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Abstract

Credit ratings are ordinal predictions for the default risk of an obligor.

To evaluate the accuracy of such predictions commonly used measures are

the Accuracy Ratio or, equivalently, the Area under the ROC curve. The

disadvantage of these measures is that they treat default as a binary vari-

able thereby neglecting the timing of the default events and also not using

the full information from censored observations. We present an alternative

measure that is related to the Accuracy Ratio but does not suffer from these

drawbacks. As a second contribution, we study statistical inference for the

Accuracy Ratio and the proposed measure in the case of multiple cohorts of

obligors with overlapping lifetimes. We derive methods that use more sample

information and lead to more powerful tests than alternatives that filter just

the independent part of the dataset. All procedures are illustrated in the

empirical section using a dataset of S&P Long Term Credit Ratings.
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1. Introduction

Ratings are ordinal predictions for the default risk of an obligor. Like in any predic-

tion problem the evaluation of predictive accuracy is an essential constituent. The

measure most commonly used by rating agencies, regulators and researchers is the

Accuracy Ratio, which is the summary statistic of the so-called Cumulative Accu-

racy Profile.1 For the calculation of the Accuracy Ratio it is necessary to choose

a fixed time horizon and classify the obligors into two groups, those who defaulted

within the chosen time span and those who did not default. However, reducing the

data by this kind of classification leads to a loss of information. First, the tim-

ing of defaults is neglected. Second, certain right-censored observations have to be

omitted. The latter concerns those obligors which are observed - without default

- for only a fraction of the chosen prediction horizon. The share of these kind of

right-censored observations and with it the loss of information grows with the pre-

diction horizon. In this paper we show how we can extend the methodology of the

Accuracy Ratio to include the full information contained in rating datasets. We do

so by introducing a so-called concordance index named Harrell’s C to the credit risk

literature, a measure which has been proposed in the biostatistical literature for the

purpose of evaluating predictive accuracy (Harrell et al., 1996). We further propose

a modification of Harrell’s C that takes the prediction horizon into account and is

expected be more suitable for credit risk applications.

Measures of predictive accuracy like the Accuracy Ratio or Harrell’s C are, of course,

subject to sampling variability. Analyzing this variation is useful not least for confi-

dence intervals and hypothesis tests. For approximately independent data, methods

for statistical inference for the Accuracy Ratio and Harrell’s C have been estab-

lished (Bamber, 1975; DeLong et al., 1988; Newson, 2006). However, in typical

rating datasets, ratings change over time, which means that we have a time series

of default predictions for each obligor. If we want to evaluate the whole time series

of default predictions and build cohorts of obligors in time intervals that are shorter

than the prediction horizon we get a sample that consists of partially overlapping

data which clearly exhibit dependence. To construct a summarizing index under

such a multiple cohort sampling scheme, one may take a weighted mean of the in-

dices of the individual cohorts or calculate the index for the pooled cohort by simply

aggregating all the individual cohorts to one large cohort (Cantor & Mann, 2003).

1Some authors focus instead on the ROC curve and its summary statistic, the Area under the

ROC curve. However, the Accuracy Ratio and the Area under the ROC curve contain exactly the

same information, since there is a simple linear relationship between the two (Engelmann et al.,

2003). The next section describes this relation explicitly.
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However, statistical inference for such summarizing indices clearly has to take the

dependence of the data into account. We show how this can be done by deriving

asymptotic formulae for the weighted mean case and describe how resampling pro-

cedures can be used for both the weighted mean and the pooled version. With these

procedures, more information is used than by using just a subsample of the data

that consists of approximately independent observations. In statistical terms, the

benefits are narrower confidence intervals and more powerful tests.

In addition to our theoretical considerations we provide an empirical illustration of

the proposed methods using a dataset of Standard & Poor’s Long Term Credit Rat-

ings for North American firms. We analyze prediction horizons ranging from 6 to

60 months. As one main finding, we observe illusively high values for the Accuracy

Ratio at long horizons which are a direct result from the omission of censored ob-

servations. This may lead to an overestimation of the long-run accuracy of ratings

by investors and risk managers who use the Accuracy Ratio. In another part of our

empirical study, we provide an example where the aforementioned enhanced testing

power leads to a difference in the test decision.

The methods proposed in this paper are relevant for the development and validation

of default prediction models and rating systems. They are useful for all cases in

which the prediction horizon covers more than one sample period, and they are

especially beneficial for the evaluation of multi-period default predictions. On the

one hand, multi-period predictions are necessary if longer horizons, say multiple

years, are of interest - like it is, for instance, in the case of S&P’s Long Term Credit

Ratings. The Basel Committee for Banking Supervision has also emphasized the

importance of a multi-year perspective claiming that ”banks are expected to use

a longer time horizon [than one year] in assigning ratings” (Basel Committee on

Banking Supervision, 2006, § 414). On the other hand, a multi-period set-up is

also useful for one-year predictions by allowing the use of all the information in, say,

monthly or quarterly data. For instance, it is well known that the analysis of ratings

on a yearly basis omits valuable information about intra-year rating transitions

(Lando & Skodeberg, 2002).

The remaining part of the paper is organized as follows. In the next section, we

give a brief review of the Accuracy Ratio and its theoretical background. Then,

we introduce Harrell’s C and present an adjusted version in section 3 before we

go on with the part on statistical inference for the Accuracy Ratio and (adjusted)

Harrell’s C in section 4. Section 5 contains the empirical investigation while section

6 concludes.
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2. The Accuracy Ratio

To measure predictive accuracy, the approach most popular in the rating industry

as well as in the academic world is based either on the Cumulative Accuracy Pro-

file (CAP) and its summary statistic, the Accuracy Ratio (AR), or the Receiver

Operating Characteristic (ROC) curve and its summary index, the area under the

ROC curve (AUROC).2 While the construction of the underlying curves differs, the

Accuracy Ratio and the AUROC curve contain the same information since there is

a simple linear relation between the two (Engelmann et al., 2003):

AR = 2 · AUROC − 1 (1)

A comprehensive description of the graphical interpretation of these indices and an

overview over further measures can be found in Thomas et al. (2002, chap. 7). The

Accuracy Ratio and AUROC are designed to measure the discriminative power of

a rating system. If default probabilities are assigned to ratings further dimensions

of predictive accuracy arise (Krämer & Güttler, 2008). However, we will not pursue

this case further here.

In the following, we will focus on the Accuracy Ratio but of course everything

extends to the AUROC. Besides its graphical derivation, there is another simple

method to calculate the Accuracy Ratio that provides a good intuition about what

this index measures. Denote the numerical rating (high values indicate low risk)

of the ith defaulting obligor and the jth non-defaulting obligor by XD
i and XND

j ,

respectively. The number of defaulting and non-defaulting obligors in the sample

are referred to as n1 and n2. Define

cij =






1 if XD
i < XND

j ,

−1 if XD
i > XND

j ,

0 if XD
i = XND

j .

(2)

Then, the Accuracy Ratio is given by

AR =
1

n1n2

n1∑

i=1

n2∑

j=1

cij . (3)

We will call cij the concordance score of the pair of the ith defaulting and the jth

non-defaulting obligor. Concordance is given if the rating of the defaulting obligor

was worse than the rating of the non-defaulting obligor, while we have discordance

2Sometimes, the Accuracy Ratio is also referred to as the Gini coefficient.
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in the opposite case. The case of identical ratings is captured by a concordance

score of zero. The concordance score is evaluated for every pair of a defaulting and

a non-defaulting obligor. Thus, the Accuracy Ratio is the fraction of pairs where

the rating was concordant with the outcome minus the fraction of discordant pairs.

In line with this interpretation, the corresponding population value - for which the

Accuracy Ratio is an unbiased estimator - is

P (XD
i < XND

j ) − P (XD
i > XND

j ) , (4)

for a randomly selected pair i, j of the population (DeLong et al., 1988).

The Accuracy Ratio is a special case of a more generally defined measure of predictive

accuracy called Somers’ D (Somers, 1962). The connection is important in our

context since the index which will be introduced in the next section, Harrell’s C, is

also based on Somers’ D. Consider predicting a variable Y with a predictor X. The

sample size is denoted by n. For ease of exposition, sort the values of Y in ascending

order so that Yi ≤ Yj for i < j.3 Let

cij =






1 if Xi < Xj , Yi < Yj ,

−1 if Xi > Xj , Yi < Yj ,

0 else .

(5)

Then Somers’ D is defined as follows:

DXY =
1

nu

n∑

i=1

∑

j>i

cij (6)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj ] (7)

The denominator of DXY excludes any ties in Y since in these cases it is not possible

to assess a ”correct” or ”incorrect” order of the predictors. In contrast, ties on X rep-

resent a case of mediocre prediction and are subsumed under ”else”. The Accuracy

Ratio is simply the special case with Y being a binary variable representing default.

In rating datasets, classification of obligors into defaulters and non-defaulters and

thus constructing a binary variable Y leads to the aforementioned information loss.

How this loss of information can be avoided will be the topic of the next section.

3It does not matter how ties on Y are ordered since pairs with equal values of Y are not usable

for Somers’ D.
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3. Harrell’s C

Consider first the following motivating example. At time t, two firms have ratings

AA and B, respectively. When the prediction horizon is five years and the AA

firm defaults at t + 1, while the B firm’s lifetime is censored at t + 4,4 this pair is

dropped for the calculation of the Accuracy Ratio although for this pair ratings and

outcomes are clearly discordant. In fact, the firm that was rated B at time t has to

be dropped completely in the case of the Accuracy Ratio since it can not be classified

in either the defaulting or the non-defaulting group. In contrast, Harrell’s C uses

every observation. In the example given above the corresponding pair would - in

line with intuition - receive a concordance score of −1 (with the analogous meaning

as explained in section 2).

We will now give the formal definition of Harrell’s C and then discuss the various

individual cases. Again, Xi is the numerical rating (high values correspond to low

risk) of obligor i, i = 1, . . . , n. After being rated Xi, obligor i is observed not to

default for a time denoted by Yi. We will refer to Yi as the lifetime of obligor i. If

the observation is then ended by a default event, the censoring indicator variable

Ci is set to zero. If obligor i is no longer observed due to right censoring, the value

of Ci is one. Again, it is convenient to sort the lifetimes in ascending order so that

Yi ≤ Yj for i < j. As a natural extension of Somers’ D to censored data, we then

define the concordance score as5

cij =






1 if Xi < Xj , Yi < Yj , Ci = 0 ,

−1 if Xi > Xj , Yi < Yj , Ci = 0 ,

0 else .

(8)

Then Harrell’s C is given by:

C =
1

nu

n∑

i=1

∑

j>i

cij (9)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj , Ci=0] (10)

nu is the number of usable pairs. In words, a pair of observations is usable if a)

the obligors’ observed lifetimes are not equal and b) the obligor with the shorter

4This means that the B firm does not default until period t + 4, but is no longer observed

thereafter.
5Harrell et al. (1996) actually normalize the measure between zero and one by assigning concor-

dance scores of 1, 1

2
and 0 instead of 1,0 and -1 as we do. We stick to the latter version to ensure

comparibility with the Accuracy Ratio.
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observed lifetime experiences a default event, i.e. the lifetime is not censored. These

conditions ensure that for every pair one obligor has indeed ”outlived” the other

obligor thereby enabling a sensible comparison of both. Given a usable pair, we

can distinguish two cases. The first one consists of two obligors, both defaulting

but after different time spans. Concordance is achieved if the rating of the obligor

with the earlier default event was worse than the rating of the obligor defaulting

later, while discordance is given in the opposite case and a concordance score of

zero is assigned in the case of equal ratings. In the second case, one obligor defaults

after a certain time span and the other obligor’s lifetime is censored at a later point

in time. For concordance, we require that the defaulting obligor was lower rated.

Accordingly, we assign a concordance score of −1 in the opposite case and a score

of zero for equal ratings.

Similar to Pencina & D’Agostino (2004) we can derive the population value of Har-

rell’s C as

P (Xi < Xj|Yi < Yj, Ci = 0) − P (Xi > Xj|Yi < Yj, Ci = 0) , (11)

for two randomly selected individuals i and j from the population. That is, given

a pair is found to be usable, Harrell’s C estimates the probability of concordance

minus the probability of discordance.

A potential source of criticism may be the fact that Harrell’s C theoretically covers an

unlimited prediction horizon.6 This is due to the origin of Harrell’s C in biostatistics

but may not be suitable in credit risk applications since the maturity of most credits

is limited. For this reason, we propose the following modification of Harrell’s C.

Denote the maximum prediction horizon that is of practical interest as H. Similarly

to Equation (8) we define

cij =






1 if Xi < Xj , Yi < Yj , Ci = 0 , Yi < H ,

−1 if Xi > Xj , Yi < Yj , Ci = 0 , Yi < H ,

0 else .

(12)

The adjusted index is then calculated as follows:

Cadj =
1

nu

n∑

i=1

∑

j>i

cij (13)

nu =
n∑

i=1

∑

j>i

1[Yi 6=Yj , Ci=0 , Yi<H] (14)

6Practically, the prediction horizon is limited by the sample period.
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The rationale of the adjustment is simple. Everything what happens after H is

ignored. For instance, with H equal to 3 years, pairs of observations that do not

include a default within the first 3 years are now not usable. This corresponds to the

fact that we now require for a usable pair that the shorter observed lifetime is ended

by a default event that occurs before H. The modification is easy to implement

by simply conducting an artificial censoring at H for lifetimes that last longer than

H. To be specific, values of Y larger than H are then set to H and their censoring

indicator is set to one. Then, the standard formula (8) can be applied.

While the number of unusable pairs grows with this adjustment it is important to

note that still no observations have been completely removed. Thus, the amount of

information – as measured by the number of usable pairs – included in Cadj is still

distinctively higher than in the case of the Accuracy Ratio. We can distinguish two

kind of pairs that are used for Cadj but not for the Accuracy Ratio. The first type

covers obligors defaulting at different points in time before H. The second type

refers to cases where one obligor defaults at a certain point in time and another

obligor whose lifetime is censored at a later point in time but before H.

The interpretation of Cadj is still in line with Harrell’s C and the Accuracy Ratio. All

these measures are bounded between -1 and 1 and yield the proportion of concordant

pairs minus the proportion of discordant pairs among all usable pairs. Moreover,

Harrell’s C has been implemented in various software packages. For instance, it is

available in STATA through the user-written somersd program by Roger B. Newson

and in R it is part of the Hmisc package (function rcorr.cens).

Harrell’s C has the advantages of using the timing of the default events and the infor-

mation in censored observations. Banasik et al. (1999) provide a detailed discussion

why the timing of defaults is relevant from an economic point of view. The authors

further advocate a survival analysis approach to default prediction and such models

have indeed become very popular over the recent years. Harrell’s C as a measure

that originates from survival analysis perfectly fits into this framework.

4. Statistical inference

For a single cohort of obligors or more generally for approximately independent

observations, a framework for statistical inference with respect to the Accuracy

Ratio and Harrell’s C has already been established (Bamber, 1975; DeLong et al.,

1988; Newson, 2006). In the latter study, the author combines a computationally

efficient jackknife procedure with the Delta method. This approach is also applicable
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to the adjusted version of Harrell’s C presented in section 3 since all our indices

are ratios of U -statistics for which the jackknife has been shown to be generally

appropriate (Arvesen, 1969). In an application to the credit risk area, Engelmann

et al. (2003) present and apply the methods of Bamber (1975) and DeLong et al.

(1988) to the Accuracy Ratio and find them to be adequate. However, to the best

of our knowledge, there is no study so far that deals with the problem of statistical

inference in the multiple cohort case and takes into account the dependence structure

of such datasets. The multiple cohort case is relevant because it allows to extract

the maximum amount of information out of the dataset. To see this, let us first

briefly clarify what is meant by a multiple cohort sampling scheme.7

A cohort consists of all obligors that have a rating at a given point in time t. For

the members of the cohort, the rating at t and the lifetimes beginning at t (together

with the censoring indicators) are recorded. As an example, consider a firm that

was rated, say, BB at the beginning of 2009 and defaulted in october 2010. The

firm thus enters the cohort that was built at the start of 2009 with its BB rating

and a lifetime of 21 months (and a censoring indicator of 0). Now assume that in

the beginning of 2010 the same firm was rated CCC. In the cohort built at the start

of 2010 the same firm is included again with its CCC rating and a lifetime of 9

months (and again a censoring indicator of 0). The reason why the same firm is

included in both cohorts is that we want to evaluate both the performance of the

BB rating in the beginning of 2009 and the CCC rating in the beginning of 2010.

Note also that the firm would be included in the cohort of 2010 even if the rating

would not have changed. Obviously, if we build an aggregated or pooled cohort

out of all the individual cohorts the pooled observations are dependent because of

partially overlapping lifetimes. In our example, the overlapping period consists of

the 9 months in 2010. The overlapping sample problem gets more pronounced if we

build cohorts at a higher frequency and if we consider longer prediction horizons. For

instance, in the empirical section we will build cohorts on a monthly basis which leads

to even larger overlappings than in our example.8 Due to the strong dependencies

in the pooled cohort methods for statistical inference designed for approximately

independent samples as the ones mentioned in the beginning of this section are not

directly applicable in our setting.

Returning to a more general setup, let us assume that there is a sequence of points in

time t, t = 1, . . . , T, and a cohort is built at each t with It denoting the chosen index

7Sometimes the term ”static pool” instead of ”cohort” is used.
8Moody’s is also building cohorts each month in its calculation of Accuracy Ratios (Cantor &

Mann, 2003).
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of predictive accuracy (e.g., the Accuracy Ratio or Cadj) for the cohort built at time

t. Given a prediction horizon H, this would correspond to a sample length of T +H.

As a first issue, one has to decide how to combine the indices It, t = 1, . . . , T, to one

single measure of predictive accuracy. Cantor & Mann (2003) propose either using

some type of weighted mean of It or simply calculating the index for the pooled

cohort. As weighting schemes, the authors consider equal weights, the number of

observations and the number of defaults while finally using the second alternative

in their empirical part. We first analyze the weighted mean approach. Consider the

following general weighted mean:

I =
T∑

t=1

wtIt (15)

The weights are normalized to sum up to one. Due to the ”overlapping lifetimes

problem” sketched above we expect strong autocorrelation of the time series It.
9

We assume that Corr(It, It+j) = ρj depends only on j but not on t (assumption

1). This assumption seems reasonable since the main source of dependence between

It and It+j is the overlapping fraction of the underlying lifetimes which is equal to

min(0, 1 − j/H), regardless of t. In contrast, the variance of It, denoted by σ2
t , is

allowed to vary with t so that we do not assume stationarity. Further, we assume

that the dependence of the indices vanishes if the time between the cohort building

dates is equal to or larger than the prediction horizon, i.e. ρj = 0 for j ≥ H

(assumption 2). In these cases, overlapping lifetimes do not occur anymore. Under

these assumptions, the variance of I can be expressed as

V (I) =
T∑

t=1

w2
t σ

2
t + 2

H−1∑

j=1

ρj

T−j∑

t=1

wtσtwt+jσt+j . (16)

For the derivation of this formula, we have also used the additional assumption that

the weights are deterministic. Strictly speaking, from the three types of weights

mentioned above, only equal weights are deterministic. However, bootstrap experi-

ments with fixed and varying weights show that this source of variation is negligible.

Estimators for σt are available for every t by the procedures of Bamber (1975) and

Newson (2006). For ρj, a natural choice are the empirical autocorrelations, which

are consistent estimators of the true autocorrelations and do not require the con-

struction of a time series model. The formula used in the empirical section is

ρ̂j = max

(
0,

1/(T − j)
∑T−j

t=1 (It − I)(It+j − I)

1/T
∑T

t=1(It − I)2

)
(17)

9This is confirmed by the empirical analysis with first-order autocorrelations ranging from 0.539

to 0.946.
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which cancels out the effect of occasionally occurring negative autocorrelation esti-

mates.

We now turn to the sampling distribution of I. For both the Accuracy Ratio and

Harrell’s C, the asymptotic normality of It directly follows from the fact that both

the Accuracy Ratio and Harrell’s C represent ratios of U -statistics for which asymp-

totic normality has been generally established (Hoeffding, 1948). We then assume

that the weighted average I converges to the population value µ(I) (assumption

3). This excludes any trending behaviour. Under these assumptions, we can apply

Slutsky’s theorem and the Central Limit Theorem for M -dependent random vari-

ables10 to derive the following formula, which can be used for confidence intervals

and hypothesis tests:
I − µ(I)√

V̂ (I)

d
→ N(0, 1) (18)

Note that the asymptotics of formula (18) require both the cohort sizes and the

number of cohorts approaching infinity. Further, the use of formulas (16) and (18)

is not restricted to the Accuracy Ratio and Harrell’s C since the only condition

for the index It was the asymptotic normality in the derivation of (18). Of course,

other candidates for It may also be asymptotically normal. In order to perform

hypothesis tests regarding the difference in the predictive accuracy of two different

rating systems, say A and B, we only have to substitute It by (It,A − It,B), σ2
t by

σ2
t,A−B = σ2

t,A − 2 ·Cov(It,A, It,B) + σ2
t,B and ρt by ρt,A−B, the autocorrelation of the

time series (It,A − It,B). The necessary covariances, Cov(It,A, It,B), can be computed

with the methods of DeLong et al. (1988) and Newson (2006). Asymptotic normality

of (It,A − It,B) follows from the joint asymptotic normality of It,A and It,B.

Alternatively, resampling methods can be used for inference. They are an especially

important alternative for datasets with just a few number of cohorts where it is not

possible to estimate the autocorrelations for the time series of indices accurately.

Jackknife and bootstrap approaches can be applied to both the weighted average

and the pooled version of the indices. Clearly, the resampling procedures have to

take the dependence structure of the data into account as well. If we interpret all the

lifetimes of one obligor as one cluster and assume independence between clusters,

i.e. between different obligors, we can apply the cluster versions of the jackknife

and the bootstrap. This is achieved by resampling from the set of obligors instead

10Our time series of indices is M -dependent in the sense that indices separated by more that M

periods are assumed to be independent (see assumption 2), i.e. in our case M = H −1. For details

about this kind of Central Limit Theorem see, for instance, Shumway & Stoffer (2006), appendix

A.
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of the set of all observations which contains several lifetimes for each obligor. Then,

the usual jackknife and bootstrap formulas can be applied. For further details, see

Shao & Tu (1996), Field & Welsh (2007) and Busing et al. (1999). In a similar

application, Cantor et al. (2008) use this kind of bootstrap to calculate confidence

intervals for default rates. Default rates are also usually calculated in a multiple

cohort setting so that the same rationale applies.

With respect to computational effort, the jackknife is much more efficient than the

bootstrap for the pooled indices if the algorithm of Newson (2006) is applied while

we observe no major differences for the weighted average indices. Thus, in the

upcoming empirical section we will apply the asymptotic formulas derived above

and the bootstrap to the weighted average indices while using the jackknife and the

bootstrap for the pooled indices.

5. Empirical analysis

Our dataset consists of monthly Standard & Poor’s Long Term Issuer Credit Ratings

provided by Compustat. Long term ratings are particularly suitable in our context

since the benefits from Harrell’s C compared to the Accuracy Ratio get most visible

in the evaluation of long term predictions. We consider prediction horizons from six

months up to five years which is the maximum time horizon of S&P’s Long Term

Ratings (Standard & Poor’s, 2010). After excluding missing observations we have

512 685 firm-months of 5151 North American public firms in the period from de-

cember 1985 to june 2009, including 609 defaults. Cohort building is performed on

a monthly basis starting in december 1985 until june 2004. Thus, our time series of

indices consists of 223 periods. Figure 1 shows the rating distribution of our sample.

To investigate the censoring scheme in our data, Figure 1 also shows the rating dis-

tribution of the observations censored within five years. Clearly, lower rated firms

have higher censoring rates so that the subsample of firms which were not censored

within the first five years tends to contain primarily highly rated and defaulting

firms. Recall that the five-year Accuracy Ratio uses only this uncensored subsample

which obviously has to some degree different characteristics than the whole sam-

ple. Apart from this finding, the censoring problem leads to a substantial loss of

information as 30.99% of all observations are omitted for the five-year Accuracy

Ratio.

We can see the consequences of these problems among other things in Table 1 which

gives Accuracy Ratios and adjusted Harrell’s C’s together with their standard errors

and 95% confidence intervals. Looking at the levels of the indices, we see that for
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Figure 1: Rating distribution of the full and censored sample
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both the weighted average and the pooled versions the Accuracy Ratio declines

distinctively less with the prediction horizon than Harrell’s C. In particular the five-

year Accuracy Ratio is almost as high as the three-year Accuracy Ratio. This is

most likely due to the aforementioned fact that, as the prediction horizon grows, the

subsample relevant for the Accuracy Ratio tends to consist of ”very good” and ”very

bad” firms making discrimination obviously easier. It follows that the Accuracy

Ratios at long horizons indicate a prognostic power of the rating system that is not

really existent. Thus, investors and risk managers relying on the Accuracy Ratio are

endangered to be too optimistic about the long-run predictive accuracy of ratings.

Further, we see that the weighted average measures are generally higher than the

pooled measures. This does not surprise as the weighted average indices aggregate

measures for predictions made at certain points in time and do not compare ratings

from different points of the business cycle as in the pooled cohort approach.

We now turn to the analysis of standard errors and confidence intervals. Regarding

the weighted average indices, the asymptotic formulas derived in section 4 tend to

be more liberal than the bootstrap results which is a common finding in such com-

parisons (Horowitz, 2001). While the suggested finite-sample bias of the asymptotic

formulas seems to be moderate, the computational effort of the bootstrap might

be worthwhile for more precise inference. For the pooled indices, the differences

between the cluster jackknife and the cluster bootstrap are very small. Since the

jackknife is computationally more efficient, we recommend its use in this situation.

Finally, looking at the standard errors and the length of the confidence intervals

over time, it is obvious that the uncertainty about rating accuracy grows with the
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Table 1: Indices of predictive accuracy, their standard errors and 95% confidence

intervals

Panel A: Weighted average indices (number of firms per cohort as weights)

Adjusted Harrell’s C Accuracy Ratio

Prediction horizon (months) 6 12 36 60 6 12 36 60

Index .8686 8340 .7475 .7168 .8725 .8422 .7768 .7679

Formulas (16),(17),(18)

Standard error .0087 .0114 .0133 .0144 .0086 .0112 .0130 .0163

CI lower bound .8515 .8116 .7214 .6886 .8557 .8202 .7514 .7360

CI upper bound .8856 .8563 .7736 .7450 .8893 .8643 .8022 .7999

Cluster bootstrap

Standard error .0105 .0116 .0175 .0204 .0103 .0114 .0173 .0204

CI lower bound .8436 .8074 .7111 .6715 .8477 .8165 .7406 .7237

CI upper bound .8831 .8512 .7790 .7509 .8869 .8594 .8077 .8025

Panel B: Pooled indices

Adjusted Harrell’s C Accuracy Ratio

Prediction horizon (months) 6 12 36 60 6 12 36 60

Index .8562 .8116 .7368 .7135 .8599 .8200 .7682 .7660

Cluster jackknife

Standard error .0106 .0115 .0141 .0155 .0106 .0114 .0141 .0157

CI lower bound .8354 .7891 .7091 .6831 .8391 .7977 .7406 .7353

CI upper bound .8769 .8340 .7645 .7440 .8806 .8424 .7959 .7967

Cluster bootstrap

Standard error .0111 .0114 .0144 .0152 .0107 .0113 .0140 .0157

CI lower bound .8340 .7886 .7077 .6837 .8386 .7971 .7397 .7332

CI upper bound .8773 .8325 .7640 .7424 .8798 .8413 .7958 .7985

The number of bootstrap replications is 1000. Bootstrap confidence intervals are calculated via the percentile

method. Jackknife confidence intervals are calculated using jackknife standard errors and asymptotic normality.

prediction horizon. Note that for a single cohort, the standard errors do not rise

with the prediction horizon. However, for the aggregated indices they do, since

the overlapping lifetimes problem is more pronounced in this case leading to higher

dependencies in the data for longer horizons.

In section 4, we have argued that inference based on multiple cohorts including over-

lapping lifetimes extracts the maximum amount of information out of the dataset.

From a statistical point of view, this leads to smaller standard errors, narrower

confidence intervals and more powerful tests. We now demonstrate the latter by

example. The following test is motivated by the observation that the information

that a firm reached its rating by a downgrade may be useful in predicting future

defaults (Lando & Skodeberg, 2002; Guettler & Raupach, 2010). Thus, we created a

rating scale that includes new additional grades for downgraded firms. For instance,

we classify a firm that reached a BBB− rating by a downgrade between the firms
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Table 2: Tests for significant differences in adjusted Harrell’s C

Overlapping lifetimes included Overlapping lifetimes excluded

Prediction horizon
(months) 6 12 36 60 6 12 36 60

Index .8686 .8340 .7475 .7168 .8678 .8318 .7466 .6780

Index+ .8695 .8350 .7482 .7173 .8686 .8322 .7467 .6781

Difference 9.92e-4 1.05e-3 7.52e-4 5.59e-4 8.24e-4 4.14e-4 1.04e-4 9.82e-5

St. error of diff. 1.71e-4 1.79e-4 1.29e-4 1.27e-4 3.39e-4 2.38e-4 2.54e-4 2.91e-4

p value 6.06e-9 4.09e-9 5.64e-9 1.06e-5 .0152 .0808 .6834 .7355

The columns under ”Overlapping lifetimes included” refer to monthly cohort building. ”Overlapping lifetimes

excluded” columns use only data from cohorts which are separated by H − 1 months where H is the prediction

horizon. Index refers to Harrell’s C in the weighted average version for the S&P fine-grained rating scale as in

Table 1. Index+ augments the rating scale by an additional grade for firms who reached their rating grade by a

downgrade. The equality of the population indices is tested against the two-sided alternative. Standard errors and

p values are based on formulas (16), (17) and (18).

that did not reach BBB− by a downgrade and the firms which are one grade lower,

in this case BB+. The null hypothesis of the test presented in Table 2 is that this

augmented rating scale has the same predictive power as the original rating scale

which is tested against the two-sided alternative. We use Harrell’s C in the weighted

average version as our measure of predictive accuracy. On the one hand, in the first

four columns of Table 2, we perform the test using again monthly cohort building

and apply the asymptotic formulas as described in section 4.11 On the other hand,

we do the same test using only cohorts where the time between the cohort building

dates is H − 1 months (H being the prediction horizon) so that no overlapping

lifetimes occur.12 The latter case refers to inference which avoids to deal with the

dependence induced by the overlapping lifetimes problem. The standard errors are

in this case computed with the elementary part of formula (16) that does not include

the terms which involve autocorrelations.

The results show that we can reject the null hypothesis at any horizon and at

any conventional significance level if we include overlapping lifetimes. We conclude

that the consideration of the downgrade effect indeed yields incremental predictive

accuracy. However, such a conclusion is hardly possible without the use of overlap-

ping lifetimes. In this case, we observe only marginally significant improvements at

short horizons and no significant differences for longer horizons. One reason for this

caused by random is that the point estimates for the difference of the indices are

lower throughout all horizons. The other and systematic reason is that the stan-

11The results are robust to the alternative use of the cluster bootstrap.
12For instance, for five-year Harrell’s C, we use the cohorts build in june of 2004, 1999, 1994 and

1989.
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dard errors of the differences are higher – on average by 89% – reflecting the higher

variability that is caused by the reduction of the dataset. To conclude, we see that

there are realistic examples where the greater power of tests based on overlapping

lifetimes results in different decisions.

6. Conclusions

In analyzing measures for the predictive accuracy of rating systems, this paper

contributes to the existing literature mainly in two aspects. First, we propose a

measure from the biostatistical literature, Harrell’s C, as an improvement to the

Accuracy Ratio and show how it can be modified for limited prediction horizons

that are typical in credit risk applications. The main advantage of Harrell’s C

is that it uses the full information of the sample. Instead, the Accuracy Ratio

omits certain censored observations which can, additionally, lead to a remaining

subsample that is not fully representative. The empirical part shows that this is not

just a theoretical obstacle and may result in an overestimation of rating accuracy

in the long run. Second, we analyze the problem of statistical inference in rating

datasets where overlapping lifetimes lead to dependence in the data that can not

be ignored. For this purpose, we derive asymptotic formulas and describe how

resampling procedures can be used appropriately. These multiple cohort procedures

deliver narrower confidence intervals and more powerful tests than naive alternatives

that use approximately independent data only. We show in the empirical analysis

that the enhanced power is substantial and leads to different decisions in a simple

but practically relevant example.
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