Gini index and the Gini mean di�erence of a univariate distribution

are extended to measure the disparity of a general d-variate distribution. We

propose and investigate two approaches, one based on the distance of the

distribution from itself, the other on the volume of a convex set in (d + 1)-

space, named the lift zonoid of the distribution. When d = 1, this volume

equals the area between the usual Lorenz curve and the line of zero disparity,

up to a scale factor. We get two de�nitions of the multivariate Gini index,

which are di�erent (when d > 1) but connected through the notion of the

lift zonoid. Both notions inherit properties of the univariate Gini index, in

particular, they are vector scale invariant, continuous, bounded by 0 and 1,

and the bounds are sharp. They vanish if and only if the distribution is

concentrated at one point. The indices have a ceteris paribus property and

are consistent with multivariate extensions of the Lorenz order. Illustrations

with data conclude the paper.

Key words: Dilation; Disparity measurement; Gini mean di�erence; Lift
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1 Introduction

To measure the disparity of a probability distribution, the Gini mean di�erence

and its scale invariant version, the Gini index, are most widely used. The Gini

index is closely connected to the Lorenz curve; it amounts to twice the area between

the Lorenz curve and the diagonal of the unit square. By this, the Gini index is

consistent with the Lorenz order: It increases from one distribution to another if

the �rst Lorenz curve lies above the second.

In this paper we investigate extensions of the Gini mean di�erence and the Gini

index to measure the disparity of a population with respect to several attributes

s = 1; . . . ; d. The Gini mean di�erence of a univariate distribution F is de�ned as

the expected distance between two independent random variables which both follow

the law F . Our �rst notion will be an immediate extension of this (Section 4). For

a d-variate empirical distribution FA; with data matrix A = [ais], it reads

MD(FA) =
1

2n2d

nX
i=1

nX
j=1

� dX
s=1

(ais � ajs)
2

�1

2

: (1)

We call MD the distance{Gini mean di�erence. Our second notion, MV ; will be
based on the volume of the lift zonoid and named the volume{Gini mean di�erence

(Section 5). The lift zonoid of a d-variate distribution is a convex set in IRd+1 which
extends the generalized Lorenz curve; see Section 3 below. For FA we will get

MV (FA) =
1

2d � 1

dX
s=1

1

ns+1

X
1�i1<...<is+1�n

X
1�r1<...<rs�d

jdet(1; Ar1;...;rs
i1;...;is+1

)j; (2)

where 1 is a column of ones, and A
r1;...;rs
i1;...;is+1

is the matrix obtained from the rows
i1; . . . ; is+1 and the columns r1; . . . ; rs of the data matrix.

For univariate data, the Gini index equals the Gini mean di�erence of the relative

data, which are the original data `scaled down' by their mean. Thus, for a d-variate
distribution we will de�ne the distance-Gini index and the volume-Gini index by

RD(FA) =MD( eFA) and RV (FA) =MV ( eFA); (3)

where FA is componentwise scaled down to eFA by its mean vector; see Section 3.

Every d-variate Gini index should have at least the following properties: be equal

to the usual Gini index in case d = 1, vary between 0 and 1, be scale invariant,
and increase with a proper multivariate extension of the Lorenz order. This and
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more will be shown for our two notions. Also they will be investigated for general

d-variate probability distributions.

For univariate distributions, the Gini mean di�erence increases with the dilation

order, and the Gini index increases with the Lorenz order, which we call relative

dilation because it amounts to dilation of the relative distributions. Of course,

dilation implies relative dilation.

We will consider several extensions of dilation to the multivariate case. The �rst

is classical d-variate dilation, which means that one distribution equals the other

one plus `noise'. The second, directional dilation, has the following property. G

is a directional dilation of F if and only if the lift zonoid of G includes that of F .

Further, absolute and relative versions of these dilations are considered in Section

3. We will show in Section 6 that both notions of the Gini mean di�erence are

increasing with absolute dilation and directional absolute dilation. Similarly, both

our Gini indices increase with relative dilation and directional relative dilation.

AlthoughMD and RD are obvious extensions of the univariate notions, most of their
properties have not been explored so far. In particular we prove in Section 4 that
RD varies between 0 and 1, and that the bounds are sharp. We also establish a

connection betweenMD(F ) and the lift zonoid of F : MD(F ) is proportionate to the
average area of certain two{dimensional projections of the lift zonoid (Remark 4.1).

There are several attempts in the literature to de�ne a multivariate Gini mean
di�erence. Wilks (1960) proposes the volume of a convex body associated with F .
Oja (1983) shows that the Wilks index is the expected volume of a simplex generated
by d+1 random vertices which are independent and identically distributed according
to F ; see also Giovagnoli and Wynn (1995). In our framework, the Wilks index
amounts to d + 1 times the volume of the lift zonoid (Theorem 5.1). Torgersen

(1991) uses, as a multivariate Gini mean di�erence, the volume of the zonoid of the
distribution, which is the projection of its lift zonoid on the last d coordinates. For
a one-point distribution, both the Wilks{Oja and the Torgersen indices vanish. But
also for many other distributions they are zero, which appears to be unsatisfactory.
Our notion MV (F ) avoids this drawback; it vanishes if and only if F is a one-point

distribution. In addition, we provide the correct scaling factor which makes RV vary
between 0 and 1. MV (F ) is an average of projections of the lift zonoid on coordinate

planes (Remark 5.1).

Another multivariate Gini index, associated with a concentration surface, has been
introduced by Taguchi (1981). For the relations between Taguchi's concentration

surface and the lift zonoid, see Koshevoy and Mosler (1995a).

Overview: Some properties of the usual univariate Gini index will be surveyed in

Section 2. Section 3 presents the de�nitions of six multivariate dilation orderings and
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of the lift zonoid and the Lorenz zonoid of a d-variate distribution. Section 4 is about

the multivariate distance{Gini index and its properties. The multivariate volume{

Gini index is introduced and analyzed in Section 5. In Section 6 we demonstrate

that our Gini indices are increasing with multivariate dilations. Section 7 concludes

the paper with a numerical illustration.

Notation: IRk (IRk
+) is the k{dimensional Euclidean space of row vectors (nonneg-

ative row vectors). In IRk; xT is the transpose of a vector x; � the usual compo-

nentwise ordering, and Sk�1 the unit sphere. 0 stands for the origin, and x; y for

the segment between x and y in IRk. [a1; . . . ; al] denotes the l� k matrix with rows

a1; . . . ; al 2 IRk. For D and E in IRk, D + E = fu : u = x+ y; x 2 D; y 2 Eg is the
Minkowski sum, and Vk(D) is the k-dimensional volume of D.

2 The univariate Gini index

We will shortly survey the Gini mean di�erence and the Gini index of a univariate
distribution. Let F : IR! [0; 1] be a given probability distribution function on IR

which has a �nite expectation �(F ) =
R1
�1

xdF (x) > 0:

De�nition 2.1 (Gini mean di�erence, Gini index)

M(F ) =
1

2

Z
IR

Z
IR

jx� yjdF (x)dF (y): (4)

is the Gini mean di�erence of F . R(F ) =M(F )=j�(F )j is the Gini index of F .

M(F ) is the mean Euclidean distance between two independent random variables
divided by two, where both random variables are distributed with F , and R(F ) is
the mean Euclidean distance divided by twice the expectation of F . The de�nition
and, as we will see in Section 4, the following results hold also for distributions with

�(F ) < 0.

Proposition 2.1 Let F�1(s) = inffx : F (x) � sg; s 2]0; 1]; denote the inverse

distribution function of F , and LF (t) = �(F )�1
R t
0
F�1(s)ds, t 2 [0; 1]: Then, if

F (0) = 0,

(i) M(F ) equals the area between the graphs of the two functions t 7! j�(F )jLF (t)

and t 7! j�(F )j (1� LF (1 � t)), t 2 [0; 1].

(ii) R(F ) equals the area between the graphs of the two functions t 7! LF (t) and

t 7! 1 � LF (1� t), t 2 [0; 1].
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Proof. t 7! LF (t) is the Lorenz function, and its graph is the Lorenz curve of

F . t 7! j�(F )jLF (t) is the generalized Lorenz function. It is wellknown that R(F )

amounts to twice the area between the Lorenz curve and the main diagonal of the

unit square. The area between the main diagonal and the graph of t 7! (1�LF (1�t))
is congruent to this �rst area. Hence (ii). Part (i) follows immediately sinceM(F ) =

j�(F )jR(F ): 2

The special case of an empirical distribution is particularly important. Let Fa denote

the distribution function which gives equal weight to n given points ai in IR, a1 �
. . . � an, a = (a1; . . . ; an), and let a = n�1(a1+ . . . + an). Then the Lorenz curve of

Fa is the linear interpolation of the points (k=n; a1=a+ . . . + ak=a), k = 1; . . . ; n; in

two-space.

M(a1; . . . ; an) =M(Fa) =
1

2n2

nX
j=1

nX
i=1

jai � ajj (5)

is the Gini mean di�erence of the sample a = (a1; . . . ; an); and

R(a1; . . . ; an) = R(Fa) =
1

a
M(a1; . . . ; an) (6)

is the Gini index of a; provided the sample mean is not zero. The Gini index of a
equals the Gini mean di�erence of the `scaled down' sample ea = (a1=a; . . . ; an=a);

R(a1; . . . ; an) =
1

2n2

nX
j=1

nX
i=1

j ai
a
� aj

a
j : (7)

The Gini index and the Gini mean di�erence have interesting properties which we
will extend to our multivariate notions. Here we state them for empirical distribu-
tions. They hold as well for general univariate distributions.

Proposition 2.2 (i) Let (a1; . . . ; an) 2 IRn
+ with

P
ai > 0. Then

0 = R(a; . . . ; a) � R(a1; . . . ; an) � R(0; . . . ; 0;

nX
i=1

ai) = 1 � 1

n
< 1;

R(�a1; . . . ; �an) = R(a1; . . . ; an) for every � > 0;

R(a1 + �; . . . ; an + �) =
a

a+ �
R(a1; . . . ; an) for every � > 0: (8)

(ii) R is strictly increasing with the Lorenz order, i.e.,

R(a1; . . . ; an) > R(b1; . . . ; bn) if LFa(t) � LF
b
(t) for all t and < for some t.

(iii) R is a continuous function IRn ! IR.
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Proposition 2.3 (i) Let (a1; . . . ; an) 2 IRn
+ with

P
ai > 0. Then

0 =M(a; . . . ; a) �M(a1; . . . ; an) �M(0; . . . ; 0;

nX
i=1

ai) = a(1� 1

n
) < a

M(�a1; . . . ; �an) = �M(a1; . . . ; an) for every � > 0

M(a1 + �; . . . ; an + �) =M(a1; . . . ; an) for every � 2 IR:

(ii) M is strictly increasing with the Lorenz order.

(iii) M is a continuous function IRn ! IR.

These and other properties have been investigated by many authors. For surveys

and references, see Nyg�ard and Sandstr�om (1981) and Giorgi (1990, 1992).

3 Multivariate dilations and the lift zonoid

Let Fd (Fd
0 ) be the class of probability distribution functions IRd ! IR which have

a �nite (�nite and non-zero) expectation vector, and let Fd
+ � Fd

0 be the subclass of
probability distributions on the nonnegative orthant IRd

+: Given F 2 Fd, let �(F ) =R
IRd xdF (x) = (�1; . . . ; �d). For every F 2 Fd and � = (�1; . . . ; �d) 2 IRd, de�ne

F��(x1; . . . ; xd) = F (x1�1; . . . ; xd�d), and F+�(x1; . . . ; xd) = F (x1+ �1; . . . ; xd + �d).

For F 2 Fd
0 ;
eF = F��(F ) is called the relative distribution function, namely, if F

is the distribution function of a random vector X = (X1; . . . ;Xd), then eF is the
distribution of eX =

�
X1

j�1j ; . . . ;
Xd

j�dj

�
:

In the sequel, when using eF , we tacitly assume that F 2 Fd
0 :

Given F and G in Fd, letX and Y be two random vectors from the same probability
space which are distributed according to F and G, respectively. G is a dilation of
F , F � G; if there exists a random vector Z such that E(Z j X) = 0 and Y has the

same distribution as X + Z. The random variable Z may be interpreted as `noise',

so that Y is distributed like X plus some noise.

We call G an absolute dilation of F; F �a G; if, G��(G) is a dilation of F��(F ). Given

F and G in Fd
0 , G is a relative dilation of F , F �r G; if, eG is a dilation of eF: For

F 2 Fd and p = (p1; . . . ; pd) 2 IRd, we denote

F (t; p) =

Z
fx2IRd:xpT�tg

dF (x); t 2 IR;
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eF (t; p) = Z
fx2IRd:xpT�tg

d eF (x); t 2 IR:

If F is the distribution function of the random vector X in IRd, then F (�; p) is the
distribution function of the random variable p1X1+. . .+pdXd in IR; similarly eF (�; p)
is the distribution function of p1X1=j�1j+ . . . + pdXd=j�dj.
G is a directional dilation of F , F �dir G; if, for every p 2 Sd�1, G(�; p) is a dilation
of F (�; p). We will say that G is a directional relative dilation of F , F �dirr G; if, for

every p 2 Sd�1, eG(�; p) is a dilation of eF (�; p). Similarly, G is named a directional

absolute dilation of F , F �dira G; if, for every p 2 Sd�1, G(�; p) is an absolute

dilation of F (�; p).
All these dilations are partial orders (re
exive, transitive and antisymmetric) on Fd,

and related by the following implications.

F � G =) F �dir G

+ +
F �r G =) F �dirr G

F � G =) F �dir G

+ +
F �a G =) F �dira G

However, in general, no reverse implication holds. For proofs, see Section 6 below.
Next we de�ne a multivariate generalization of the Lorenz curve and the generalized
Lorenz curve.

De�nition 3.1 (Koshevoy and Mosler (1995a,b)) Let F 2 Fd. For a measur-

able function h : IRd
+ ! [0; 1], consider the vector (z0(F; h); z(F; h)) 2 IRd+1, where

z0(F; h) =

Z
IRd

h(x)dF (x); z(F; h) =

Z
IRd

h(x)xdF (x):

The set

bZ(F ) � �(z0(F; h); z(F; h)) : h : IRd
+ ! [0; 1] measurable

	
is called the lift-zonoid of F . LZ(F ) = bZ( eF ) is called the Lorenz zonoid of F:

The lift zonoid is a multivariate generalization of the generalized Lorenz curve, and

the Lorenz zonoid is one of the Lorenz curve. The following theorem establishes the
relation between the lift-zonoid and directional dilation.
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Theorem 3.1 (Koshevoy and Mosler (1995a,b)) For F;G 2 Fd
+,

(i) F �dir G if and only if bZ(F ) � bZ(G);
(ii) F �dirr G if and only if LZ(F ) � LZ(G);

(iii) F �dira G if and only if bZ(F��(F )) � bZ(G��(G)):

Proof. For part (i), see Koshevoy and Mosler (1995b), for part (ii), Koshevoy and

Mosler (1995a), the part (iii) follows from the part (i). 2

Both relative dilation and directional relative dilation are multivariate extensions of

the usual univariate Lorenz ordering, i.e. the ordering of Lorenz curves. �dirr has

been named the multivariate Lorenz order in Mosler (1994); see also Koshevoy and

Mosler (1995a). If we compare empirical distributions with the same number, say n,

of support points in IRd, dilation and directional dilation correspond to majorization

and directional majorization of n � d matrices; see Marshall and Olkin (1979, ch.

15).

4 The multivariate distance-Gini index

The de�nition of the univariate Gini mean di�erence (4) has the following multi-
variate generalization.

De�nition 4.1 For F 2 Fd the distance-Gini mean di�erence is

MD(F ) =
1

2d

Z
IRd

Z
IRd

jjx� yjj dF (x) dF (y) (9)

where jj � jj denotes the Euclidean distance in IRd. RD(F ) =MD( eF ) is the distance-
Gini index.

In the case of an empirical distribution function FA, we get

MD(FA) =
1

2dn2

nX
j=1

nX
i=1

� dX
s=1

(ais � ajs)
2

� 1

2

; (10)

RD(FA) =
1

2dn2

nX
j=1

nX
i=1

� dX
s=1

(ais � ajs)
2

a2s

� 1

2

: (11)

Several properties of the distance{Gini mean di�erence and the distance{Gini index

follow easily from the de�nitions. Recall that, for � = (�1; . . . ; �d) 2 IRd; we denote
F��(x1; . . . ; xd) = F (x1�1; . . . ; xd�d) and F+�(x1; . . . ; xd) = F (x1 + �1; . . . ; xd + �d).
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Proposition 4.1 For all F 2 Fd,

(i) 0 �MD(F );

(ii) MD(F ) = 0 if and only if F is a one-point distribution.

(iii) MD(F+�) =MD(F ) for all �1; . . . ; �d.

(iv) MD is continuous w.r.t weak convergence of distributions.

Proposition 4.2 For all F 2 Fd
0 ,

(i) 0 � RD(F ):

(ii) RD(F ) = 0 if and only if F is a one-point distribution.

(iii) RD(F��) = RD(F ) for all �1; . . . ; �d > 0.

(iv) RD is continuous w.r.t weak convergence of distributions.

Proposition 4.2(iii) says that RD is vector scale invariant, while Proposition 4.1(iii)

states that MD is translation invariant. Regarding upper bounds we have the fol-

lowing result.

Theorem 4.1 For F 2 Fd
+; the following inequalities hold.

MD(F ) <
1

d

dX
j=1

�j(F ); RD(F ) < 1;

and the bounds are sharp.

We will prove the theorem at the end of this Section. Before we consider a property
which is desirable for every index of multivariate disparity. It says that, if to a
distribution in d attributes a (d + 1)-th attribute is added which does not vary in
the population, then the disparity index remains essentially unchanged: It multiplies
by a factor which depends only on d.

De�nition 4.2 (Ceteris paribus property) Let Jd be a real valued function

which is de�ned on a subset Dd of Fd; d 2 IN: We say that Jd; d 2 IN; has the

ceteris paribus property if

Jd+1(F 
 E�0) = 
(d)Jd(F ) for all F 2 Dd; �0 2 IR; d 2 IN: (12)

Here E�0 denotes the univariate one-point distribution at �0, and 
(d) is a constant

for every d.

Theorem 4.2 MD and RD have the ceteris paribus property with


(d) =
d

d+ 1
:
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The proof is obvious from the de�nition of MD.

Theorem 4.3 Let dp denote the rotation invariant area element on the sphere Sd�1;

d � 2. There holds

MD(F ) =
�(d+1

2
)

4d �
d�1

2

Z
p2Sd�1

Z +1

�1

Z +1

�1

ju� vj dF (u; p) dF (v; p)dp; (13)

RD(F ) =
�(d+1

2
)

4d �
d�1

2

Z
p2Sd�1

Z +1

�1

Z +1

�1

ju� vj d eF (u; p) d eF (v; p)dp: (14)

Proof. We use the following formula by Helgason (1980, Lemma 7.2). For every

z 2 IRd and k > 0 holdsZ
p2Sd�1

jzpT jkdp = 2�
d�1

2 �(k+1
2
)

�(d+k
2
)

jjzjjk: (15)

From this formula with k = 1, we conclude that

MD(F ) =
1

2d

Z
IRd

Z
IRd

jjx� yjjdF (x) dF (y)

=
1

2d

�(d+1
2
)

2�
d�1

2

Z
IRd

Z
IRd

(

Z
p2Sd�1

jxpT � ypT j dp) dF (x) dF (y)

=
1

2d

�(d+1
2
)

2�
d�1

2

Z
p2Sd�1

(

Z
IRd

Z
IRd

jxpT � ypT j dF (x) dF (y))dp

=
�(d+1

2
)

4d �
d�1

2

Z
p2Sd�1

Z +1

�1

Z +1

�1

ju� vj dF (u; p) dF (v; p)dp: (16)

This proves (13). The result for RD follows immediately with eF in place of F . 2

Recall that the area of Sd�1 equals 2�
d

2 =�(d
2
). Equation (13) in Theorem 4.3 says

that the distance-Gini mean di�erence MD is a constant times the average, over all

directions p in the sphere, of the Gini indices of all univariate distribution functions

F (�; p);
MD(F ) =

�(d+1
2
)�

1

2

d �(d
2
)

"
�(d

2
)

2�
d

2

Z
p2Sd�1

M(F (�; p))dp
#
; (17)

and similarly for RD(F ). Recall, that the Euler Gamma-function �(s) =R1
0
ts�1e�tdt has the following properties:

p
� = �(1

2
) and �(s + 1) = s�(s); and

9



the Euler Beta-function B(a; b) =
R 1

0
ta�1(1� t)b�1dt is equal to �(a)�(b)=�(a + b):

Therefore,

�(d+1
2
)�

1

2

d �(d
2
)

=
�(d+1

2
)�(1

2
)

2 �(d+2
2
)

=
B(d+1

2
; 1
2
)

2
:

By the mean value theorem we conclude:

Corollary 4.1 For every F there exist some p and ~p 2 Sd�1 such that

MD(F ) =
B(d+1

2
; 1
2
)

2
M(F (�; p)) and

RD(F ) =
B(d+1

2
; 1
2
)

2
R( eF (�; ~p)):

The corollary says that, for every distribution F , there are directions p and ~p which

re
ect the dependence structure of F , i.e. the interplay between the attributes, for
the Gini mean di�erence and the Gini index, respectively.

Remark 4.1 MD(F ) is related to the lift zonoid bZ(F ) as follows. For p =
(p1; . . . ; pd) 2 Sd�1, let prp denote the projection of IRd+1 on the two dimensioned
plane which is spanned by the vectors (1; 0; . . . ; 0) and (0; p1; . . . ; pd). Then, for
z = (z0; z1; . . . ; zd) 2 IRd+1, we get prp(z) = (z0;

P
zipi) with respect to this base.

The projection of the lift zonoid by prp equals the lift zonoid of F (�; p) (Koshevoy
and Mosler 1995b). So, we can state that MD(F ) is B(

d+1
2
; 1
2
)=2 times the average

area of these two dimensioned projections of the lift zonoid. The following proof of
Theorem 4.1 uses this fact.

Proof of Theorem 4.1. For F 2 Fd
+, holds

bZ(F ) � [0; 1] � [0; �(F )]. Therefore,

in view of Remark 4.1, holds

M(F (�; p)) =
1

2

Z +1

�1

Z +1

�1

ju� vj dF (u; p) dF (v; p)

= V2(prp( bZ(F )) � V2(prp([0; 1]� [0; �(F )])): (18)

Recall that V2 denotes the two-dimensional volume. Thus, by (17),

MD(F ) �
�(d+1

2
)

2d �
d�1

2

Z
p2Sd�1

V2(prp([0; 1]� [0; �(F )]))dp:

Given p 2 Sd�1, the projection prp([0; 1]� [0; �(F )]) is a rectangle whose edges have

length 1 and
P j�j(F )pjj and whose area amounts to

P j�j(F )pjj: Therefore,

MD(F ) � �(d+1
2
)

2d �
d�1

2

Z
p2Sd�1

dX
j=1

j�j(F )pjjdp
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=
�(d+1

2
)

2d �
d�1

2

dX
j=1

Z
p2Sd�1

j�j(F )pjjdp: (19)

In view of (15), we get

�(d+1
2
)

2�
d�1

2

Z
p2Sd�1

j�j(F )pjjdp = jj(0; . . . ; 0; �j(F ); 0; . . . ; 0)jj = �j(F ): (20)

Thus, (19) and (20) yield MD(F ) � 1
d

P
j
�j(F ):

The strict inequality is due to the fact that every lift zonoid is contained in the

(d+ 1){dimensional rectangle [0; 1]� [0; �(F )], but the latter is no lift zonoid.

It is easily seen that the upper bound d�1
P

j �j(F ) cannot be improved. For ex-

ample, consider the n � d matrix A whose j-th row is (0; . . . ; 0; n�j(F ); 0; . . . ; 0),

j = 1; . . . ; d; while other rows are (0; . . . ; 0). Then limn!1MD(FA) =
limn!1

n�d
n
d�1

P
j
�j(F ), which shows that d�1

P
j
�j(F ) is the least upper bound

for the mean distance{Gini mean di�erence.

The least upper bound for the distance{Gini index is established by passing from F

to eF: Recall that �j( eF ) = 1 for j = 1; . . . ; d. 2

5 The multivariate volume{Gini index

Here we start with the de�nition of the univariate Gini index as twice the area
between the Lorenz curve and the diagonal and extend it to the multivariate case.

Given F 2 Fd; let X;X1; . . . ;Xd be independent random vectors each of which is
distributed according to F . Q denotes the (d + 1) � (d + 1) matrix having rows
(1;X); (1;X1); . . . ; (1;Xd), and EjdetQj is the expectation of the modulus of its
determinant. The term (d !)�1EjdetQj was called a multivariateGini index byWilks
(1960); see Oja (1983) and Giovagnoli and Wynn (1995). Oja (1983) has interpreted

it via the average volume of random simplexes with vertices X;X1; . . . ;Xd: The

following theorem shows that ((d+ 1)!)�1EjdetQj equals the volume of the lift-
zonoid of F:

Theorem 5.1 Let F be a given distribution function in IRd. Let X;X1; . . . ;Xd be

independent random vectors each of which is distributed according to F , and let Q

denote the (d+ 1) � (d + 1) matrix having rows (1;X); (1;X1); . . . ; (1;Xd). Then

Vd+1( bZ(F )) = 1

(d+ 1)!
EjdetQj:

11



Proof. Zonoids are limits of zonotopes. Recall, that a zonotope in IRk is the

Minkowski sum of line segments, say

0; y1 + . . . + 0; yn � IRk with some given yi 2 IRk: (21)

It has volume (see, e.g., Shephard 1974)X
1�i1<...ik�n

jdet[yi1; . . . ; yik ]j: (22)

For a given F; there exists a sequence F�; � 2 IN; of distribution functions with �nite

supports in IRd
+ which converges weakly to F , i.e., lim�

R
gdF� =

R
gdF for every

continuous and bounded function g : IRd ! IR: Due to the continuity of zonoids with

respect to weak convergence (Bolker 1969), we have lim� �(bZ(F�); bZ(F )) = 0, where

� is the Hausdor� distance. The volume is a continuous function with respect to

the Hausdor� distance. Therefore, Vd+1( bZ(F )) = lim� Vd+1( bZ(F�)). Each volume

Vd+1( bZ(F�)) can be calculated by the formula (22). Let F� have atoms at x1; . . . ; xm
with probabilities q1; . . . ; qm. Then bZ(F�) = 0; (q1; q1x1)+. . .+0; (qm; qmxm): Hence

Vd+1( bZ(F�)) =
X

1�i1<...id+1�m

jdet[(qi1; qi1xi1); . . . ; (qid+1; qid+1xid+1)]j

=
1

(d + 1)!

mX
i1;...;id+1=1

qi1 � . . . � qid+1 jdet[(1; xi1); . . . ; (1; xid+1)]j

=
1

(d + 1)!
EjdetQF� j:

This completes the proof. 2

However, the volume of a lift-zonoid equals zero rather often, also if F is no one-
point distribution. Observe, that if the vectors x1; . . . ; xn are linearly dependent,
then the volume of the zonotope in (21) equals zero. Thus, whenever the support of
F is contained in a linear subspace of IRd+1 with dimension less than d + 1; then the

volume of the lift zonoid is zero. In the case of an empirical distribution F , if, e.g.,

one of the attributes is equally distributed in the population, or if two attributes
have the same distribution then Vd+1(bZ(F )) = 0.

The volume of the Lorenz zonoid is given by the following formula.

Vd+1(LZ(F )) =
1Qd

j=1 j�j j
Vd+1( bZ(F )): (23)

In Mosler (1994) the (d + 1)-dimensional volume of LZ(F ) has been introduced as

a multivariate Gini index, called the Gini zonoid index. Although this index shows
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a number of useful properties (boundedness between 0 and 1, 0 at one-point dis-

tributions, vector scale invariance, weak monotonicity with multivariate dilations),

it may be zero also at distributions which are not concentrated at one point. To

avoid this drawback of the Gini zonoid index, we propose the following de�nition.

Let Cd = f(z0; z1; . . . ; zd) 2 IRd+1 : z0 = 0; 0 � zs � 1; s = 1; . . . ; dg, which is a

d-dimensional cube in IRd+1. Instead of the volume of the lift zonoid, we use the

volume of the lift zonoid `expanded' by this cube.

De�nition 5.1 The volume-Gini mean di�erence is de�ned by

MV (F ) =
1

2d � 1

�
Vd+1( bZ(F ) + Cd)� 1

�
: (24)

RV (F ) =MV ( eF ) is the volume-Gini index.

Let d = 1: Since jx� yj = jdet( 1
x

1
y
)j we conclude that the the distance{Gini index

and the volume-Gini index are the same. This observation allows us to extend
Proposition 2.1(ii) to an arbitrary distribution F 2 F1

0 , dropping the assumption
that F (0) = 0:

The choice of the constant 1=(2d � 1) in (24) will be explained in the following
theorem. We need some notations: For a nonempty subset K � f1; . . . ; dg; F (K)

denotes the marginal distribution with respect to the coordinates indexed by K:

Theorem 5.2

MV (F ) =
1

2d � 1

X
;6=K�f1;...;dg

VjKj+1(bZ(F (K))); (25)

RV (F ) =
1

2d � 1

X
;6=K�f1;...;dg

VjKj+1(bZ( eF (K))): (26)

Note that Formula (2), MV for empirical distributions, follows from (22) and (25).

Remark 5.1 By Equation (25), the volume-Gini mean di�erence is the average of

the volumes of projections of the lift zonoid on coordinate subspaces. They are
spanned by (1; 0; . . . ; 0) and (0; er); r 2 K; K � f1; . . . ; dg: Here er is the r-th
coordinate unit vector in IRd:

Proof of Theorem 5.2. We will prove (25) for an empirical distribution F . Then
an approximation argument yields (25) for a general distribution. (26) obviously
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follows from (25). Let F have atoms at x1; . . . ; xm in IRd with probabilities q1; . . . ; qm.

Then

bZ(F ) + Cd = 0; (q1; q1x1) + . . . + 0; (qm; qmxm) +

dX
s=1

0; (0; es):

Hence, by (22)

Vd+1( bZ(F ) + Cd) =
X

1�i1<...id+1�m

jdet[(qi1; qi1xi1); . . . ; (qid+1 ; qid+1xid+1)]j

+

d�1X
l=1

X
1�i1<...id+1�l�m

X
1�s1<...sl�d

jdet[(qi1; qi1xi1); . . . ; (qid+1�l; qid+1�lxid+1�m); (0; es1); . . . ; (0; esl)]j

+

mX
i=1

jdet[(qi; qixi); (0; e1); . . . ; (0; ed)]j:

Let 1 � l � d � 1 and 1 � s1 < . . . sl � d be �xed, K = f1; . . . ; dg n fs1; . . . ; slg.
Then we have

VjKj+1(bZ(F (K))) = (27)X
1�i1<...id+1�l�m

det[(qi1; qi1xi1); . . . ; (qid+1�l; qid+1�lxid+1�l); (0; es1); . . . ; (0; esl)]j:

In view of q1 + . . . + qm = 1;

mX
i=1

jdet[(qi; qixi)(0; e1); . . . ; (0; ed)]j = 1: (28)

(27) and (28) yield (25). 2

The following three theorems establish properties of RV and MV :

Proposition 5.1 For all F 2 Fd,

(i) 0 � RV (F ),

(ii) RV (F ) = 0 if and only if F is a one-point distribution,

(iii) RV (F��) = RV (F ) for all �1; . . . ; �d > 0.

(iv) RV is continuous w.r.t. weak convergence of distributions.

(v) If F 2 Fd
+, then RV (F ) < 1 and the bound is sharp.

Proof. (i) The volume is a nonnegative function.

(ii): If F is a one-point distribution, then, for everyK, bZ( eF (K)) is the main diagonal
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of the unit hypercube in IRfjKj+1g and has volume zero. Therefore RV (F ) = 0. If F

is no one-point distribution, at least one of its univariate marginals, say F (j�), is the

same. Then the univariate Gini index R(F (j�)) is positive. Since V2( bZ( eF (j�))) =

R(F (j�)), at least one summand in (26) does not vanish, and therefore RV (F ) > 0.

(iii): The vector scale invariance is obvious from the de�nition of RV (F ), since it is

based on the relative distribution eF only.

(iv) follows from Theorem 7.1 in Koshevoy and Mosler (1995b).

(v): For every K, bZ( eF (K)) is contained in the unit hypercube of IRjKj+1, hence

0 � VjKj+1(bZ( eF (K))) < 1, and, by (26), 0 � RV (F ) < 1. It is easily seen that

the upper bound 1 cannot be improved. For example, consider the distribution

F (x) =
Qd

i=1 Fi(xi) where Fi(xi) = 0 if xi < 0; Fi(xi) = (n � 1)=n if 0 � xi < 1;

Fi(xi) = 1 if xi � 1: Then RV (F )! 1, for n!1. 2

Proposition 5.2 For all F 2 Fd,

(i) 0 �MV (F ),
(ii) MV (F ) = 0 if and only if F is a one-point distribution,

(iii) MV (F+�) =MV (F ) for all �1; . . . ; �d.

(iv) MV is continuous w.r.t. weak convergence of distributions.

(v) If F 2 Fd
+, then

MV (F ) <
1

2d � 1

X
;6=K�f1;...;dg

Y
i2K

�i � 1

2d � 1

�
(max

i
�i + 1)d � 1

�

and the �rst inequality cannot be improved.

The proof is similar to that of Proposition 5.1.

Theorem 5.3 MV and RV have the ceteris paribus property with


(d) =
2d � 1

2d+1 � 1
:

Proof. It is easily seen, that VjKj+1( bZ((F 
E�)
(K)) = 0 if d+ 1 2 K. If d+1 62 K

then F (K) = (F 
 E�)
(K): This and (25) yield the proposition. 2

6 Consistency with multivariate dilations

The univariate Gini index respects dilation and Lorenz order. We will show that our

distance-Gini and volume-Gini indices do the same for properly de�ned extensions
of these orderings.
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Proposition 6.1 The following implications holds

(i) F � G ) F �r G ) F �dirr G .

(ii) F � G ) F �a G ) F �dira G .

(iii) F � G ) F �dir G ) F �dirr G and F �dira G.

(iv) F �dirr G ) R(F (�; p)) � R(G(�; p)) for all p 2 Sd�1.

Proof. A standard characterization of dilation says that F � G if and only ifR
�(x)dF (x) � R

�(x)dG(x) holds for all convex functions IRd ! IR; see, e.g., the

references in Mosler (1994). Further, F � G implies �(F ) = �(G).

(i): Assume F � G, and let � : IRd ! IR be convex. Then, with (�1; . . . ; �d) =

�(F ) = �(G), the function x 7! �(x1
�1
; . . . ; xd

�
d

) is convex, too. We conclude

Z
�(x)d eF (x) =

Z
�

�
x1

�1
; . . . ;

xd

�d

�
dF (x)

�
Z
�

�
x1

�1
; . . . ;

xd

�d

�
dG(x) =

Z
�(x)d eG(x):

Therefore F �r G. Now assume that F �r G. Let p 2 Sd�1,  : IR ! IR convex.

Then the function x 7!  (xpT ) is convex, and from F �r G follows thatZ
 (u)d eF (u; p) =

Z
 (xpT )d eF (x)

�
Z
 (xpT )d eG(x) = Z  (u)d eG(u; p);

hence F �dirr G.
(ii): The proof is similar to that of (i).
(iii): Dilation implies directional dilation. The rest follows from parts (i) and (ii)
with d = 1.
(iv): If F �dirr G and p 2 Sd�1, then F (�; p) is smaller than G(�; p) in relative
dilation (= usual Lorenz order). As the usual Gini index is consistent with Lorenz

order, we conclude (iv). 2

Note that, besides the implications given in Proposition 6.1, in general no other
implications hold between the various multivariate dilations.

Proposition 6.2 (i) �;�dir are partial orders (re
exive, transitive, antisymmetric)

in Fd.

(ii) �r and �dirr are preorders (re
exive, transitive) in Fd
0 .

(iii) �a and �dira are preorders (re
exive, transitive) in Fd.
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Note that the preorders �r, �dirr, �a and �dira are also antisymmetric when applied

to the proper factor space.

Proof. (i): The antisymmetry of �dir is proven in Koshevoy and Mosler (1995 b).

The antisymmetry of � follows from the antisymmetry of �dir and Proposition 6.1.

(ii) and (iii) follow from (i) and Proposition 6.1. 2

Theorem 6.1 The distance-Gini index RD and the volume-Gini index RV are

strictly increasing with

(i) dilation,

(ii) directional dilation,

(iii) relative dilation,

(iv) directional relative dilation.

Proof. In view of Proposition 6.1, only (iv) has to be shown. Suppose F �dirr G,

hence R(F (�; p)) � R(G(�; p)) for all p 2 Sd�1: ThenZ +1

�1

Z +1

�1

ju� vj d eF (u; p) d eF (v; p) � Z +1

�1

Z +1

�1

ju� vj d eG(u; p) d eG(v; p)
for all p: Therefore,Z

p2Sd�1

Z +1

�1

Z +1

�1

ju� vj d eF (u; p) d eF (v; p)dp
�
Z
p2Sd�1

Z +1

�1

Z +1

�1

ju� vj d eG(u; p) d eG(v; p)dp
for all p. This yields, according to Proposition 4.3, RD(F ) � RD(G): The result
for RV follows immediately from Theorems 3.1, 5.2 and the following Proposition
6.3. That the indices are strictly increasing is seen from Theorems 3.1, 5.2 and the
following Theorem 6.2. 2

Proposition 6.3 (Koshevoy and Mosler (1995a)) Let F �dirr G. Then

F (K) �dirr G
(K) for all K; _ 6= K � f1; . . . ; dg:

Theorem 6.2 (Koshevoy and Mosler (1995b)) bZ(F ) = bZ(G) i� F = G:

For the distance-Gini and the volume-Gini mean di�erences, we have an analogous
theorem.
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Theorem 6.3 The distance-Gini mean di�erence MD and volume-Gini mean dif-

ference MV are strictly increasing with

(i) dilation,

(ii) directional dilation,

(iii) absolute dilation,

(iv) directional absolute dilation.

Proof. Proofs of (i) and (ii) are similar to those of (i) and (ii) in Theorem 6.1. (iii)

and (iv) follow from Propositions 4.1 and 5.2 respectively.

7 Conclusions

We have presented two di�erent approaches to extend the usual Gini index and
Gini mean di�erence to the multivariate case. Both approaches preserve important
properties of the univariate notions, are increasing with proper multivariate dilations
and have the ceteris paribus property. The distance{Gini index and the volume{
Gini index of a given empirical distribution are easily calculated, but the latter needs

more computation time. A computer program, written in GAUSS, can be obtained
from the authors.

Many other multivariate de�nitions are possible. A popular approach is to use the
arithmetic mean,MS resp. RS , of the univariate indices,

MS(FA) =
1

2n2d

nX
i=1

nX
j=1

dX
s=1

jais � ajsj; (29)

RS(FA) =
1

2n2d

nX
i=1

nX
j=1

dX
s=1

jais
ai
� ajs

aj
j: (30)

This is tantamount to employing the L1 distance instead of the Euclidean distance

in our distance{Gini notions. It can be shown that always RD(F ) � RS(F ) and
RV (F ) � RS(F ) hold. But this approach, as the index depends on the marginals

only, does not re
ect the dependency structure of the underlying distribution.

To illustrate and contrast our notions, we calculate them for R. A. Fisher's Iris data

(Fisher 1936). The data include the measurements of four attributes, sepal length

and width and petal length and width, of �fty plants for each of three types of Iris,
Iris setosa, Iris versicolor and Iris virginica. The data have been used to test the
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hypothesis that Iris versicolor is a polyploid hybrid of the two other species which

is related to the fact that Iris setosa is a diploid species with 38 chromosomes, Iris

virginica is a tetraploid, and Iris versicolor is a hexaploid with 108 chromosomes.

Iris setosa Iris versicolor Iris virginica

RD 0.08536007 0.12217668 0.14415565

RV 0.042062259 0.067639891 0.083820681

RS 0.13663000 0.20862000 0.24658000

R[1] 0.19620000 0.29000000 0.35136000

R[2] 0.20624000 0.17508000 0.17508000

R[3] 0.092760000 0.25992000 0.30616000

R[4] 0.051320000 0.10948000 0.15372000

Table 1. The multivariate Gini indices RD; RV and RS for three types of
Iris; data from Fisher (1939). For further contrast, the univariate Gini
index R[k] is given for each attribute k, k = 1; 2; 3; 4.

As we can see from the Table, the four attributes are most variable at di�erent
types of Iris, as measured by their univariate Gini indices. E.g., the �rst attribute,
petal length, varies most with Iris virginica, while the second attribute, petal width,
has its maximum Gini index with Iris setosa. But our three multivariate Gini in-
dices, RD, RV ; and RS , order the variability of the three samples in the same way,

Iris setosa < Iris versicolor < Iris virginica.
Note, however, that no two of these multivariate indices are order equivalent in
general.

Under the assumptions that (1) a hybrid has an intermediate number of chromo-

somes compared to its origins and (2) that a higher number of chromosomes implies

more variability, we may conclude that all three multivariate Gini indices back the
hypothesis that Iris versicolor is a hybrid of the two others species.

Acknowledgements

We thank Stephan Erkel for his comments on a previous version and Ulrich Casser
for writing the computer program and calculating the numerical example.

19



References

Bolker, E.D. (1969). A class of convex bodies. Transactions of the American

Mathematical Society 145, 323{346.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics 7/2, 179{188.

Giorgi, G.M. (1990). Bibliographic portrait of the Gini concentration ratio.

Metron 48, 183{221.

Giorgi, G.M. (1992). Il rapporto di concentrazione di Gini. Siena: Libreria Ed-

itrice Ticci.

Giovagnoli, A.,&Wynn, H.P. (1995). Multivariate dispersion orderings. Statis-

tics and Probability Letters 22, 325{332.

Helgason, S. (1980). The Radon transform. Progress in Mathematics 5. Boston,

Stuttgart: Birkh�auser.

Koshevoy, G.A., & Mosler, K. (1995a). The Lorenz zonoid of a multivariate
distribution. Mimeo.

Koshevoy, G.A., & Mosler, K. (1995b). A geometrical approach to compare
the variability of random vectors. Discussion Papers in Statistics and Quantitative

Economics 66, UniBw Hamburg.

Marshall, A.W., & Olkin, I. (1979). Inequalities: Theory of Majorization and

Its Applications. New York: Academic Press.

Mosler, K. (1994). Majorization in economic disparity measures. Linear Algebra
and Its Applications 199, 91{114.

Nyg�ard, F., & Sandstr�om, A. (1981). Measuring Income Inequality. Stockholm:

Almqvist and Wiksell.

Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics and

Probability Letters 1, 327{332.

Shephard, G.C. (1974). Combinatorial properties of associated zonotopes. Cana-

dian J. of Mathematics 26, 302{321.

Taguchi, T. (1981). On a multiple Gini's coe�cient and some concentrative re-

gressions. Metron (1981), 69{98.

Torgersen, E. (1991). Comparison of Statistical Experiments. Cambridge Uni-

versity Press, Cambridge, Massachusets.

20



Wilks, S.S. (1960). Multidimensional statistical scatter. In: I. Olkin et al. eds.

Contributions to Probability and Statistics in Honor of Harold Hotelling. Stanford,

California, 486{503.

21


