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Albertus-Magnus-Platz, D-50923 Köln, Deutschland
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1 Introduction

One of the risk measures, which repeatedly draws the attention in the field of science, is realized

variance. It is a model-free ex-post measure for high-frequency data. This measure approxi-

mates the total quadratic variation of a financial asset over an interval [0, t]. The underlying

theoretical price path for a financial asset is well described by a continuous-time stochastic

volatility jump diffusion process. Empirical evidence for this is found in Eraker, Johannes and

Polsen (2003) and Eraker (2004). To measure the contribution of a finite number of price jumps

to realized variance, Barndorff-Nielsen and Shephard (2004a, 2006a) develop a test statistic.

Therewith, an operator can decide, based on a statistical framework, whether price jumps occur

within a trading day and how much they contribute to realized variance. This information is

used to state more precisely conclusions about risk. In an extensive empirical application, An-

dersen, Bollerslev and Diebold (2007), Andersen, Bollerslev and Huang (2007) and Bollerslev,

Kretschmer, Pigorsch and Tauchen (2009) show the economic value (i.e. improved forecasts for

realized variance) of utilizing the separate information about the continuous and discontinu-

ous component of realized variance in a time series model. Further nonparametric methods to

separate the discontinuous component (also referred to as jump factor) from realized variance

are elaborated by e.g. Äıt-Sahalia and Jacod (2009), Andersen, Dobrev and Schaumburg (2008,

2009), Christensen, Oomen and Podolskij (2009), Corsi, Pirino and Renò (2009), Jiang and

Oomen (2008), Lee and Mykland (2008) and Mancini (2009). Due to the fact that there exists

a variety of methods, an operator may question which method shall be preferred in an empirical

application. Hence, it is of interest to identify potential shortcomings of each method.

We recognize that most methods are based on the assumption of a continuous-time stochas-

tic volatility jump diffusion price process, and are constructed for efficient prices sampled on

equidistant discrete time grids due to feasibility.1 Typical in empirical applications, however,

is that the discretely sampled price process randomly switches from one sampling point to the

next between two states. We term those states as either observable or latent. In the observable

state we can assign an efficient price to a sampling point. The latent state enters in case of

two frequently occurring empirical stylized facts. The first one is referred to as flat prices, i.e.

consecutively sampled prices in calendar time with the same value, well addressed by Phillips

and Yu (2008). According to Phillips and Yu (2008), flat prices can be understood as inef-

ficient or noisy prices, since the occurrence of flat prices has zero probability if we assume a

log-price process constituting a semimartingale. The second occurrence is no trading, i.e. no

price observation over a certain period of time within a trading day, stressed by Corsi, Pirino

and Renò (2009). That means, in the latent state we can either assign an inefficient price to

a sampling point or no price at all. In either case, the price information does not represent

the efficient price and is therefore latent. Consequently, the computation of continuously com-

pounded interval returns, required to implement the jump detection methods, is only possible

if two consecutive prices are in the observable state. Those interval returns are referred to as

observable variation or return process fragments. However, if there is at least one latent price

1One possible sampling method is the previous tick method by Hansen and Lunde (2003, 2006).
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at two consecutive sampling points, we cannot compute the corresponding interval return. In

applications, we usually set this interval return to zero. Therefore, the latent return process

fragment is likewise called zero-return.

Schulz and Mosler (2010) illustratively show that the existence of even a small percentage

amount of zero-returns greatly distort the statistical conclusions by employing the method of

Barndorff-Nielsen and Shephard (2004a, 2006a). Schulz and Mosler (2010) introduce a first

ad-hoc approach to reduce the distortion. Alternatively, a price data manipulation method is

employed by Barndorff-Nielsen and Shephard (2004b) in advance. This is a calibrated statistical

model which simulates a price at a sampling point as soon as no trading, flat prices or even

very small price movements occur. However, such a proceeding of stochastic or alternatively

deterministic interpolation is quite critical as we add variation, which is actually latent, i.e.

unknown to us. As such, there remains enough space putting further effort into analyzing the

sensitivity of other methods with respect to zero-returns, and (if required) define a modified

method with two properties. First, it should not require having to add variation for the latent

fragments. Second, it should be robust against the distorting impact of the latent return process

fragments on measuring price jumps within the observable return process fragments.

This paper contrasts four methods disentangling contributions from price jumps to real-

ized variance. Employed comparable methods are by Barndorff-Nielsen and Shephard (2004a,

2006a), Corsi, Pirino and Renò (2009) and Andersen, Dobrev and Schaumburg (2009). For

each method, zero-returns are a pivotal source of statistical distortion. Therefore, the first

contribution of this paper is the introduction of a new approach, which robustifies each con-

sidered method to latent return process fragments so that they provide undistorted statistical

conclusion for the observable variation. In this paper, our approach is referred to as sus-

tained integrated variance and quarticity estimation (SIVQE). Under ideal conditions

of no zero-returns, we theoretically show that the asymptotic distribution of each method with

SIVQE remains the same with respect to its original counterpart. Subsequently, we describe

a return process with observable and latent fragments by a Bernoulli process. Here, we show

that the original multipower variation based integrated variance and quarticity estimators by

Barndorff-Nielsen and Shephard (2004a, 2006a) and Corsi, Pirino and Renò (2009) underes-

timate the actual quadratic variation of the observable return process fragments. However,

implementing these methods with SIVQE does not produce an underestimation. Furthermore,

we show that in case of no price jumps the difference between realized variance and the ro-

bustified multipower variation based integrated variance estimator of the observable variation

converges in probability to zero for a decreasing sampling length.

The second contribution is that SIVQE is tested in Monte Carlo experiments under imper-

fect market conditions, i.e. market scenarios with different levels of flat price and no trading

bias. To be more precise, we initially question to what extent the convergence criteria of the

test statistic under the null hypothesis holds for return series with an increasing fraction of

zero-returns. Astonishingly, even for more than 50% zero-returns, the convergence criteria is

quite robust for each method. Beyond that, we investigate the accuracy of the (no) jump day
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detection rate for an increasing fraction of zero-returns with respect to the ideal case of no

zero-returns, and find that the detection rates are also considerably robust. To analyze the

overall performance of detecting days both with and without jumps across methods, we employ

a nonparametric sensitivity index (A) typically used in signal detection theory.2 The results

show that SIVQE in combination with the corresponding method definitely performs better

across all zero-return levels than implementing the original methods. It even constitutes a

better performer than the approach proposed by Schulz and Mosler (2010).

The final contribution of this study is to discuss the empirical relevance of the robust ap-

proach. The implemented time series is a high-frequency dataset of electricity forward contracts

traded on the Nord Pool Energy Exchange. The traded contracts are of substantial economic

relevance for the Nordic electricity market.3 Besides, the empirical price process is character-

ized by flat prices and no trading. The focus is to analyze whether each original method yields

the same amount of days with price jumps, and how trading days with detected price jumps

can be characterized. The analysis shows that given a conventional level of significance, a very

heterogeneous picture is produced with respect to the amount of days with jumps. Even the 5%

most potential jump factors of each method greatly diverge in size and occurrence time. These

potential jump days are typically characterized by below full-sample average trading activity

and small amount of extreme price movements, indicating a large fraction of spurious price

jumps. In light of the just mentioned, we analyze the empirical results for SIVQE and find

more plausible conclusions by using again trading activity as a qualitative variable to discuss

evidence of jump occurrences. Moreover, there are indications for preferring SIVQE in com-

bination with the method of Corsi, Pirino and Renò (2009) as the qualitative indicators are

strongest. Finally, we find a markedly increased intersection in occurrence time of the 5% most

potential jump factors.

The remainder of the paper is organized as follows. In the next section, the concept of

realized variance and relevant methods to separate the jump factor from realized variance are

discussed. The proceeding of SIVQE is described in section 3. Moreover, evaluations from the

Monte Carlo experiments with(out) the employed robust approach are discussed. Section 4

gives insights into the empirical analysis and section 5 concludes.

2 Basics of Quantifying Price Variability

2.1 Concept of Realized Variance

The logarithmic price is denoted X(t). The price expansion is assumed to be well described

by the following continuous-time stochastic volatility jump diffusion process

dX(t) = μ(t)dt + σ(t)dW (t) + κ(t)dq(t) , t ∈ [0,1] , (1)

where μ(t) is the drift term, σ(t) is a strictly positive stochastic càdlàg process and W (t) is a

2A incorporates the probabilities of (not) correctly detecting days with and without jumps. A ∈ [0,1], where
1 (0) is the best (worst) possible outcome. See Zhang and Mueller (2005) for further details.

3The reader is referred to Schulz and Mosler (2010) for further details.

4



standard Brownian motion. κ(t) is the size of a discrete jump in time t in the log price process

and q(t) is a counting process with finite activity and (possibly) time-varying intensity λ(t).
The associated realized price variability over a predetermined period of time, here [t-h, t] with

0 < h ≤ t ≤ 1, is defined as follows (Andersen, Bollerslev and Diebold, 2002):

NVt ≡ ∫ t

t−h
σ2(s)ds�����������������������������	����������������������������


continuous variation

+ ∑
qt−h<s≤qt

κ2(s)�������������������������������	������������������������������

jump factor

, (2)

where σ2(s) is the instantaneous return variation, κ2(s) is the squared size of a discrete jump in

time t. Typically, h is set to one, representing one trading day. The ex-post variability measure

in equation (2) is called notional variance and is composed of two parts. The first part,

denoted as continuous variation or integrated variance (IVt), is the quadratic variation of

the Brownian motion in equation (1) over [t-h, t]. Correspondingly, the jump factor represents

the quadratic variation of the Poisson process.

In order to evaluate the time variable exposure for discretely sampled prices, Andersen

and Bollerslev (1998) motivate a model-free ex-post measure for high-frequency data, called

realized variance. For h = 1,

RVt ≡ M∑
j=1

r2
j , with rj ∶= rj,t,M ∶= X ( j t

M
) −X ((j − 1)t

M
) , (3)

where M ∈ N+ determines the interval length for intraday returns rj. Realized variance is under

the maintained assumptions a consistent nonparametric estimator for the notional variance. In

this respect, realized variance converges for M →∞ in probability to the notional variance:

RVt
p�→ ∫ t

t−1
σ2(s)ds + ∑

qt−1<s≤qt

κ2(s) .

If we further assume a mean of zero for the underlying return process, realized variance is also

an unbiased estimator of the ex-ante expected variance, the key interest of practitioners in

financial markets. Even if we relax the assumption to a stochastically evolving mean return

process over the predetermined interval, the statement remains approximately true.4

2.2 Methods Separating Jump Factor from Realized Variance

In the literature, there exist several methods to measure contributions from price jumps to

realized variance. Considered methods in this study are by Barndorff-Nielsen and Shephard

(2004a, 2006a) (henceforth BNS), Corsi, Pirino and Renò (2009) (henceforth CPR) and Ander-

sen, Dobrev and Schaumburg (2009) (henceforth ADS). In principle, each implemented method

proceeds in a similar fashion.

First, it matters to establish a consistent estimator for integrated variance (ÎV t,ν) which is

robust against a finite number of jumps over a finite period of time. An intuitive jump measure

is then simply the difference between RVt and ÎV t,ν . This difference is meant to converge for

4See Andersen, Bollerslev and Diebold (2002) for a detailed discussion.
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M → ∞ in probability to the jump factor in equation (2). However, Andersen, Bollerslev and

Diebold (2007) point out that due to measurement errors in practice, this jump measure likely

yields inapt and even incorrect outputs. In order to handle such finite sample problems, BNS

(2004a, 2005, 2006a) propose a statistic, testing for the following null hypothesis:

H0∶ No jumps are present in the underlying price process versus H1∶ ¬ H0.

Here, the test statistic of interest is based on a relative jump measure and is defined as:

Zt,ν = (RVt − ÎV t,ν)/RVt√
ϑν

M max{1,
ÎQt,ν

(ÎV t,ν)2}
d�→ N(0,1) , ν = 1,2,3,4 . (4)

where ν is an index for the implemented method. ÎQt,ν factored with ϑν/M denotes a consistent

estimator for the asymptotic variance of RVt − ÎV t,ν . For M →∞,

ÎQt,ν

p�→ IQt ≡ ∫ t

t−1
σ4(s)ds , (5)

that is ÎQt,ν is converging in probability to its theoretical counterpart IQt, called integrated

quarticity. The asymptotic variance of RVt − ÎV t,ν depends on the efficiency of ÎV t,ν . Huang

and Tauchen (2005) show in their simulation study that Zt,ν has good power, using the specifica-

tion of BNS (2004a, 2006a) for ÎV t,ν and ÎQt,ν , shortly presented below. This result motivates

the implementation of Zt,ν for each method ν. By implementing Zt,ν , we can make inference

about the significance of the difference between RVt and ÎV t,ν , and therewith statistically sep-

arate contributions from continuous variation and price jumps to realized variance on a daily

basis. Jumps are detected, if the test statistic Zt,ν is greater than a predetermined quantile

function (Φ−11−α) say for α ≤ 5%. The jump factor and integrated variance amount to:

Jt,ν ≡ [RVt − ÎV t,ν]1{Zt,ν>Φ−11−α} , and Ct,ν ≡ RVt − Jt,ν .

where 1 is an indicator function, equaling one if Zt,ν > Φ−11−α, and zero else. After having

presented key insights concerning the general proceeding of each method, we will briefly present

the respective specifications for ÎV t,ν , ÎQt,ν and ϑν , besides further details if required.

Method: BNS

The first considered estimator for integrated variance is theoretically derived by BNS (2004a).

This estimator is called bipower variation, defined as:

BPt,i ≡ ϕ1 ( M

M − 1 − i
) M∑

j=2+i
∣rj−(1+i)∣∣rj∣ , i ≥ 0 , (6)

where ϕ1 = π/2. The robustness property of bipower variation against a finite number of price

jumps is due to the following fact. Asymptotically, for M →∞, there is maximally one jump in

the infinitesimal small adjacent interval returns rj and rj−1. Furthermore, it is imperative that

if there is a jump in rj−1 its impact will vanish as it is multiplied by a subsequent return rj of

order 1/√M . Obviously, for M →∞, rj gets extremely small reducing the impact of the jump
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in rj−1 to a negligible amount. An empirical application to a selection of financial time series

by Andersen, Bollerslev and Diebold (2007) suggests to choose i = 1. This means that bipower

variation sums up the cross-products of absolute interval returns with one lag. Directly adjacent

absolute interval returns (i.e. i = 0) are not chosen for computation due to their potential serial

correlation, which in turn might bias bipower variation. Analytical evidence of this issue is

provided by Huang and Tauchen (2005), who assume a noisy price process. A consistent

estimator for IQt, termed tripower quarticity and employed by Andersen, Bollerslev and

Diebold (2007), formulates as follows:

TriPt,i ≡ Δi

M∑
j=1+2(1+i)

∣rj−2(1+i)∣4/3∣rj−(1+i)∣4/3∣rj ∣4/3 , i ≥ 0 , (7)

where Δi = M (22/3 ⋅ Γ(7
6) ⋅ Γ(1

2)−1)−3 ( M
M−2(1+i)). The adjustment parameter ϑ1 for the asymp-

totic variance in equation (4) equals to ϕ2
1 + 2ϕ1 − 5. Despite the theoretical appeal of this

method, it is influenced by nonnegligible issues in finite samples.5 These drawbacks are mainly

due to the concept of bipower variation, and provoked by microstructure noise and a finite

choice of M . The following methods explicitly name and seize up these pitfalls, and suggest

potential alternatives.

Method: CPR

CPR (2009) propose an estimator for IVt and IQt by forming a combination of the multipower

variation concept, introduced in several papers by BNS,6 and the threshold approach by Mancini

(2009). Broadly speaking, the general idea is to initially trim or correct the return series with a

threshold function before computing bipower variation and tripower quarticity. They motivate

their approach with a drawback of bipower variation stressed by ADS (2009). Asymptotically,

the concept of bipower variation works fine. However, for finite M the impact of a jump in

rj−1 does not completely vanish, causing a positive distortion of the bipower variation measure.

Moreover, a potential appearance of jumps in two adjacent returns cannot be excluded. In

order to circumvent such a finite sample issue, CPR (2009) propose to filter out large jump

occurrences in the interval return series with a threshold function before computing bipower

variation. The threshold function is defined as:

θ ∶= θδ
τ = c2

Θ ⋅Θδ
τ ,

composed of a fixed scaling factor cΘ, typically set to three,7 and a local Kernel smoothed and

jump controlled variance estimator Θδ
τ with the following specification:

Θδ
τ =

L∑
j=−L, j≠−1,0,1

K ( j
L
) r2

j 1{r2
j ≤ c2

Θ
⋅Θδ−1

j }

L∑
j=−L, j≠−1,0,1

K ( j
L
) 1{r2

j ≤ c2
Θ
⋅Θδ−1

j }

, δ = 1,2,3, ... , (8)

5The drawbacks in practical applications are explicitly discussed by CPR (2009), ADS (2009) and Schulz
and Mosler (2010).

6BNS (2006b) review their recent contributions to multipower variation and reference corresponding papers.
7See CPR (2009) or Mancini and Renò (2008); the choice of the scaling factor is the most critical point in

the method of CPR (2009) as it is a predetermined exogenous variable.
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where τ = {1,2,3, ..., T ⋅M}, T denotes the total amount of trading days in the sample, and L

is the bandwidth parameter determining the window around τ to estimate the local variance.

1 is an indicator function, equaling one if r2
j ≤ c2

Θ ⋅ Θδ−1
j , and zero else. For K, a Gaussian

kernel with the form K ( j
L
) = 1√

2π
exp {−( j

L
) 1

2
} is proposed by CPR (2009). Furthermore, they

set L = 25 and point out that the choice of L is not crucial.

The final threshold function is computed iteratively. Squared returns smaller than or equal

to the threshold are kept in the series, whereas all others are set to zero. Under the null, this

series is biased as it is possible that normal iid returns are greater than the threshold. Due to

this fact, CPR (2009) propose not to set rj = 0 if r2
j > θ but to replace rj with its conditional

expected value under the null, E (∣rj ∣λ"""" r2
j > θ). The final series of absolute interval returns

raised to the λ-th power now can be defined as:

Ψλ(rj, θ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣rj ∣λ if r2

j ≤ θ

1
2M(−cΘ)√π

( 2
c2
Θ
θ)λ

2
Γ(λ+1

2 ,
c2Θ
2 ) if r2

j > θ
; λ = 1,4/3 .

Generally, threshold bipower variation and tripower quarticity is formulated as:

TBPt,i ≡ ϕ2 ( M

M − 1 − i
) M∑

j=2+i
Ψ1(rj−(1+i), θ)Ψ1(rj, θ) , i ≥ 0 ,

TTriPt,i ≡ Δi

M∑
j=1+2(1+i)

Ψ4/3(rj−2(1+i), θ)Ψ4/3(rj−(1+i), θ)Ψ4/3(rj, θ) , i ≥ 0 .

In empirical application, it is also advisable to use staggered returns, following the discussion

above. An important final note to the method of CPR (2009) is that the asymptotic theory

does not change from multipower variation to threshold multipower variation. Therefore, ϕ2

and ϑ2 equal to ϕ1 and ϑ1.

Method: ADS-Min and ADS-Med

Even two jump robust estimators for integrated variance, called MinRVt and MedRVt, are

proposed by ADS (2009):

MinRVt ≡ ϕ3 ( M

M − 1
) M∑

j=2
min (∣rj−1∣, ∣rj ∣)2

,

MedRVt ≡ ϕ4 ( M

M − 2
) M∑

j=3
med (∣rj−2∣, ∣rj−1∣, ∣rj ∣)2

,

where ϕ3 = π
π−2 , ϕ4 = π

6−4√3+π and med =̂ median. An appealing theoretical property of both

estimators in finite sample applications is that the bias as in bipower variation emanating due

to large jumps is here less intense. Moreover, according to ADS (2009) MedRVt is meant to

be less exposed to zero-returns than any presented jump robust estimator. The corresponding

estimators for integrated quarticity are:

MinRQt ≡ M
π

3π − 8
( M

M − 1
) M∑

j=2
min (∣rj−1∣, ∣rj ∣)4

,

MedRQt ≡ M
3π

9π + 72 − 52
√

3
( M

M − 2
) M∑

j=3
med (∣rj−2∣, ∣rj−1∣, ∣rj ∣)4

.
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At this point we supplement two propositions to formulate a test statistic for jumps.

Proposition 1: MinRQt and MedRQt are jump robust and consistent estimators for inte-

grated quarticity. For M →∞, it is

MinRQt
p�→ ∫ t

t−1
σ4(s)ds , and MedRQt

p�→ ∫ t

t−1
σ4(s)ds .

Referring to ADS (2009), the asymptotic theory required to prove Proposition 1 is entirely

analogous and results similar to their Propositions 1-3. Based on Proposition 3 of ADS (2009)

and Proposition 1, we can straightforwardly derive the asymptotic distribution of the difference

between RVt and MinRVt (MedRVt):

Proposition 2: Given the joint asymptotic results for MinRVt and MedRVt derived by ADS

(2009), the asymptotic distribution of ‘(RVt −MinRVt) /RVt’ and ‘(RVt −MedRVt) /RVt’ is:

Zt,3 = (RVt −MinRVt) /RVt√
1.81
M max{1, MinRQt

(MinRVt)2}
d�→ N(0,1) ,

Zt,4 = (RVt −MedRVt) /RVt√
0.96
M max{1, MedRQt

(MedRVt)2}
d�→ N(0,1) .

Proof. We derive the asymptotic variance of RVt−MinRVt, using the joint asymptotic distribu-

tion of RVt and MinRVt (ADS, 2009). After that, we deduce the distribution of RVt−MinRVt.

Finally, we formulate the test statistic as in Proposition 2. The proof for MedRVt proceeds

analogously, utilizing the joint asymptotic distribution of RVt and MedRVt (ADS, 2009).

�

3 Dealing with Flat Prices and No Trading

3.1 Sustained Integrated Variance and Quarticity Estimation

In Section 1 and 2 we stressed that each considered method assumes a continuous price process

as in equation (1), and is constructed for discretely sampled efficient prices. This is a crucial

assumption for each integrated variance and quarticity estimator as it rules out the presence of

zero-returns. The question we are now dealing with is how the estimators can be robustified if

the discretely sampled price process consists of randomly occurring observable and latent states.

In the observable state we can sample an efficient price for a time grid. However, in the latent

state we either sample an inefficient price (flat price) or no price at all (no trading). Latent

states translate into zero-returns and cause a bias in each integrated variance and quarticity

estimator, but not in RVt, which is shown below. This bias implicates the distortion in the test

statistics. For such conditions we suggest sustained integrated variance and quarticity

estimation (SIVQE) which robustifies each method with respect to the impact of flat prices

and no trading on detecting price jumps. Note, if SIVQE is applied, the notation of the method,

and integrated variance and quarticity estimator will start with a ‘S’. The proceeding of the

9



new approach is explicitly illustrated for the respective integrated variance estimators BPt,i,

TBPt,i, MinRVt and MedRVt. In order to set up the idea of SIVQE, let us resume some of the

assumptions and theoretical results of each method under ideal conditions of no zero-returns.

Under the null hypothesis, assume that rj
iid∼ N(0, σ2); it follows E (∣rj ∣) = √

2
πσ. Beyond

that, we assume that the second and fourth moments of ∣rj ∣ exist. We further know from BNS

(2004a, p.10), CPR (2009, pp.4-8), and ADS (2009, p.7) that each increment of the integrated

variance estimator, produced by the respective method, delivers an unbiased estimate of the

corresponding underlying spot variance. The same applies to realized variance, where the spot

variance is σ2
j with its unbiased estimate r2

j . It is also known that the difference between the

sum of spot variances of the RVt concept and the respective method converges for M → ∞ in

probability limit to zero. These results are summarized in the following:

ÎV t Unbiased spot variance estimate Convergence result for M →∞
BPt,i, ϕ1 ∣rj−(1+i)∣ ∣rj ∣ , ∑M

j=1 σ2
j −∑M

j=2+i σj−(1+i) σj
p�→ 0 ,

TBPt,i, ϕ2 Ψ1(rj−(1+i), θ) Ψ1(rj , θ) , ∑M
j=1 σ2

j −∑M
j=2+i σj−(1+i),θ σj,θ

p�→ 0 ,

MinRVt, ϕ3 min (∣rj−1∣, ∣rj ∣)2
, ∑M

j=1 σ2
j −∑M

j=2 min (σj−1 , σj)2 p�→ 0 ,

MedRVt, ϕ4 med (∣rj−2∣, ∣rj−1∣, ∣rj ∣)2
, ∑M

j=1 σ2
j −∑M

j=3 med (σj−2, σj−1, σj)2 p�→ 0 .

In section 2, we specified that each integrated variance estimator approximates the continuous

variation over [t− 1, t] (under the null hypothesis, this is also true for RVt). Of importance for

SIVQE is to discuss whether each unbiased spot variance estimate can be referred to an interval

j. If this is not directly possible, we will elaborate a proxy. Starting with RVt, it is obvious that

r2
j is an unbiased spot variance estimate for interval j. For BPt,i, the increment ϕ1 ∣rj−(1+i)∣ ∣rj ∣,

is not the most favorable choice as the interval return j occurs in the subsequent increment

as well. As such, the subsequent increment ϕ1 ∣rj ∣ ∣rj+(1+i)∣ is likewise unfavorable. Therefore,

we propose to rewrite the increment so that it is approximately equal to r2
j . One natural

proxy is to take half of each cross-product including rj , i.e. 1
2 ϕ1 ∣rj−1∣ ∣rj ∣ + 1

2 ϕ1 ∣rj ∣ ∣rj+1∣,
which averages the influence of ∣rj−1∣ and ∣rj+1∣. Analogously, we proceed for the unbiased

spot variance estimates of the remaining methods. For each method, we propose the following

adapted increments, which are likewise approximately equal to r2
j :

BPt,i ∶ 1
2 ϕ1 ∣rj−1∣ ∣rj ∣ + 1

2 ϕ1 ∣rj ∣ ∣rj+1∣
TBPt,i ∶ 1

2 ϕ2 Ψ1(rj−1, θ) Ψ1(rj , θ) + 1
2 ϕ2 Ψ1(rj, θ) Ψ1(rj+1, θ)

MinRVt ∶ 1
2 ϕ3 min (∣rj−1∣, ∣rj ∣)2 + 1

2 ϕ3 min (∣rj ∣, ∣rj+1∣)2

MedRVt ∶ 1
3 ϕ4 med (∣rj−2∣, ∣rj−1∣, ∣rj ∣)2 + 1

3 ϕ4 med (∣rj−1∣, ∣rj ∣, ∣rj+1∣)2

+ 1
3 ϕ4 med (∣rj ∣, ∣rj+1∣, ∣rj+2∣)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
approx.∼ r2

j . (9)

The outlined adaption in equation (9) for interval j can be done for all intervals M within[t−1, t]. Up to now, except rewriting and linking unbiased spot variance estimates to a certain

interval j, the integrated variance estimators has been left unchanged. That means, the sum

over [t − 1, t] of the adapted increments remains unchanged. But why is the outlined consider-

ation in equation (9) supportive to define SIVQE? This abstraction is the basis to understand

10



the nature of the bias and to locate where the robust approach should intervene, if we do not

have ideal conditions of no zero-returns. In order to understand the whole purpose, we come to

the issue emanating from zero-returns. We illustrate with two examples the origin of the bias

and introduce the main idea of how SIVQE solves for the bias.

Example 1:

Imagine the following first exemplary case, which is solely one or one of many potential instances

of flat prices and no trading within a trading day. In this example, we only choose an extract

of a trading day with five consecutive intraday return intervals to keep the illustration simple

and intuitive. That means, we only focus on the unbiased spot variance estimates resulting

from this part of the series. Obviously, more complex zero-return patterns are possible:

. . . , ∣rj−2∣ = 0 , ∣rj−1∣ = 0 , ∣rj ∣ > 0 , ∣rj+1∣ = 0 , ∣rj+2∣ = 0 , . . . .

The resulting sum of spot variance estimates for realized variance and the other methods in

the original setting are as follows (for i = 0):

RVt ∶ 0 + 0 + r2
j + 0 + 0 = r2

j ,

BPt,0 , TBPt,0 , MinRVt ∶ 0 + 0 + 0 + 0 = 0 ,

MedRVt ∶ 0 + 0 + 0 = 0 .

Despite the fact that there is observable variation in interval j, BPt,0, TBPt,0, MinRVt and

MedRVt fail to capture it, whereas realized variance does not. This is why we mentioned above

that realized variance is not biased or is robust as the unbiased spot variance estimate r2
j of the

observable return process fragment is not influenced by the previous or following latent return

process fragment and completely captures the observable variation. In the example, this is not

the case for the other methods as they require at least two consecutive return intervals with

observable variation. To solve for this shortcoming we could simply draw a random variable

or any feasible value for ∣rj−2∣ , ∣rj−1∣, ∣rj+1∣ and ∣rj+2∣ to bridge the gap. However, we want

to avoid these circumstances, i.e. define an approach insuring that the estimates reflect only

but completely the observable variation like RVt, despite the alignment of returns as in the

example. Beyond that, the approach has to be defined in such a manner that no additional

variation is externally added, else RVt would increase as well.

Bearing the conditions in mind, we propose to exploit the relationship of equation (9). This

means to find for r2
j , the only spot variance estimate of realized variance greater than zero, a

corresponding estimate produced by BPt,0, TBPt,0, MinRVt and MedRVt. For each integrated

variance estimator we suggest,

BPt,0 ∶ 1
2 ϕ1 ℘j−1,1 ∣rj ∣ + 1

2 ϕ1 ∣rj ∣ ℘j+1,1

TBPt,0 ∶ 1
2 ϕ2 ℘j−1,2 Ψ1(rj , θ) + 1

2 ϕ2 Ψ1(rj , θ) ℘j+1,2

MinRVt ∶ 1
2 ϕ3 min (℘j−1,3, ∣rj ∣)2 + 1

2 ϕ3 min (∣rj ∣,℘j+1,3)2

MedRVt ∶ 1
3 ϕ4 med (℘j−2,4,℘j−1,4, ∣rj ∣)2 + 1

3 ϕ4 med (℘j−1,4, ∣rj ∣,℘j+1,4)2

+ 1
3 ϕ4 med (∣rj ∣,℘j+1,4,℘j+2,4)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
approx.∼ r2

j ,
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where ℘.,ν is understood as a required sustainer that the variation, attributed by rj, does not

completely vanish while estimating the spot variance for interval j.
�

Reasonable estimators for ℘j,ν will be discussed below. For illustration purposes, we will go

through another pattern of zero-returns to understand where SIVQE intervenes.

Example 2:

In this example, we imagine to observe a short extract of a trading day with six consecutive

interval returns:

. . . , ∣rj−2∣ = 0 , ∣rj−1∣ = 0 , ∣rj ∣ > 0 , ∣rj+1∣ > 0 , ∣rj+2∣ = 0 , ∣rj+3∣ = 0 , . . . .

Skipping the part of computing the spot variance estimates with the original proceeding, we

exploit once more the relationship of equation (9). Thus, we define a corresponding estimate

of BPt,0, TBPt,0, MinRVt and MedRVt for the spot variance estimates r2
j and r2

j+1. To get the

intuition, we will only present the estimates for BPt,0 and MedRVt, as TBPt,0 and MinRVt

are from a conceptual point of view close to BPt,0. The corresponding sum of adapted spot

variance estimates for interval j and j + 1 of BPt,0 are

1
2 ϕ1 ℘j−1,1∣rj ∣ + 1

2 ϕ1 ∣rj ∣∣rj+1∣������������������������������������������������������������������������������������������������	�����������������������������������������������������������������������������������������������

approx.∼ r2

j

+ 1
2 ϕ1 ∣rj ∣∣rj+1∣ + 1

2 ϕ1 ∣rj+1∣℘j+2,1�����������������������������������������������������������������������������������������������������	����������������������������������������������������������������������������������������������������

approx.∼ r2

j+1= 1
2 ϕ1 ℘j−1,1∣rj ∣ + ϕ1 ∣rj ∣∣rj+1∣ + 1

2 ϕ1 ∣rj+1∣℘j+2,1�������������������������������������������������������������������������������������������������������������������������������������������������������������	�������������������������������������������������������������������������������������������������������������������������������������������������������������

approx.∼ r2

j + r2
j+1

,

whereas for MedRVt we derive the following:

1
3 ϕ4 med(℘j−2,4 , ℘j−1,4 , ∣rj ∣)2 + 1

3 ϕ4 med(℘j−1,4 , ∣rj ∣ , ∣rj+1∣)2 + 1
3 ϕ4 med(∣rj ∣ , ∣rj+1∣ , ℘j+2,4)2���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������


approx.∼ r2
j

+
1
3 ϕ4 med(℘j−1,4 , ∣rj ∣ , ∣rj+1∣)2 + 1

3 ϕ4 med(∣rj ∣ , ∣rj+1∣ , ℘j+2,4)2 + 1
3 ϕ4 med(∣rj+1∣ , ℘j+2,4 , ℘j+3,4)2����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������


approx.∼ r2
j+1= 1

3 ϕ4 med(℘j−1,4 , ∣rj ∣ , ∣rj+1∣)2 + 2
3 ϕ4 med(∣rj ∣ , ∣rj+1∣ , ℘j+2,4)2

+ 2
3 ϕ4 med(∣rj ∣ , ∣rj+1∣ , ℘j+2,4)2 + 1

3 ϕ4 med(∣rj+1∣ , ℘j+2,4 , ℘j+3,4)2 .

�

General Definition of SIVQE:

So far, we have elaborated the functionality of SIVQE for two scenarios of observable and

latent return intervals within a trading day. Incorporating the just mentioned ideas for any

observable and latent return patterns in the concept of each integrated variance estimator, we

define sustained bipower variation (SBPt,i), sustained threshold bipower variation

(STBPt,i), sustained MinRV (SMinRVt) and sustained MedRV (SMedRVt). For brevity,

we summarize the estimator for SBPt,i, STBPt,i and SMinRVt in SÎV t,ν as follows:

SÎV t,ν = ξν

M∑
jν

(1a1 r̂2
j,ν + 1

2 1a2 r̂2
j,ν,℘a2

+ 1
2 1a3 r̂2

j,ν,℘a3
) , (10)
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where ν = 1,2,3. The indicator functions 1a1,1a2 and 1a3 are defined as:

1a1 = ⎧⎪⎪⎨⎪⎪⎩ 1 if (∣rj−(1+i)∣∣rj ∣ > 0) ∨ (∣rj−(1+i)∣ = ∣rj ∣ = 0)
0 else

,

1a2 = ⎧⎪⎪⎨⎪⎪⎩ 1 if (∣rj−(1+i)∣ > 0 ∧ ∣rj ∣ = 0)
0 else

,

1a3 = ⎧⎪⎪⎨⎪⎪⎩ 1 if (∣rj−(1+i)∣ = 0 ∧ ∣rj ∣ > 0)
0 else

. (11)

For the respective ν, the following specifications apply:

ν ξν jν r̂2
j,ν r̂2

j,ν,℘a2
r̂2
j,ν,℘a3

i

1 M
M−1−i

π
2 2 + i ∣rj−(1+i)∣∣rj ∣ ∣rj−(1+i)∣℘j,1 ℘j−(1+i),1∣rj ∣ ≥ 0

2 M
M−1−i

π
2 2 + i Ψ1(rj−(1+i), θ)Ψ1(rj , θ) Ψ1(rj−(1+i), θ)℘j,2 ℘j−(1+i),2Ψ1(rj , θ) ≥ 0

3 M
M−1

π
π−2 2 min (∣rj−1∣, ∣rj ∣)2

min (∣rj−1∣,℘j,3)2
min (℘j−1,3, ∣rj ∣)2

0

To specify SMedRVt, we need further conditions as we have to consider three consecutive

interval returns. We define it as:

SMedRVt = π

6 − 4
√

3 + π
( M

M − 2
) M∑

j=3
[1b1 med (∣rj−2∣ , ∣rj−1∣ , ∣rj ∣)2

+1b2 med (℘j−2,4 , ℘j−1,4 , ∣rj ∣)2 1
3 + 1b3 med (℘j−2,4 , ∣rj−1∣ , ℘j,4)2 1

3+1b4 med (∣rj−2∣ , ℘j−1,4 , ℘j,4)2 1
3 + 1b5 med (∣rj−2∣ , ∣rj−1∣ , ℘j,4)2 2

3+1b6 med (∣rj−2∣ , ℘j−1,4 , ∣rj ∣)2 2
3 + 1b7 med (℘j−2,4 , ∣rj−1∣ , ∣rj ∣)2 2

3
] ,

The indicator functions 1b1,1b2, . . . ,1b7 are defined as:

1b1 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣∣rj−(1+i)∣∣rj ∣ > 0) ∨ (∣rj−2(1+i)∣ = ∣rj−(1+i)∣ = ∣rj ∣ = 0)
0 else

,

1b2 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣ = ∣rj−(1+i)∣ = 0 ∧ ∣rj ∣ > 0)
0 else

,

1b3 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣ = 0 ∧ ∣rj−(1+i)∣ > 0 ∧ ∣rj ∣ = 0)
0 else

,

1b4 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣ > 0 ∧ ∣rj−(1+i)∣ = ∣rj ∣ = 0)
0 else

,

1b5 =
⎧⎪⎪⎨⎪⎪⎩

1 if ((∣rj−2(1+i)∣ ∧ ∣rj−(1+i)∣ > 0) ∧ ∣rj ∣ = 0)
0 else

,

1b6 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣ > 0 ∧ ∣rj−(1+i)∣ = 0 ∧ ∣rj ∣ > 0)
0 else

,

1b7 =
⎧⎪⎪⎨⎪⎪⎩

1 if (∣rj−2(1+i)∣ = 0 ∧ (∣rj−(1+i)∣ ∧ ∣rj ∣ > 0))
0 else

, (12)
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where i is set to zero for SMedRVt. In order to make SÎV t,ν (ν = 1,2,3,4) feasible, we suggest

to set ℘j,ν = E (∣rj ∣). ℘j,ν can be consistently estimated on day t by ℘̂j,ν, formulated as:

℘̂j,ν = 1

N

M∑
j=1

∣rj ∣ , with N = M∑
j=1

1{∣rj ∣>0} . (13)

The estimator in equation (13) is unbiased if there are no price jumps. However, this is not

true in the presence of price jumps. In such cases, ℘̂j,ν is estimated based on the local Kernel

smoothed and jump controlled spot variance estimator by CPR (2009):

℘̂j,ν = √
2
π Θδ

τ , (14)

where Θδ
τ is the specified in equation (8).

In Example 1 and 2, we illustrated the effect of zero-returns on each ÎV t,ν . Yet, there is

a similar or even more severe effect on the estimators for integrated quarticity. To formulate

robustified estimators of integrated quarticity, the same idea as outlined above applies. Each

so-called sustained integrated quarticity estimator (SÎQt,ν) is explicitly defined in the appendix.

By reviewing the newly defined integrated variance and quarticity estimators, it seems that

every potential source of bias due to flat prices and no trading is eliminated, however, not for

SCPR. The computation of the threshold (θ) is executed beforehand and employs the original

return series with all the zero-returns. Given equation (8), the local Kernel smoothed and

jump controlled variance estimator Θδ
τ converges to an extremely small value for an increasing

fraction of zero-returns. As a consequence, the final threshold (θ) turns out to be artificially

small. Therefore, it is advisable to exclude all zero-returns for the computation of the threshold

function.8

Asymptotic Behavior of SIVQE:

Before proceeding with implementing SIVQE in a Monte Carlo experiment, two additional

issues have to be addressed. The first question is whether the asymptotic results remain un-

affected in the ideal case of no zero-returns. This means, we need to question whether SÎV t,ν

and SÎQt,ν (for ν = 1,2,3,4) converge in probability to integrated variance in equation (2) and

integrated quarticity in equation (5), and whether the asymptotic distribution coincide with

their original counterpart. The answer to this is that in the ideal case of no zero-returns we

can rewrite each SÎV t,ν and SÎQt,ν estimator in its corresponding original format. Therefore,

the existing asymptotic results hold. Clearly, the asymptotic distribution coincides as well and

we can implement the same test statistic as before.

The second concern is to show that in case of observable and latent return process fragments,

the observable integrated variance and quarticity are underestimated by the original estimators,

whereas not by SIVQE. For this, the following proposition is formulated. We decompose RVt

and (S)BPt,0 into observable and latent quadratic variation.

8Previous simulation results showed that the threshold (θ) gets artificially close to zero due to an increasing
fraction of zero-returns.
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Proposition 3: Assume a price process as of equation (1) without price jumps. Furthermore,

assume that the return process consists of observable (o) and latent (�) fragments, whereas the

two states are described by a Bernoulli process,

rj = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
r
(o)
j if γj = 1 ,

r
(
)
j if γj = 0 .

γj is a Bernoulli sequence independent of the return process, E (γj = 1) = ζ and ζ ∈ (0,1]. r
(o)
j

is an observable return, whereas r
(
)
j is latent. Then realized variance decomposes as:

RVt = M∑
j=1

r2 (o)

j γj + M∑
j=1

r2 (�)

j (1 − γj) = RV
(o)
t + RV

(
)
t ,

where RV
(o)
t stands for the observable quadratic variation. Correspondingly, RV

(
)
t is the latent

one. Further, bipower variation decomposes as in the following:

BPt,0 = M

M − 1
[ϕ1

M∑
j=2

∣r(o)j−1∣ ∣r(o)j ∣γj−1 γj + ϕ1

M∑
j=2

∣r(
)j−1∣ ∣r(o)j ∣ (1 − γj−1)γj

+ ϕ1

M∑
j=2

∣r(o)j−1∣∣r(
)j ∣γj−1 (1 − γj) + ϕ1

M∑
j=2

∣r(
)j−1∣∣r(
)j ∣ (1 − γj−1) (1 − γj)]
= BP

(o)
t,0 + BP

(
)∗,1
t,0 + BP

(
)∗,2
t,0 + BP

(
),3
t,0 ,

where BP
(o)
t,0 is the observable quadratic variation, whereas the rest is the latent part. If

0 < ζ < 1, RV
(o)
t > BP

(o)
t,0 . Finally, sustained bipower variation decomposes as:

SBPt,0 = M

M − 1
[ϕ1

M∑
j=2

∣r(o)j−1∣ ∣r(o)j ∣γj−1 γj + ϕ1

M∑
j=2

1
2 ℘j−1 ∣r(o)j ∣ (1 − γj−1)γj

+ϕ1

M∑
j=2

1
2 ∣r(o)j−1∣ ℘j γj−1 (1 − γj) + ϕ1

M∑
j=2

1
2 ∣r(
)j−1∣ ∣r(o)j ∣ (1 − γj−1)γj

+ϕ1

M∑
j=2

1
2 ∣r(o)j−1∣ ∣r(
)j ∣γj−1 (1 − γj) + ϕ1

M∑
j=2

∣r(
)j−1∣ ∣r(
)j ∣ (1 − γj−1) (1 − γj)]
= SBP

(o)
t,0 + sBP

(o)∗,1
t,0 + sBP

(o)∗,2
t,0 + sBP

(
)∗,1
t,0 + sBP

(
)∗,2
t,0 + SBP

(
),3
t,0 ,

where SBP
(o)
t,0 +sBP

(o)∗,1
t,0 +sBP

(o)∗,2
t,0 is the observable quadratic variation, which is approxima-

tively equal to RV
(o)
t for ζ ∈ (0,1].

The proof can be found in the appendix. Proposition 3 states that BPt,0 underestimates the

actual quadratic variation of the observable return process, whereas RVt and SBPt,0 does not.

In fact we can show that the difference between RV
(o)
t and SBP

(o)
t,0 + sBP

(o)∗,1
t,0 + sBP

(o)∗,2
t,0

converges for M →∞ to zero.

Proposition 4: Given Proposition 3,

RV
(o)
t + RV

(
)
t

p�→ IV
(o)
t + IV

(
)
t and RV

(o)
t

p�→ IV
(o)
t ,
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for M → ∞. IV
(o)
t is the corresponding integrated variance for the observable return process,

and IV
(
)
t for the latent one. Besides, the difference between the sum of observable unbiased

spot variance estimates of RVt, and the sum of observable unbiased spot variance estimates of

SBPt,0 converges for M →∞ to zero:

M∑
j=1

σ2
j
(o) − M∑

j=2
[σj−1(o) σj

(o) + 1
2 σj−1(o)

∗,1 σj
(o),1 + 1

2 σj−1(o),2 σj
(o)∗,2] p�→ 0 .

Proof. Given the specification of sustained bipower variation in equation (10), the fact that

each increment is an unbiased estimate of the spot variance for a specific interval and the

general convergence result of BNS (2004, p.10), the difference does converge to zero if the same

quadratic variation fragments are approximated and the assumptions of Proposition 3 hold.
�

Analogously, we can extend Proposition 3 and 4 for i ≥ 0, TBPt,i, STBPt,i, TriPt,i, STriPt,i,

TTriPt,i, and STTriPt,i. The derivable underestimation of integrated quarticity for the ob-

servable process by TriPt,i and TTriPt,i is even more severe. This is due to the fact that the

probability of three consecutive observable return events is only ζ3. The sustained estimators

STriPt,i and STTriPt,i correct for this bias. Finally, we conclude that the same asymptotic

distribution holds for the multipower variation based methods by separately looking at the

observable and latent fragments. However, showing the same bias (correction) for (S)ADS-Min

and (S)ADS-Med is not trivial and therefore left to future research. Additionally note, if a

zero-return is caused by flat prices, we implicitly assume in Proposition 3 and 4 that prices

stay flat within the interval as well. In practice this might not always be true.

3.2 Simulation Study

In the following Monte Carlo experiments we are interested in analyzing the accuracy of the

limit distribution of Zt,ν and the correct detection rate of days with jumps and without jumps

by employing SIVQE. For that, a Heston type price process (see Heston, 1993) with and without

jumps is simulated:

dX(t)
X(t) = μdt +√

v(t)dWX(t) + κ(t)dq(t) ,

dv(t) = (ς −�v(t))dt + η
√

v(t)dWv(t) ,

where μ is the drift, W(⋅)(t) are standard Brownian motions, corr(dWX , dWv) = ρ is the leverage

correlation, v(t) is a stochastic volatility factor, κ(t)dq(t) is a compound Poisson process with a

constant jump intensity λjmp and a random jump size distributed as N(0, σ2
jmp).9 Generally, we

simulate one setting without jumps, one with small and rare jumps (σjmp = 0.0134), and another

with large and rare jumps (σjmp = 0.1). Moreover, we compute 5 (15) minute interval returns

9The parameters and the simulation horizon (30 years with 255 trading days per year and 7.5 trading
hours per day) are chosen according to Schulz and Mosler (2010). Parameter settings: μ = 0.0304, ς = 0.0064,
� = 0.012, η = 0.0711, ρ = −0.622, σjmp = {0.0134,0.1} and λjmp = 0.058. Each second a price is simulated with
the Euler scheme.
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and process the series with the zero-return algorithm of Schulz and Mosler (2010) in order to

proceed with the analysis of how robust SIVQE works in case of flat prices and no trading.

The sampling frequency of 5 minutes is chosen as this is a very common sampling length in

many empirical studies. Additionally, we compute the sampling length of 15 minutes due to

the present empirical high-frequency dataset. For sensitivity interests, we vary the fraction of

zero-returns in the return series from a very low level to a high level.

The analysis of the limit result of Zt,ν in finite samples is graphed in figure 1 for 5 minute

interval returns. In advance, it is worth repeating that in the no-jump case (S)BNS and

(S)CPR are the same, as no trimming of the return series can be justified. Furthermore, in

each panel of figure 1, the simulation results of the original methods serve as direct contrast. In

the upper panels of figure 1, the method of BNS/CPR in combination with and without SIVQE

is plotted for (from the left panel on) 10%, 20%, 40% and 60% zero-returns. Astonishing is to

what extent the bias is reduced by implementing SIVQE. That is, even for a very high fraction

of zero-returns, the limit results of Zt,1/2 seem to be valid. Applying SIVQE to ADS-Min and

ADS-Med (see middle and lower panels of figure 1) likewise yields a considerable reduction in

bias, though for the highest fraction of zero-returns not as pertinent as for SBNS/SCPR.

In the next step, we analyze the rate of correctly detecting days with jumps (=̂(j)) and days

without jumps (=̂(nj)) for the scenario large and rare jumps (# 442), and 5 minute interval

returns (see table 1). To be more precise, we are interested in the question whether the jump

and no-jump detection rate diverge with an increasing fraction of zero-returns from the ideal

case, i.e. 0% zero-returns. For SBNS, SCPR and SADS-Min an increasing fraction of zero-

returns seem to have no impact on both detection rates. That means, SBNS, SCPR and

SADS-Min are extraordinary robust against zero-returns, even if they account more than 50%.

Not as strong but still highly robust are the detection rates for SADS-Med, a result in line with

figure 1. Note that for further comparison purposes, the detection rates without SIVQE are

reported in brackets below respectively in table 1. We notice that with an increasing fraction

of zero-returns the detection rates with and without SIVQE greatly diverge. And second,

by computing the number of overall detected jump days,10 we can derive that the number of

detected jump days rises with an increasing fraction of zero-returns without applying SIVQE,

i.e. the number of spurious jump days increases with a rising occurrence of flat prices and no

trading. For the scenario small and rare jumps (# 435), the conclusions remain qualitatively

similar to the scenario with large and rare jumps (see table 2).

To analyze the overall performance of each method with respect to detecting days with

and without price jumps across different levels of zero-returns, we graph the nonparametric

sensitivity index A for 5 minute interval returns. The outcome for scenario large (small) and

rare jumps can be found in the upper (lower) panel of figure 2. For large and rare jumps (upper

panel in figure 2), we observe that for 1% fraction of zero-returns very similar results of A across

each method with and without SIVQE are obtained. Not observable in the panel is that even

for this small fraction of zero-returns the new approach performs already slightly better in all

10Here: (‘#simulated-jumps’ × ‘(j)’ + (‘#trad.-days’ − ‘#simulated-jumps’)× ’β-error’).
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cases than without SIVQE. By focusing on each method without SIVQE, we can state that for

an increasing fraction of zero-returns, A rapidly decreases across the respective methods. The

negative slope of the A curve is steep for BNS and CPR and less steep for both ADS-Min and

ADS-Med. Turning now to the results for SIVQE, it can be seen that up to 15% fraction of

zero-returns A stays on almost the same level across each method. For an even larger fraction

of zero-returns, A for SBNS, SCPR and SADS-Min remains on almost the same level, whereas

for SADS-Med it gets sooner or later only slightly worse. Additionally, we observe that each

method with SIVQE performs better than the approach proposed by Schulz and Mosler (2010)

(=̂SM ). 11

The direction of the overall performance results do not change for the scenario small and

rare jumps (see lower panel in figure 2). Not explicitly reported are the results for 15 minute

sampling intervals as they give no additional input to the qualitative conclusions already drawn

by 5 minute sampling intervals.12

In summary we can say that SIVQE shows valuable properties in this simulation study.

SIVQE in combination with the methods BNS, CPR, ADS-Min and ADS-Med is quite robust

against zero-returns. It keeps good size and detection rates with respect to the case where no

zero-returns are present.

4 Empirical Analysis: Electricity Forward Contracts

4.1 Data

The high-frequency dataset we are working with is the same as employed by Schulz and Mosler

(2010), covering the period from May 1st 2002 to June 30th 2008. It consists of initially season

forward contracts and later on quarter forward contracts, differing in length of the delivery

period. In 2004, quarter forwards were introduced as a replacement of the season forwards. To

receive a long time series both contracts are treated the same. A further institutional detail

is that contracts are traded on weekdays from 8:00am to 3:30pm. Each traded contract has a

finite life cycle. To create one time series, we merged periods of contracts shortest to maturity

up to seven days before settlement, as the heaviest trading activity regarding number of trades

per day are observed within this life cycle of a forward contract. Not included in the time

series are inactive trading days, like overnights, weekends, holidays and several trading days

with extremely low trading activity. This proceeding results in a time series of high-frequency

transaction prices over 1390 active trading days. The computation of realized variance as in

equation (3) requires to compute sufficiently small interval returns over equidistant time grids.

For each time grid, we assign a price with the previous tick method by Hansen and Lunde

11The approach by Schulz and Mosler (2010) is based on BNS. It aims to reduce the distorting impact of
zero-returns by implicitly maximizing the number of increments in BPt,i and TriPt,i unequal to zero with
an optimal choice of i. Thereafter, the general proceeding of computing the test statistic, jump factor and
integrated variance applies. Details on the optimal choice of i are: (a) fix the number of intraday sampling
intervals M (effective for the full-sample); (b) max

{i∈I}

TriPt,i

(BPt,i)2
, where I = {1,2, ..., ⌊M

2
⌋} .

12The simulation results can be obtained upon request from the author.
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(2003, 2006) and then compute continuously compounded interval returns. To be in line with

the proposed robust approach and not to receive biased interval returns, we only apply the

previous tick method if there is actually observed price data within an interval before a grid

point. Important for the computation of the return series: if at least one grid is without an

assigned price, the corresponding interval return is set to zero. According to Schulz and Mosler

(2010), we set the sampling interval length to 15 minutes, producing 30 interval returns per

day. For 15 minute sampling intervals, the time series consist of 48% zero-returns, whereof 13%

(35%) are due to flat prices (no trading).

4.2 Detecting Price Jumps with Original Methods

Initial empirical results for each original jump detection method is reported in table 3a, where

we can find the proportion of detected jump days across different levels of significance (α). As

Schulz and Mosler (2010) already show, BNS yields for small α an overproportionally large

amount of jump days. Not surprising is the fact that CPR surpasses this amount as CPR

corrects for one drawback of bipower variation for finite M , closely discussed in section 2.2,

but still suffers from zero-returns. The smallest proportion of detected jump days is produced

by the methods ADS-Min and ADS-Med. In order to finer compare the empirical results

across methods, we question whether the 5% most potential jump factors (J̃t,ν) of each method

correspond in occurrence time.13 For this, we formulate the parity measure EJi:

EJi = 2
∑T

t=1 JGt∑T
t=1 (1{J̃t,ν>0} + 1{J̃t,k>0}) , JGt = ⎧⎪⎪⎨⎪⎪⎩ 1 if (J̃t,ν > 0) ∧ (J̃t,k > 0)

0 else
, (15)

where ν ≠ k, ν, k = {1,2, ...,4} and i = {1,2,3}. The upper left part of table 4 reports the output

of EJi. Obviously, the occurrence time of the potential jump factors greatly diverges across

methods. Highlighting is also the large parity of BNS and CPR. This is due to the fact that

they are from a methodic point of view most congruent. Further details about the respective

size of the potential jump factors as well as trading activity14 on these potential jump days

can be found in table 5a. The largest average proportionate contribution of the potential jump

factors to realized variance yields CPR, followed by BNS, ADS-Min and ADS-Med. An almost

reversed order applies to trading activity. ADS-Min and ADS-Med show that the potential

jump days are on average characterized by slightly greater trading activities in comparison to

the full-sample (compare to the last row in table 5).

The considerable discrepancy across methods is mainly due to their individual sensitivity to

zero-returns, i.e. flat prices and no trading. From the previous simulation results, and Schulz

and Mosler (2010), we know that zero-returns have an impact on detecting price jumps in

realized variance, i.e. intraday zero-returns positively distort the test statistic Zt,ν . It arises

13Procedure to compute for each method the series with the 5% most potential jump factors (J̃t,ν): (a)
compute the test statistic across all active trading days; (b) compute the corresponding jump factor for the
largest 5% of all test statistic values; (c) set on the remaining days a jump factor of zero.

14In this study, trading activity is determined via number of trades per day, number of price changes per day,
number of traded contracts and intertrade duration.
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from the Monte Carlo experiments that an ascending fraction of zero-returns amplifies the

degree of the bias. Therefore, it is intuitive that trading activity is a supportive indicator for

specifying, whether a jump is spurious or true. In light of the just mentioned, let us anew

analyze the trading activity on the potential jump days in table 5a. It appears that there

are indications for more spurious jumps detected by BNS and CPR than by ADS-Min and

ADS-Med, as BNS and CPR mostly show that the potential jump days are characterized by

remarkably low trading activity.

4.3 Detecting Price Jumps with Robust Approach

This section discusses the empirical results of the each jump detection method in combination

with SIVQE. We begin with the proportion of jump days given a certain level of significance,

reported in table 3b. Coherent with the output of the Monte Carlo experiment, SBNS, SCPR,

SADS-Min and SADS-Med yield much less jump days as in the original setting, and, in line

with the theory, SCPR slightly more than SBNS. Furthermore consistent with the derivable

simulation results as of table 1 and 2, SADS-Med produces the largest fraction of jump days

and SADS-Min the lowest.

Not only do we receive overall less proportions of jump days given a certain α, but also a

larger parity in occurrence time of the 5% most potential jump factors, reported in the lower

right part of table 4. The latter statement is graphically illustrated in figure 3. In the bottom

panel, the cumulative sum of J̃
1/2
t,ν is graphed over time for SIVQE, which can be directly

compared to the result of the original methods (top panel). We may say that by applying

SIVQE, we overall receive more consistent conclusions across methods.

A further interesting question is to what extent the characteristic of these potential jump

days change from the original setting. In table 5b, the size of the potential jump factors and

trading activity on these potential jump days are specified. Starting with the size: despite

the decline of the average proportionate contribution of the potential jump factors to realized

variance, the average total size of these potential jump factors increases for SBNS and SCPR.

For SADS-Min and SADS-Med it roughly remains on the same level. This is due to the fact

that the potential jump factors are now on days with on average higher trading activity and

realized variance. As mentioned above, this seems more plausible as in the original setting.

Applying trading activity as a qualitative variable, all methods with SIVQE have potential

jump factors on days with above average trading activity. Likewise interesting in table 5 is

the parity in occurrence time of the potential jump factors with the upper 5% right tail of the

empirical distribution of maxt{∣rj ∣}, denoted by rtp. As expected, a considerable intersection

can be observed for SIVQE and a low one working with the original methods. The visualization

of this result can be found in figure 3 by comparing the top and bottom panel with the middle

panel, which graphs maxt{∣rj ∣} over time.

Yet to be clarified is the question which method should be preferred in this specific case. Two

arguments speak for working with SCPR. First, the simulation results of SCPR show slightly

better overall performance (A) for larger fractions of zero-returns. Second, the qualitative
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indicators are strongest. Therefore, it seems preferable to implement SCPR.

5 Conclusion

This paper investigates a selection of comparable methods disentangling contributions from

price jumps to realized variance. Employed methods are by BNS (2004a, 2006a), CPR (2009)

and ADS (2009). Zero-returns, caused by flat prices and no trading, are a pivotal source of

distortion in each method. Therefore, we introduce a new approach to robustify each method

to zero-returns. It is called sustained integrated variance and quarticity estimation (SIVQE).

Under ideal conditions of no zero-returns, we show that the asymptotic distribution of each

method with SIVQE remains the same with respect to its original counterpart. Besides, in

describing the return process with a Bernoulli process we show that the multipower variation

based integrated variance and quarticity estimators by BNS (2004a, 2006a) and CPR (2009)

underestimate the actual quadratic variation of the observable return variation. However,

implementing the methods by BNS (2004a, 2006a) or CPR (2009) with SIVQE does not yield

an underestimation. Furthermore, we show that in case of no price jumps the difference between

realized variance and the robustified multipower variation based integrated variance estimator

of the observable variation converges in probability to zero for a decreasing sampling length.

SIVQE is tested in a Monte Carlo experiment under imperfect market conditions, reflect-

ing different levels of flat price and no trading bias. The convergence criteria under the null

hypothesis of each test statistic are quite robust against an increasing fraction of zero-returns.

The investigation of the accuracy of (no-) jump day detection rates shows that the detection

rates are considerably robust against an increasing fraction of zero-returns. To analyze the

overall performance of detecting days with or without jumps, we employ a nonparametric sen-

sitivity index (A) typically used in signal detection theory. The simulation results for A yield

that SIVQE in combination with the corresponding method definitely performs better across

all zero-return levels than implementing the original methods. Besides, it even constitutes a

better performer than the approach proposed by Schulz and Mosler (2010).

In an empirical analysis, using high-frequency data of electricity forward contracts traded on

the Nord Pool Energy Exchange, measured contributions from price jumps to realized variance

are compared with regard to size and occurrence time. The empirical study shows considerable

differences across the original methods, foremost amongst the 5% most potential jump factors.

In addition, these potential jump days are typically characterized with below average trading

activity and a small amount of extreme price movements, indicating a large fraction of spurious

price jumps. With the same proceeding, we analyze the empirical results for SIVQE and find

more plausible conclusions. For the present high-frequency dataset there are indications for

preferring SIVQE with the method of CPR (2009) as the qualitative indicators are strongest.

The introduction of SIVQE raises further interesting research questions. Of interest would

be to elaborate on alternative estimators for the sustainer, utilized either in the integrated

variance or quarticity estimators. Moreover, it would be interesting to extend the idea of

SIVQE for a multivariate setting, i.e. for existing realized covariance or covariation estimators.
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[16] Eraker, B. (2004) Do stock prices and volatility jump? reconciling evidence from spot and option
prices. Journal of Finance, 59, 1367–1404.

[17] Eraker, B., Johannes, M. S., and Polson, N. (2003) The impact of jumps in volatility and returns.
Journal of Finance, 58, 1269–1300.

[18] Hansen, P. R. and Lunde, A. (2006) Realized variance and market microstructure noise. Journal
of Business and Economic Studies, 24, 127–161.

[19] Hansen, P. R. and Lunde, A. (2003) An optimal and unbiased measure of realized variance based
on intermittent high-frequency data. Unpublished paper, Department of Economics, Stanford
University.

[20] Heston, S. L. (1993) A closed-form solution for options with stochastic volatility with applications
to bond and currency options. The Review of Financial Studies, 6, 327–343.

[21] Huang, X. and Tauchen, G. (2005) The relative contribution of jumps to total price variance.
Journal of Financial Econometrics, 3, 456–499.

[22] Jiang, G. J. and Oomen, R. C. (2008) Testing for jumps when asset prices are observed with
noise - a ”swap variance” approach. Journal of Econometrics, 144, 352–370.

[23] Lee, S. S. and Mykland, P. A. (2008) Jumps in financial markets: A new nonparametric test and
jump dynamics. Review of Financial Studies, 21, 2535–2563.

[24] Mancini, C. (2009) Non parametric threshold estimation for models with stochastic diffusion
coefficient and jumps. Scandinavian Journal of Statistics, 36, 270–296.
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Appendix

A1. Sustained Integrated Quarticity Estimators

Formalization of sustained tripower quarticity (STriPt,i , ν = 1) and sustained threshold

tripower quarticity (STTriPt,i , ν = 2), summarized in SÎQt,ν (ν = 1,2):

SÎQt,ν = Δi

M∑
j=1+2(1+i)

[1b1 (r̆j−2(1+i),ν r̆j−(1+i),ν r̆j,ν)
+ 1b2 (ωj−2(1+i),ν ωj−(1+i),ν r̆j,ν) 1

3 + 1b3 (ωj−2(1+i),ν r̆j−(1+i),ν ωj,ν) 1
3+ 1b4 (r̆j−2(1+i),ν ωj−(1+i),ν ωj,ν) 1

3 + 1b5 (r̆j−2(1+i),ν r̆j−(1+i),ν ωj,ν) 2
3+ 1b6 (r̆j−2(1+i),ν ωj−(1+i),ν r̆j,ν) 2

3 + 1b7 (ωj−2(1+i),ν r̆j−(1+i),ν r̆j,ν) 2
3
] .

For ν = 1, r̆j,1 = ∣rj ∣4/3, and for ν = 2, r̆j,2 = Ψ4/3(rj, θ). The indicator functions 1b1, . . . ,1b7

have the same definition as in equation (12). In light of the concept of (threshold) tripower

quarticity, we suggest likewise a reasonable proxy for ωj,ν, i.e. ωj,ν = E (r̆j,ν). In the absence of

price jumps, ωj,ν can be estimated on day t by:

ω̂j,ν = σ̂
4/3
ν 22/3 Γ(7/6)

Γ(1/2) , with σ̂ν = √
π

2

1

N

M∑
j=1

∣rj ∣ , where N = M∑
j=1

1{∣rj ∣>0} .

In the presence of price jumps,

ω̂j,ν = σ̂
4/3
ν 22/3 Γ(7/6)

Γ(1/2) , with σ̂ν = √
Θδ

τ ,

where Θδ
τ is specified in equation (8).

Formalization of sustained MinRQ (SMinRQt):

SMinRQt = M
π

3π − 8
( M

M − 1
) M∑

j=2
[1a1 min (∣rj−1∣ , ∣rj ∣)4

+ 1a2 min (∣rj−1∣ , ℘j,3)4 1
2 + 1a2 min (℘j−1,3 , ∣rj ∣)4 1

2
] ,

where the indicator functions 1a1,1a2 and 1a3 are defined as in equation (11) with i = 0. ℘j,3

is estimated as of equation (13) in the absence of price jumps, and as of equation (14) in the

presence of price jumps.

Formalization of sustained MedRQ (SMedRQt):

SMedRQt = M
3π

9π + 72 − 52
√

3
( M

M − 2
) M∑

j=3
[1b1 med (∣rj−2∣ , ∣rj−1∣ , ∣rj ∣)4

+ 1b2 med (℘j−2,4 , ℘j−1,4 , ∣rj ∣)4 1
3 + 1b3 med (℘j−2,4 , ∣rj−1∣ , ℘j,4)4 1

3

+ 1b4 med (∣rj−2∣ , ℘j−1,4 , ℘j,4)4 1
3 + 1b5 med (∣rj−2∣ , ∣rj−1∣ , ℘j,4)4 2

3

+ 1b6 med (∣rj−2∣ , ℘j−1,4 , ∣rj ∣)4 2
3 + 1b7 med (℘j−2,4 , ∣rj−1∣ , ∣rj ∣)4 2

3
] ,

where the indicator functions 1b1, . . . ,1b7 are defined as in equation (12) with i = 0. ℘j,4 can

be estimated as of equation (13) in the absence of price jumps, and as of equation (14) in the

presence of price jumps.
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A2. Proof of Proposition 3

Assume a price process as of equation (1) without price jumps. Furthermore, assume that the

return process consists of observable (o) and latent (�) fragments. The two states are described

by a Bernoulli process,

rj = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
r
(o)
j if γj = 1 ,

r
(
)
j if γj = 0 ,

(16)

where γj is a Bernoulli sequence independent of the return process, with E(γj = 0) = 1 − ζ ,

E(γj = 1) = ζ , and ζ ∈ (0,1]. r
(o)
j is an observable return, whereas r

(
)
j is latent. Time change is

random and discontinuous. The specification of rj implies that

rj = r
(o)
j γj + r

(
)
j (1 − γj) or r2

j = r2(o)

j γj + r2(�)

j (1 − γj) . (17)

In light of Theorem 2.1 by Phillips and Yu (2008) the model for rj in equation (16) preserves

the martingale property. According to the specification of the return process in equation (17),

realized variance is for [t-1, t]:
RVt = M∑

j=1
r2
j = M∑

j=1
[r2(o)

j γj + r2(�)

j (1 − γj)] = M∑
j=1

r2(o)

j γj + M∑
j=1

r2(�)

j (1 − γj) = RV
(o)
t + RV

(
)
t .

r
(o)
j occurs with probability ζ , and so does the corresponding spot variance estimate r2(o)

j .

Therefore, the observable quadratic variation RV
(o)
t is figuratively linked to the probability ζ .

Correspondingly, the latent quadratic variation RV
(
)
t is linked to the probability (1 − ζ). In

other words, the variation produced by r
(o)
j is completely captured by RV

(o)
t . The estimation

of the spot variances with r2(o)

j is not influenced by the previous or following event. This makes

the spot variance estimates produced by realized variance robust to the influence of previous

or following events.

Proceeding likewise with incorporating the return process as of equation (17) in bipower

variation yields,

BPt,0 = M

M − 1
ϕ1

M∑
j=2

∣r(o)j−1 γj−1 + r
(
)
j−1 (1 − γj−1)∣ ∣r(o)j γj + r

(
)
j (1 − γj)∣

= M

M − 1
ϕ1

M∑
j=2

[∣r(o)j−1∣γj−1 + ∣r(
)j−1∣ (1 − γj−1)] [∣r(o)j ∣γj + ∣r(
)j ∣ (1 − γj)]
= M

M − 1
[ϕ1

M∑
j=2

∣r(o)j−1∣ ∣r(o)j ∣γj−1 γj + ϕ1

M∑
j=2

∣r(
)j−1∣ ∣r(o)j ∣ (1 − γj−1)γj

+ ϕ1

M∑
j=2

∣r(o)j−1∣ ∣r(
)j ∣γj−1 (1 − γj) + ϕ1

M∑
j=2

∣r(
)j−1∣ ∣r(
)j ∣ (1 − γj−1) (1 − γj)]
= BP

(o)
t,0 + BP

(
)∗,1
t,0 + BP

(
)∗,2
t,0 + BP

(
),3
t,0 ,

where E(γj−1 = 1, γj = 1) = ζ2, and E(γj−1 = 0, γj = 1) = E(γj−1 = 1, γj = 0) = ζ(1 − ζ). BP
(o)
t,0 is

the observable quadratic variation. Each increment in BP
(o)
t,0 represents an unbiased estimate of
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the spot variance. This observable spot variance estimator requires that two consecutive events

yield the state ‘(o)’, which happens only with probability ζ2. That means, the occurrence

of one event ‘(o)’ does not guarantee a spot variance estimate contributing to BP
(o)
t,0 . All

other consecutive events like ‘(�)-(o)’, ‘(o)-(�)’ and ‘(�)-(�)’ represent the latent spot variance

estimates of either partly observable and latent, or solely latent return variations, and have a

joint probability of 1−ζ2. The latent part of BPt,0 amounts to BP
(
)∗,1
t,0 +BP

(
)∗,2
t,0 +BP

(
),3
t,0 and

can be linked to the probability 1 − ζ2. Therefore, if 0 < ζ < 1, RV
(o)
t > BP

(o)
t,0 . If and only if

ζ = 1, BP
(o)
t,0 is in limit equal to RV

(o)
t .

Now, we will define SBPt,0 with the return process of equation (17). Before, let us rewrite

BPt,0 with respect to the decomposition of equation (9):

BPt,0 = M

M − 1
ϕ1

M∑
j=2

[∣r(o)j−1∣ ∣r(o)j ∣γj−1 γj + 1
2 ∣r(
)j−1∣∣r(o)j ∣ (1 − γj−1)γj

+ 1
2 ∣r(
)j−1∣ ∣r(o)j ∣ (1 − γj−1)γj + 1

2 ∣r(o)j−1∣∣r(
)j ∣γj−1 (1 − γj)+ 1
2 ∣r(o)j−1∣∣r(
)j ∣γj−1 (1 − γj) + ∣r(
)j−1∣∣r(
)j ∣ (1 − γj−1) (1 − γj)] .

Now we can define SBPt,0, incorporating the specifications of equation (10):

SBPt,0 = M

M − 1
[ϕ1

M∑
j=2

∣r(o)j−1∣ ∣r(o)j ∣γj−1 γj + ϕ1

M∑
j=2

1
2 ℘j−1 ∣r(o)j ∣ (1 − γj−1)γj

+ϕ1

M∑
j=2

1
2 ∣r(o)j−1∣ ℘j γj−1 (1 − γj) + ϕ1

M∑
j=2

1
2 ∣r(
)j−1∣ ∣r(o)j ∣ (1 − γj−1)γj

+ϕ1

M∑
j=2

1
2 ∣r(o)j−1∣ ∣r(
)j ∣γj−1 (1 − γj) + ϕ1

M∑
j=2

∣r(
)j−1∣ ∣r(
)j ∣(1 − γj−1) (1 − γj)]
= SBP

(o)
t,0 + sBP

(o)∗,1
t,0 + sBP

(o)∗,2
t,0 + sBP

(
)∗,1
t,0 + sBP

(
)∗,2
t,0 + SBP

(
),3
t,0 ,

where SBP
(o)
t,0 is the observable and sBP

(o)∗,1
t,0 + sBP

(o)∗,2
t,0 the sustained observable quadratic

variation times 0.5. The probability of the event ‘(o)-(o)’ is again ζ2, which accounts to

SBP
(o)
t,0 . The events ‘(o)-(�)’ and ‘(�)-(o)’ occur with probability ζ − ζ2, respectively. The

resulting probability of a sustained observable event is ζ − ζ2 contributing either to sBP
(o)∗,1
t,0

or sBP
(o)∗,2
t,0 . Therefore, the joint probability of ‘(o)-(o)’, and ‘(o)-(�)’ or ‘(�)-(o)’ amounts to

ζ2 +(ζ − ζ2) = ζ . With SIVQE we ensure that SBP
(o)
t,0 + sBP

(o)∗,1
t,0 + sBP

(o)∗,2
t,0 approximates the

same amount as RV
(o)
t . The latent part of SBPt,0 amounts to sBP

(
)∗,1
t,0 + sBP

(
)∗,2
t,0 +SBP

(
),3
t,0 ,

which now can be linked to the probability 1 − ζ .

�
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Figures

Figure 1: QQ plots of Zt,ν statistic for 5 minute sampling intervals, with(out) SIVQE
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Zt,4
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Figure 1: continued

40% zero-returns 60% zero-returns

Zt,1

&
Zt,2

Zt,3

Zt,4

Remarks: Simulated realization of the Heston type price process without jumps for 7650 days with parameter
specifications and algorithm for zero-returns as of section 3.2. Daily Zt,ν statistic with(out) SIVQE and
5 minute sampling intervals. In the correspondingly labeled panels we simulate 10%, 20%, 40% and 60%
zero-returns. In the upper, middle and lower panels, daily Zt,1/2, Zt,3 and Zt,4 statistic with(out) SIVQE is
depicted. The ordinate labels the quantiles of the simulated input sample, the abscissa the standard normal
quantiles. The solid bisecting line graphs the theoretical result. The crosses (squares) represent the results
with(out) SIVQE.
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Figure 2: Nonparametric sensitivity index A for 5 minute sampling intervals, large/small and

rare jumps, and various fraction of zero-returns
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Remarks: Simulated realization of the Heston type price process with jumps (#: 442, 435) for 7650 days with
parameter specifications and algorithm for zero-returns as of section 3.2. The curves represent A for either
(S)BNS, (S)CPR, (S)ADS-Min, (S)ADS-Med or SM with Zt,ν and α = 5%. The upper (lower) panel graphs
the curves for 5 minute sampling intervals with large (small) and rare jumps. A further note to CPR: Θδ

τ did
not converge after δ = 50 iterations using 5 minute interval returns and 60% (60% and 50%) zero-returns with
large (small) and rare jumps. For this, the test statistic was computed based on δ = 50.
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Figure 3: Cumulative sum of J̃
1/2
t,ν and maxt{∣rj ∣}
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Remarks: Sample from May 2002 to June 2008. The top (bottom) panel graphs the cumulative sum of the 5%
most potential jump factors to the power of 0.5 (J̃1/2

t,ν ) for (S)BNS, (S)CPR, (S)ADS-Min and (S)ADS-Med.
The middle panel represents the daily maximum of absolute interval returns (maxt{∣rj ∣}).
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Tables

Table 1: Jump and no-jump day detection rate for simulated time series: large and rare

jumps, 5 minute sampling intervals and varying fraction of zero-returns

Zero- SBNS SCPR SADS-Min SADS-Med

Ret. (nj) (j) (nj) (j) (nj) (j) (nj) (j)

0% 0.952 0.966 0.949 0.971 0.956 0.959 0.949 0.966

0.950 0.966 0.947 0.971 0.956 0.959 0.956 0.968
1%

(0.936) (0.966) (0.933) (0.971) (0.950) (0.962) (0.945) (0.968)

0.950 0.966 0.947 0.971 0.959 0.962 0.948 0.968
5%

(0.850) (0.973) (0.841) (0.975) (0.918) (0.966) (0.919) (0.968)

0.949 0.975 0.945 0.975 0.957 0.962 0.941 0.973
10%

(0.680) (0.980) (0.673) (0.982) (0.856) (0.975) (0.877) (0.975)

0.947 0.971 0.944 0.975 0.949 0.968 0.898 0.973
25%

(0.199) (0.993) (0.185) (0.998) (0.618) (0.980) (0.663) (0.984)

0.960 0.971 0.957 0.973 0.953 0.966 0.851 0.977
50%

(0.010) (1.000) (0.003) (1.000) (0.333) (0.989) (0.260) (0.991)

Remarks: Simulated realization of the Heston type price process with jumps (σjmp = 0.1) for 7650 days with
parameter specifications and algorithm for zero-returns as of section 3.2 (here: # 442 price jumps). Each (nj)
((j)) cell reports the percentage amount of correctly identified no-jump days (jump days) with Zt,ν and α = 5%,
using either SBNS, SCPR, SADS-Min or SADS-Med. In brackets, the corresponding rate without employing
SIVQE can be found.
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Table 2: Jump and no-jump day detection rate for simulated time series: small and rare

jumps, 5 minute sampling intervals and varying fraction of zero-returns

Zero- SBNS SCPR SADS-Min SADS-Med

Ret. (nj) (j) (nj) (j) (nj) (j) (nj) (j)

0% 0.949 0.864 0.944 0.892 0.960 0.846 0.948 0.874

0.949 0.867 0.944 0.894 0.960 0.846 0.956 0.874
1%

(0.932) (0.876) (0.927) (0.899) (0.953) (0.848) (0.944) (0.876)

0.945 0.867 0.942 0.892 0.958 0.851 0.946 0.878
5%

(0.840) (0.890) (0.834) (0.915) (0.913) (0.860) (0.916) (0.883)

0.944 0.874 0.940 0.899 0.958 0.855 0.937 0.892
10%

(0.669) (0.910) (0.660) (0.929) (0.860) (0.894) (0.871) (0.901)

0.945 0.885 0.942 0.903 0.956 0.876 0.895 0.897
25%

(0.188) (0.982) (0.174) (0.989) (0.619) (0.936) (0.658) (0.943)

0.955 0.890 0.951 0.908 0.948 0.885 0.849 0.917
50%

(0.010) (0.995) (0.004) (1.000) (0.340) (0.952) (0.260) (0.970)

Remarks: Simulated realization of the Heston type price process with jumps (σjmp = 0.0134) for 7650 days with
parameter specifications and algorithm for zero-returns as of section 3.2 (here: # 435 price jumps). Each (nj)
((j)) cell reports the percentage amount of correctly identified no-jump days (jump days) with Zt,ν and α = 5%,
using either SBNS, SCPR, SADS-Min or SADS-Med. In brackets, the corresponding rate without employing
SIVQE can be found. A further note to CPR reported in brackets below SCPR: Θδ

τ did not converge after
δ = 50 iterations using 5 minute interval returns and 50% zero-returns. For this, the test statistic was computed
based on δ = 50.

32



Table 3: Empirical proportion of detected jump days across different levels of significance (α)

for 15 minute sampling intervals

α = 5% α = 1% α = 0.1% α = 0.01%

a) Original

BNS 0.604 0.434 0.265 0.165

CPR 0.740 0.604 0.415 0.297

ADS-Min 0.171 0.037 0.001 0.001

ADS-Med 0.288 0.117 0.028 0.004

b) SIVQE

SBNS 0.048 0.013 0.002 0.001

SCPR 0.063 0.023 0.006 0.003

SADS-Min 0.040 0.008 0.001 0.001

SADS-Med 0.124 0.047 0.008 0.001

Remarks: Sample from May 2002 to June 2008. Part a) of the table reports the empirical proportion of detected
jump days across different levels of significance using the methods BNS, CPR, ADS-Min and ADS-Med. Part
b) of the table correspondingly reports the outputs for SBNS, SCPR, SADS-Min and SADS-Med.
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Table 4: Empirical parity in occurrence time of the 5% most potential jump factors across

methods with 15 minute sampling intervals

BNS CPR ADS-

Min

ADS-

Med

SBNS SCPR SADS-

Min

SADS-

Med

BNS 1

CPR 0.64 1

ADS-Min 0.06 0.10 1

ADS-Med 0.12 0.12 0.49 1

SBNS 0.13 0.13 0.22 0.30 1

SCPR 0.12 0.12 0.26 0.35 0.88 1

SADS-Min 0.07 0.12 0.62 0.49 0.33 0.38 1

SADS-Med 0.09 0.10 0.46 0.61 0.42 0.46 0.59 1

Remarks: The table presents the output for the parity in occurrence time of the 5% most potential jump factors
using the empirical sample from May 2002 to June 2008. It further distinguishes between jump detection
methods using the original setting and SIVQE.
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