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Outside Options in Probabilistic Coalition
Situations

Abstract

In this paper, | introduce an extension of (TU) games with a coalition structure. Taking
a situation where all coalitions are already established is not reasonable in order to
forecast the reality; there is not only one possible coalition, there are several. | consider
situations where coalitions are not established yet and take into account the likelihood
of each possible coalition. This leads to a generalized, probabilistic setting for coalition
structures. Probabilistic versions of known axioms are introduced as well as new
probabilistic axioms. Generalizations of both the outside-option-sensitive chi-value
(Casajus, Soc Choice Welf 32, 1-13, 2009) and its outside-option-insensitive pendant,
the component restricted Shapley value (Aumann and Dréze, Int. |. Game Theory 3, 217-
237, 1974), are defined and axiomatic characterizations are given.
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1 Introduction

Most research on coalition structures assumes that some certain social or economic structure
is already present, i.e. the individuals have already formed certain coalitions. But is it
reasonable to take such situations as completely given? Mostly, there is not only one possible
structure, there are several. Take for example elections: at the time of election, it is not
known which parties will build coalitions, but there are some beliefs or assumptions about all
possible coalitions. For forecasting, it is not reasonable to take situations as given, one should
include uncertainty. From a more general point of view, the framework can be modelled by

starting at some point before coalitions are formed.

I consider all possible structures and their likelihood, while it would also be possible to think of
structures as the result of independent relations. Gomez et al. (2008), who extend the setting
of networks, i.e. bilateral relations between the individuals, explain why "the importance
of removing the independence assumption should not be underestimated” by features like
incompatibilities: the presence of a certain relation between persons, enterprises, or political
parties (a bilateral relation or also a formed coalition) can exclude the possibility of a relation
between one of them and a third actor (Gomez et al., 2008, page 540). Take political parties:
A coailition between two parties might exclude the possibility of a coalition between them
and a third one due insuperable conflicts between this third party and one of the first two.
Situations where structures are already present are called deterministic and, referring to the

likelihood assumption, the extended situations probabilistic.

In this paper I extend the deterministic setting of coalition structures to a probabilistic one
and define and study a probabilistic extension of an outside-option-sensitive solution concept
and its features. Why is sensitivity to outside options, which is for example taking into
account a bargaining position of a certain player against other players, an important and
reasonable feature? Pfau (2008) shows in his experimental work about social interchange
that outside options significantly affect negotiation. Any formed coalition between individuals
“only describes one particular consideration”. The result of negotiation between the individuals
will be "decisively influenced by the other alliances which each one might alternatively have
entered”. "Even if |...] one particular alliance is actually formed, the others are present in
virtual existence: Although they have not materialized, they have contributed essentially to
shaping and determining the actual reality.” (von Neumann, J., Morgenstern, O.: Theory of

Games and Economic Behavior, Princeton University Press, 1944, p. 36)

Casajus (2009a) and Wiese (2007) both introduce outside-option-sensitive solution concepts
for coalition situations. T focus on the y-value (Casajus, 2009a): "The Wiese value has some
drawbacks. Most notably it lacks a 'nice’ axiomatization. In essence, there is a non-intuitive

ad-hoc specification of the payoffs [...].” (Casajus, 2009a, page 50)
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The following example shows why an outside-option-sensitive value is reasonable for distribut-
ing wealth on the individuals and how the probabilistic framework can be used to forecast

the outputs of all individuals given some certain beliefs.

Consider a gloves game (Shapley and Shubik, 1969) which is a well-known market game in
cooperative game theory and is suitable to model negotiation situations with asymmetric dis-
tribution of power (Pfau, 2008, page 8). Take such a game with six players, two of whom
with left gloves, which we denote by [, 3, and the remaining four with right gloves, denoted
by r1,r9,73,74. The worth of a coalition is the number of matching glove-pairs. Suppose that
four players form two matching pairs leaving the remaining two players (right-glove holders)
unattached. The coalitions could be described by P = {{l1,71}, {l2, 72}, {r3}, {ra}}. How
should the worth (1 per matching pair) be distributed among the players?

Casajus (2009a) compares the outcome for this situation of his outside-option-sensitive y-value
with two well known solution concepts: the Shapley value (Shapley, 1953) and the component
restricted Shapley value (Aumann and Dreéze, 1974). Find the values of this example in Table
1.

‘ glove holder H x- value ‘ AD-value ‘ Shapley value

I, la 0.8 0.5 0.7333
T, T2 0.2 0.5 0.1333
73, T4 0 0 0.1333

Table 1: Payoffs for the gloves game

The Shapley value does not take into account any coalition structure, all right-glove holders
obtain the same payoff even though two of them are not in a coalition that creates worth. The
AD-value (depending on a player’s own coalition only) splits the worth of 1 equally within
matching pairs, even though the left-glove holders have a better bargaining position due to
outside options: a left-glove holder could argue that he could form a coalition with another
right-glove holder instead of the current one and create the same worth. The x-value takes

into account outside options of the players as well as the coalition structure.

Let us now consider the situation where coalitions are not yet established but there are some
(common) "beliefs” about all possible coalitions, for example due to statistical forecasts or
some special features. The situation can be considered as a probabilistic coalition situation,
that is, one considers a probability distribution over all possible coalitions.

Let 71 and 73 be more attractive to the left-glove holder I3 while [y prefers ro and r4 (for
example due to slightly different colors). Further, the right-glove holders suppose [; to prefer
r1 over r3 (due to some different features) while they suppose I3 not to distinguish between ry

and r4. Taking into account these beliefs we are left to consider only the following coalition
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structures:

Pr={{li,r1}, {l2, 2}, {rs}, {ra}}, Po = {{l, 71}, {l2, ma}, {73}, {r2}}
Ps = {{li,r3}, {lz, o}, {ri}, {rad ), Pa= {3}, {l2, ra}, {71}, {2} )

Let the beliefs of the right-glove holders lead to the following probabilities:
p(P1) = p(P2) = 0.3, p(P3) = p(Ps) = 0.2

where p(P;) is the probability that the coalition structure P; occurs.

For this situation, the values for the probabilistic y-value and the probabilistic AD-value can

be derived as given in Table 2.

glove holder H probabilistic x- value | probabilistic AD-value

I, I 0.8 0.5
- 0.12 0.3
Ta 0.1 0.25
T3 0.08 0.2
T4 0.1 0.25

Table 2: Expected ex ante payoffs for the gloves game

The values can be interpreted as the expected ex ante payoffs of the right-glove holders (the
left-glove holders will obtain their share of the worth for sure). It turns out that the values are
the same as the probability-weighted sum of the deterministic values. That is not surprising,

since this seems to be a reasonable definition for probabilistic values.

Nevertheless, it is interesting to consider the more general setting and to find more general
axioms than the deterministic ones to characterize values while still having the incentives of

the deterministic values as sensitivity to outside options.

The paper is organized as follows: The next chapter gives notations of deterministic coalition
structures and the y-value with its features. Chapter three introduces the probabilistic set-
ting as well as the probabilistic x-value and gives a first "straight forward”-characterization.
In chapter four, general probabilistic features are introduced, a characterization of the prob-
abilistic x-value and a link it to the first characterization are given. Chapter five gives a
characterization of the "outside-option-insensitive pendant” of the probabilistic y — value, an

extension of the component restricted Shapley value (Aumann and Dreéze, 1974).
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2 Deterministic Coalition Situations

Let N = {1,2,...,n} be a non-empty, finite set of players. A (TU) game is a pair (N,v),
where v, the coalition function, is a real function defined on 2V, the set of all subsets of N,
satisfying v()) = 0. For all K C N, v(K) represents the economic possibilities of players in
K, i.e. the worth of the coalition K. For T'C N,T # (), the game (N,ur), up(K) = 1 if
T C K and up(K) = 0 otherwise is called a unanimity game.
A solution concept is a function ¢ that assigns payoff vectors for all games (N,v), i.e.
©(N,v) € RN. A very used solution concept for (TU) games is the Shapley value Sh (Shapley,
1953), for any player ¢ € N given by

Shi(N,v) == > w [v(K U {i}) — v(K)], (2.1)

KCN\{i}
where k = |K|,n = |N]|

The Shapley value assigns to every player the average marginal contribution over all orders,
where the marginal contribution is given by v(K U {i}) — v(K).

A partition P C 2V is called a coalition structure (CS) for (N,v), where P(i) denotes the
component containing player i (the set of all players that are in the same cell as player
1). A CS-game or coalition situation (N,v,P) is a (TU) game together with a coalition
structure. A CS-value ¢ assigns payoft vectors for all CS-games. For any K C N T define

@K(N7 v, 73) = EieK <P1(Na v, P)

Now I give definitions and motivations of features for CS-values (based on Casajus, 2009a).
These features are called CS-axioms.

Additivity (A) A CS-value ¢ satisfies A, if for any coalition functions v, w: p(N,v+w,P) =
o(N,v,P)+ o(N,w,P).

A is a standard axiom.! It is satisfied by most of the solution concepts referred to in the
introduction.

Component Efficieny (CE) A CS-value ¢ satisfies CE, if pp(;) (N, v, P) = v(P(i)) for all
1€ N.

The motivation of this axiom is that players within a component, seen as a productive unit,
cooperate to create the component’s worth. In contrast there is the Efficiency aziom E:
en(N,v,P)=v(N).

Component Restricted Symmetry (CS) Players ¢,j € N are called symmetric in (N, v)
ifo(KU{i}) = v(KU{j})VK C N\ {i,j}. A CS-value ¢ satisfies CS, if ¢;(N,v,P) =
©;(N,v,P) for all symmetric Players ¢, € N and j € P(i).

Symmetric players have the same productivity. CS-values should provide the same payoff for
players with equal productivity that are in the same component, since there is nothing like

an inner structure which could be reasonable for a different treatment of these players. CS

! For a motivation of A see Roth, A.E.(1977): The Shapley value as a von Neumann-Morgenstern utility.
Econometrica 45, p. 657-664
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is a relaxation of the Symmetry aziom S: p;(N,v,P) = ¢;(N,v,P) for all symmetric players
in (N, v).

Grand Coalition Null Player (GN) A player ¢ € N is called a Null player in (N,v) if
v(KU{i}) = v(K)VK C N\ {i}. A CS-value ¢ satisfies GN, if ¢;(N,v,{N}) = 0 for all
Null players ¢ € N.

This axiom is a relaxation of the Null player aziom N: p;(N,v,P) = 0 for all Null players
i € N. This axiom excludes solidarity with unproductive players.

Note that for P = {N}, the axioms GN, CE and CS become N, E and S for TU-games
(without further structure). These axioms together with A characterize the Shapley value
(Shapley, 1953).

Splitting (SP) A partition P’ C 2V is called finer than P C 2V if P/(i) C P(i) for all players
i € N. A CS-value ¢ satisfies SP, if for P’ being finer than P we have for all i € N, j € P'(i):
wi(N,v,P) — ‘pi(vav,P/) = Wj(N’ v, P) — ‘Pj(vavp/)'

One could argue that gains or losses of splitting a coalition structure should be distributed
equally on players staying together in the new coalition structure. Splitting a given coalition
structure should affect all players that remain together in the new coalition structure by the
same way.

Using the previous axioms, Casajus (2009a) constructs a CS-value that is sensitive to outside

options:
Definition 2.1 (x-value). The x-value is for any player i € N given by

(P(2)) — Shpi) (N, v)
P(0)]

Xi(N, 0, P) := Shi(N,v) + (2.2)

The y-value can be seen as "the Shapley value made component efficient”.

Theorem 2.2 (Casajus (2009)). The x-value is the unique CS-value that satisfies CE, CS,
A, GN and SP.

3 The probabilistic Setting and the probabilistic y-value

To model a probabilistic coalition situation, consider a probability distribution on all coalition
structures P of N. Let P(N) denote the set of all possible partitions of N and

A(P(N)) :=<Sp:P(N) —[0,1], > p(P)=1
PEP(N)

the set of all probability distributions on P(XN). An element p € A(P(N)) can be interpreted
as p(P) giving the probability that the coalition structure P occurs.

Define a probabilistic CS-game (pCS-game or also probabilistic coalition situation) as a triple
(N,v,p), where (N,v) is a (TU) game and p € A(P(N)). A probabilistic CS-value (pCS-
value) ¢ assigns payoff vectors for all pCS-games.

Further, denote for any p € A(P(N)) by P(p) := {P € P(N)|p(P) > 0} the set of all coalition
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structures whose probability to occur under probability distribution p is not zero (i.e. the
carrier of p).

A probability distribution p € A(P(N)) is called degenerated if there exists a P* € P(N)
such that p(P*) =1 (i.e. p(P) =0 VP # P*). As a notation write pp~ for the degenerated
probability distribution corresponding to the partition P*.

Identifying pp with the corresponding partition P, define for every pCS-value ¢ the corre-
sponding CS-value via @(N,v,P) := o(N,v,pp). One could interpret this as follows: A
degenerated probability distribution gives that a certain coalition structure P occurs with
probability 1 (i.e. P is the sure event), therefore one is not any longer operating in a proba-
bilistic coalition situation, since there is a surely occuring coalition structure. The other way
around, a pCS-value can be defined via a CS-value as a probability-weighted sum. In this
situation it is clear that the pCS-value coincides with the CS-value for degenerated probability

distributions.

Following this idea I define the probabilistic y-value as follows:

Definition 3.1. For every probabilistic coalition situation (N,v,p) the probabilistic x-value
of (N,v,p) is defined by:

Xp(vavp) = Z p(P)X(N,U,P) (33)
PEP(N)

Note that in fact x?(N,v,pp) = x(N,v,P).

An extension of CS-axioms into pCS-axioms on degenerated probability distributions is quite
straight forward by just replacing ¢(N,v,P) by @(N,v,pp). Following this I define the
axioms dCE, dCS, dGN, dSP (where the d refers to an axiom on degenerated probability
distributions). Note that having a pCS-value satisfying dCE, dCS, dGN, dSP implies that

the corresponding CS-value satisfies the deterministic axioms.
Now T introduce a pCS-axiom which fills the gap between degenerated probability distributions
and general ones.

Axiom 3.2 (Linearity on Probability Distributions (pL)). A pCS-value ¢ satisfies pL if we
have for all probability distributions p,q € A(P(N)) and all o € [0, 1]:

@(vavap—i_ (1 - a)q) = O“P(vavp) + (1 - a)SD(N7/U7q)

This axiom states that mixing probabilities should lead to the same mix for the corresponding
payoffs. Note that convex combinations of probability distributions are again probability
distributions. Mixing probability distributions in a non-convex way would not make sense in

this setting.

Remark 3.3. If a pCS-value ¢ satisfies pL, we have for all probability distributions py, ..., pm €
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A(P(N)) and all oy, ..., € [0,1] with >°7" a; = 1

m m
® <N7U72aipi> = ZaiSD(Nﬂ}vpi)
i=1 i=1

The proof is straight forward by induction over m.

Remark 3.4. Any probability distribution p € A(P(N)) can be written as a convex combi-
nation of degenerated probability distributions: Since the player set N is finite, P(IN) is also
finite. One can write every p € A(P(N)) as

p(P) =p(P)pp(P) = > p(P)pp(P), P € P(N)
PIEP(N)
with Y p(P) =1
PIEB(N)

Theorem 3.5 (Characterization via deg. prob. distr.). The probabilistic x-value is the unique
pCS-value that satisfies dCE, dCS, A, dGN, dSP and pL.

Proof. The probabilstic y-value satisfies pL:

XP(N,v,ap+(1—a)g) = D (ap+ (1 —a)g)(P)x(N,v,P)
PEP(N)

= (XXP(N,U7[)) + (1 - CM)XP(N, v, (I)

Since xP(N,v,pp) = x(N, v, P), it also satisfies the other axioms by the deterministic value

satisfying the deterministic pendants.

Let now ¢ satisfy dCE, dCS, A, dGN, dSP and pL. Define the corresponding (determin-
istic) CS-value via @ (N,v,P) := o(N,v,pp).

By this construction, ¢! satisfies CE, CS, A, GN and SP. Therefore, by Theorem 2.2, we
have % = y. Now we get:

emark 3. pL
p(N,0.p) “TE o I No, ST pPee | E DD p(P)e(I, v.pp)
PEP(N) PEeP(N)
= Y pP™(N,v,P)= > p(P)x(N,v,P)=x"(N,v,p)
PEP(N) PEP(N)

O

Remark 3.6. If a pCS-value is defined as a probability-weighted sum of a deterministic value,
it is characterized by pL and the degenerated versions of the characterizing axioms of the
deterministic value. The proof is following the same structure as in the last proof, just for

general values.

Linearity on Probability Distributions is a very strong axiom. We will try to relax pL and
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find another characterization of the probabilistic y-value. For a characterization without the

Linearity-axiom, probabilistic axioms defined for general probability distributions are needed.

4 A probabilistic Characterization of the y-value

4.1 Probabilistic Axioms

For every coalition function v define the corresponding probabilistic coalition function v? as
follows:
P(E) = Y p(P) Y w(S)
PEP(N) SeP|k
where

Pli = {CNK|C € P}\ {0}

Denote by P, the finest common coarsening of all P € P(p). A component of Py, let us say
Pp(i), can be interpreted as the set of all players j € N that are "connected via probability”
with player i. Note that P, = {N} for many p € A(P(N)). Also note that j € Pp(¢) does not
necessarily imply the existence of a partition P € P(p) with j € P(3).

Now I can define a probabilistic version of CE:

Axiom 4.1 (Probabilistic Component Efficieny (pCE)). A pCS-value ¢ satisfies pCE if
ec(N,v,p) =vP(C) for all C € Pp.

Referring to the productive unit interpretation of CE, one can see P, as a probabilistic unit

that should produce the probabilistic output.

Further, denote by PP the coarsest common refinement of all P € P(p). One can interpret a
component PP(i) € PP as the set of all players that are in the same component as player 4 for
sure, i.e. for any player j € PP(i) we have that j € P(i) V P € P(p).

With this I define a probabilistic version of CS:

Axiom 4.2 (Probabilistic Symmetry within Components (pCS)). A pCS-value ¢ satisfies
pCS if we have ¢;(N,v,p) = ¢j(N,v,p) for all players i,j being symmetric in (N,v), j €
PP(i).

Players with the same productivity that are in the same component for sure should not be

treated differently in the distribution of the payoff.

With the following axiom I give a probabilistic version of SP:

Axiom 4.3 (Probabilistic Splitting (pSP)). A pCS-value ¢ satisfies pSP if for P',P € P(N),
P’ finer than P, and for p,q € A(P(N)) with ¢(P") = p(P") V P" € P(N) \ {P’, P} we have
@i(N,v,p) = 0i(N,v,q) = ;(N,v,p) = ;(N,v,q) for alli € N, j € P'(i).

At first view, this axiom might look very constructed. But looking more carefully at the

requirements of the probability distributions p and ¢ in the axiom one sees that one just shifts
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probability between a partition P and some finer partition P’. For the axiom SP I argued
that gains or losses of splitting a coalition structure should affect all players that remain
together by the same way. Now one could argue that if one shifts probability between a
certain coalition structure and a split coalition structure, players that would stay together in

the split coalition structure should be affected by the same way.

Note that pSP implies dSP by taking p and ¢ as the degenerated probability distributions
corresponding to P and P’ respectively. One has pp(P”) = 0 = pp/(P") V P" € F(N) \
{P,P’}, therefore I can apply pSP.

If axioms have requirements on probability distributions like in pSP, consider the following
algorithm in order to work on the whole set A(P(N)).

Algorithm 4.4 (Shift-Algorithm). Every p € A(P(N)) can be constructed from pgyy by
stepwise shifting probability between a partition P and a finer partition P’:

Take p € A(P(N)) arbitrary. Since N is finite, P(NN) is also finite, therefore I can order the
partitions: P(p) = {P1, ..., Pu}. If {N} € P(p), set {N} = P,.

Consider the following algorithm: T start with go = pyy. Forall i € {1,...,n — 1} T set:

a(P)) = p(Pi), a:({N}) =1— p(P;) and
=
4(P") = qi-1(P") ¥ P" € P(N) \ {P;,{N}}

Note that the last part implies ¢;(P;) =0V j >4, P; # {N} and also ¢;(P;) = p(Pj) V j < i.

Case 1: {N} ¢ P(p). I follow the recursive construction from above:

0n(Pn) = p(Pn), an({N}) =1-> p(P;) =0 and

j=1
¥ P" € P(N)\ {Pn, {N}} : u(P") = gu1(P") = p(P")
=qn =p
Case 2: {N} € P(p)(«< {N} =P,). Consider ¢,_1:
n—1
Gn1(Pnc1) = p(Pa1), @ 1i({N}) = 1= p(P;) =1 — (1= p({N})) = p({N}),
Jj=1
VP € P(N)\ {Pu-1,Pn}: @a1(P") = gu_a(P") = p(P"),

=qn-1 =P

Every step from some ¢; to g;11 is a shift of probability from { N} to P;;1. Since every P € P(p)
is finer than {N}, the algorithm describes a construction of an arbitrary p € A(P(N)) by

stepwise shifting probability between a partition and a finer one.

Lemma 4.5. The probabilistc x-value satisfies pCE, pCS and pSP.
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Proof. pCE: Take C' € P,. Note that for every P € P(p) one has

Ple={C"eP: |J =C}

c'ep
Using that the deterministic y-value satisfies CE T get

o(Nu,p) =" > pPxi(N,0,P)= > p(P)> xi(N,v,P
i€C PeP(N) PeP(p) i€C
Y P Y e P)
PeP(p) SEP|c i€S
LN pP) Y u(s) =v(C)
PEP(N) SEP|c

pCS: Let 4,5 be symmetric in (N,v), j € PP(3), i.e. j € P(i) VP € P(p)
deterministic y-value satisfies CS T get
xiNo,p)= > p

(P)xi(N,v,P)
PEP(N)

> p(P)xj(N,v,P)
First note that

= xj(N,v,p)
PeP(p)
pSP: Let P’ be finer than P and p, g € A(P(N)) such that p(P”) = ¢(P")

P’ e P\{P,P}.
p(P) —q(P') = (1 - > p(”’)) - (1 - > q(7’)>
PeP(N)\{P'} PeP(N)\{P'}
=— > [p(P)—q(P)] =—[p(P) - q(P)]
PeP(N)\{P'}

(%)
—xi(N,v,9) = > p(P

(P)xi(N,v, P)

PEP(N)

=) Lp
PEP(N

= [p(P )*

Let ¢ € N. Using that deterministic x-value satisfies SP one has for all j € P’(7)
Xi(N,v,p)

> 4PN, 0, P)
PEP(N)

]Xl(N v P)
q(P)Ixi(N, v, P) + [p(P") — q(P")]xi(N,v, P')
=" [p(P) — a(P)][xs(N, v, P) — xi(N, v, P")]
= [p(P) — a(P)][x; (N, v, P)
backgards

X;(N, v, P)]
(N, v, p) = x; (N, v, q)

I now try to characterize the probabilistic y-value by my new axioms
A, dGN and pSP.

Conjecture 4.6. The probabilistic x-value is the unique pCS-value that satsfies pCE, pCS

Using that the
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However this conjecture is wrong. Another plausible way to define a probabilistic value is
using the probabilistic coalition function instead of the probability-weighted sum. Using the

probabilistic component one gets:

VP (Pp(i)) = Shap, (i) (N, v)
Pp(0)]

Tt is easy to see that ¢ satisfies A, dGN, pCE and pCS. To see pSP, let P, P’ € P(N) and
p,q € A(P(N)), p # q, meet the requirements of pSP. Take ¢ € N, j € P'(i). Since P’ is
finer than P, we have j € P(i). Consider 3 cases:

1. p(P") >0=je€Ppyi)

2. p(P)=0Ap(P)>0=je Ppyi)

3. p(P") = 0=p(P) = p = q contradiction!

Analogously one gets j € Pgy(i). Hence, Pp(i) = Pp(j), Pg(i) = Pqy(j), which gives pSP.
Consider the following probabilistic coalition structure:

N = {1,2,3),0 = upy. P = {{1.2}, {3}}.p({N}) = p(P) = .

Consider the Null player 1 (every player ¢ € N \ T is a Null player in the unanimity game

wi(N,v,p) := Sh;i(N,v) +

ur). Using that the Shapley value satisfies N one can calculate:

1 1 1
X1 (N, uga3y,p) = -3 and @1(N, uga3),p) = ~5 # -3

Hence, ¢ # x and both satisty the axioms, i.e. x is not the unique value satisfying these

axioms.

One could construct ¢ also by following the idea of the proof of the deterministic case (The-
orem 2.2). At some point one has to assume PP (i) = Pp(i) (which is generally not the case)
in order to be able to use pCE. In a lot of cases P,(¢) contains all players in N. Hence, in a

sense, pCE is too weak!

4.2 Influence Axiom

I go back to the use of dCE instead of pCE. To fill the thereby created gap I introduce an

axiom which controles the influence of a probability shift.

Axiom 4.7 (Probabilistic Influence on Components (pIC)). A pCS-value ¢ satisfies pIC if
for P';P € P(N), P finer than P, and for p,q € A(P(N)) with ¢(P") = p(P") vV P" €
P(N)\ {P', P} we have

©p(N,v,p) —pp(N,v,q) = [p(P") — q(P)]lpp(N,v,ppr) — ¢p(N,v,pp)]
for all P € P'.

This axiom controls how a shift of probability between a given coalition structure and a finer

one influences the payoff of a component of the finer coalition structure.
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Theorem 4.8 (Characterization of the probabilistic y-value). The probabilistic x-value is the
unique pCS-value that satisfies pIC, dCE, dCS, A, dGN and pSP.

Proof. The probabilistic x-value satisfies pIC: Let P',P € P(N) and p,q € A(P(N)) satisfy
the requirements of pIC. Using equality (#%) from the proof of Lemma 4.5, part 3 one has
for all P € P

XZI)J(N7D7P) - X%(N,’U,q) = Z Z [p(,ﬁ) - q(ﬁ)}xi(va7P)

i€P PeP(N)
S p(P) - (PN, 0, P') = il N, 0, P)]
ieP
= [p(P,) - (1( ) [XP(Nv v, Pl) - XP(Nv 7)77))}

P
= [p(P") = a(PIXp (N, v, ppr) = Xp(N, v, pp)]

It has already been shown that the probabilistic y-value satisfies the other axioms.

Let now ¢ satisfy pIC, dCE, dCS, A, dGN and pSP. First note that o(N,v,p(yy) =
Sh(N,v)%. 1T proceed proving uniqueness by induction over k = [P(p) \ {N}].?

For the case k = 0 we have [P(p) \ {N}| = 0 which implies p = pyyy and therefore implies
@(N,v,p) = Sh(N,v).

Now, suppose @(N,v,p) = x(N,v,p) for all p € A(P(N)) such that [P(p) \ {N}| =k (H).
For the inductive step k +— k + 1 take p with |[P(p) \ {N}| = k + 1 arbitrary. Construct p via
the Algorithm 4.4. There are two cases:

1. P(p) ={P1, ..., Pria}, {N} ¢ P(p) = qey1 =p
2. P(p) = {P1, s Prt1, AN} = qrero)-1 = Gt1 =p

Hence, both cases give the same (¢;)i—o,.. k+1- Note that |P(gx) \ {N}| = k.
Every P € P(N) is finer than {N}. By construction I have gx(P) = qp1(P) VP € P(N) \
{Pr+1,{IN}}. Therefore, by pSP, I have for i € N, j € Pry1(i):

Pi(N, v, ge1) = i N, v, a) = 95 (N5 0, qreyr) = 95(N5 0, 1)
Summing up over j € Pry1(i):
[Py 1(D)|[0i(N, v, gir1) — 0i( N, v, q10)] = op, ) (N, 0 Gi1) — op (Vs vsqr)  (44)
By the construction of (¢;); and (H) I get for the left hand side of (4.4):

"Pk'+1 (Z)|[(pZ(N7 U7p) - Xf(N7 v, Qk)}

2 For p(ny the axioms pCE, pCS and dGN become dE, dS and dN, identify (N, v, p{y}) with the deter-
ministic value (N, v, {N}).
3 |P(p) \ {N}| > 0 because P(p) > 1 since p is a probability distribution.
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By pIC and the use of dCE I get for the right hand side of (4.4):

[@r+1(Prt1) = @e(Prar)p. i) (N, 0,010 ) — 9P (1) (N, 0, gy )]
g1 (Prst) — e (Pre)I0(Prst (1)) = @m0y (N, 0, ppvy)]
=[p(Prt1) = 0][v(Prr1()) — Shp, ,, i) (N, )]

Together one gets:
Prr1()l[ei(N, v, p) = X7 (N, v, q)] = P(Prs1) [0(Prs(8)) — Shp, i) (N, v)]

Hence, for all i € N, we get

[0(Prs1()) — Shp, ,, () (N, v)]
[Prr1(2)]

@i(N,v,p) =X} (N, v, 1) + p(Pr+1)
which uniquely determines . O

4.3 Linearity Equivalent

My aim was not only to find another characterization of the probabilistic y-value, T also
wanted to relax the Linearity axiom pL. The axioms in Theorem 4.8 are already similar to
the Linearity-Characterization axioms of Theorem 3.5, T just use pSP instead of dSP and
pIC instead of pL. Is there a connection between pIC and pL?

For that I first introduce an axiom which obviously strengthens the Probabilistic Influence on
Components axiom pIC.

Axiom 4.9 (Probabilistic Influence on Players (pIP)). A pCS-value ¢ satisfies pIP if for
p,q € A(P(N)) with q(P") =p(P") V P" € P(N) \ {P', P} for some P,P' € P(N) we have
¢i(N,v,p) = i(N,v,q) = [p(P') — ¢(P)]lgi(N,v,pp) — ¢i(N, v, pp)]

forall i€ N.

This axiom controls the influence of a probability shift between any two partitions P and P’
on a player’s payoff. Note that pIP obviously implies pIC. Also note that this axiom is not
only applicable for P’ being finer than P, but for any P’,P € P(N).

Rewriting the right hand side of pIP gives

¢i(N0,p) — @i(N,v,9) = Y [p(P) — a(P)l@i(N, v, pp)
PEP(N)

i.e. pIP states that the payoff difference due to a probability-shift between two coalition
structures equals the payoff difference of the probability-weighted sums of the deterministic

value.



4 A probabilistic Characterization of the y-value 17

Theorem 4.10 (Linearity Equivalent). The aziom pIP is equivalent to the aziom pL.

Proof. <" Let ¢ satisfy pL. Let P,P’ and p,q satisfy the requirements of pIP. Using
[p(P") — q(P")] = —[p(P) — q(P)]* T have:

L _ _
(,91'(]\’7’0,]7) _Sai(vaJI)p: Z p(P)(pZ(N7v7p75) - Z q(P)SD’L(Nv’Wp?s)
PeP(N) PeP(N)

= [p(P") — a(P")][¢i(N, v, ppr) — @i(N, v, pp)]
"=" Let ¢ satisfy pIP. Let o < 1 (the case aw = 1 is trivial).

The proof will contain three steps

1. pL for p, g degenerated probability distributions:
¢(N,v,app + (1 = a)ppr) = ap(N,v,pp) + (1 — a)p(N, v, ppr)
2. pL for general p € A(P(N)), ¢ degenerated probability distribution:
@(N,v,ap + (1 = a)pp+) = ap(N,v,p) + (1 — a)p(N, v, pp-)

3. pL for general p,q € A(P(N))
For 1. notice that:
(app + (1= a)pp)(P") = 0 = pp(P") VP" € B(N) \ {P,P'}

(app + (1 = a)pp)(P) =a <1 =pp(P)
(app + (1 —a)pp)(P') =1—a>0=pp(P')

Hence, pp and q := app + (1 — a)pp satisfy the requirements of pIP.

99(N,1}7 Q) - @(vaapp) pg [q(P/) _p’P(IP,)][SD(]\C U7PP’) - (,D(N,’U,pp)]
= (1 - (X)[QD(N,U,pfp/) - SD(N7 U7p7’)}
~ SO(Nv v, app + (1 - Oé)p'pl) = QSD(Nv vap) + (1 - a)@(Nv ’vap/)

Using this result T have for all p € A(P(N)):?
e(N,v,p)=¢ | Nov, > p(P)pp| = > p(P)p(N,v,pp) ()
PeP(N) PeP(N)

For 2. set P(p) := {P1, ..., Pn} with [P(p)| > 1, i.e. p not degenerated. During the proof I will
have to distinguish between two cases: P* ¢ P(p) and P* := P, € P(p).

4 ¢f. proof of Lemma 4.5, part 3 equation (+x)
® cf. Remark 3.3 and Remark 3.4.
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Note for P* =P, € P(p)

(ap + (1 — a)pp<)(Pi) = ap(Pi) < p(Pi) Vi=1,..,n—1

(ap + (1 = a)pp-)(P*) = ap(P") + 1 — a > ap(P*) + (1 — a)p(P*) = p(P")

and for P* ¢ P(p)

(ap+ (1 = a)pp=)(Pi) = ap(Pi) < p(Pi) Vi=1,...,n
(ap+ (L —a)pp-)(P*) =1—a>0=p(P)

For both cases consider the following algorithm:
I start with ¢ :=p
Foralli=1,..,n—1:

%(P') = g1 (P)) ¥V P' € B(N)\ {P;, P},
4(Pi) = ap(Pi),

G(P*) = g1 (P*) + (1 — a)p(Pi) = p(P*) + (1 — @) Y_ p(P;) > 0

Note that ¢;(P;) = p(P;) ¥V j > i, Pj # P*.
For case P* = P, € P(p) I consider g,_1:

an-1(P") = gn—2(P') = ap(P') ¥V P' € P(N) \ {Pn-1,P*}
Qn—l(Pn—l) = ap(Pn—l),

n—1

an—-1(P*) =p(P*) + (1 — a) Zp(Pj) =ap(P*)+1-«
j=1
=1-p(P*)

= Gn-1 = ap+ (1 —a)pp-
and ¢, for P* ¢ P(p):

QTL(P,) = %zfl(lpl) = ap(Pl) VP e P(N) \ {Pm P*}v
Gn(Pn) = ap(Pyp),

@n(P") = p(P") +(1 - U‘);P(Pj) =l-a
=0

=1

= ¢n = ap+ (1 — a)pp-
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For every i =1,...,n — 1 I get by pIP:

<P(N7 v, ql) - @(Na v, q’i+1) = [Q1(Pz+1) - q1+1(PZ+1)][(p(N7 ’va’Pi,Jrl) - SD(N’ ’U,pp*)]
= [p(PZ+1) - (le(,PH_l)H(P(N, va’P1+1) - @(N,’U,p’P* )}
A4 (P(N7 v, Qi+1) = SO(N7 v, QZ) - (1 - Oé)p(Pz+1)[4P(N, U7p77i+1) - SO(Nv 'vap*)]

Using pIP (n — 1) times I get for P* = P, € P(p):

W(N’ v, qn*l) = (1 - a)p(’P’n*Q)[Lp(]\L vvppn_z) - SO(Nv ’U,pp*)] + @(Nv v, q’rL72)
n—1
= o(N,v,q0) = Y _(1 = a)p(Pi) (N, v,pp,) — ¢(N, v, pp-)]
i=1

i=1

n—1
=(N,v,p) — (1 —a) [Zp (Pi)e N,v,ppi)@(N,v,pp*)Zp(’Pi):|

= (p(N v p 1 - OZ |:Zp PZ N7v7p7)1) - @(N,’U,pfp*)(l _p(P*)):|

P*;Pn @(Nﬂ]vp) - (1 - Oé) |:Zp(lpi)g0(N7U7pPl) - W(Nv ’U,pp*):|
=1
W o(N,0,p) = (1= a)[p(N, v,p) = ¢(N, v, pp-)]

= O“P(N7 1),])) + (1 - Q)(p(N, ?),pp*)

Analogously, using pIP n times, I get for P* ¢ P(p):

P(N,v,qn) = (N, v,q0) — Y _ (1 — @)p(Pi)[¢(N, v, pp,) — ¢(N, v, pp-)]
=1
=¢o(Nv,p) = (1-0a) |:Zp(Pi)99(N7U7PPZ) = ¢(N,v,pp-) Zp(Pi)}
i=1

=

—_

:@(vavp)_(l_a)

R

-

p(Pi)e(N,v,pp,) — (N, v,pp*)}

1=

N7 /U‘,p) - @(Nﬂ}:p?’*)]
N7,U7p73*)

© o(N,v,p) — (1 a)fp

= O‘QO(Na U7p) + (1 - OC)QO

—~

Hence, for both cases, one gets pL.
For 3. proceed showing pL for general p,q € A(P(N)) by induction on n = |P(¢)|]. For
notational reasons write p(p) := @(N,v,p) for (N,v) fixed.

For the case n = 1 one has ¢ = pp- for some P* € P(N). v by 2.

Now, suppose @(ap + (1 — a)q) = ap(p) + (1 — a)p(q) for all ¢ s.th. [P(g)] = n (H).
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For the inductive step n — n + 1 set P(q) = {P1,..., Pnt1}. Use the Shift Algorithm (cf.
Lemma 4.4), but take P* := P, instead of {N}. Therefore ¢y = pp- and ¢, = ¢ since

P* € P(p).

First note that ¢,—1(P,) = 0 and ¢,—1(P) # 0V P # Py, hence |P(g,—1)] = n. Then note
that (ap + (1 — @)gn)(P) = (ap 4+ (1 — @)gn—1)(P) ¥ P € P(N) \ {Pn,P*}, hence I can use
pIP.

plap + (1 - a)gn) "= [ap(Py) + (L = @)gu(Pa) — ap(Pa) — (1 = @)gn1(Pn)]
[epp,) — p(pp)] + plap + (1 — a)gn-1)

=(1 = a)qn(Pn)le(pp,) — o(pp+)] + lap + (1 — @)gn-1)

D1 - Q)an(Po)ler,) — epp-)] + ap®) + (1 — )@(g1)

=ap(p) + (1 — @) [p(gn-1) + [4:.(Pn) = 0l[(pp,.) — ©(pp+)]]
=ch0(p) + (1 - o‘) [@(Qn—l) + [Qn(Pn) - Qn—l(/Pn)H@(an) - @(pP* )H

=¢(qn) by pIP

=ap(p) + (1 — a)p(qn)
= pIP & pL. O

Using the equivalence of pIP and pL in the degenerated characterization of the probabilistic

x-value (Theorem 4.8), one trivially gets the following corollary:

Corollary 4.11. The probabilistic y-value is the unique pCS-value that satisfies dCE, dCS,
A, dGN, dSP and pIP.

Since pIC relaxes pIP, it is also a relaxation of pL. Therefore, Theorem 4.8 is the character-
ization of the probabilistic y-value that relaxes the Linearity-Characterization (Theorem 3.5)

I was looking for.

Note here that the gap emerging due to the relaxation of the Linearity axiom is filled by

taking the probabilistic version of the Splitting axiom.

5 Component Efficiency and the AD-value

It has been shown that pCE is not sufficient for a characterization of the probabilistic x-
value. Gomez et al. (2008) define a probabilistic version of the Myerson-value (Myerson,
1977) and show that it can be characterized by probabilistic pendants of the characterizing
deterministic axioms. This characterization includes a version of pCE for network structures.
The graph-y-value (Casajus 2009b), an outside-option-sensitive value for network structures,
can be seen as the Myerson value "made outside-option sensitive”.

Tt turns out that the approach of characterizing a probabilistic version of the graph-y-value via



5 Component Efficiency and the AD-value 21

PCE seems to fail as well as for the y-value®. Therefore, I wonder whether pCE is sufficient for
a characterization of the "outside-option-insensitive pendant” of the y-value, the component
restricted Shapley value: Aumann and Dréze (1974) define the component restricted Shapley
value (T denote it by Aumann-Dréze value AD) for every CS-game (N, v, P) as follows

AD;i(N,v,P) == Shi(P(i),v|p@))

Myerson (1977) defines the following property:

Axiom 5.1 (Balanced Contributions (BC)). A CS-value ¢ satisfies BC, if

@i(N,v,P) — pi(N\ {7}, vln gy Plnggy) = 95 (N, 0, P) — @i (N \ {i}, o an gy Pl fiy)
foralli,j € N.

The exit of a player j should hurt /benefit another player i by the same amount as the exit of
i hurts/benefits j.

Myerson (1977) also shows that the Shapley value is characterized by E and BC. Slikker and
van den Nouweland (2001) prove that the Aumann-Dréze value is the unique CS-value that
satisfies CE and CBC, where CBC is the restriction of BC on components (i.e. j € P(7)).
If a value satisfies BC, it particularly satisfies CBC. Since the Aumann-Dréze-value not only
satisfies CBC but also BC, we can characterize AD by CE and BC:

Theorem 5.2. The AD-value is the unique CS-value that satisfies CE and BC.

Proof. AD satisfies CE by Sh satisfying E. For BC let 4,j € N and one has

ADi(N\ {7}, vlangys Plggy) — AD (N \ {i}, vla gy Plagay)
= Shi(Pln\ (53 (0, vIn 31 ) = S (Pl iy (5)s vIn gy [Pl 1y ()

= Shi(Pi)\ {7}, vlpangy) — Shi (PG \ it vlpgingy)

(%) . .
= Shi(P(i), vlp@) — Shi(P(), vlpg)

= ADI(N, v, P) - ADj(]V7 ’U,P)

(*): If j € P(i) use that Sh satisfies BC. If j ¢ P(i) one also has ¢ ¢ P(j) and therefore
P@)\ {5} = P(i) and P(j) \ {i} = P(5)-

Let now ¢ satisfy CE and BC. Using that BC implies CBC leads to the fact that ¢ also
satisfies CBC. Hence, ¢ is uniquely determined (using the characterization of Slikker and van
den Nouweland (2001)). O

I now define the probabilistic Aumann-Dréze value and a probabilistic version of BC. Again

I use the probability-weighted sum:

5 Further information can be requested from the author
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Definition 5.3. For every probabilistic coalition situation (N,v,p) the probabilistic Aumann-
Dreze value of (N,v,p) is defined by:

ADP(N,v,p):= Y p(P)AD(N,v,P)
PEP(N)

For the probabilistic version of BC the probability distribution corresponding to the restricted
playerset is needed. For every p € A(P(N)) and every P’ € P(N \ {i}), i € N, I define

RGO D)
PEP(N)
PI=PIn\{i}

With this preliminary considerations I define:

Axiom 5.4 (probabilistic Balanced Contributions (pBC)). A CS-value ¢ satisfies pBC, if

@i(Navvlp) - SDZ(N \ {]}3U|N\{]}7p7]) = SOJ(N7 U,P) - (pJ(N \ {Z}7U|N\{z}apiz)
foralli,j € N.

Theorem 5.5 (Characterization of the probabilistic AD-value). The probabilistic AD-value
is the unique pCS-value that satisfies pCE and pBC.

Proof. 1 show pCE analogously to the proof for the probabilistic y-value (Lemma 4.5): Take
C € P,. Note that for every P € P(p) one has

Plo={C"eP: |J =¢} (%)
crep

Using that the deterministic AD-value satisfies CE I get:

ADY(N,v,p) =Y > p(P)ADi(N,v,P)= > p(P)>_ ADi(N,v,P)

i€C PeP(N) PeP(p) ieC
YOS e 3 AN P L S p) 3 u(s
PEP(p) SEP|c €S PEP(N) SeP|c
=7(C)

To see pBC take i,j € N. Using that the deterministic AD-avlue satisfies BC I get:

P)AD(N,v,P)— Y p(PYAD;(N\{i},vImy P)
P'eP(N\{j})

= > pP)
PEB(N)
= Y p(P)AD(N,v,P)— > p(PYADi(N\ {j}, vl P)
PEP(N) PIEP(N\{j}) PeEW)

P'=PIN\()
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= > p(P)AD{(N,v,P)— > > p(PYADi(N \ {5}, vlm gy P

PEP(N) mﬁff@v’ PIeP(N\{j})
e
= Z p(P)AD;(N,v,P) — Z p(P)AD:(N\ {j},v|n g5y Plangy)
PEP(N) PeP(N)
= Y [ADi(N,0,P) = ADi(N \ {j}, vln51, Plwnisy)]
PEP(N)
BC )
= Z [AD;(N,v,P) — AD;(N \ {i}, v gip> Plvvgiy)]
PEP(N)

backwards

ADP(N,v,p) — AD}(N \ {i},v|n\i3.07")

Let now ¢ satisfy the axioms. I prove uniqueness by induction over n = |N|.

For the case n = 1 one has N = {i}, i.e. A(P({N})) = {pia}. For p = pny the ax-
ioms become dE and dBC7 respectively. Since Sh is characterized by E and BC one has
@i(N, v, pny) = Shi(N,v) = Shi(P(i),vlpg)) = ADP (N, v, pny)-

Now, suppose @(N,v,p) = ADP(N,v,p) for all (N,v,p) with |[N|=n (H).

For the inductive step n +— n+ 1 take i € N. If |Py(i)| = 1 one has {i} € Pp, i.e. {i} € P for
all P € P(p) and therefore

0i(N,v,p) L P ({i}) = v({i}) £ Shi({i}, vlpy)

=Y p(P)Shi(P(i),v|pg) = ADE(N,v,p)
PeP

Let now |Pp(7)] < 2. By pBC T have for all j € N, particularly for all j € P,(4):
e N\ {5} vy 27 — 0 (N \ {i},vlmgiy. p ") = @iV, v,p) — (N, v,p) (5.5)
Summing up over j € P,(¢) \ {i} I have for the right hand side of (5.5):

Z [@i(vavp) —(,Oj(N,’U,p)]

JEPp(\{7}

= (IPp(0)| = DN, v,p) = D> 9i(N,v,p)
JEPp()\{3}

= |Pp(d)|pi(N,v,p) = ¢p, i) (N, v,p)

pCE

= |Pp(@)l@i(N, v, p) = vP(Pp(1))

7 the degenerated version of BC
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and for the left hand side of (5.5):

> (e N\ b vl p ™) = @i (N {i} ol 7))

JEPp()\{i}

H . . . i
DS AP G elngy ) — ADEN A (i vl gapop )]
JEPp()\{i}
BN [ADEW e p) - ADY(N,v,p)|

JEPR()\{i}
= (|Py(i)| = )ADI(N,v,p) — Y. AD!(N,v,p)

J€Pp(\{i}
= |,Pp(l)|ADf(Na va) - AD]”;JDP(Z)(N7 va)

CE . .
"= 1Py (i) [ADP (N, v, p) — vP (Pp(i))
Combining these results I get ;(N,v,p) = ADY(N,v,p) for all i € N. O

Hence, the probabilistic AD-value can be characterized directly via probabilistic pendants of
the characterizing determinstic axioms. Unlike for the probabilistic x-value, pCE is sufficient.
Why is possible to translate the deterministic characterization of the AD-value directly into
a probabilistic one while it is possible for the outside-option-sensitive pendant? A possible

explanation might be the component decomposability of the Aumann-Dreéze value:

Axiom 5.6 (Component Decomposability (CD)). A CS-value ¢ satisfies CD, if for alli € N

Soi(Nv v, P) = ‘Pi(P(i)’ Ul'P(i)’ {P(Z)})

If a value is component decomposable, it seems to be reasonable that the difference of the
probabilistic components (cf. chapter 4.1, page 14) should not matter and one should not run
into problems with probabilistic Component Efficiency. I expect problems with probabilistic
Component Efficiency for a direct probabilistic characterization of values that are not compo-
nent decomposable while I think that component decomposable values should have a direct
probabilistic characterization. Note here that both the Aumann-Dréze value and the Myerson

value are component decomposable while their outside-option-sensitive pendants are not.

Should we think about an outside-option-sensitive value that is component decomposable in
order to get a "nice” axiomatization? Component Decomposability states that the player’s
outside world does not affect payoffs within a component. Neither the potential coalitions
between players in the component and outside the component, nor the coalition structure.
Hence, it stands in contradiction to outside-option-sensitivity! In other words, even if we take
another outside-option-sensitive value, it can not be component decomposable and hence it

will most probably not have a direct probabilistic characterization.
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6 Conclusion and Critcism

I defined the setting of probabilistic coalition situations, which is more general than the al-
ready known setting of (deterministic) coalition situations and useful for forecasting aims. I
found a probabilistic extension of the outside-option-sensitive y-value and gave an axiomatic
characterization via Linearity on Probability Distributions and degenerated versions of the
characterizing axioms of the deterministic value. This linearity axiom is very strong, there-
fore I wanted to relax this axiom and find a further characterization. Even though it was
not possible to find a characterization via probabilistic pendants of the deterministic axioms
directly, I succeeded in finding the desired relaxation and characterization via introducing the
influence axioms.

In the end I showed that the problem of the insufficiency of Component Efficiency for char-
acterizing the x-value is not any longer present for the outside-option-insensitive pendant.
Further I claimed that outside-option-sensitive values generally lack a direct probabilistic

characterization.

The analyzed concept is a probability-weighted sum of deterministic pendants and therefore
the expected ex ante payoff; one could argue that a deterministic characterization is sufficient.
But it has been shown in this paper that it is not possible to translate the deterministic char-
acterization directly into a probabilistic one.

The network-approach for modeling social or economic situations captures more information
about the structure of the society or economy than the coalition-structure-approach. Hence,
it seems to be a more adequate approach. Casajus (2009b) introduces an outside-option-
sensitive value for networks. However, for this value it does not seem to be possible to find a
characterization in which one relaxes the Linearity axiom®. It would be interesting to find a
probabilistic outside-option-sensitive value for networks which can be characterized via prob-

abilistic axioms.

8 More informations can be requested from the author
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