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Network Dependency in Migration Flows –
A Space-time Analysis for Germany since
Re-unifi cation

Abstract
The contribution of this paper is to analyse the role of network interdependencies in 
a dynamic panel data model for German internal migration fl ows since re-unifi cation. 
So far, a capacious account of spatial patterns in German migration data is still miss-
ing in the empirical literature. In the context of this paper, network dependencies 
are associated with correlations of migration fl ows strictly attributable to proximate 
fl ows in geographic space. Using the neoclassical migration model, we start from 
its aspatial specifi cation and show by means of residual testing that network depen-
dency eff ects are highly present. We then construct spatial weighting matrices for our 
system of interregional fl ow data and apply spatial regression techniques to properly 
handle the underlying space-time interrelations. Besides spatial extensions to the 
Blundell-Bond (1998) system GMM estimator in form of the commonly known spatial 
lag and unconstrained spatial Durbin model, we also apply system GMM to spatially 
fi ltered variables. Finally, combining both approaches to a mixed spatial fi ltering-
regression specifi cation shows a remarkably good performance in terms of captur-
ing spatial dependence in our migration equation and at the same time qualify the 
model to pass essential IV diagnostic tests. The basic message for future research is 
that space-time dynamics is highly relevant for modelling German internal migration 
fl ows.
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1 Introduction

This paper aims to take an explicit account of spatial interdependencies in dynamic panel

data (DPD) models to explain German internal migration flows since re-unification. While

research in the field of spatial econometrics has evolved rapidly within the last years (see

Florax & Van der Vlist, 2003, Anselin, 2007), applications to dynamic processes for panel

data are still at an experimental stage. Nevertheless, a proper handling of spatial autocor-

relation besides controlling for time dynamic adjustment processes may have important

implications from a statistical as well as theoretical perspective.1 Regarding the latter

point, different scholars have already pointed out the likely role played by spatial auto-

correlation in analyzing migration (see e.g. Cushing & Poot, 2003, and LeSage & Pace,

2008 & 2009). Spatial autocorrelation measures the correlation of values for an individual

variable, which are strictly attributable to the proximity of those values in geographic

space. Depending on its source, spatial interdependences may either be captured through

a spatial lag term of the dependent variable, the explanatory variables and/or the error

term. In this paper we take a general perspective and apply both the spatial lag as well

as the unconstrained spatial Durbin model, which augments the spatial lag approach by

additionally controlling for spatially lagged terms of the exogenous variables.

Concerning the proper choice of the estimation strategy, Kukenova & Monteiro (2009)

point out that so far none of the available estimators allows to consider a dynamic spatial

lag panel model with additional endogenous right hand side variables beside the spa-

tial/time lag of the endogenous variable.2 Given the potential source of right hand side

endogeneity – defined as correlation for any regressor with the error term of the model

– this is a clear shortcoming for empirical application. The authors therefore propose

an estimation strategy that starts from the standard Blundell-Bond (1998) system GMM

approach (SYS-GMM) and augments the latter estimator by valid instruments for the

spatial lag variable – both for the equations in levels and first differences.

The main advantage of this estimation approach is that it stays within the flexible

SYS-GMM framework (which is now available for many econometric software packages)

combined with an explicit treatment of spatial issues. Using a Monte Carlo simulation

exercise, Kukenova & Monteiro (2009) show that this augmented SYS-GMM can consis-

tently estimate the spatially augmented specifications for standard data settings (large

N , small T ). First applications of a spatial dynamic panel model estimated by GMM

1The importance of timely adjustment processes in modelling internal migration flows for Germany has recently been
shown by Alecke et al. (2010).

2Throughout the paper the term ’spatial lag’ is used to indicate the presence of a ’spatially lagged dependent variable’
among the right hand side regressors of a mixed regressive spatial autoregressive model (see e.g. Ward & Gleditsch, 2008).
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are given in Bouayad-Agha & Vedrine (2010) as well as Elhorst et al. (2010). The lat-

ter authors also show, how to effectively combine the GMM approach with alternative

estimation techniques to increase the estimator’s overall performance.

Of vital importance in the context of migration flow modelling is also the appropriate

specification of a spatial weighting matrix in order to identify the underlying spatial – or

in this context – spatial network autocorrelation structures (see Black, 1992). Different

to the design of weight matrices in standard models of spatial dependence, the framework

for modelling network flows requires to shift attention from a two–dimensional space for

n regions and n × n origin–destination pairs to a four dimensional space with n2 × n2

origin-destination linkages. As Fisher & Griffith (2008) point out, the geographical space

in which flow origins on the one hand, and flow destinations on the other hand are

located, may both be a source of spatial dependence in the level of flows originating

and/or terminating in regions nearby. Proximity can be defined as first-order origin or

destination related contiguity, specified by a spatial weighting matrix of the form that it

explicitly accounts for the cumulative impact of origin and destination interaction effects.

The contribution of this paper is thus twofold: First, given its importance for mapping

spatial dependencies in empirical models of origin-destination flow data, throughout the

analysis we will put a special focus on the specification of spatial weighting matrices for

internal migration flow data. We then use the derived spatial variables for a time-space

analysis of German migration dynamics. While time dynamic models are by now standard,

the analysis augments the existing body of empirical research by an explicit account of

space. Of particular interest is, whether the effect of regional labour market signals,

which are typically found to be an important driving force of internal migration flows in

standard model specification, also hold for spatially upgraded versions. Second, given the

novelity of econometric tools for a joint handling of time-space dynamic processes, the

paper also explores ways, how to efficiently estimate these complex relationships.

The remainder of the paper is organized as follows: In the next section we outline our

empirical estimation strategy, starting from a short description of the neoclassical migra-

tion model. We then demonstrate how network dependency structures can be translated

into a spatial weighting matrix for empirical estimation and discuss different methods

to spatially upgrade dynamic panel data estimators. After a brief overview of the data

used for estimation and some stylized facts of migration flows between German states in

section 3, section 4 then estimates the different spatial dynamic panel models by means

of SYS-GMM. These include spatial lag and spatial Durbin model specifications as well

as standard SYS-GMM to spatially filtered variable as a benchmark case. We also report

the performance of mixed spatial filtering-regression techniques. Section 5 concludes.
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2 Econometric Model Specification

2.1 Neoclassical Migration: A Benchmark Model

In this section we briefly outline the neoclassical migration model as a starting point for

our empirical analysis. According to the neoclassical framework, a representative agent

decides to move between two regions if this improves his welfare position relative to not

moving. Relevant factors for this decision are the expected incomes in the home (origin)

and alternative (destination) region net of ’transportation’ costs for the case of moving.

Expected income in turn can be expressed a function of the wage rate and the probability

of being employed, where the latter is inversely related to the regional unemployment

rate. This underlying idea has been formally elaborated in Harris & Todaro (1970) and

may be summarized in terms of a stylized equation for net in-migration flows between

region i and region j (NMij) conditional on a set of explanatory variables as3

NMij = f(WRi,WRj , URi, URj , Si, Sj , Cij), (1)

where WR denotes the real wage rate, UR is the unemployment rate, C are the costs of

moving and S is a set of additional economic and non-economic variables that may work

as pull or push factors for regional migration flows. We expect that an increase in the

home region’s real wage rate ceteris paribus leads to higher net in-flows, while a real wage

rate increase in region j results in lower net in-migration flows to region i. By contrast,

an increase in the unemployment rate in region i relative to j has negative effects on net

in-migration to i. Costs of moving between the two regions are typically expected to be

an impediment to migration and are thus supposed to be negatively correlated with net

migration.

For empirical application eq.(1) is typically specified in a log-linear form. In addition

to the explanatory factors in the stylized migration equation, we also account for likely

information lags in the transmission process from the explanatory to the endogenous

variable, as well as assume that migration flows themselves adjust with a lag structure.

The inclusion of the time lagged endogenous variable has proven to be an important

factor in the adjustment path of German migration flows (see e.g. Alecke et al., 2010)

and may reflect different channels through which past flows affect current migration (e.g.

since migrants serve as communication links for friends and relatives left behind), which

in turn has a potential impact on prospective migrants who want to live in an area where

they share cultural and social backgrounds with other residents (see e.g. Chun, 1996,

3Where positive values indicate a net surplus in region i.
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for a detailed discussion). We restrict explanatory variables to enter as inter–regional

differences resulting in a triple-indexed model specification (ij, t), where the index ij for

each exogenous variable denotes regional difference between region i and region j, t is the

time index:4

nmij,t = αnmij,t−1 + β1w̃rij,t−1 + β2ũrij,t−1 + β3Δ̃ylrij,t−1 (2)

+β4q̃ij,t−1 + β5h̃cij,t−1 + β6Δ̃plij,t−1 + μij + νij,t

where x̃ij,t for any variable xij,t is defined as x̃ij,t = (xi,t − xj,t). The error term is

assumed to have the typical one-way error component structure (μij+νij,t). Net migration

is defined as in- minus out-migration for each period as nmij,t = (inmij,t−outmij,t). Next

to the core labour market variables in terms of real wages (w̃r) and unemployment rates

(ũr) we include growth in real labour productivity (Δỹlr), the labour participation rate

(q̃), a human capital index (h̃c) and the annual growth in land prices (Δp̃l) as control

variables. To account for differences in the standards of living, we explicitly deflate real

wages by regional consumer prices (see e.g. Roos, 2006, for details).

2.2 Network Dependency Structures in Migration Flows

In the majority of empirical applications, migration flows between an origin and a desti-

nation region are typically assumed to be independent of other migration flows associated

with different origin destination pairs. However, as Chun (2008) points out, an individual

migration decision may be seen as a result of choice processes in space, which is likely to

be influenced by other migration flows at the macro level. In this sense, outflows from

a particular origin may be correlated with other outflows that have the same origin and

geographically proximate destination regions given unobservable characteristics of origins

and destinations in the sample. The associated dependency among flow data is measured

in terms of network autocorrelation. If empirical model building does not account for

such network autocorrelation effects in mapping migration flows, results are likely to be

biased and may lead to unreliable conclusions (see e.g. LeSage & Pace, 2008).

In order to properly account for any form of spatial autocorrelation, we will analyse

migration flows in the context of network structures, where individual flows are assumed to

be related to one another. The relationship among network flows can then be arranged in

a spatial weighting matrix. However, while a standard spatial weighting matrix typically

4In the following, logs are denoted by small characters.
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has an n × n dimension for an underlying tessellation containing n spatial regions, the

dimension of a network weighting matrix becomes (n2 × n2) – or analogously [(n2 − n)×

(n2 − n)] in a system of n region if we abstract from non-zero flows within each region,

which is typically true for interregional migration data.

Formally, we follow LeSage & Pace (2008) and define M to be an n× n square matrix

of interregional migration flows in a closed system from each of the n origin regions to

each of the n destination regions, where the columns represent different origins (oi) and

the rows represent destinations (dj) with i, j = 1, . . . , N as

M
(n× n) =

⎛⎜⎜⎜⎜⎜⎜⎝
o1 → d1 o2 → d1 . . . on → d1

o1 → d2 o2 → d2 . . . on → d2
...

...
. . .

...

o1 → dn o2 → dn . . . on → dn

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Taking an origin-centric perspective, we can then construct a stacked (n2 × 1) vector

m = vec(M), whose first n elements reflect flows from origin 1 to all n destinations and

whose last n elements represent flows from origin n to destinations 1 to n. The resulting

research task is to specify a spatial weight matrix for the vector m to capture spatial

connectivity between origin-destination flows. In this context, Fisher & Griffith (2008)

point at the need to shift attention from a two–dimensional space for n regions and n×n

origin (i), destination (j) pairs {i, j|i �= j; i, j = 1, . . . , n} to a four dimensional space with

n2×n2 origin-destination linkages {i, j, r, s|i �= j, r �= s; i, j = 1 . . . , n; r, s = 1, . . . , n}. An

appropriate spatial weighting matrix (W ∗) should then be able to jointly capture a set of

origin related interaction effects (W o) and a set of destination interaction effects (W d) as

W ∗ = W o +W d (4)

The elements wo of the origin-based spatial weights matrix W o can be defined as

wo(i, j; r, s) =

⎧⎨⎩ 1 if j = s and c(i, r) = 1,

0 otherwise,
(5)

where c(i, r) is the element of a conventional (n× n) link matrix with

c(i, r) =

⎧⎨⎩ 1 if i �= r and i and r are spatially linked to each other,

0 otherwise.
(6)

In this framework, the spatial link between origins i and r may either be measured

in terms of a common border or equivalently by defining a threshold distance and oper-
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ationalize it in a binary way for i and r to be linked. The spatial weights matrix W o

thus specifies an origin-based neighborhood set for each origin-destination pair (i,j). Ac-

cording to Fisher & Griffith (2008) each element wo(i, j; r, s) defines an origin-destination

pair (r,s) as being a neighbor of (i,j) if the origin regions i and r are contiguous spatial

units and j = s. In similar veins the specification of the destination based spatial weights

matrix W d consists of the following elements wd as

wd(i, j; r, s) =

⎧⎨⎩ 1 if i = r and c(j, s) = 1,

0 otherwise,
(7)

where

c(j, s) =

⎧⎨⎩ 1 if j �= s and j and s are spatially linked to each other,

0 otherwise.
(8)

The full weighting matrix W ∗ can be used in its binary – or alternatively – row-

standardized form, where the latter elements w̄∗ are subject to the following transforma-

tion as

w̄∗(ij; r, s) =

⎡⎢⎢⎢⎣w∗(i, j; r, s)
/ n2∑

r′,s′=1

(r′,s′)�=(i,j)

w∗(i, j; r′, s′)

⎤⎥⎥⎥⎦ . (9)

Applied to the field of migration research Chun (2008) argues that the use of the

full weighting matrix W ∗ associated with simultaneous origin- and destination-related

interaction effects can be motivated by theoretical concepts such as the ’intervening op-

portunities’ and ’competing destinations’ model. In this logic the specification of W o

– linking network flows from spatially linked origins to one particular destinations – is

supposed to mirror the effect of intervening opportunities in the path of migratory move-

ments from an origin to a pre-selected destination: Here, movements of people in space

are modelled upon the idea that the number of migration flows between two regions is

determined by the availability of different intervening opportunities (such as the number

of available jobs etc.) existing between the origin and the destination. Under the assump-

tion that migrants move as short a distance as possible, the intervening opportunities

model then provides a behavioral argument of spatial search in sequential form, where

the spatial arrangement of regions – predominately around an origin – has great influence

on the number of potential intervening opportunities (for details see e.g. Freymeyer &

Ritchey, 1985, Chun, 2008). Thus, given that intervening opportunities exist in regions

that are located between an origin and destination, migration flows to one particular des-
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tination from a number of origins, which are spatially close to each other, are likely to be

correlated.

Likewise, the specification of the destination-related weighting matrix W d in eq.(7)

and eq.(8) can be motivated by competing destinations effects from the perspective of

a particular origin region (see e.g. Fotheringham, 1983, Hu & Pooler, 2002). The basic

idea of the competing destinations approach is to model human behavior as a spatial

choice process based on the assumption that the actual choice occurs through hierarchical

information processing since migrants are supposed to be only able to evaluate a lim-

ited number of alternative at a time. Hence, prospective migrants tend to simplify the

alternatives by categorizing all alternatives into clusters, where the probability that one

destination in a certain cluster will be chosen is related to the other regions in that clus-

ter. This clustering effect in turn requires that spatial proximity of destinations has an

influence on the destination choice of migrants from one particular origin. The competing

destinations approach reflects a two-stage decision process, where the attractiveness of all

defined groups of destinations is evaluated and a particular group is chosen in a first step.

In the second step then the individual destination will be selected out of this group.

For empirical application it is reasonable to assume that both effects are in order and

operate simultaneously so that the aggregated weight matrix W ∗ may be an appropriate

choice for analyzing the range of cumulative network effects in migration flows. Recent

research results on closely related modes of network modelling e.g. given in Guldmann

(1999), Almeida & Goncalves (2001), Hu & Pooler, 2002, and LeSage & Pace (2008)

among others generally support this view.5 Throughout the rest of the paper we will thus

use the combined weight matrix W ∗ in order to capture network autocorrelation effects

in German migration flows. Further details about the empirical operationalization in the

specification of the spatial weighting matrix will be given in section 3.

2.3 Spatial Upgrading of Dynamic Panel Data Models

Given the likely importance of space and time interdependences in migration flows, in this

section we propose an estimation strategy, which is able to account for spatial dependence

in a dynamic panel data model. As Bouayad-Agha & Vedrine (2010) point out, estimation

methods for the simultaneous treatment of space and time interrelations must deal with

three main and potentially linked problems: First, serial dependence at each point in

time; second, spatial dependence at each point of time; and finally, unobservable effects

5LeSage & Pace (2008) additionally discuss the impact on regression results if either W ∗ or separate matrices for W o

and W d are included in the spatial model.
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specific to space and time periods. Recently, different approaches to deal with these

problems have been proposed: Elhorst (2005) proposes a maximum likelihood estimator

(MLE) for spatial lag panel models, Lee & Yu (2010) as well as Yu et al. (2008) study

asymptotic quasi-maximum likelihood estimator (QMLE) properties. Fixed-Effect type

IV based methods are applied for instance in Beenstock & Felsenstein (2007) as well as

Korniotis (2009).

Building upon recent advances in using GMM methods for DPD processes, Bouayad-

Agha & Vedrine (2010) as well as Kukenova & Monteiro (2009) suggest extensions to

the Arellano-Bond (1991) and Blundell-Bond (1998) estimators by additional moment

conditions for the inclusion of spatially lagged variables. The latter GMM approach has

the advantage that it can easily deal with any type of right hand side endogeneity in terms

of correlation of regressors with the composed error term. Using Monte Carlo simulations,

Kukenova & Monteiro (2009) show that in the presence of endogenous covariates, the bias

of the spatial lag (ρ) remains relatively low for GMM estimators, while the endogeneity

bias arising from correlated regressors may grow large, if it is not corrected. In this

general setup, the spatially augmented SYS-GMM estimator in the spirit of Blundell-

Bond (1998) clearly dominates in terms of unbiasedness for many variables. Given their

supportive finite sample properties, in the following we focus on SYS-GMM based methods

in estimating a spatial dynamic panel model.

We start from a fairly general space-time dynamic specification, which accounts for

time lags, spatial lags and time-spatial lags of the endogenous and exogenous variables as

yi,t = αyi,t−1 + ρ
∑
j �=i

wij × yj,t + φ
∑
j �=i

wij × yj,t−1 (10)

+
∑
m=0

βmxi,t−m +
∑
m=0

γm
∑
j �=i

wij × xj,t−m + μi + νi,t

with νi,t = λ
∑
i

wij × νi,t + νi,t,

where the endogenous yi,t and exogenous variable xi,t vary in the cross-section i =

1, . . . , N and time series t = 1, . . . , T ) dimension. wi,j are elements of a spatial weight

matrix W , which we assume, is equal for all variables. The model contains two error

components, namely a time-fixed unobservable effect μi for each cross-section unit and

a time-varying error term νi,t. The parameter ρ, φ, γm and λ measure the degree of

spatial dependence in the model. Given that eq.(10) is a combination of a time and

spatial autoregressive model, we need to ensure that the resulting process is stationary.

As Kukenova & Monteiro (2009) point out, the stationarity restrictions in this model

are stronger than the individual restrictions imposed on the coefficients of a pure spatial
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or time dynamic model. Here, covariance stationarity requires that the summation of

the time autoregressive parameter α and the spatial lag coefficients ρ and ω satisfies the

following condition:

|α| < 1− ρωmax − φωmax if ρ, φ ≥ 0, (11)

|α| < 1− ρωmin − φωmin if ρ, φ < 0, (12)

where ωmin and ωmax are the smallest and highest characteristic root of the spatial

weight matrix W . The spatial effects are then assumed to lie between 1
ωmin

and 1
ωmax

.6

By adding restrictions to the parameters of the model, we can derive commonly known

spatial model specifications with additional time dynamics such as the:

– spatial Durbin model (SDM) with λ = 0 and

– spatial Durbin error model (SDEM) with ρ = 0 and φ = 0.

The difference between the two specifications is that besides spatial lags of the ex-

ogenous variables the SDEM allows only for spatial dependency in the error term νi,t,

while the SDM includes spatial lags of the dependent variable as well. In both model

specifications, the additional spatial structure may be seen as a ’catch all’ variable for

cross-sectional dependence, which has not been captured by the spatial lags of the ex-

ogenous variables. The main difference between them is that the SDEM allows to a

address the source of spatial dependence more carefully. In a hierarchical manner, further

restrictions to both the SDM and SDEM can be imposed yielding the

– spatial lag (or autoregressive) model (SAR) with λ = 0 and
∑

m=1 γm = 0 as a

restricted form of the SDM → SAR and

– spatial error model (SEM) with ρ = 0, φ = 0 and
∑

m=1 γm = 0 as restricted

form of the SDEM → SEM.

For the remainder of this paper we concentrate on specifications based on the spatial

lag (SAR) and spatial Durbin model (SDM) approach.7 Especially the latter model may

be seen as a general modelling framework, which allows to test for the validity of different

restrictions (see also Mur & Angulo, 2006, Elhorst, 2010).

6While most of the spatial econometrics literature constrains a spatial lag variable to lie between
-1 and +1, this may be too restrictive given that for row-normalized spatial weight matrices the smallest eigenvalue can be
bigger than -1.

7Details about time dynamic panel data estimators of the spatial error type model are e.g. given in Mutl (2006). The
author derives a multi step estimation strategy for the Arellano-Bond (1991) type GMM estimator based on a consistent
estimator of the spatial autoregressive parameter as proposed in Kapoor et al. (2007).
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Similar to the concept of the lagged endogenous variable in time series analysis, the

estimated spatial lag coefficients characterize a contemporaneous correlation between one

cross-section observation and geographically proximate further units for the same variable.

The spatial lag coefficient of the dependent variable, for instance, measures the effect of the

weighted average of the neighborhood of cross-section i as
∑n

j=1wij × yj,t.
8 Additionally,

the inclusion of spatial lags of exogenous variables allows for the possibility of spatial

spillovers from these variables to the endogenous regressor in the model.

With respect to the included time and spatial lags of the endogenous variables in

eq.(10), we can distinguish between ’space-time recursive’, ’dynamic’ and ’simultaneous’

combinations (see Anselin et al., 2007). In the following we restrict our analysis to the

’time-space simultaneous’ model, which sets φ = 0 but includes a time and spatial lag

of the dependent variable. As Parent & LeSage (2009) point out, the latter restriction

imposes ω = −ρ× α = 0. We do not put any restrictions on the space-time dynamics of

the exogenous variables included in our model. The choice of combination of time and

spatial lags of the dependent variable has important implications for the formulation of

valid moment conditions in the course of GMM estimation (see Bouayad-Agha & Vedrine,

2010).

Another important implication for empirical estimation of a DPD model is that the

spatial lag term of the endogenous variable is correlated with the model’s composed error

term (see e.g. Kukenova & Monteiro, 2009). From an econometric point we thus have to

treat this term as endogenous (in analogy to the time autoregressive component in the

DPD context). The solution of GMM based estimators is then to obtain an estimate for ρ

by means of appropriate instrumental variables in the context of the Arellano-Bond (1991)

or Blundell-Bond (1998) SYS-GMM estimator. While the latter model only estimates the

DPD model after first differencing to get rid of the unobservable individual effects μi,

the latter approach tries to retain the level information of the variables by appropriate

instrument selection.

Focusing on the Blundell-Bond (1998) SYS-GMM estimator, consistent instruments

can be derived from the so-called ’standard’ and ’stationarity’ moment conditions. The

former condition builds upon the seminal contribution in Anderson & Hsiao (1981) ex-

tended to the GMM framework by Arellano & Bond (1991), and estimate an aspatial

DPD model as in eq.(2) transformed into first differences based on the following moment

condition

8In the four-dimensional case of our migration flow data we may write
∑n2

r,s=1
w(i, j; r, s)× yrs,t with ij �= rs. For the

sake of notational simplicity we keep the two-dimensional (i, j)-index throughout the remainder of this section. However,
the extension to the four dimensional space (i, j; r, s) to measure origin-destination flows is straightforward.
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E(yi,t−s Δui,t) = 0 t = 3, . . . , T s = 2, . . . , t− 1, (13)

which employs sufficient lags of the endogenous variable in levels (starting from yi,t−2)

to serve as own instruments for Δyi,t−1 in the first differenced equation (for details see

Arellano & Bond, 1991). Additionally, the model can be augmented by appropriate

instruments in first differences for the equation in levels, making use of the stationarity

moment condition as (see e.g. Arellano & Bover, 1995, Ahn & Schmidt, 1995, and Blundell

& Bond, 1998):

E(Δyi,t−1 ui,t) = 0 t = 3, . . . , T. (14)

The latter moment condition rests on certain assumptions about the initial period

observation yi,0 for panel data settings with only few time periods. Both in the pure

panel time-series as well time-space panel literature the importance of the initial condition

has been stressed (see e.g. Parent & LeSage, 2009). Rather than taken the initial period

observation as given (see e.g. Elhorst, 2005, for an ML estimator with exogenous yi,0), the

literature typically assumes mean stationarity of yi,0 based on the following assumption for

its data generating process yi,0 = μi/(1− α) + ξi,0 with E(μi ξi,0) = 0 and E(ξi,0 νi,t) = 0

(for further details see e.g. Hsiao, 2003).9

Further instruments beside those derived from sufficiently long time lags for the endoge-

nous variable may also be derived from each explanatory variable x, where the set of valid

instruments for each variable depends on its correlation with respect to the error term.

The consistenty of moment conditions based on y and x can generally be tested with the

help of overidentification tests such as Hansen’s (1982) J-Statistic and the Difference-in

Hansen’s J-Statistic. The latter also allows to test on the validity of the level equation in

the addition to the first difference equation ofthe Arellano-Bond (1991) GMM estimator.

Augmenting the instrument set by transformations of xi,t, then the following moment

conditions apply for the first differenced equation:

– If xi,t is strictly exogenous,

E(xi,t+
−
s Δui,t) = 0 t = 3, . . . , T ∀s. (15)

9One also has to note that eq.(14) is derived as a linearization of the original stationarity condition proposed by Ahn &
Schmidt (1995) from a set of non-linear conditions given by E(Δyi,t−1ui,T ) = 0 for t = 3, . . . , T .
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– If xi,t is weakly endogenous (predetermined),

E(xi,t−s Δui,t) = 0 t = 3, . . . , T s = 1, . . . , t− 1. (16)

– If xi,t is strictly endogenous,

E(xi,t−s Δui,t) = 0 t = 3, . . . , T s = 2, . . . , t− 1. (17)

For the level equation of the SYS-GMM estimator in eq.(14) we may formulate valid

moment conditions as:

– If xi,t is strictly exogenous,

E(Δxi,t ui,t) = 0 t = 2, . . . , T. (18)

– If xi,t is weakly or strictly endogenous

E(Δxi,t−1 ui,t) = 0 t = 3, . . . , T. (19)

The SYS-GMM estimator then jointly employs both eq.(13) and eq.(14) for estimation.

Though labeled ’system’ GMM, the estimator in fact treats the (stacked) data system as a

single-equation problem since the same linear functional relationship is believed to apply

in both the transformed and untransformed variables as:

⎛⎝ Δy

y

⎞⎠ = α

⎛⎝ Δy−1

y−1

⎞⎠+ ρ

⎛⎝ ΔW Y

W Y

⎞⎠+ β

⎛⎝ ΔX−1

X−1

⎞⎠+

⎛⎝ Δu

u

⎞⎠ (20)

Turning to the spatially augmented SYS-GMM specification, equivalent moment con-

ditions can be defined for the spatial lag of each variable, conditional upon the underlying

correlation of x and y. Since Kukenova & Monteiro (2010) have shown that the spatial lag

of the dependent variable is endogenous, a natural means for estimation of the SYS-GMM

estimator in eq.(14) is to build internal instruments using time lags for both the equa-

tion in first differences as well as levels. Moreover, as Bouayad-Agha & Vedrine (2010)

point out, we can make use of spatially weighted exogenous xi,t variables to instrument∑
i �=j wij × yi,t−s. The latter attempt aims at identifying the exogenous part of the spatial

lag variability by means of a spatially weighted model. Assuming strict exogeneity of

current and lagged values for xi,t, then the full set of potential moment conditions for the

spatial lag of yi,t−1 is given by

– First differenced equation:
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E

⎛⎝∑
i �=j

wij × yi,t−s Δui,t

⎞⎠ = 0 t = 3, . . . , T s = 2, . . . , t− 1, (21)

E

⎛⎝∑
i �=j

wij × xi,t
+

−
s Δui,t

⎞⎠ = 0 t = 3, . . . , T ∀s. (22)

– Level equation:

E

⎛⎝∑
i �=j

wij ×Δxi,t ui,t

⎞⎠ = 0 for all s = 2, . . . , T and t = 3, . . . , T, (23)

E

⎛⎝∑
i �=j

wij ×Δyi,t ui,t

⎞⎠ = 0 t = 3, . . . , T. (24)

One has to note that the consistency of the SYS-GMM estimator relies on the validity

of these moment conditions. Moreover, in empirical application we have to carefully

account for the ’many’ and/or ’weak instrument’ problem typically associated with GMM

estimation, since the instrument count grows as the sample size T rises. We thus put

special attention to this problem and use restriction rules specifying the maximum number

of instruments employed as e.g. proposed by Bowsher (2002) and Roodman (2009).

Accounting for spatial lags of the endogenous and exogenous variables finally leads to

the SDM representation of the neoclassical migration model from eq.(2)

nmij,t = αnmij,t−1 + ρ
∑
j �=i

wij × nmij,t−1 + β1w̃rij,t−1 + γ1
∑
j �=i

wij × w̃rij,t−1

+β2ũrij,t−1 + γ2
∑
j �=i

wij × ũrij,t−1 + β3ỹlrij,t−1 + γ3
∑
j �=i

wij × ỹlrij,t−1 (25)

+β4q̃ij,t−1 + γ4
∑
j �=i

wij × q̃ij,t−1 + β5h̃cij,t−1 + γ5
∑
j �=i

wij × h̃cij,t−1

+β6Δ̃plij,t−1 + γ6
∑
j �=i

wij × Δ̃plij,t−1 + μij + νij,t

One finally has to note, that the regression parameters of the explanatory variables

from eq.(25) cannot be interpreted directly as elasticities. As LeSage & Pace (2009) point

out, unlike the parameters from a linear regression model, in models containing spatial

lags of the explanatory or dependent variables the interpretation becomes richer and more

complicated given that spatial regression models expand the information set to include

information from neighboring regions/observations. The authors propose a categorization
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based on the average direct, indirect and total effect for each regressor. The latter effect

measures both the direct effect in terms of the impact of changes in the ith observation for

a variable x, as well as the indirect effect, which arises from spatial spillovers of changes

in the observations for all neighbouring regions j. Since we are moreover dealing with a

time dynamic specification, in order to get long-run total effects as a combination of time

and space interdependencies, we additionally have to correct for α. Taking the spatial lag

model (SAR) as an example, the average total long-run effect M̄(x)total,LR of a variable x

can then be calculated as

M̄(x)total,LR = n−1ι′nSx(W )ιn = (1− α− ρ)−1βx (26)

where Sx(W ) = (In − α − ρW )−1βx and ιn is a constant term vector of ones and In

is an n-dimensional identity matrix for the number of observations. Different from the

spatial lag model, in the case of the spatial Durbin model total long-run impacts arising

from changes in a variable x exhibit a greater deal of heterogeneity due to the presence

of the additional term (W × γx) in the calculation of the total effects with Sx(W ) given

by Sx(W ) = (In − −ρW )−1(Inβx + Wγx). Thus, while the SAR has a common global

multiplier of all βx, total effects over space and time have in the SDM have to be calculated

taking all the individual parameters γx of the explanatory variable spatial lag terms into

account (for details see e.g. LeSage & Pace, 2009, Elhorst, 2010).

3 Data and Stylized Facts

German interregional migration data tracks the movement of all residents in Germany.

For the empirical analysis we use data for the 16 German states between 1991 and 2006.

All monetary variables are denoted in real terms. A full description of the data sources is

given in Table 1. We also take account for the time series properties of our data sample.

Based on the Im-Pesaran-Shin (2003) and Pesaran (2007) panel unit roots test we find

that for all variables we can reject the null hypothesis of non-stationarity for a wide range

of different testing set-ups (detailed test statistics are reported in Alecke et al., 2010).

Turning to the stylized facts of German internal migration, figure 1 displays scatter

plots for in- and outmigration flows of German states for 1991, 1996, 2001 and 2006. The

interpretation of the figure is straightforward: The closer data points are to the diagonal

(45-degree line), the more balanced are their net migration patterns: For data points on

the diagonal net migration is equal to zero, while the area above (below) the diagonal

indicate positive (negative) net migration flows. Data points closer to the origin inhibit

smaller gross migration volumes and vice versa. The figure additionally accounts for

17



Table 1: Data description and source

Variable Description Source

outmijt Total number of outmigration from region i to j Destatis (2008)

inmijt Total number of in-migration from region i to j Destatis (2008)

yi(j)t Gross domestic product in region i and j respectively VGRdL (2008)

pyi(j)t GDP deflator in region i and j respectively VGRdL (2008)

ylri(j)t Real labour productivity defined as (ylj,t − pyj,t) VGRdL (2008)

popi(j)t Population in region i and j respectively VGRdL (2008)

empi(j)t Total employment in region i and j respectively VGRdL (2008)

unempi(j)t Total unemployment in region i and j respectively VGRdL (2008)

uri(j)t Unemployment rate in region i and j respectively defined as
(unempi,t − empi,t)

VGRdL (2008)

pcpii(j)t Consumer price index in region i and j respectively based on
Roos (2006) and regional CPI inflation rates

Roos (2006),
RWI (2007)

wri(j)t Real wage rate in region i and j respectively defined as wage
compensation per employee deflated by pcpii(j)t

VGRdL (2008)

qi(j)t Labour market participation rate in region i and j respectively
defined as (empi,t − popi,t)

VGRdL (2008)

hci(j)t Human capital index as weighted average of: 1.) high school
graduates with university qualification per total pop. between
18-20 years (hcschool), 2.) number of university degrees per
total pop. between 25-30 years (hcuni), 3.) share of employed
persons with a university degree relative to total employment
(hcsvh), 4.) number of patents per pop. (hcpat):

Destatis (2008)

hc = 0, 25 ∗ hcsvh+0, 25 ∗ hcschool+0, 25 ∗ hcuni+0, 25 ∗ hcpat

plandi(j)t Average price for building land per qm in i and j, in Euro Destatis (2008)

Note: All variables in logs. For Bremen, Hamburg and Schleswig-Holstein no consumer price inflation rates are
available. We took the West German aggregate for these states, this also accounts for Rhineland-Palatine and
Saarland until 1995. In order to construct time series for the price of building land (pl) no state level data
before 1995 was available. Here we used the 1995-1999 average growth rate for each state to derive the values
for 1991-1994. For Hamburg and Berlin only very few data points were available. Here we took the price per qm
in 2006 and used national growth rates to construct artificial time series.
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Figure 1: Weighted scatter plots for state level in- and out-migration
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Note: BW = Baden-Wuerttemberg, BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen,
HH = Hamburg, HES = Hessen, MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North
Rhine-Westphalia, RHP = Rhineland-Palatine, SAAR = Saarland, SACH = Saxony, ST = Saxony-Anhalt, SH
= Schleswig-Holstein, TH = Thuringia

population size by weighting the size of the data point (circle) with its absolute population

value for the respective period. The figure confirms the tendency that populous states

on average have higher absolute gross migration flows (moving towards the upper right

of the scatter plot).

Starting in 1991, figure 1 shows that all East German states are clearly below the

45-diagonal line indicating population losses with Saxony being hit the most. This un-

derlines that alongside economic transformation the East German states have witnessed a

substantial loss of population through East-West net out-migration West German states

are either on or above the diagonal line indicating net migration inflows. This strong

migration response to German re-unification is less present in 1996, where all state values

are much closer to the diagonal. However, in 2001 a second wave of increased East-West
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out-migration can be observed.10 Towards the sample end in 2006 interregional migration

flows among German states again seem to be more balanced than in the early 1990s and

around 2001.

Analyzing migration flows in the context of network structures allows to identify the

(most) significant flows among the full migration matrix for a given time period. As Kipnis

(1985) points out, there are different methods to define threshold values for significant

flows, ranging from single arbitrary measures to complex index computations such as flow

maximization. In the following, we highlight the 10% and 25% largest net flows among all

migratory movements for a single year of our data sample. The results for the years 1991

and 2001 are shown in figure 2. For the year 1991 among the 10% most prominent flows

are East-West migratory movements directed to the large West German states North-

Rhine Westphalia (NRW), Baden–Wurttemberg (BW) and Bavaria (BAY). Next to the

dominant East-West pattern there are also significant North-South movements with large

net out-migration flows from Schleswig–Holstein (SH) and Lower Saxony (NIE). If we

additionally include major migration flows up to the 25% level in the upper right graph

of figure 2, the distinct East-West net out-migration trend becomes even more visible.

Though the latter trend is also shown for migratory movements in 2001, now flows are

much more directed towards the southern states in Germany. This may potentially be a

response to their much better economic performance throughout the late 1990s compared

to other (Western) states such as North-Rhine Westphalia.

Searching for empirical support of the theoretical network concepts in terms of the

intervening opportunities and competing destinations model, figure 2 shows the following

picture: Taking net migration flows for Saxony-Anhalt (ST) in 2001 as an example, we see

that the state has a large net outflow to Bavaria (among the 10% most significant flows).

However, not only Saxony-Anhalt also the Eastern (Brandenburg, Saxony, Thuringia)

and Western states (Lower Saxony) in the geographical neighborhood of Saxony-Anhalt

have significant outflows directed to Bavaria. If we take the common border criteria as

a measure of spatially linked regions, the spatial autocorrelation pattern inhibit in these

flows is well captured by the origin-related weighting matrix in the definition eq.(5) and

eq.(6) reflecting the intervening opportunities approach of migration modelling. Likewise,

if we look at the 10% significant outflows of Brandenburg (BRA) for 2001, these are

both directed to the southern states Bavaria and Baden-Wurttemberg, which themselves

10The strong negative outlier effect of the West German state Lower Saxony (Niedersachsen) is due to the specific
migration pattern of German resettlers from Eastern and Southern Europe (Spaetaussiedler), which are legally obligated
to first move to the central base Friesland in Lower Saxony and only subsequently migrate to other states. Hence, taking
also external migration for Niedersachsen into account this negative effect vanishes.
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share a common border. The underlying network paradigm can now be described in

terms of a destination-based weighting scheme according to eq.(7) and eq.(8) reproducing

the migrant’s choice process in line with the competing destination model. Analogously,

we can identify a range similarly directed origin-destination flows in accordance to the

intervening opportunities and competing destinations framework.

The graphical presentation of major migration flows in figure 2 already provides a

first indication of importance to properly account for spatial dependence. As a more

formal test we use the Moran’s I statistic to detect spatial autocorrelation for values of

a particular variable.11. Inference for spatial autocorrelation is carried out on the basis

of the asymptotically normal standardized Z(I)-value. The results of the test statistic

together with the corresponding Z(G)-value of the Getis-Ord G-statistic for the dependent

variable (net migration flows) are given in table 2.

To compute the test statistics we also need an operationalization of the spatial weight-

ing matrix W ∗. We compare the empirical performance of two types of matrices: 1.)

Spatial links are defined by a common border between states, 2.) An optimal distance

criterion based on a maximization procedure of the Getis & Ord (1992) Gi(d)-statistic

(details are given in the appendix). Distance between to states is thereby calculated as

the road distance in kilometers between a population weighted average of major city pairs

for each pairwise combination of regions. A detailed list of the cities included in the

sample and the resulting distance matrix are given in the appendix. We also allow that

the optimal distance (d) potentially varies with each year of the sample period from 1991

to 2006. As the table shows, for both types of weighting matrices we identify significant

spatial autocorrelation effects among net migration flows for all years. Similar results

were also obtained for the exogenous variables.

We can give the Moran’s I statistic a graphical interpretation to clarify to spatial

association among individual values for each variable (see Ward & Gleditsch, 2008). Using

a scatter plot for a standardized variable y̌ (with y̌ = [y − ȳ]/sd(y)) against its average

neighbors y̌s the distribution of observations in the four quadrants around the mean of

y̌ and y̌s captures a picture of the spatial association of the variable y. If there is no

spatial clustering the individual values of ys should not systematically vary with y. On

the contrary, for positive spatial association observations above (below) the means of y

should correlate with high (low) values for ys. Fitting a regression line to this scatter

plot, its slope coefficient shows the value for Moran’s I correlation given the original

variable y and the weighting matrix W ∗. In figure 3 we present such scatter plots for our

11As a related measure, we also use the (global) Getis-Ord G-statistic.
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Figure 2: Prominent migration flows between German states in 1991/2001

(a) 1991:10% (b) 1991:25%

(c) 2001:10% (d) 2001:25%
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Table 2: Z(I)- and Z(G)-Statistic for inter-regional net migration rate with alternative weighting matrices

Common Border Optimal distance
year Z(I) P-value Z(G) P-value d Z(I) P-value Z(G) P-value

1991 23.33∗∗∗ (0.00) 15.05∗∗∗ (0.00) 250 16.97∗∗∗ (0.00) 12.22∗∗∗ (0.00)
1992 21.62∗∗∗ (0.00) 10.74∗∗∗ (0.00) 250 14.99∗∗∗ (0.00) 8.42∗∗∗ (0.00)
1993 16.52∗∗∗ (0.00) 5.53∗∗∗ (0.00) 275 14.87∗∗∗ (0.00) 7.22∗∗∗ (0.00)
1994 12.74∗∗∗ (0.00) 3.44∗∗∗ (0.00) 275 10.14∗∗∗ (0.00) 40.8∗∗∗ (0.00)
1995 10.47∗∗∗ (0.00) 2.98∗∗∗ (0.00) 350 11.62∗∗∗ (0.00) 4.89∗∗∗ (0.00)
1996 9.96∗∗∗ (0.00) 3.20∗∗∗ (0.00) 350 11.30∗∗∗ (0.00) 4.81∗∗∗ (0.00)
1997 10.44∗∗∗ (0.00) 3.85∗∗∗ (0.00) 350 11.14∗∗∗ (0.00) 5.08∗∗∗ (0.00)
1998 14.41∗∗∗ (0.00) 4.98∗∗∗ (0.00) 350 14.88∗∗∗ (0.00) 7.06∗∗∗ (0.00)
1999 17.02∗∗∗ (0.00) 6.85∗∗∗ (0.00) 275 14.31∗∗∗ (0.00) 7.68∗∗∗ (0.00)
2000 19.07∗∗∗ (0.00) 9.05∗∗∗ (0.00) 275 15.32∗∗∗ (0.00) 9.38∗∗∗ (0.00)
2001 20.39∗∗∗ (0.00) 10.79∗∗∗ (0.00) 275 16.42∗∗∗ (0.00) 10.99∗∗∗ (0.00)
2002 19.19∗∗∗ (0.00) 9.39∗∗∗ (0.00) 275 19.92∗∗∗ (0.00) 10.79∗∗∗ (0.00)
2003 17.80∗∗∗ (0.00) 7.26∗∗∗ (0.00) 275 15.48∗∗∗ (0.00) 8.26∗∗∗ (0.00)
2004 17.57∗∗∗ (0.00) 6.87∗∗∗ (0.00) 275 16.93∗∗∗ (0.00) 9.16∗∗∗ (0.00)
2005 17.91∗∗∗ (0.00) 6.09∗∗∗ (0.00) 275 15.74∗∗∗ (0.00) 7.51∗∗∗ (0.00)
2006 18.87∗∗∗ (0.00) 6.08∗∗∗ (0.00) 250 15.08∗∗∗ (0.00) 6.74∗∗∗ (0.00)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. Z(I) and Z(G) are
standardized test statistics for Moran’s I and Getis-Ord G respectively. d denotes the optimal distance
maximizing the absolute sum of the (local) Gi(d)-statistic and is measured in kilometers per fixed units of 25km
each.

net migration flows and its spatial lag together with the slope of Moran’s I for the four

sample periods 1991, 1996, 2001 and 2006. The figure shows that for all years we find a

highly significant positive slope regression coefficient measuring spatial autocorrelation in

migration data.

4 Empirical Results

The regression results for the aspatial benchmark model from eq.(2) and subsequent spa-

tial extensions are shown in table 3. Beside the spatial lag specification of the extended

SYS-GMM approach we also report regression results from standard SYS-GMM estima-

tion after variables have been spatially filtered using a method proposed by Getis (1995).

Spatial filtering treats the spatial dependence in the data as a nuisance parameter and as

entirely independent of the underlying ’spaceless’ model to be estimated.12 For both the

aspatial, spatial filtered and spatial lag regression models we report the estimated vari-

able coefficients together with two important types of post estimation tests: A primary

concern in model applications including an IV/GMM approach is to carefully check for

12A detailed description of the the spatial filtering approach based on Getis (1995) is given in the appendix.
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Figure 3: Moran scatter plot for net migration and various years
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the instrument consistency of the chosen specification – e.g. given that in the unrestricted

GMM framework the number of IVs may become large relative to the total number of

observations. We therefore guide instrument selection based on the widely applied Sargan

(1958) / Hansen (1982) overidentification test (J-Statistic) as well as the C-statistic (or

also ’Diff-in-Sargan/Hansen’) as numerical difference of two J-Statistics isolating IV(s)

under suspicion (see Eichenbaum et al., 1988, for details). The J-Statistic is the value

of the GMM objective function, evaluated at the efficient (in our case two-step) GMM

estimator.

In an overidentified model the J-Statistic allows to test whether the model satisfies the

full set of moment conditions, while a rejection implies that IVs do not satisfy orthogonal-

ity conditions required for their employment. In similar veins the C-Statistic is typically

employed to judge about the consistency of the instrument set in the level equation as

extension of the standard Arellano-Bond (1991) approach in first differences. A second

type of post estimation testing explicitly looks at the likely bias introduced by spatial

autocorrelation in the residuals of the empirical models. Here we calculate Moran’s I

statistic for both each individual year and as a joint measure for the whole sample period,

as well as a Wald GMM test for spatial autocorrelation in the model’s error term (see

Kelejian & Prucha, 1999, Egger et al., 2005). Egger et al. (2005) show on the basis of

Monte Carlo simulations that GMM based Wald tests tend to perform well irrespective

of the underlying error distribution and thus are a well-equipped alternative to the fre-

quently used Moran’s I test under GMM circumstances.13 Both post estimation tests

give important hints to identify misspecifications in the empirical modelling approach.

13We use a rather simple way to compute an overall measure of Moran’s I for panel data. Alternative ways exploiting
the spatiotemporal dimension of the data are e.g. discussed in Lopez et al. (2009).
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The aspatial migration equation in column I of table 3 serves as a general benchmark for

the spatially augmented specifications. For most variables we find statistically significant

coefficients in line with the theoretical predictions of the neoclassical migration model,

e.g. a real wage increase in region i relative to region j leads to increased net in-migration

flows, while a relative increase in the regional unemployment rate has the opposite effect.

Turning to the post estimation tests, the reported J- and C-Statistic based instrument

diagnostic tests for the aspatial model in table 3 report the outcome of a downward testing

approach to reduce the number of included instruments in such a way that both critical

J- and C-Statistic criteria are satisfied (with P-value for Jcrit. > 0.05, Ccrit. > 0.05).

The applied downward testing approach thereby has two distinct features: First, we

reduce the total number of IVs by using collapsed rather than uncollapsed instruments as

suggested in Roodman (2009). Second, based on the collapsed IV specification we finally

reduce the number of instruments using a C-statistic based algorithm, which is able to

subsequently identify those IV subsets with the highest test results (see Mitze, 2009, for

details). This gives us a model with a total of 15 overidentifying restrictions, which passes

the Hansen J-Statistic criteria. We use this instrument set as benchmark for the spatially

augmented regression specifications. Next to the J-Statistic, the aspatial benchmark

model in column I also passes the C-Statistic criterion for the chosen IV set in the level

equation, which supports our modelling strategy to use the generally more efficient SYS-

GMM approach compared to standard GMM in first differences. However, contrary to

the IV diagnostic tests the results for tests of spatial dependence in the residuals (both

Moran’s I and Wald GMM) clearly reject the null of independent observations for each

individual year as well as for the joint sample period.

The latter poor result for the aspatial model calls for an explicit account of the spatial

dimension in our DPD model context. We start with the spatial filtering approach and

estimate the model in eq.(2) both on the grounds of a common border and optimal distance

based weighting schemes in column II and III of table 3 respectively. The estimated

regression coefficients show some significant changes relative to the aspatial specification.

First, the estimated coefficient of the lagged endogenous variable is substantially reduced

though still significant. On the contrary, the parameter for regional wage rate differentials

turns out to be higher. However, if we calculate the implied long-run elasticity for this

variable in table 4 we see that due to the two opposed effect the long-run elasticity of

regional real wage rate differentials with respect to net migration flows remains roughly

in line with the aspatial benchmark for the spatial filtered specifications (see table 4).

However, interestingly the effect of unemployment rate differentials though being still

negative turns out statistically insignificant in the estimated models based on the Getis
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filtering approach. The results are broadly in line with recent findings for internal US

migration rates reported in Chun (2008): Here the author finds that the magnitude of

the unemployment rate coefficient drops significantly, when moving from an aspatial to a

spatial filtered (origin constrained) migration model. One way to interpret this result is

that unemployment rate differences in the aspatial model also capture the omitted variable

effect of other relevant economic and social factors, which arise through network structures

in migration flows (as for instance outlined in the competing destinations model). If we

appropriately account for network effects, the variable loses predictive power. One likely

example is the provision of cultural goods, which is typically negatively correlated with

the unemployment rate, but may well be an alternative spatially heterogeneous attractor

of migration flows – especially for highly educated prospective migrants.

Looking at the post estimation tests, the optimal distance based weighting matrix

shows a much better performance compared to the common border specification as already

found for the filtering exercise of the endogenous variable reported in table 3. For the

spatial filtering approach in column III only some few years still show significant spatial

autocorrelation patterns when applying Moran’s I to the model’s residuals, while the

border based approach in column II is less effective. However, both filtered specifications

do not pass the joint Moran’s I test as well as fail to pass the standard J- and C−Statistic

based IV diagnostic tests based on the same set of IVs as the aspatial benchmark (the

latter results are rather robust to changes in the IV set).

If we look at the estimation results of the dynamic spatial lag regression approach in

column IV and V they are both qualitatively and quantitatively much in line with the

spatial filtering approach. Total long-run effects for each explanatory variable are also

reported in table 4. One advantage of the spatial regression compared to the spatial

filtering approach is that we can additionally give an interpretation for the parameter

estimate for the spatial lag variable (ρ):14 Here the positive coefficient sign hints at

positive spatial autocorrelation effects in German migration flows, giving rise to spillover

effects motivated by theories of intervening opportunities and competing destinations.

With respect to the post estimation test for spatial autocorrelation in the residuals

the results for the spatial lag model mirror the findings of the spatial filtering approach

that the optimal distance weighting matrix is much better equipped to filter out spatial

dependences from the model. However, again the models fail to pass the J- and C-Statistic

14However, as Kosfeld & Lauridsen (2009) point out, that one must be cautious when wishing to interpret the autore-
gressive parameter (ρ) as an autocorrelation coefficient in time series analysis. While for maximum likelihood estimation
the likelihood function ensures that the autoregressive parameter lies within a fixed interval, in IV estimation there is no
guarantee for the latter leading to uncertain areas of interpretation and inference.
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criterion based on the IV set of the aspatial benchmark augmented by IVs for the spatial

lag variable.15 In column VI and VII we therefore try to reduce the number of instruments

for the spatial lag variable using the C-Statistic based downward testing approach. In

column VII we manage to reduce the number of instruments so that both the J- and

C-Statistic criterion is passed. However, this reduces the estimated coefficient for the

spatial lag variable (ρ) and leads to a higher degree of remaining spatial autocorrelation

in the model’s residuals indicated by Moran’s I values. As the long-run total effects

for the spatial lag model from column VII in table 3 show for instance, differences in the

wage rate and regional labour productivity have a higher impact compared to the aspatial

benchmark specification, when accounting for spatial dependencies in the model.

Table 4: Total effects (M̄(x)total,LR) for the explanatory regressors in the empirical migration model

Model: Aspatial Spatial
Filtering

Spatial
Lag Model

W ∗: None Distance Distance
I III VII

w̃rtotal,LR 0.43 0.61 1.15
ũrtotal,LR -0.33 -0.14 -0.31

Δỹlrtotal,LR 1.12 0.58 1.85
q̃total,LR 0.88 -0.09 0.96

h̃ctotal,LR -0.06 -0.02 -0.12

Δ̃p
l

total,LR 0.43 0.17 0.65

Note: Calculated according to M̄(x)total,LR from eq.(26) for x = 1, . . . , 6.

The latter result may hint at the potential role played by spatial spillover effects from

other variables besides the dependent one. We thus test for the improvement in the

empirical results if we estimate the unconstrained spatial Durbin model according to

eq.(25). The regression results are shown in table 5. Here we only focus on weighting

matrices derived from optimal distances. The results show, that most of the spatial

lags of the explanatory variables turn out to be significant: For instance, a rise in the

unemployment rate differential in neighbouring regions shows to have a positive effect on

the region’s net inmigration rate. The opposite holds for changes in labour productivity

growth and the labour participation rate in neighbouring regions.

We see that the spatial Durbin model in column VIII is also very successful in capturing

spatial dependence in the migration equation. As first specification the model passes the

joint Moran’s I test for spatial autocorrelation over the full sample period as well as the

15Therefore the number of overidentifying restrictions increases from 15 to 19.
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GMM-based Wald test to detect spatially autocorrelation in the error terms. However,

given the large number of instruments employed, the model is not able to pass the essential

IV diagnostic tests. If we reduce the number of instruments, we come back to the old

problem that the model passes the J test, but at the same time the performance in terms

of capturing the existing spatial dependence in the model significantly worsens. Taken

together, this may hint at a certain trade-off between IV consistency and effective spatial

modelling for both the spatial filtering as well as spatial regression approaches (both the

spatial lag as well as spatial Durbin model).

As a final exercise we test for the impact on the empirical results if we combine the

spatial filtering and spatial regression approach in the following way:

Yt = αYt−1 + ρWtYt +
k∑

j=0

β∗
j
′X∗

t−j + ut, (27)

Here we use unfiltered values for the endogenous variable and account for spatial au-

tocorrelation in terms of the spatial lag variable WtYt, moreover we use spatially filtered

exogenous variables X∗. The empirical specification in column XI and XII have the po-

tential advantage that they reduce the number of instrument counts and multicollinearity

among regressors since no spatial lags besides the dependent variable are included. If the

researcher’s primary interest is to get an interpretation of spatial spillovers from the pa-

rameter coefficient of the endogenous variable, while at the same time retain well-behaved

residuals, this mixed filtering-regression approach may be a feasible strategy.

Although the mixed model with the IV set from the benchmark specification first fails

to pass the J- and C-Statistic criteria it is remarkably good in terms of capturing spatial

dependence in the structural parameters of the model. As the annual Moran’s I values

show only in very few year there some evidence of remaining spatial autocorrelation.

Moreover, as it was the case for the spatial Durbin model, the mixed filtering-regression

specification passes the joint Moran’s I test for spatial autocorrelation over the full sample

period. Finally, in column XII we are able to reduce the IV set in such a way that the

model also passes the standard IV diagnostic tests for the given J- and C-Statistic criteria.

Additionally, this improvement in the standard tests for instrument validity goes in

line with a good performance in properly capturing spatial dependence: Only rarely the

annual Moran’s I identifies remaining spatial autocorrelation in the residuals, which is

among the best empirical track record among all rival specification. The model also passes

the Moran’s I based test statistic for the whole sample period as well as the GMM-based

Wald test for spatial autocorrelation in the model’s error term. Finally, the model also

passes the stability condition from eq.(11) requiring |α+ρ| < 1, while model specifications
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Table 5: Estimation results for spatial Durbin model and a mixed spatial regression-filtering model

DPD model: Spatial Durbin Model Mixed Filt. & Reg.
Weights matrix: Distance Distance Distance Distance Distance

VIII IX X XI XII

nmij,t−1 0.31∗∗∗ 0.23∗∗∗ 0.20∗∗∗ 0.35∗∗∗ 0.20∗∗

(0.043) (0.078) (0.073) (0.068) (0.085)
w̃rij,t−1 0.36∗ 0.22 -0.60 0.46∗∗∗ 0.68∗∗∗

(0.215) (0.269) (0.485) (0.138) (0.151)
W × w̃rij,t−1 0.16 0.28 1.24∗∗

(0.283) (0.348) (0.641)
ũrij,t−1 -0.31∗∗ -0.16 -0.58∗∗∗ -0.02 -0.01

(0.123) (0.140) ((0.195) (0.061) (0.054)
W × ũrij,t−1 0.56∗∗∗ 0.31∗∗ 0.84∗∗∗

(0.152) (0.156) (0.264)

Δỹlrij,t−1 0.67∗∗∗ 0.70∗∗∗ 0.27∗ 0.37∗∗∗ 0.63∗∗∗

(0.129) (0.137) (0.145) (0.099) (0.108)

W ×Δỹlrij,t−1 -0.44∗∗∗ -0.53∗∗∗ 0.11
(0.149) (0.159) (0.182)

q̃ij,t−1 0.46 0.95∗∗∗ 1.16∗∗ -0.05 0.05
(0.306) (0.358) (0.492) (0.223) (0.182)

W × q̃ij,t−1 -0.81∗∗∗ -1.02∗∗∗ -1.30∗∗∗

(0.275) (0.364) (0.488)

h̃cij,t−1 -0.02 -0.06 -0.12∗∗∗ -0.02 -0.01
(0.038) (0.041) (0.041) (0.014) (0.026)

W × h̃cij,t−1 0.02 0.05 0.10∗∗

(0.041) (0.043) (0.044)

Δ̃pl -0.01 0.23∗ 1.29∗∗∗ 0.15∗∗∗ 0.18∗∗∗

(0.036) (0.121) (0.251) (0.055) (0.061)

W × Δ̃pl 0.04 -0.27 -2.13∗∗∗

(0.062) (0.196) (0.418)
ρ 0.80∗∗∗ 0.76∗∗∗ 0.80∗∗∗ 0.70∗∗∗ 0.79∗∗∗

(0.081) (0.127) (0.116) (0.177) (0.123)
Hansen J-Statistic 121.6 (48) 71.2 (28) 32.3 (22) 61.6 (18) 25.8 (16)
P-value of J − Stat. > 0.05 Failed Failed Passed Failed Passed
C-Stat. for IV in LEV 25.8 (14) 26.5 (12) 17.5 (9) 27.3 (8) 4.1 (7)
P-value of C − Stat. > 0.05 Failed Failed Failed Failed Passed
Z(I)1994 0.417 1.04 1.21 0.47 0.11
Z(I)1995 0.33 1.22 1.26 0.02 1.17
Z(I)1996 1.41∗ 2.22∗∗ 1.51∗ 0.69 1.42∗

Z(I)1997 -0.69 0.59 2.83∗∗∗ -0.44 0.67
Z(I)1998 2.38∗∗∗ 3.83∗∗∗ 4.04∗∗∗ 1.38∗ 2.25∗∗

Z(I)1999 -1.63 -0.23 0.91 -1.81∗∗ -1.61∗

Z(I)2000 -0.54 0.67 5.03∗∗∗ 0.13 -0.23
Z(I)2001 0.58 1.41∗ 2.88∗∗∗ -0.17 0.36
Z(I)2002 -0.51 0.29 1.24 -0.95 -0.67
Z(I)2003 -0.28 0.42 3.45∗∗∗ -0.37 1.38∗

Z(I)2004 -1.11 -0.13 2.69∗∗∗ -1.73∗∗ -0.98
Z(I)2005 1.52∗ 3.01∗∗∗ 8.31∗∗∗ 1.66∗∗ 1.34∗

Z(I)2006 0.84 2.59∗∗∗ 4.07∗∗∗ -1.96∗∗ -1.43∗

Moran’s I (joint) 0.21 1.30∗ 3.03∗∗∗ -0.24 0.29
Efficient Wald GMM 2.4 15.8∗∗∗ 123.2∗∗∗ 12.8∗∗∗ 2.2
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with larger instrument sets as in column VII (though performing well in capturing spatial

dependence) may face problems with respect to this criteria.

Summing up, the obtained regression results for our migration model show that both

time and space are important dimensions to account for in our empirical analysis. Apply-

ing different estimation techniques in a GMM framework, we observe a general trade-off

between essential IV diagnostic tests and remaining spatial dependence in the residuals.

As best alternative from the perspective of standard IV and spatial dependence diagnostic

tests serves a mixed filtering-regression approach, which allows to quantify the effect of

spillovers from spatially linked migration flows, as well as shows a good model fit in terms

of essential IV diagnostic tests and well-behaved residuals.

5 Conclusion

In this paper we have explored the potential role of spatial autocorrelation in the analysis

of interregional migration flows for Germany since re-unification. Though there is a huge

body of literature dealing with structural determinants of German internal migration, no

test for the role of time-space dynamic processes has been done. Starting from a standard

aspatial specification of the neoclassical migration model in a dynamic panel data context,

we show that spatial autocorrelation is highly present. The paper then discuss how to

properly account for the identified spatial patterns in applied work: We basically follow

an estimation strategy, which augments the standard Blundell-Bond (1998) system GMM

estimator by spatial lags of the endogenous and explanatory variables. This estimator has

recently been shown to perform both well in Monte Carlo simulations (see e.g. Kukenova

& Monteiro, 2009) as well as empirical applications (see e.g. Bouayad-Agha & Vedrine,

2010). We apply extended SYS-GMM to a spatial lag as well as an unconstrained spatial

Durbin model approach. An alternative way to account for spatial interdependence is to

apply spatial filtering techniques, which intend to remove spatial dependence embedded

in a set of variables.

In order to apply the spatial regression and filtering techniques we construct a set of

binary spatial weighting matrices (both based on common borders as well as optimal ge-

ographical distances derived from a threshold measure) for our migration flow data. The

latter requires to shift attention from a two–dimensional space for n regions and n × n

origin-destination pairs to a four dimensional space with n2 × n2 origin-destination link-

ages. Based on these network autocorrelation structures we then set up a framework for

specifying a combined spatial weights matrix that that is able to simultaneously capture

both origin- as well destination related interaction effects.
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The regression results show that the different spatial techniques are able to remove a

large part of spatial dependences from our model’s residuals. In terms of the spatial exten-

sion of the SYS-GMM estimator the spatial Durbin model shows the best performance in

capturing spatial dependences among migration flows. However, since it employs a large

number of instruments, we observe a trade-off between instrument consistency (measured

by the Hansen J-Statistic overidentification tests) and effective spatial modelling. Finally,

applying a mixed spatial filtering-regression approach to reduce the number of instrument

counts, this specification passes both standard IV diagnostic tests as well as Moran’s I

and Wald GMM based tests for remaining spatial autocorrelation in the residuals. The

latter approach may give rise to further improvements in terms of consistent and efficient

estimation of dynamic spatial panel data models and is in line with earlier findings such

as Elhorst et al. (2010), who propose a mixture of different estimation techniques in

complex models with space-time dynamics.
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Appendix

A Spatial Filtering

Similar to the idea of filtering seasonality out of time series data spatial filtering techniques

convert variables that are spatially autocorrelated into spatially independent variables and

a residual – purely spatial – component. Among the commonly applied spatial filtering

techniques is the Getis (1990, 1995) as well as the Griffith (1996, 2003) Eigenvector

spatial filtering approach. A recent empirical comparison of both filtering techniques has

shown that both approaches are almost equally equipped for removing spatial effects from

geographically organized variables (see e.g. Getis & Griffith, 2002). For the remainder of

the paper we rely on the Getis approach, which has been applied in variety of empirical

research contexts (see e.g. Badinger & Url, 1999, Badinger et al., 2004, Iara & Traistaru,

2003, Battisti & Di Vaio, 2008, and Mayor & Lopez, 2008). The idea of the spatial filtering

approach is based on the consideration of a spatial vector S:

S ≈ ρWY, (28)

which takes the place of both the spatial weights matrix W and the spatial lag co-

efficient ρ for variable Y and allows the conversion of the dependent variable into its

non-spatial equivalence as Y ∗ = (Y − S). Once the filtering exercise has computed a set

of non-spatial variables the second step regression task can be performed under the inde-

pendence assumption yielding unbiased estimation results for the underlying model. To

derive the set of spatially ’cleaned’ variables the Getis approach uses the local statistic

Gi(d) by Getis & Ord (1992) defined as:

Gi(d) =

∑N
j=1wij(d)yj∑N

j=1 yj
, with i �= j. (29)

The Gi(d)-statistic calculates the ratio between the sum of the yj values included

within a distance d from region i and the sum of the values in all the regions excluding

i. It thus measures the concentration of the sum of values in the considered area and

would increase their result when high values of variable y are found within a distance d

from i. For empirical application one has to note that the use of this approach is limited

by the nature of the Gi(d)-statistic which requires all variables to have a natural origin

and be positive. Thus, as Getis & Griffith (2002) point out, some typical variables such

as those represented by standard normal variates or percentage changes cannot be used.

Moreover, the matrix of spatial weights has to be binary (not row-standardized). Getis
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& Ord (1992) additionally deduce the expressions of the expected value for Gi(s) and its

variance under the spatial independence hypothesis as:

E(Gi(d)) =

∑N
j=1wij(d)

(N − 1)
=

Wi

(N − 1)
, (30)

V ar(Gi(d)) =
Wi(N − 1−Wi)

(N − 1)2(n− 2)

(
Fi2

F 2
i1

)
, (31)

where

Fi1 =

∑
j yj

N − 1
and Fi2 =

∑
j=1 y

2
j

N − 1
− F 2

i1. (32)

Assuming a normal distribution we can finally derive the test statistic Z(G)i from the

above expressions as as:16

Z(G)i =
Gi(d)− E[Gi(d)]√

V ar(Gi(d))
. (33)

According to Getis (1995) the filtered variables can then be computed from the Gi(d)-

statistic in the following way: Since its expected value E[Gi(d)] represents the value in

location i when the spatial autocorrelation is absent, the ratio Gi(d)/E[Gi(d)] is used in

order to remove the spatial dependence included in the variable. The spatially uncorrelated

component of variable y can then be derived as:

y∗i =
yi ×

(
Wi

N−1

)
Gi(d)

. (34)

The difference between the original y and the filtered variable y∗ is a new variable

ÿ = (y − y∗) that represents purely spatial effects embedded in y.

As Badinger & Url (1999) point out, the choice of an appropriate distance d is essential

for filtering. The optimal distance can thereby be interpreted as the radius of an area where

spatial effects maximize the probability of deviations between observations and expected

values. One option to set up this radius is in terms of border regions. Alternatively, using

geographical distance between regions, Getis (1995) suggests to choose the d-value which

maximizes the absolute sum of the normal standard variate of the Gi(d)-statistic:

16The underlying null hypothesis of Z(G)i states that the values within a distance d from i are a random sample drawn
without replacement from the set of all possible values.
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max
N∑
i=1

|Z(G)i| = max
N∑
i=1

|Gi(d)− E[Gi(d)]|√
V ar(Gi(d)

(35)

Finally, Getis (1995) outlines four criteria to assess the effectiveness of the spatial filter

in removing spatial dependence. First, there should be no spatial correlation in y∗. Second,

if y is a variable with spatial dependence embedded in it, then ÿ is a spatially autocorre-

lated variable. Third, in any regression model where all variables have been filtered using

an appropriate distance d, residuals are not spatially associated. Fourth, theoretically mo-

tivated explanatory variables in a regression equation should be statistically significant

after spatial dependence has been removed.

As a first indication of the appropriateness of the Getis filtering approach table A.3

reports the results of the Moran’s I test statistics applied to the filtered variables (except

those being tested spatially independent, namely q̃ and Δp̃l). As the table shows for the

dependent variable (nm∗) the optimal distance based weighting scheme is much more

successful in eliminating spatial dependences compared to the border based alternative.

Table A.1: Moran’s I values for the spatially filtered variables using the Getis approach

Border Optimal distance
year nm∗ nm∗ wr∗ ur∗ yrl∗ hc∗

1991 0.66 0.07 -1.05 -1.07 -2.05∗∗ -0.91
1992 -0.84 -0.94 -1.21 -1.11 -1.76∗∗ -0.86
1993 -1.90∗∗ 0.12 -1.39∗ -1.12 -1.35∗ -0.89
1994 -3.23∗∗∗ -1.44∗ -1.41∗ -1.07 -0.89 -0.89
1995 -3.38∗∗∗ 0.98 -1.46∗ -1.05 -0.65 -0.93
1996 -2.73∗∗∗ -0.70 -1.43∗ -0.98 -0.43 -0.87
1997 -2.83∗∗∗ -0.74 -1.37∗ -0.90 -0.30 -0.74
1998 -2.65∗∗∗ 1.25 -1.38∗ -0.73 -0.26 -0.97
1999 -1.65∗∗ -0.94 -1.36∗ -0.66 -0.06 0.63
2000 0.04 0.83 -1.29∗ -0.65 -0.04 -1.21
2001 -0.10 1.43∗ -1.28∗ -0.59 -0.16 -0.92
2002 -0.09 1.42∗ -1.28∗ -0.58 -0.13 -0.86
2003 -1.18 0.22 -1.27 -0.71 0.02 -0.86
2004 -1.13 0.08 -1.23 -0.76 0.12 -0.78
2005 -2.02∗∗ 0.05 -1.25 -0.65 -0.01 -0.55
2006 -0.27 -1.07 -1.26 -0.63 -0.02 -0.83

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. For both endogenous and
exogenous variables we use information in levels and the exogenous variables are filtered in their original form.
The optimal distance values are: wr = 300km, ur = 400km, yrl = 225km, q = 225km, hc = 450km, pl = 350km
and kept constant over the sample periods. A sensitivity analysis with time-varying d-values did not change the
results significantly. We do not report filtering results for q and Δpl∗ since those variable do not show significant
autocorrelation effects.
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Table A.2: Major cities among German states based on population levels in 2006

No. Rank City Pop. in 2006 Pop. weight State

1 1 Stuttgart 593923 0.389 Baden-Württemberg
2 2 Mannheim 307914 0.202 Baden-Württemberg
3 3 Karlsruhe 286327 0.188 Baden-Württemberg
4 4 Freiburg 217547 0.143 Baden-Württemberg
5 5 Ulm 120925 0.079 Baden-Württemberg
6 1 München 1294608 0.557 Bavaria
7 2 Nürnberg 500855 0.215 Bavaria
8 3 Augsburg 262512 0.113 Bavaria
9 4 Würzburg 134913 0.058 Bavaria
10 5 Regensburg 131342 0.057 Bavaria
11 1 Berlin 3404037 1.000 Berlin
12 1 Potsdam 148813 0.472 Brandenburg
13 2 Cottbus 103837 0.329 Brandenburg
14 3 Frankfurt/Oder 62594 0.199 Brandenburg
15 1 Bremen 547934 1.000 Bremen
16 1 Frankfurt/Main 652610 0.550 Hessen
17 2 Wiesbaden 275562 0.232 Hessen
18 3 Kassel 193518 0.163 Hessen
19 4 Fulda 63916 0.055 Hessen
20 1 Hamburg 1754182 1.000 Hamburg
21 1 Rostock 199868 0.550 Mecklenburg-Vorpommern
22 2 Schwerin 96280 0.265 Mecklenburg-Vorpommern
23 3 Neubrandenburg 67517 0.186 Mecklenburg-Vorpommern
24 1 Hannover 516343 0.512 Lower Saxony
25 2 Braunschweig 245467 0.244 Lower Saxony
26 3 Osnabrück 163020 0.162 Lower Saxony
27 4 Wilhelmshaven 82797 0.082 Lower Saxony
28 1 Köln 989766 0.368 North Rhine-Westphalia
29 2 Dortmund 587624 0.218 North Rhine-Westphalia
30 3 Essen 583198 0.217 North Rhine-Westphalia
31 4 Münster 272106 0.101 North Rhine-Westphalia
32 5 Aachen 258770 0.096 North Rhine-Westphalia
33 1 Mainz 196425 0.345 Rhineland-Palatine
34 2 Ludwigshafen 163560 0.287 Rhineland-Palatine
35 3 Koblenz 105888 0.186 Rhineland-Palatine
36 4 Trier 103518 0.182 Rhineland-Palatine
37 1 Saarbrücken 177870 1.000 Saarland
38 1 Leipzig 506578 0.403 Saxony
39 2 Dresden 504795 0.402 Saxony
40 3 Chemnitz 245700 0.195 Saxony
41 1 Halle(Saale) 235720 0.506 Saxony-Anhalt
42 2 Magdeburg 229826 0.494 Saxony-Anhalt
43 1 Kiel 235366 0.527 Schleswig-Holstein
44 2 Lübeck 211213 0.473 Schleswig-Holstein
45 1 Erfurt 202658 0.497 Thuringia
46 2 Gera 102733 0.252 Thuringia
47 3 Jena 102494 0.251 Thuringia
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