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Abstract 

 

We introduce Longitudinal Factor Analysis (LFA) to extract the Common Risk Free 

(CRF) rate from a sample of sovereign bonds of countries in a monetary union. Since 

LFA exploits the typically very large longitudinal dimension of bond data, it performs 

better than traditional factor analysis methods that rely on the much smaller cross-

sectional dimension. European sovereign bond yields for the period 2006-2010 are 

decomposed into a CRF rate, a default risk premium, and a liquidity risk premium, 

shedding new light on issues such as benchmark status, flight-to-quality and flight-to-

liquidity hypotheses. Our empirical findings suggest that investors chase both credit 

quality and liquidity, and that liquidity is more valued when aggregate risk is high. 
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1 Introduction 

The risk free interest rate is a corner-stone in the pricing of financial assets, risk 

measurement, and inter-temporal allocation models. For a monetary union, the risk free 

rate is not as easily observable as for countries with an individual currency. To address 

this point, this paper introduces a new technique to extract the common risk free rate 

from a sample of sovereign bonds. 

In general the risk free interest rate, or in short the risk free rate, is defined as 

the return that can be obtained by investing in (short-term) financial instruments with 

no default risk. For example, default on US treasury bills is theoretically impossible 

because the US government can repeal the Federal Reserve’s independence and have as 

much money printed as needed to honour its financial obligations. In contrast, in a 

monetary union with centralised monetary policy and decentralised tax collection, 

default-free instruments do not exist. 

In this paper the Common Risk Free (CRF) rate represents the return on a 

hypothetical common bond without default and liquidity risk. The CRF rate equals the 

minimum possible aggregate nominal funding costs of the union’s member states, and 

reflects the fundamentals of the union’s economy. Since we analyse long-term 

instruments, the CRF bond is however not free of inflation and market risk (i.e. the 

variability of short-term interest rates). The CRF rate includes the common part of the 

inflation risk premium across the members of the monetary union. Adjusting the bond 

yields for cross country differences in this premium is unnecessary because 

international investors are not affected by inflation outside their country of residence. 

Mayordomo et al. (2009) derive the CRF rate by using macro-economic 

variables such as the debt to GDP ratio to first estimate the country specific risk 

premiums. The CRF rate is then computed as the average of the countries’ bond yields 

adjusted for the corresponding risk premiums. We do the opposite by first estimating 

the CRF rate and then derive the risk premiums. Risk premiums in turn can be 

decomposed in a default risk premium and a liquidity risk premium.1 None of the three 

bond yield components are directly observable, as even the sovereign Credit Default 

Swap (CDS) rate cannot be taken as a direct measure of the corresponding bond credit 

                                                 
1 Liquidity risk arises from uncertainty about deadweight losses when a security is sold before its 
expiration date. 
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risk premium, as suggested by Mayordomo et al. (2009), since it also contains its own 

liquidity risk component. 

We attribute the first common factor in the CDS-adjusted sovereign bond yields 

to the CRF rate. Note that the deviations of the CDS-adjusted bond yields from the 

CRF rate consist of differences between, on the one hand, implied credit and liquidity 

risk premiums on the bond, and, on the other hand, implied credit and liquidity risk 

premiums on the CDS. Common factors in these differences across countries are 

assumed to be less important than the CRF rate for the variation in the bond yields. This 

holds when both the difference in the implied price of credit risk and the difference in 

liquidity risk premiums between the bond and the CDS are small relative to the CRF 

rate. As shown below, usually such a situation occurs. 

A new method for factor analysis is introduced to extract this unobserved 

common component. Like with classical factor analysis (see Jöreskog, 1969) our 

method finds the common component up to an additive and multiplicative scaling 

factor. However, these scaling factors can be derived under weak assumptions. One 

assumption is the existence of a benchmark security. Benchmark securities are used for 

price discovery of market-wide phenomena (see Hasbrouck, 1996). In the absence of 

benchmark bond specific news (such as a deterioration of credit quality) investors 

attribute price changes of the benchmark bond fully to the risk free rate. The sensitivity 

of the benchmark bond to the CRF rate thus equals unity. This does not necessarily 

imply that all risks inherent in the benchmark security are systematic as suggested by 

Yuan (2005) and Dunne et al. (2007). In our model, only variability in the risk free rate 

leads to systematic risk. Although the benchmark bond may carry a time-varying risk 

premium, by assuming that the benchmark bond tracks the risk free rate, the 

multiplicative factor for the re-scaling of the common component follows from the 

factor loading associated with the benchmark bond. The additive factor follows by 

leaving no unexplained fixed components in the deviations of the CDS-adjusted bond 

yields from the CRF rate, once, these deviations, in turn, are corrected for differences in 

bond and CDS liquidity risk. Here we assume that the liquidity risk premium, i.e. the 

price of possible future transaction costs, is positively and linearly related to current 

transaction costs. In principle, risk premiums could be negative due to preferential tax 

treatment even when economic agents are risk averse. Landon (2009) however finds 

that since 1994 taxes have not been capitalised in Canadian government bond yields, 
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suggesting that the marginal investor is best represented by a non-taxed entity. 

Accordingly, in this paper we ignore the possible effects of taxes. Amihud and 

Mendelson (1991) confirm the pricing of a liquidity effect in US treasury notes and 

bills. 

In order to improve the efficiency of factor analysis we derive cross-variable 

restrictions, and maximize the likelihood function under these restrictions. Classical 

factor analysis ignores these restrictions. Since our method, hereafter called 

Longitudinal Factor Analysis (LFA), exploits the typically very large longitudinal 

dimension of bond data, it performs better than traditional factor analysis methods that 

rely on the much smaller cross-sectional dimension. The results of a Monte Carlo 

experiment show that LFA is more efficient in the estimation of idiosyncratic risk and 

the common component than Principal Components (PC) based on Theil’s (1971) 

method and classical factor analysis based on the EM algorithm of Rubin and Thayer 

(1982). Both PC and EM substantially overestimate the idiosyncratic risk on relatively 

low risk bonds, while conversely the risk on high risk bonds is systematically 

underestimated. The deviations are up to 73% and 27% of the true risk for the PC and 

EM methods respectively. In contrast, LFA only slightly overestimates the 

idiosyncratic risk of all bonds with less than 0.4% of the true risk. So far, the use of our 

estimation technique is limited to models with one common factor only. 

Bond and CDS data for the European Monetary Union (EMU) are used to 

derive the 5- and 10-year CRF rate in the euro area during the years 2006 till 2010. In 

addition to eleven sovereign issuers we also include bonds of the European Investment 

Bank (EIB). Since the EIB is owned by the member states of the European Union, all 

EMU countries are liable for these bonds. EIB bonds are however different from a 

common EMU bond since the liability of EIB owners is limited to their amount of 

subscribed capital, which is below the debt outstanding, and some countries outside the 

EMU are also liable for EIB bonds.  

Finance professionals generally consider the German Bund as the benchmark 

for the euro-denominated sovereign bond market. Based on arguments related to price 

discovery, academics have suggested other possible definitions of benchmark status 

such as the asset with the lowest idiosyncratic risk (see Dunne, Moore and Portes 

(2007), henceforth referred to as DMP, for evidence on EMU sovereign benchmarks). 
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Our base-case uses the Bund as the a priori benchmark. Robustness checks are made by 

using alternatively one of the other countries’ bonds as a priori benchmark.  

Analyzing French, German and Italian bonds, DMP designate, with the 

exception of very long-term bonds, French bonds as sovereign benchmarks for the 

period April 2003 – March 2005 because bi-lateral inter-bond regressions with French 

bonds have lowest residual variances. Our empirical results are in accordance with this 

finding for the pre-crisis period up to June 2007 included, but not thereafter. Moreover, 

before the crisis, there are other bonds, such as Dutch 5-year bonds that are even less 

risky than French 5-year bonds. Since the sub-prime mortgage crisis, however, Bunds 

have the lowest risk. The lowest variance in the total risk premium is observed for the a 

priori benchmark only if the Bund is chosen as the benchmark. For all other choices of 

benchmark, the Bund remains the bond with the lowest idiosyncratic risk. Hence, the 

data confirm its benchmark status. 

Our method for determining which bond has the lowest idiosyncratic risk has 

two important advantages over the one proposed by DMP. First, it can be applied for 

any number of assets whereas the DMP method cannot handle more than three. 

Secondly, in Section 3 we show that the inter-bond regressions cannot be run 

independently since the errors are not independent across equations. Our method solves 

this problem by maximising the likelihood function with the errors of the structural 

equations only.  

Our main other empirical findings are as follows: 1) from the moment the 

financial crisis hit the sovereign bond markets, the German Bund does not correspond 

closely to the common risk free rate any longer. Investors have begun to demand a 

significant risk premium even on benchmark securities. 2) The increase in credit risk 

premiums is by far the dominant factor in the divergence of the euro area sovereign 

bond yields. The increase in the liquidity risk premiums is relatively small and only 

plays a minor role for all bonds. 3) Since the crisis, bonds with higher credit risk also 

tend to have higher liquidity risk. Furthermore, liquidity risk and credit risk are 

positively correlated over time, meaning that liquidity is more valued during episodes 

of higher aggregate risk. 4) Sovereign credit risk priced in euro area bonds tend to be 

higher than that priced into credit default swaps, suggesting that the derivative markets 

are not driving up bond yields. In the main text we compare these results to the findings 

of recent other studies.  
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The remainder of this paper is organised in four parts: Section 2 explains how 

the common risk free rate in a monetary union can be uncovered by exploiting the 

commonalities in bond yields of different sovereigns. Section 3 discusses the new 

statistical method to find this common factor. Section 4 decomposes the sovereign bond 

yields in the European Monetary Union in the common risk free rate, the default risk 

premium and the liquidity risk premium, and analyses how these components have 

behaved during the recent crisis. Section 5 concludes. 

2 A parsimonious model for the common risk free rate in a monetary union 

Let  be the sovereign bond yield of member country  of the monetary union at time 

t for a particular maturity.  can be decomposed in a risk free component ( ) 

common to all n countries in the union, and a country specific risk premium (

ity i

ity tR

it ): 

ittit Ry  ,       (1)  ,,  tNi

where  and The two components of the risk premium (  and 

) compensate the investor for default and liquidity risk: 

},...,1{ nN 

it,

}.,...,1{ T itD

BONDL

itBONDitit LD , .       (2) 

None of the three bond yield components are directly observable. However, investors 

observe the cost of insurance against default of sovereign  on the corresponding Credit 

Default Swap (CDS): 

i

itCDSitit LDCDS , ,       (3) 

where  is the liquidity risk premium on the CDS. itCDSL ,

The CRF rate can be uncovered by extracting the first common factor in the 

difference between the bond yield and the CDS rate.2 In particular, a common 

component ( ) with a mean and variance equal to zero and unity, respectively, can be 

extracted from the CDS-adjusted bond yields by factor analysis (see Jöreskog, 1969) of 

the model: 

tZ

,ittiiititit eZbaCDSyx       (4) 

                                                 
2 The first factor explains more of the variation in the CDS-adjusted bond yields than any other common 
factor. 
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where  is a country specific fixed effect and  is the factor loading for country i . 

The disturbances  are assumed to be independently drawn from a normal distribution 

with zero mean and variance . Rotation of  gives the CRF rate: 

ia ib

ite

2
is tZ

,tt ZR           (5) 

where   and   are unknown parameters. We allow the risk premiums it  to be 

dependent on the CRF rate , so that factor loadings can differ across bonds. Note that 

the liquidity and credit risk premiums may also exhibit significant other common 

factors that possibly are even more important than the CRF rate for the variation in the 

risk premiums. However, common factors, if there are any, in the difference in the 

liquidity risk premium between the bond and the corresponding CDS, are assumed to 

be less important than the CRF rate for the variation in the bond yields. 

tR

In order to fix the multiplicative scaling factor  we assume that one of the 

bonds in N is a benchmark bond (B). Benchmark bonds are used to discover market-

wide phenomena. In the absence of benchmark bond specific news (such as a 

deterioration of credit quality) investors attribute price changes of the benchmark bond 

fully to the risk free rate, implying that the sensitivity of the benchmark bond to the 

CRF rate equals unity, that is: 

.Bb         (6) 

The risk premium is orthogonal to the CRF rate for bonds with factor loadings as in the 

right-hand side of Equation (6). 

The additive scaling factor   follows by leaving no unexplained fixed 

components in the deviations of the CDS-adjusted bond yields from the CRF rate, once, 

these deviations, in turn, are corrected for differences in bond and CDS liquidity risk. 

To do so, we need some information about liquidity risk. There is no direct information 

available on future transaction costs. Current transaction costs (  and ) 

however can be observed. It is reasonable to expect that investors take into account the 

current transaction cost on the bond and the CDS when pricing possible future 

transaction cost. For example, in the euro area, the transaction cost on sovereign CDS 

has been systematically above the transaction cost on sovereign bonds. Investors are 

then likely to demand a higher liquidity risk premium on the CDS than on the bond. We 

itBONDT , itCDST ,
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exploit this information by assuming that the liquidity risk premium is positively and 

linearly related to current transaction cost, 

itBONDitBOND TL ,,   and itCDSitCDS TL ,,  ,    (7) 

where   is an unknown parameter. We assume that the liquidity risk premiums for the 

bond and the CDS depend in the same way on the respective transaction costs as there 

are no obvious arguments for the opposite. Both   and   can now be estimated by 

ordinary regression of the model: 

ititCDSitBONDtBit TTZbx   )(ˆ
,, ,    (8) 

where  is the derived common component and tẐ it  is an error term. Finally, the credit 

risk premium immediately follows once the CRF rate and liquidity risk premium are 

known. 

3 Improving the efficiency of factor analysis for one-factor models 

A new technique is proposed for the factor analysis of equation (4), which is explained 

in detail in this section. Throughout we assume that the only available information 

about the exogenous process stems from the CDS-adjusted bond yields. We derive 

cross-variable restrictions, and maximize the likelihood function under these 

restrictions. Classical factor analysis (see Jöreskog’s, 1969) ignores these restrictions, 

leading to parameter estimates that are possibly infeasible because of their implications 

(i.e. negative variances). Since our method (called Longitudinal Factor Analysis) 

exploits the typically very large longitudinal dimension of bond data, it performs better 

than traditional factor analysis methods that rely on the much smaller cross-sectional 

dimension. The core of the estimation method is to regress bonds on each other. The 

original model parameters can then be extracted from the estimation results of these 

inter-bond regressions. For three bonds the model parameters are uniquely pinned 

down, so the discussion of the method starts with this special case. 

3.1 Estimating with three bonds 

We can remove the dependency of bond i on the exogenous factor by regressing on a 

different bond j. Using the definition of xit and xjt from Equation (4) we can write this 

regression in terms of the original model parameters as: 











 it

j

jt

j

j

j

jt
iiittiiit e

b

e

b

a

b

x
baeZbax  
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jt
j

i
itjt

j

i
j

j

i
i e

b

b
ex

b

b
a

b

b
a  .     (9) 

As Zt drops out from the equation, at this point no assumption needs to be made about 

its distribution. Equation (9) shows that regressing bond i on bond j yields constant ai – 

(bi/bj)aj and coefficient bi/bj. Note that alternatively we could have regressed bond j on 

bond i. This would have led to xjt = aj – (bj/bi)ai + (bj/bi)xit + ejt - (bj/bi)eit, which is 

identical to Equation (9) scaled by bj/bi. Hence, all information can be obtained from 

either of these regressions. 

Equation (9) further shows that , the variance of the disturbances when 

regressing bond i on bond j, satisfies: 

2
ijs

2

2

22
j

j

i
iij s

b

b
ss 












.       (10) 

Although  is known since it is the coefficient of the inter-bond regression,  and 

 are not pinned down since we have only one equation and two unknowns. Two 

bonds are thus not sufficient to extract the parameters of the original model. 

ji bb / 2
is

2
js

However, now consider the case where we have three bonds. Let i, j, k denote 

different bonds and regress bond i on bond j, i on k and j on k. The variances of the 

disturbances give the following system: 

















































2

2

22

2

2

22

2

2

22

k
k

j
jjk

k
k

i
iik

j
j

i
iij

s
b

b
ss

s
b

b
ss

s
b

b
ss

.       (11) 

Solving the three equations for si
2, sj

2 and sk
2 yields:  
















































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


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
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
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
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



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
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














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




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





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2
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2
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2
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2
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2
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k
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j
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The variances of the bonds can now be obtained after first computing the errors of the 

inter-bond regressions according to Equation (9) and then applying System (12) with 

the resulting variances. 

Equation (9) shows that the errors of the three inter-bond regressions are not 

independent. Similarly, when the ratios bi/bj and bi/bk are known, the ratio bj/bk follows. 

Hence, we cannot perform these regressions independently. Instead, we obtain 

estimates of the constants and factor loadings by maximizing the likelihood of the 

errors in Equation (4). In this way, we can exploit that the errors eit, ejt and ekt are 

independent by assumption. Standard maximum likelihood procedures can be used. 

Since we assume that all our information about the exogenous process stems from the 

bonds, we do not want to impose a particular distribution on Zt. We thus treat the 

exogenous factor as having an improper uniform density function, which is constant on 

the real line and thus uninformative. The infinite mass does not cause problems when 

conditioning on Zt (see Hartigan, 1983). Up to the constant density of Zt, the likelihood 

of observing the errors is thus:  

 

     

 


 









T

t Z

t
s

Zbax
s

Zbax

s

Zbax

kji t

k

tkkkt

j

tjjjt

i

tiiit

dZeee
sss1

2

1
2

1

2

1

2/3

2

2

2

2

2

2

2

1


. (13) 

Under the restrictions of System (12), Equation (13) is maximized over the constants a 

(i.e. ai, aj and ak) and factor loadings b (i.e. bi, bj and bk).
3 

Restrictions on the exogenous process are needed to obtain the individual factor 

loadings and constants. We can think of the factor loadings as measuring how sensitive 

the bonds are to the volatility of the underlying factor. For given factor loadings, the 

constants a pin down the level of the bonds. Since both the level of the exogenous 

process and its variability are unknown, there are two degrees of freedom and we thus 

need two restrictions.4 To emphasize, given the bond yields, restrictions on the level 

and volatility of the exogenous process affect a  and b , and vice versa. We assume that 

the level and variability of the exogenous process are equal to 0 and 1 respectively. 

                                                 
3 For practical purposes the computation of the T integrals is not convenient. By recognizing from the 
integrand that Zt conditioned on xit, xjt and xkt has a normal density, each integral can be replaced. See 
Appendix I for the details. 
4 Standardizing only the level of the exogenous process to C is not sufficient. To see this, note that if the 
level of a particular exogenous process Z satisfies this condition, so does the process uZ + (1 – u)C. 
Hence, the standardization does not only need to fix the level of the exogenous process, but also its 
variability. 
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To make the standardization of Z operational, we need expressions for the 

expectation and variability of the exogenous process. The maximum likelihood estimate 

of the exogenous process Ẑ  is derived in Appendix I. Although we assume the most 

uninformative distribution of the exogenous factor, conditional on the three bonds it has 

a normal distribution with conditional expectation  given by: tẐ

2

2

2

2

2

2

2

2

2

2

2

2

ˆ

k

k

j

j

i

i

k

kkt

k

k

j

jjt

j

j

i

iit

i

i

t

s

b

s

b

s

b

b

ax

s

b

b

ax

s

b

b

ax

s

b

Z











 ,    (14) 

which is an unbiased estimate of Zt with estimation variance + 

. Note that the individual bonds are first centered by a and scaled by b since 

(xit – ai)/bi is the best estimate of the underlying process conditional on xit (see Equation 

(4)). Then a weighted average is taken over the three scaled bonds with the relative 

weights being the squared factor loadings over the variances. Hence, relative weights 

are high if bonds have a low idiosyncratic risk compared to their dependence on the 

exogenous factor. Intuitively, these bonds are good predictors of the exogenous factor. 

In fact, the weights  are the inverse of the variance of the predictions (xit – 

ai)/bi.  is the best linear unbiased estimate of Zt.  

22222
ˆ //( jjiiZ

sbsbs 

122 )/ 
kk sb

tẐ

22 / ii sb

While it is too complicated to obtain a full analytical solution of the 

maximization problem, our standardization makes it possible to find analytical 

expressions for the estimator  of the constants. In Appendix I it is shown that the 

maximum likelihood solution satisfies: 

â

k

kktt

j

jjtt

i

iitt

b

axE

b

axE

b

axE 





 ][][][
,    (15) 

where the operator tE  denotes the time-average in the sample, i.e.   



T

t
ititt x

T
xE

1

1
. 

When now taking time-averages of both sides of Equation (14) and using the above 

equalities, we find the following unbiased estimate for the level of the exogenous 

process: 
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When the level of the exogenous process is standardized to 0, this equation is not 

dependent on bi anymore and it directly follows that  itti xEa ˆ . Similarly, 

 jttj xEa ˆ  and  kttk xEa ˆ . 

To obtain estimates b  for the factor loadings, we need to standardize the 

variability of the exogenous process. The variance of the estimate of Zt (V[ ]) equals 

the sum of the variance of (V[ ]) and the variance of the estimation error ( ). 

Hence we can estimate the variance of the exogenous process by: 
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When the ratios  and  and the variances of the disturbances are known, 

imposing the variance of the exogenous process to be 1 pins down  and hence the 

estimates for the other factor loadings. Thus, we can maximize Equation (13) over two 

ratios of factor loadings, say bi/bj and bi/bk, since the constants are known, and the 

individual factor loadings follow from the standardization of Equation (17). 

ji bb / ki bb /

ib̂

3.2 Estimating with more than three bonds 

In case of n bonds there are n(n – 1)/2 possible pairs for inter-bond regressions and n 

variances to be found. The analogue of System (12) will be a system of n(n – 1)/2 

equations in n unknowns. For n > 3 there will be more equations than unknowns. 

Although in theory (i.e. asymptotically) solving any n equations that pin down all 

unknowns would yield variances that solve the other equations as well, for finite 

samples this will not be the case. Hence, some cross-variable restrictions would 

possibly be violated and there is no obvious way to decide which restrictions can be 

ignored. 

We circumvent this problem by exploiting the fact that for three bonds all cross-

variable restrictions can be imposed and apply the method therefore to each possible set 
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of three bonds. For n bonds, we have n(n – 1)(n – 2)/6 of these sets. Each of these sets 

provides an estimate for the parameters of the included bonds. Let Hi contain all (n – 

1)(n – 2)/2 sets of three bonds that include bond i. It follows that for each bond there 

are (n – 1)(n – 2)/2 estimates for the corresponding factor loading and error variance. 

Although some of the cross-variable restrictions may still be violated, perhaps the most 

efficient way to obtain the system parameters is to compute the average of the 

respective estimates over all possible sets of three bonds. Note that this is only possible 

because the standardization of the external process leads to similarly scaled factor 

loadings. 

By following this strategy the main steps of LFA can be summarized as follows. 

3.3 Summary of LFA  

1) For each set iHh of three bonds including bond i the likelihood function in 

Equation (13) is maximized over ji bb /  and ki bb /  (using the representation of 

Equation (21) in Appendix I) under the restrictions of System (12).  

2) The estimate of the constant for bond i is 



T

t
iti x

T
a

1

.
1

ˆ  

3) An intermediate estimate ( hib ,
ˆ ) of the factor loading ib  for each set iHh  is 

obtained from Equation (17) with the standardization V[Zt] = 1. 
4) An intermediate estimate ( 2

,ˆ his ) of the error variance 2
is  for each set iHh  is 

obtained from System (12) after computing the error variances 22 , ikij ss  and 2
jks  

of the inter-bond regressions. 
5) Final estimates are computed by averaging over all possible sets of three bonds: 





iHh

hii b
nn

b ,
ˆ

)2)(1(

2ˆ  and 



iHh

hii s
nn

s 2
,

2 ˆ
)2)(1(

2
ˆ . 

6) The final estimate of the external process Z is obtained by extending Equation 
(14) to include all bonds. 

3.4 A Monte Carlo experiment 

To asses the performance of LFA we have run simulations to compare the results under 

our method with those obtained by Principal Components (PC) based on Theil’s (1971) 

method and factor-analysis based on the EM algorithm of Rubin and Thayer (1982). In 

line with the empirical Section 4 on the CRF rate for the euro area the experiment 

considers twelve bonds with different sensitivities to the common factor and risks. 

Bond yield series of one thousand observations each are generated according to 

Equation (4) without constant and with factor loadings equal to , 10/)1(1  ibi
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}.12,...,1{i  The disturbances corresponding to bond  are drawn from a normal 

distribution with zero mean and variance equal to ,  

The common component  is drawn from a standard normal distribution. To be 

consistent with the model in Section 2, idiosyncratic risk is measured by . Under 

these definitions the factor loadings increase from 

i

2.0

1

22 )10/)1((  isi

s

1

}.12,...,1{i

22 / ii b

tZ

b  to  and the 

idiosyncratic risks increase from  to approximately .  

1.2

38.0

12 b

/ 2
12

2
12 bs

ib̂ ib

04.0/ 2
1

2
1 bs

Average estimates are computed over ten-thousand replications. Table 7 of 

Appendix II reports the average factor loadings and average variances of the errors. 

Figure 1a shows the average error in the factor loading (E[ ]/ -1) whereas Figure 1b 

shows the average error in the idiosyncratic risk (E[ 22 ˆˆ ii bs )/( 22
ii bs]/ -1) of bond i . 

Figure 1c shows the average absolute error in the estimated common component, which 

is calculated as 






 


T

t
tZ

T
E

1

ˆ1
 tZ .  

LFA is better in predicting the factor loading and idiosyncratic risk of most 

bonds. Both PC and EM underestimate (overestimate) the factor loading of relatively 

low (high) risk bonds up to 4% and 0.6% of the true value respectively. LFA 

underestimates the factor loading of all bonds up to only 0.1% of the true value (see 

Figure 1a). For some bonds the estimation error in the factor loading is 82% lower for 

LFA than for EM, and the efficiency gain is even larger when LFA is compared to PC. 

Moreover, PC and EM substantially overestimate (underestimate) the idiosyncratic risk 

on relatively low (high) risk bonds. The deviation is up to 73% and 27% of the true risk 

for the two respective methods. In sharp contrast, LFA overestimates the idiosyncratic 

risk of all bonds only up to 0.4% of the true risk (see Figure 1b). LFA is superior to PC 

in the estimation of the idiosyncratic risk of all bonds. EM has a slightly smaller 

estimation error than LFA in the idiosyncratic risk of bond i=5. However, in all other 

cases LFA is superior to EM in the estimation of the idiosyncratic risk. Clearly, 

exploiting the longitudinal dimension of the sample indeed leads to overall better 

estimates of the idiosyncratic risk. 

LFA is also better in predicting the common component. The estimation error in 

 is on average 34% smaller for LFA than PC and 2% smaller for LFA than EM (see 

Figure 1c). Although the latter gain is modest, one should keep in mind that the factor 

tZ
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loading of the benchmark bond is needed to compute the CRF rate. The efficiency gain 

from using LFA instead of EM when estimating the CRF rate thus comes first and 

foremost from an improvement in the estimation of the factor loadings.  

In sum, LFA clearly outperforms PC and classical factor analysis when the 

cross-sectional dimension of the panel data set is small and the longitudinal dimension 

is large. Note, however, that so far our estimation technique is limited to models with 

one common factor only.5 

 
Figure 1a: Average error in the estimated factor loadings 
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5 In the case of two common factors, at least four bonds are needed to identify the system parameters. 
Using four bonds yields a system of four variance equations (restrictions) in four unknowns. However, 
the system has rank three and does not have a unique solution. 
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Figure 1b: Average error in the estimated idiosyncratic risks 
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Figure 1c: Average absolute error in the estimated common component 
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Note: See the notes of Appendix II for details of the simulation.  
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4 The common risk free rate in the European Monetary Union 

4.1 The data 

We analyze bonds of eleven countries that are part of the European Monetary Union: 

Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, 

Portugal and Spain, and bonds of the European Investment Bank (EIB).6 The period 

under analysis is Feb. 2006 till Feb. 2010. Using individual plain-vanilla bond quotes 

on Bloomberg, 5-year and 10-year spot yields are constructed for each country (see 

Appendix III).7 One caveat is worth mentioning upfront. In normal times bond quotes 

are close to transaction prices. However, in times of financial market stress there can be 

important discrepancies.  

Where available, the on-the-run bond (i.e. the most recent issue in the reference 

maturity) is used when inter- or extrapolating points on the yield curve. Blanco (2001) 

finds that on-the-run French, German and Spanish sovereign bonds have significantly 

lower yields than off-the-run bonds. For example, between January 1999 and May 

2001, the yield on on-the-run German bonds was about six b.p. lower than on off-the-

run bonds. On-the-run bonds are thus closer to the risk free rate, and therefore of 

particular interest for this study. Ejsing and Sihvonen (2009) find that, between January 

2006 and September 2008, on-the-run status has only a modest effect on the pricing of 

German sovereign bonds when other factors have not been controlled for. On-the-run 

status however is found to have a significant positive impact on liquidity, even after 

controlling for substantial spillover effects from Bund future contracts to cash bonds, 

which in turn has a negative impact on the yield.8 In contrast with our bond selection 

strategy, Gürkaynak et al. (2006) exclude on-the-run bonds and their deputies (i.e. the 

second most recently issued bond) when estimating the US treasury yield curve so that 

the liquidity of the included securities is relatively uniform. In addition to liquidity 

effects, Pasquariello and Vega (2007) find also other factors, such as bond maturity, 

that can explain yield differences between on-the-run and off-the-run US treasury 

bonds. Exclusion of on-the-run bonds could thus bias the estimate of the risk free rate. 

                                                 
6 Cyprus, Luxembourg and Malta are excluded due to their size; members of EMU that only recently 
joined such as Slovenia and Slovakia are excluded to have a longer time-span for the older members. 
7 Bloomberg reports z-spreads only since Feb. 2006. 
8 Table 3, 4 and 5 of Ejsing and Sihvonen (2009) show that on-the-run status increases the trading 
volumes and quoted depth (i.e. volume available for trading at the best three bid and offer prices) and 
lowers the bid-ask spread, respectively. Table 9 shows that liquidity, when measured by the bid-ask 
spread, can explain part of the differences between French and German bond yields. 

 18



Other bond selection criteria are discussed in Appendix III. For instance, French, 

German and Italian bonds are required to have a minimum size of € 1bn, for all other 

countries and the EIB € 500mn is the minimum size. The number of outstanding bonds 

and corresponding face value are substantially higher for France, Germany, and Italy in 

comparison to the other countries (see Table 1). Between Feb. 2006 and Feb. 2010, the 

bonds of these three countries together covered almost half the number of total bonds 

and two-thirds of the total amount outstanding on bonds with an original maturity of 

more than four years. The total size of the sovereign plain-vanilla long-term (large-

sized) bond market was about € 3.5tr (see Table 1). 

 
Table 1: The size of the long-term sovereign bond market in the euro area between 
Feb. 2006 and Feb. 2010 
 Average number  Average amount outstanding (in € million) 

Austria 17 134 
Belgium 20 225 
Finland 9 46 
France 43 729 
Germany 42 750 
Greece 22 168 
Ireland 10 52 
Italy 38 722 
Netherlands 18 187 
Portugal 15 83 
Spain 23 271 
EIB 18 81 
Total 274 3448 
Note: Only large fixed rate plain vanilla bonds with an original maturity of more than four years are 
included. 
 

Table 8 of Appendix IV provides statistics about the bonds used in the 

estimation of the spot yields by reference maturity. The number of bonds used varies 

from five in the case of 5-year Irish bonds to twenty in the case of 5-year German 

bonds. All countries and the EIB have issued at least one on–the-run bond in both the 5-

year and 10-year reference maturity during or just before the sample period since the 

minimum original maturity of the bonds used is within the reference maturity interval 

(see Appendix III for a definition). The maximum original maturity is in all cases at 

least five years above the reference maturity. For example, the maximum original 

maturity of Austrian bonds that are potentially used to estimate the 10-year CRF is 15.5 

years, i.e. 5.5 years higher than the reference maturity. Note that the remaining time to 

maturity of these bonds is usually close to the reference maturity on the dates when 
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they are used for interpolation. Except for 5-year EIB bonds, the minimum size of the 

bonds used to calculate the spot yields is substantially higher than the minimum size 

selection criterion mentioned above. On average, used bonds have a face value of at 

least € 5 bn. 

The 5-year and 10-year bond spot yields are shown in Figure 2a and 2b 

respectively. Two things are worth pointing out. 1) until spring 2007 the lowest yields 

are found on Finnish, German and Irish bonds. Throughout the sample period the 

highest yields are usually found on Greek bonds except for an intermediate period 

between May 2008 and October 2009 when Irish bonds earn the highest yields. As a 

result of the financial crisis, Irish bonds thus went from the most expensive to the 

cheapest bonds in the euro area. 2) while yields were moving nearly synchronously 

until the first half of 2007, the cross-country variance in bond yields increased 

massively during the financial crisis. The difference between minimum and maximum 

yields rose from about 30 b.p. in 2006 to more than 400 b.p. in 2010. Basic descriptive 

statistics of the bond spot rates are shown in Table 9 of Appendix IV. 

 
Fig. 2a: 5-year bond spot yields (in %) Fig. 2b: 10-year bond spot yields (in %) 
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Data on sovereign and EIB Credit Default Swap (CDS) quotes are from Credit 

Market Analysis Limited and Markit respectively (see Table 10 of Appendix IV for 
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descriptive statistics). The EIB CDS data must be cautiously interpreted as the reported 

quotes may not necessarily reflect true trading opportunities. To the best of the authors’ 

knowledge, so far EIB CDS have actually never been traded. 

 Figure 3 shows the CDS spread evolution over the sample period by reference 

maturity. There are again two points worth mentioning. 1) before the crisis the lowest 

CDS spreads are observed for Austria, France and the Netherlands. Recall that during 

this period Finish, German and Irish bonds earned the lowest yields. Note however that 

there are no pre-crisis data on Finnish CDS spreads available. Since the crisis, CDS 

spreads are among the lowest for Finland, Germany, and the EIB. The cost of insurance 

against a default of the EIB is only marginally higher, or sometimes even below, the 

insurance cost on Finnish or German debt. The CDS spreads are the highest for Ireland, 

Italy and Greece. 2) by comparing the CDS spreads in Figure 3 with the bond yields in 

Figure 2 we observe that until the second half of 2007 changes in bond spot yields were 

not driven by changes in CDS spreads. Indeed, between Feb. 2006 and Aug. 2007, bond 

spot yields rose by more than 100 b.p. while CDS spreads were basically flat. In 

contrast, since the summer of 2007, a large part of the variation in bond yields is caused 

by swings in the credit risk premiums. In the next two sections we will determine what 

role the CRF rate and liquidity premiums have played. 
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Fig. 3a: 5-year CDS spreads (in b.p.) Fig. 3b: 10-year CDS spreads (in b.p.) 
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We measure transaction cost by the respective bid-ask spread on the bond and 

the CDS. The difference between the bid and the ask rate is the most important cost 

incurred by the investor when buying and subsequently selling a security. Table 11 of 

Appendix IV shows the average transaction cost by reference maturity and sub-sample 

period. The sample is broken up in a pre-crisis period from Feb. 2006 until Jun. 2007 

included, and a financial crisis period from July 2007 until the end of our sample, i.e. 

Feb. 2010. Although sovereign bond markets were initially little affected, the beginning 

of the financial crisis is thus associated with the sub-prime mortgage crisis in the US. 

The main features of the transaction cost data are as follows. First, in all cases, the 

transaction cost on the CDS is higher than on the corresponding bond. Before the 

outbreak of the recent financial crisis, the 5-year bond transaction cost was on average 

about 0.6 b.p. whereas the five-year CDS transaction costs was on average about 1.6 

b.p.. For 10-year bonds and CDS, the average transaction cost was 0.4 b.p. and 2.6 b.p. 

respectively. Note that the 10-year bond transaction cost is lower than the 5-year bond 

transaction cost whereas the 10-year CDS transaction cost is higher than the 5-year 

CDS transaction cost. Hence, the impact of maturity on trading cost is ambiguous. 

Secondly, in almost all cases, the CDS transaction cost increased more than the bond 
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transaction cost during the financial crisis. France, Italy and Portugal are exceptions as 

for these countries the transaction cost on 10-year CDS increased less fast than the 

transaction cost on the corresponding bond. Thirdly, the pre-crisis data do not reveal a 

clear cross-sectional relationship between the bond and the CDS transaction cost. Since 

the crisis, however, bonds of countries with relatively low bond transaction cost also 

tend to have relatively low CDS transaction cost, as shown by the scatter plots in Figure 

4 for eleven out of the twelve issuers. Unfortunately, CDS transaction costs are not 

available for the EIB.  

 
Fig. 4a: Average 5-year bond against 

CDS transaction cost (in b.p.) 
Fig. 4b: Average 10-year bond against 

CDS transaction cost (in b.p.) 
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Note: The transaction cost is measured by the difference in the bid and the ask rate. The average value is 
computed over the financial crisis period Jul. 2007 – Feb. 2010. 
 

The data description points out several issues that seem important for the 

estimation procedure. Figure 3 raises the question whether the factor loadings in 

Equation (4) could be unstable because of a regime shift in the importance of the credit 

risk premiums. Furthermore, pre-crisis Irish bonds seem to be clear outliers since their 

low bond yields seem inconsistent with their high transaction costs. Last but not least, 

the transaction cost data suggest that, under the assumptions of the model in Section 2, 

the CDS-adjusted bond yields should be on average lower than the CRF rate because 

the right-hand side explanatory variable of Equation (8), i.e. the difference in the 

transaction cost between the bond and the CDS, is on average negative. Preliminary 

analysis of the data however reveals that for some countries the CDS-adjusted bond 
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yields were on average above the CRF rate, suggesting that the credit risk premium 

implied on the CDS can differ from the one on the bond. 

4.2 The Common Risk Free rate 

Taking into account the results of the data inspection, the following strategy is applied 

when estimating the common risk free rate: 

1) Over the pre-crisis (Feb. 2006 – Jun. 2007) period, factor loadings are assumed 

to be stable, and factor analysis of Equation (4) is performed on a sample of nine out of 

the twelve issuers. Finnish and EIB bonds are excluded from the factor analysis 

because there is no or insufficient information available on the CDS spreads during this 

period; Irish bonds are excluded because they create outlying observations. Irish and 

EIB factor loadings are estimated in a second step by OLS regression of their CDS-

adjusted bond yields on the common component  of Equation (4) obtained in the first 

step (and a constant). In this way, Irish and EIB bonds do not affect the CRF rate, but 

their factor loadings can still be obtained. Note that factor analysis requires a balanced 

sample and that missing observations lead to 5-year and 10-year samples with a 

different number of observations. By including the EIB in the factor analysis the 

number of observations T would be substantially reduced. 

tẐ

2) Over the financial crisis period (Jul. 2007 – Feb. 2010), factor loadings are 

allowed to vary, and are estimated over rolling windows of 125 trading days. One 

window corresponds to half a calendar year. The CRF rate over the rolling windows is 

based on factor analysis of Equation (4) on a sample of only four issuers. We only 

include Belgium, France, Germany, and the Netherlands because for some windows the 

factor loadings of the other eight issuers can be relatively far away from the factor 

loading concomitant the Bund. These factor loadings are subsequently estimated by 

OLS regression. When performing factor analysis for the rolling windows we thus 

include fewer countries than before so that possible measurement errors in the loadings 

of the excluded countries do not affect the CRF rate. Only the last observation of a 

rolling window is retained. For example, over the first rolling window that begins on 3 

January 2007 and ends on 3 July 2007, the first 124 estimated CRF rates are based on 

the pre-crisis period analysis and only the last CRF estimate of 3 July 2007 is based on 

the first rolling window analysis. 
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3) To obtain the additive scaling factor ̂  of Equation (5) and to estimate the 

relationship between current transaction cost and the liquidity risk premium, OLS is 

applied to Equation (8) over the full sample period in order to exploit the variation in 

the explanatory variable of Equation (8) to a maximum. This regression is based on 

Germany only because during the crisis the Bund has substantially lower credit risk 

than any other bond. By including only the Bund in this regression we limit possible 

distortions to the CRF rate that could arise from empirical differences in the implicit 

credit risk premium on a bond and the implicit credit risk premium on the 

corresponding CDS. In our theoretical model of Section 2 these premiums were 

assumed to be equal for each country. As will be shown below, this is the case for 

Germany, but not for most other countries. 

Figure 5 depicts the evolution of the factor loadings by reference maturity 

obtained with Longitudinal Factor Analysis as developed in Section 3. All loadings are 

scaled by the loading concomitant the Bund. Hence, factor loadings below 1 indicate 

that a bond has a lower sensitivity to the CRF rate than the Bund, while the CRF rate 

has a larger effect on bonds with a higher factor loading. Over the first say 125 

windows (i.e. the last six months of 2007), except for the Irish and EIB factor loadings, 

all scaled factor loadings remain relatively close to their pre-crisis period estimates that 

are not far from unity. It thus seems adequate to assume stable factor loadings and to 

include a maximum of countries when analysing the pre-crisis period. Over this period, 

the factor loading varies between 0.93 (0.97) and 1.09 (1.11) on 5-year (10-year) bonds 

as can be seen from the first observation for each issuer in the figure. The highest 

loading corresponds to the Greek bond. Depending on maturity, the lowest loading 

corresponds to the Austrian or EIB bond. In most cases, the difference with the Bund 

loading is less than 0.03. Since the crisis, however, differences between loadings across 

countries have been much more important. Furthermore, factor loadings have begun to 

vary substantially over time. For example, the factor loading corresponding to the 10-

year Greek bond first fell to zero before reaching a maximum of 2.7. Even for countries 

with factor loadings relatively close to the factor loading on the Bund, such as Belgium, 

France and the Netherlands, factor loadings vary substantially over time. 
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Fig. 5a: 5-year bond factor loadings Fig. 5b: 10-year bond factor loadings 
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Notes: Estimates of the parameters of Equation (4) are obtained with LFA as developed in Section 3. 
Factor loadings are scaled by the loading concomitant the Bund. 
 

The average of the factor loadings over the rolling windows and the parameter 

estimates of Equation (8) are shown in Table 2. Note that the cross-sectional 

differences in average factor loadings are broadly the same for 5-year and 10-year 

bonds. Between Feb. 2006 and Feb. 2010 the average CRF rate (̂ ) was respectively 

3.32% and 3.71% for 5-year and 10-year bonds, respectively. The coefficient ̂  is 

larger than 1, implying that on average the liquidity risk premium is higher than current 

transaction cost. Depending on maturity, the current liquidity risk premium is about 

1.53 or 1.74 times the current bid-ask spread. 

Figures 6a and 6b compare the CRF rate with the Bund yield during the period 

of analysis. Until the collapse of Lehman Brothers in September 2008, thus more than a 

year into the sub-prime mortgage crisis, the CRF rate was almost identical to the Bund 

yield. As will be shown below, between September 2008 and March 2009, default risk, 

and to some extent liquidity risk, rose substantially on euro area sovereign bonds, the 

Bund included. 
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Table 2: LFA estimates of the CRF rate parameters (Feb. 2006 – Feb. 2010) 
 Average scaled factor loading over the rolling windows 
 5-year bonds 10- year bonds 
Austria 1.07 1.11 
Belgium 0.94 0.96 
Finland 0.80 0.92 
France 0.96 0.94 
Germany 1.00 1.00 
Greece 0.74 1.02 
Ireland 0.93 1.04 
Italy 1.03 1.08 
Netherlands 0.96 0.97 
Portugal 0.88 0.96 
Spain 0.93 0.98 
EIB 0.72 0.63 
̂  3.32 (0.03) 3.71 (0.02) 

̂  0.33 0.26 
̂  1.53 (0.09) 1.74 (0.12) 
T 1050 1009 

Notes: Estimates of the factor loadings are obtained with LFA as developed in Section 3. The standard 

error is within brackets. Factor loadings are scaled by the loading concomitant the Bund.  is the 

average factor loading (before scaling) concomitant the Bund. 

̂

 
Fig. 6a: 5-year CRF and Bund rate (in %) Fig. 6b: 10-year CRF and Bund rate (in %)
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Note: Based on the LFA estimates of the factor loadings in Table 2. 
 

On average, the 5-year and 10-year CRF rate fell by 76 and 30 b.p., 

respectively, when the pre-crisis sample period (Feb. 2006 – Jun. 2007) is compared to 

the crisis sample period (Jul. 2007 – Feb. 2010). Clearly, from peak to bottom level (see 

Figure 6a and 6b), the 5-year and 10-year CRF rate fell much more (i.e. by about 300 

and 200 b.p., respectively). Due to the fall in the CRF rate, for many issuers the costs of 
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borrowing were actually lower than before the crisis despite a substantial increase in 

their risk premiums. 

4.3 The risk premiums 

Next let us show how the risk premiums have behaved in the recent financial crisis. 

Following the procedure developed in Section 2, the estimated Total Risk Premium 

(TRP) is decomposed into a Credit Risk Premium (CRP) and a Liquidity Risk Premium 

(LRP). 

The crisis impact on the CRP and LRP are shown in the next four figures. For 5-

year bonds (compare Figure 7a with Figure 8a) and 10-year bonds (compare Figure 7b 

with Figure 8b), the CRP is the dominant component in the TRP. The 10-year Bund 

CRP rose from an average of less than 5 b.p. before the crisis to about 17 b.p. during 

the crisis. The CRP on Greek 10-year bonds rose from about 30 b.p. to an average of 

140 b.p. The estimated CRP on the 5-year Irish bond was slightly negative over the pre-

crisis period, suggesting that some of the very low Irish bond quotes in the secondary 

market were unreliable indicators of actual pricing conditions. 

The increase in the LRP is relatively small in comparison to the increase in the 

CRP for all bonds. Before the crisis, except for Irish and EIB bonds, there were no 

substantial differences in the LRP across euro area sovereign bonds. In this respect, EIB 

bonds are a class apart as they are often held to maturity. During the crisis, the LRP has 

grown for all issuers but to various degrees. For example, the LRP on the Bund rose on 

average by less than half of a basis point. In other cases, including the EIB, the LRP 

rose sometimes by more than four b.p.. 

4.4 Benchmark status, flight-to-quality/liquidity, and CRP comparison  

4.4.1 Benchmark status 

If, following Dunne et al. (2007), benchmark status is assigned to the bond with the 

lowest idiosyncratic risk (i.e. the standard deviation of the TRP), then the results of 

Table 3 support our choice to take the Bund as the a priori benchmark. French bonds 

have the second lowest idiosyncratic risk, but are about twice as risky as the Bund. 

Greek bonds are the most risky. In addition to the Bund, only French, Dutch and 

Finnish bonds are less risky than EIB bonds. All other euro area sovereign bonds are 

more risky than EIB bonds. 
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Fig. 7a: Average 5-year credit  

risk premium (in b.p.) 
Fig. 7b: Average 10-year credit risk  

premium (in b.p.) 
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Note: Based on the LFA estimates of the factor loadings in Table 2. No estimate is available for Finland 
over the period Feb. 2006 – Jun. 2007. 
 
 

Fig. 8a: Average 5-year liquidity  
risk premium (in b.p.) 

Fig. 8b: Average 10-year liquidity  
risk premium (in b.p.) 
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Table 3: Standard deviation of the common risk free (CRF) rate, the credit risk 
premium (CRP), the liquidity risk premium (LRP), and the total risk premium 
(TRP), in b.p. 
 5-year bonds 10-year bonds 

 CRP LRP TRP CRP LRP TRP 
Austria 36.4 4.5 43.8 39.2 2.6 43.8 
Belgium 41.9 1.9 44.5 40.0 1.3 42.2 
Finland 34.0 2.4 35.7 29.8 1.8 31.4 
France 27.4 1.2 29.6 28.4 1.0 29.4 
Germany 17.8 0.4 18.1 14.4 0.3 14.6 
Greece 109.9 2.9 115.2 94.8 3.6 102.2 
Ireland 82.8 4.9 89.2 88.3 4.0 94.8 
Italy 52.6 1.9 52.1 48.6 1.2 50.0 
Netherlands 30.8 1.1 33.3 30.4 0.8 33.0 
Portugal 51.8 3.2 56.7 49.7 2.5 53.8 
Spain 44.3 2.2 47.0 43.7 1.4 45.9 
EIB 35.0 3.5 36.6 36.5 4.3 41.3 
CRF 88.9 53.6 

Notes: Based on the LFA estimates of the factor loadings shown in Table 2. Sample period: Feb. 2006 – 
Feb. 2010. 
 

Dunne et al. (2007) designate, with the exception of very long bonds (i.e. 

maturity exceeds 10 years), French bonds as sovereign benchmarks for the period April 

2003 – March 2005 because bi-lateral inter-bond regressions suggest that French bonds 

have lower variance in the total risk premium than Italian or German bonds. Our 

empirical results are in accordance with this finding for the pre-crisis period up to June 

2007 included, but not thereafter. Moreover, before the crisis, there are other bonds, 

such as Dutch 5-year bonds that are even less risky than French 5-year bonds. Since the 

crisis, however, Bunds have the lowest risk. Benchmark status shows up in crisis 

periods. 

A robustness check is carried out by taking alternatively any other bond as the a 

priori benchmark. The top row of Table 4 indicates the country on which the estimate 

of the benchmark choice parameter   is based. The standard deviation of the TRP for 

each country is shown in the associated column. For all choices, the Bund clearly has 

the lowest idiosyncratic risk. Hence, the data confirm its benchmark status. 

 
 
 
 
 
 

 30



 
Table 4: Standard deviation of the TRP by benchmark choice parameter   

 A priori benchmark  
 AU BE FI FR GE GR IR IT NE PO SP EIB 
 5-year bonds 
AU 55 33 n.a. 36 44 32 54 45 41 26 35 n.a. 
BE 55 34 n.a. 37 44 33 54 45 41 29 37 n.a. 
FI 45 27 n.a. 31 36 31 45 36 34 22 27 n.a. 
FR 41 19 n.a. 22 30 19 40 31 26 14 22 n.a. 
GE 30 9 n.a. 12 18 11 29 21 15 8 11 n.a. 
GR 126 106 n.a. 109 115 98 124 118 112 100 108 n.a. 
IR 101 78 n.a. 81 89 75 99 91 86 70 81 n.a. 
IT 62 41 n.a. 44 52 40 62 53 49 36 44 n.a. 
NE 44 22 n.a. 26 33 23 44 35 30 17 25 n.a. 
PO 68 47 n.a. 50 57 42 66 59 54 41 49 n.a. 
SP 58 37 n.a. 40 47 33 57 49 44 31 39 n.a. 
EIB 46 26 n.a. 30 37 29 47 37 34 23 28 n.a. 
 AU BE FI FR GE GR IR IT NE PO SP EIB 
 10-year bonds 
AU 53 36 n.a. 37 44 44 53 46 41 37 39 n.a. 
BE 51 34 n.a. 36 42 43 51 45 39 36 37 n.a. 
FI 42 25 n.a. 26 31 32 42 34 30 24 26 n.a. 
FR 38 22 n.a. 23 29 31 38 32 26 23 25 n.a. 
GE 24 9 n.a. 9 15 17 24 18 12 11 11 n.a. 
GR 111 95 n.a. 96 102 104 111 106 100 98 99 n.a. 
IR 104 87 n.a. 88 95 96 104 98 92 88 90 n.a. 
IT 59 42 n.a. 43 50 51 59 53 47 43 45 n.a. 
NE 42 25 n.a. 26 33 34 42 36 30 26 28 n.a. 
PO 63 47 n.a. 48 54 54 62 57 51 48 49 n.a. 
SP 55 38 n.a. 39 46 47 55 49 43 40 42 n.a. 
EIB 52 32 n.a. 34 41 41 53 43 38 31 34 n.a. 
Notes: Based on the LFA estimates of the factor loadings in shown Table 2. The cell with the lowest 
variance is in bold. Sample period: Feb. 2006 – Feb. 2010. 
 
4.4.2 Flight-to-quality and flight-to-liquidity 

While not contesting that credit risk is more important than liquidity risk for the 

absolute level of the sovereign bond yields in the euro area, Beber et al. (2009) provide 

some evidence for the hypothesis that, in times of market stress, investors chase 

liquidity, and not credit quality. The authors argue that large bond trades are almost 

exclusively driven by liquidity since liquidity has a positive (negative) impact on trade 

inflow (outflow) whereas credit quality has the opposite effect, suggesting a “free-

from” rather than “flight-to” credit quality. Based on pre-crisis data, that study hence 

rejects the flight-to-quality (i.e. credit quality) hypothesis. 
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For the current crisis, however, based on our estimates of the risk premiums, the 

empirical evidence suggests that neither the flight-to-liquidity nor the flight-to-quality 

hypothesis can be rejected. We expect a significantly larger increase in the transaction 

costs of bonds that are deserted by investors than on save haven bonds. To test this 

hypothesis, we divide our sample of twelve issuers twice in two sub samples. In the 

first comparison, the average liquidity risk of the six issuers with the lowest liquidity 

risk is compared with the six issuers with the highest liquidity risk. In the second 

comparison, the average liquidity risk of the six issuers with the lowest credit risk is 

compared with the liquidity risk of the six issuers with the highest credit risk. The two 

comparisons are different because half of the issuers of the sample with lowest liquidity 

risk issuers are different from the sample with lowest credit risk issuers (see the notes 

of Table 5). 

 
Table 5: Average change in the liquidity risk premium during the recent financial 
crisis, by risk category (in b.p.) 
 5-year bonds 10-year bonds 

 

Feb. 
2006 – 

Jun. 
2007 

Jul. 
2007 – 

Feb. 
2010 

Change 
(col. 3 – 
col. 2) 

 

Feb. 
2006 – 

Jun. 
2007 

Jul. 
2007 – 

Feb. 
2010 

Change 
(col. 5 –  
col. 4) 

Lowest 
liquidity risk 

0.60 
(0.03) 

2.86 
(0.63) 

2.25 0.47 
(0.02) 

2.10 
(0.42) 

1.63 

Highest 
liquidity risk  

1.35 
(0.46) 

4.44 
(0.86) 

3.08 0.88 
(0.25) 

4.04 
(1.10) 

3.16 

Lowest  
Credit risk 

0.98 
(0.40) 

3.03 
(0.90) 

2.05 0.56 
(0.07) 

2.35 
(0.69) 

1.80 

Highest  
Credit risk 

0.98 
(0.34) 

4.26 
(0.67) 

3.28 0.79 
(0.27) 

3.79 
(1.06) 

3.00 

Notes: Based on the LFA estimates of the factor loadings in shown Table 2. The standard error is within 
brackets. In the case of 5-year bonds, sovereign bonds of Austria, Finland, Germany, Italy, the 
Netherlands and Spain have the lowest liquidity risk whereas sovereign bonds of Belgium, Finland, 
France, Germany, Ireland and the Netherlands have the lowest credit risk over the period between Feb. 
2010 and Jun. 2007. In the case of 10-year bonds, sovereign bonds of Belgium, Finland, France, 
Germany, Greece, and Italy bonds have the lowest liquidity risk whereas sovereign bonds of Finland, 
France, Germany, Ireland, the Netherlands and Spain have the lowest credit risk over the period between 
Feb. 2010 and Jun. 2007. 
 

For both comparisons we find that liquidity risk increases faster for the group 

with the highest risk, were it liquidity risk or credit risk, suggesting that investors chase 

both liquidity and credit quality. The LRP of initially low liquidity risk issuers 

increased on average from 0.60 b.p. (0.47 b.p.) to 2.86 b.p. (2.10 b.p.) on 5-year (10-

year) bonds (see Table 5). The LRP of initially low credit risk issuers increased on 

average from 0.98 b.p. (0.56 b.p.) to 3.03 b.p. (2.35 b.p.) on 5-year (10-year) bonds. 
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The LRP thus increased by about 2 b.p. for low liquidity and low credit risk issuers. For 

high liquidity and high credit risk issuers this increase was slightly above 3 b.p.. Hence, 

both high liquidity risk bonds and high credit risk bonds have become less attractive in 

comparison to low liquidity and low credit risk bonds respectively. 

Let’s next compare the order of the countries when sorted on the credit risk 

premium with the order of the countries when sorted on the liquidity risk premium 

during the crisis (see Figures 7a-7b and Figures 8a-8b respectively). While the cross-

sectional relationship between the liquidity risk premium and credit risk premium is not 

one-to-one, countries with lower liquidity risk tend to have lower credit risk. For 

example, Dutch, French, and German bonds have both the lowest liquidity and credit 

risk. On the other side, both liquidity and credit risk are relatively high on Irish and 

Greek bonds. EIB bonds are rather exceptional in the sense that they have the highest 

liquidity risk but, at the same time, are among the group of lowest credit risk issuers. 

The interaction between liquidity and credit risk was the topic of a recent study 

by Favero et al. (2010). The main idea brought forward by this work is that the demand 

for liquidity responds both to the magnitude of trading costs and to the availability of 

outside investment opportunities. It is assumed that investors are less likely to sell 

securities when outside investment opportunities are less attractive, a situation that is 

assumed to coincide with increased aggregate risk. Therefore, although high liquidity is 

positively valued by investors, they value it less when risk is high. Some empirical 

evidence in support of this new hypothesis is found for the pre-crisis years 2002 and 

2003. 

Our crisis sample results contrast with these predictions as, in addition to a 

positive cross-sectional relationship between liquidity risk and credit risk, we also find 

a strong positive relationship between the two risk components over time. The 

correlation coefficient is higher than 0.5 for most bonds (see Table 6). Liquidity is thus 

more valued when risk is high. During the recent crisis, higher aggregate risk reduced 

the value of new investment opportunities, which in turn led to lower credit demand 

and a lower CRF rate. As a result, the correlation between, on the one hand, the CRF 

rate, and, on the other hand, the liquidity risk or credit risk premium, was significantly 

negative. A full analysis of the drivers of liquidity risk premiums is beyond the scope of 

this paper. 
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Table 6: Correlations between the credit risk premium (CRP), the liquidity risk 
premium (LRP) and the common risk free (CRF) rate 
 5-year bonds 10-year bonds 

 
CRP and 

CRF 
LRP and 

CRF 
CRP and 

LRP 
CRP and 

CRF 
LRP and 

CRF 
CRP and 

LRP 
Austria -0.84 -0.83 0.81 -0.81 -0.76 0.77 
Belgium -0.81 -0.82 0.83 -0.78 -0.80 0.89 
Finland -0.69 -0.84 0.43 -0.82 -0.78 0.58 
France -0.86 -0.81 0.85 -0.82 -0.74 0.87 
Germany -0.91 -0.73 0.71 -0.85 -0.65 0.68 
Greece -0.85 -0.81 0.78 -0.85 -0.63 0.74 
Ireland -0.88 -0.89 0.88 -0.83 -0.80 0.90 
Italy -0.83 -0.84 0.73 -0.87 -0.88 0.89 
Netherlands -0.86 -0.85 0.89 -0.81 -0.75 0.88 
Portugal -0.85 -0.76 0.67 -0.81 -0.72 0.76 
Spain -0.85 -0.85 0.79 -0.82 -0.79 0.90 
EIB -0.78 -0.36 0.08 -0.89 -0.35 0.46 
Average -0.83 -0.78 0.71 -0.83 -0.72 0.78 

Notes: Based on the LFA-estimates of the factor loadings shown in Table 2. Sample period: Feb. 2006 – 
Feb. 2010. 
 
 
4.4.3 Comparing the bond credit risk premium with the CDS credit risk premium 

Finally, we analyse whether or not the price of credit risk is the same in the bond and 

the corresponding derivative market. In efficient markets, the exploitation of arbitrage 

opportunities would lead to a convergence of prices. One may therefore expect that the 

bond credit risk premium is on average equal to the CDS implied credit risk premium. 

The latter premium is computed by subtracting the CDS liquidity premium from the 

CDS rate. Figures 9a and 9b show that, during the crisis, the bond credit risk premium 

is substantially higher than the CDS implied credit risk premium for most of the bonds 

(no data is available on the transaction cost of the EIB CDSs). For example, the 

difference exceeds 25 b.p. for Finnish and Greek bonds between Jul. 2007 and Feb. 

2010. Before the crisis, the 5-year bond CRP was broadly in line with the 

corresponding CDS CRP. The CRP on some of the 10-year bonds however was 

substantially above the corresponding CDS CRP. Over the full period of analysis, the 

price of sovereign credit risk is about the same (i.e. the difference is 5 b.p. or less) in 

both the bond and CDS market for only two countries, i.e. Germany and Spain.  
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Fig. 9a: Average 5-year bond CRP  

minus CDS CRP (in b.p.) 
Fig. 9b: Average 10-year bond CRP  

minus CDS CRP (in b.p.) 
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Notes: Based on the LFA-estimates of the factor loadings shown in Table 2. 
 

These results imply that 1) if the CDS implied credit risk premium is in line 

with the fundamentals, then many euro area sovereign bonds were under-priced during 

the crisis, and, thus, borrowing costs were higher than warranted on the basis of true 

creditworthiness; 2) if the bond price is in line with the fundamentals, then many CDS 

were under-priced, and, thus, the cost of insurance against default was lower than 

warranted on the basis of true creditworthiness; or a combination of both 1) and 2). It is 

also possible that discrepancies between quotes and actual transaction prices were more 

important in one market than the other. 

5 Conclusion 

We introduce Longitudinal Factor Analysis to extract the common risk free rate from a 

sample of sovereign bonds of countries in a monetary union. Cross-variable restrictions 

are derived that are ignored by classical factor analysis. Since LFA exploits the 

typically very large longitudinal dimension of bond data, it performs better than 

traditional methods. A Monte Carlo experiment shows that substantial efficiency gains 

can be made in the estimation of idiosyncratic risk and factor loadings. The factor 

loading concomitant the benchmark security is required to determine the volatility of 

the CRF rate. Its level is determined by an auxiliary regression. 
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The bond yield decomposition procedure proposed in this paper sheds new light 

on some key issues in the euro area sovereign bond markets such as benchmark status, 

flight-to-liquidity and flight-to-quality hypotheses, and price differences between the 

bond and derivative markets. First, our empirical findings suggest that since the 2007 

financial crisis the German Bund has the lowest idiosyncratic risk, and hence 

benchmark status. The fact that the German bund did not have the lowest idiosyncratic 

risk before the crisis confirms the findings of Dunne et al. (2007). Second, in contrast 

with Beber et al. (2009), who interpret a negative relationship between credit quality 

and trade inflow as a sign that investors are less concerned by credit quality than 

liquidity, our results suggest that investors chase both credit quality and liquidity in 

episodes of market stress. The liquidity risk premium increased more for both ex ante 

high liquidity risk and high credit risk issuers than for ex ante low liquidity risk and low 

credit risk issuers. Third, in contrast with the prediction of the Favero et al. (2010) 

model, liquidity is more valued when aggregate risk is high as, in addition to a positive 

cross-sectional relationship between liquidity risk and credit risk, we also find a strong 

positive relationship between the two risk components over time. Finally, given the cost 

of insurance against default, many euro area sovereign bonds seem under-priced in the 

recent financial turmoil. 
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Appendix I: The likelihood function 
 

The integral in Equation (13) can be developed as: 
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Equation (18) shows that Zt is perceived as having a normal distribution with 

mean: 
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and variance: 

)( tZV  (bi
2/si

2 + bj
2/sj

2 + bk
2/sk

2)-1.      (20) 

The value of the integral is thus (2π)1/2 divided by the standard deviation of Zt. The total 

likelihood in Equation (18) is now given by: 
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          (21) 
If we would allow the implied variability of the exogenous process to vary, we should 

correct the likelihood for this (this is similar to a uniformly distributed random variable 

on a certain interval: the higher its variability, the longer the interval and the lower the 

density). We avoid this correction by using a standardization that keeps the variability 

of the exogenous process constant. 

To obtain the maximizing values for ai we set the respective derivative of the 

likelihood function equal to 0 which yields: 
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This condition can be written as: 
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In other words,   iiitt baxE /)(   is a weighted average of the likewise terms for bonds j 

and k. Taking the derivatives to aj and to ak similarly gives that each term is a weighted 

average of the two other terms. But then all terms have to be identical as claimed in 

Equation (15). 
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Appendix II: Monte Carlo results 
 
Table 7: Average factor loadings and average variances 

 True value PC EM LFA 

 Factor loadings 12....,,1, ibi  

Bond 1 1.000 0.986 0.996 0.999 
Bond 2 1.100 1.087 1.098 1.099 
Bond 3 1.200 1.188 1.199 1.198 
Bond 4 1.300 1.291 1.300 1.298 
Bond 5 1.400 1.395 1.401 1.398 
Bond 6 1.500 1.501 1.502 1.498 
Bond 7 1.600 1.609 1.604 1.598 
Bond 8 1.700 1.719 1.705 1.698 
Bond 9 1.800 1.831 1.806 1.798 
Bond 10 1.900 1.947 1.908 1.898 
Bond 11 2.000 2.066 2.011 1.998 
Bond 12 2.100 2.187 2.113 2.098 

 Variance of the errors,  12...,,1,2 isi

Bond 1 0.040 0.067 0.050 0.040 
Bond 2 0.090 0.119 0.097 0.090 
Bond 3 0.160 0.188 0.164 0.160 
Bond 4 0.250 0.273 0.252 0.250 
Bond 5 0.360 0.373 0.359 0.360 
Bond 6 0.490 0.486 0.485 0.489 
Bond 7 0.640 0.610 0.632 0.639 
Bond 8 0.810 0.743 0.796 0.809 
Bond 9 1.000 0.883 0.980 0.999 
Bond 10 1.210 1.027 1.182 1.208 
Bond 11 1.440 1.172 1.402 1.439 
Bond 12 1.690 1.314 1.639 1.688 

Notes: Averages are computed over ten thousand replications. For each replication twelve bond yield 

series with one thousand observations each are generated as follows:  

, , 

,ittiit eZbx 

10/)1(1  ibi
22 )10/)1(2.0(  isi }.12,...,1{i   is drawn from a standard normal 

distribution.  is drawn from a normal distribution with mean zero and variance equal to  The 

Principal Components (PC) results in the middle column are obtained with Theil’s (1971) method. 
Classical factor analysis results are obtained with the EM algorithm of Rubin and Thayer (1982). The 
factor analysis results in the last column are obtained with the LFA method developed in Section 3. 

tZ

ite .2
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Appendix III: Construction of constant maturity bond yields 
 
Constant 5-year and 10-year maturity bond spot yields are derived from linear inter- 

and extrapolation of secondary market plain vanilla bond quotes on Bloomberg. We 

first interpolate the z-spreads reported on Bloomberg, and then add the interpolated z-

spread to the swap spot rates in order to compute the bond spot rate with exact maturity 

 For example, the z-spread for maturity concomitant country  in period t is 

estimated by: 

.m m i

,)1(
21 ,,, mitmitmit zwzwz 

     (24)  

where w is the weight on the z-spread concomitant country ’s bond with maturity 

 and  is the weight on the z-spread concomitant country ’s bond with 

maturity ;

1,mitz i

,1m )1( w

2m

2,mitz i

)()( 122 mmmmw   ; }.10,5{m  Since we restrict our analysis to two 

benchmark maturities only, full yield curve modelling with a priori chosen functional 

forms as in Nelson and Siegel (1987) is not necessarily best. Measurement errors (in the 

z-spreads  and ) may be less distorting in the latter approach, but our 

approach is less restrictive concerning the curvature of the yield curve around the 

benchmark maturities, and thus potentially better in estimating the benchmark maturity 

spot rates. 

1,mitz
2,mitz

Preferably, the on-the-run bond is used when inter- and extrapolating. For a 

bond to be considered an on-the-run bond in period t its remaining time to maturity 

must be closer to m ears than any other bond and its original maturity should be in the 

reference interval (m

y

), mm m   . The values 5 1  and 10 2  are used, i.e. for a 

bond to be considered an on-the-run 5-year bond it must expire within four to six years 

(i.e. not before 4*t  and not after 6*t ) after the issuance date   *).(t

In addition, the following selection criteria are applied: 

1) If the on-the-run bond exists, the closest bond to the reference maturity at the 

opposite side of the on-the-run bond is chosen, and we interpolate. If the latter is not 

available, then the closest bond at the side of the on-the-run bond is chosen, and we 

extrapolate. 

2) If in period t there is no on-the-run bond then the two bonds closest to the reference 

maturity at opposite sides are chosen, and we interpolate. If one side is not available, 

the two closest bonds at one side are chosen, and we extrapolate. 
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3) Only long-term fixed rate bonds are included. The original maturity of the selected 

bonds exceeds four years. 

4) French, German and Italian bonds are only selected when they have a minimum size 

of € 1 billion. For all other countries and the European Investment Bank the minimum 

size is € 500 million. 

5) Yields of bonds are excluded during their last year (i.e. short-term instruments are 

excluded). Also, days during the first month are excluded if the bid-ask spread on the 

yield to maturity is larger than 15 b.p..  

6) Only plain vanilla fixed coupon bonds are selected. All securities with option-like 

features, including callable bonds, are excluded. 

7) Outliers are removed.9 

 

                                                 
9 Four outlier bonds (i.e. two Irish bonds, one issued on 4/11/1986 and one issued on 18/8/1994, and two 
EIB bonds, one issued on 20/2/1997 and one issued on 16/2/1998), two outlier yields on the included 
EIB bond issued on 6/4/2006, and all bond yields on 17/4/2006, 19/6/2006 and 21/03/2008 have been 
removed. 
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Appendix IV: Descriptive statistics 
 
Table 8: Descriptive statistics of the bond data (Feb. 2006 – Feb. 2010) 

5-year bonds 

 
Number of bonds 

used in the estimation 
Original maturity 

(in years) 
Size 

(in € bn) 
  Min Max Min Avg Max 
Austria 7 5.8 15.0 1.3 7.6 12.2 
Belgium 9 5.9 20.0 7.5 11.0 15.8 
Finland 6 5.3 11.2 5.0 5.7 6.5 
France 19 5.0 25.8 3.4 15.3 20.0 
Germany 20 5.0 10.2 7.0 19.7 27.0 
Greece 13 5.2 15.0 2.5 7.4 12.5 
Ireland 5 5.0 16.9 5.8 6.5 8.2 
Italy 15 4.9 10.6 4.0 18.6 28.3 
Netherlands 7 5.5 10.5 8.0 12.1 15.5 
Portugal 8 5.4 15.3 4.3 5.8 7.1 
Spain 13 5.3 15.6 1.3 11.2 15.8 
EIB 8 5.0 10.4 0.5 5.0 9.8 
Number of observations per issuer 1058 

10-year bonds 

 
Number of bonds 

used in the estimation 
Original maturity  

(in years) 
Size 

(in € bn) 
  Min Max Min Avg Max 
Austria 9 10.0 15.5 1.3 8.1 12.2 
Belgium 8 10.2 19.7 4.0 8.6 12.2 
Finland 6 11.0 15.7 3.0 5.0 6.5 
France 13 10.0 30.7 5.4 16.6 22.0 
Germany 13 10.1 30.0 3.8 17.6 24.0 
Greece 9 10.2 20.5 4.6 9.0 15.5 
Ireland 7 10.3 16.9 5.0 6.5 8.2 
Italy 15 10.1 15.9 5.0 20.0 25.2 
Netherlands 10 10.0 30.0 6.4 10.5 15.5 
Portugal 8 10.2 16.1 3.0 5.6 6.9 
Spain 11 10.3 31.0 3.0 11.0 15.0 
EIB 6 10.0 15.8 3.3 5.0 7.0 
Number of observations per issuer 1058 

Source: Own calculations based on Bloomberg. 
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Table 9: Descriptive statistics of bond spot yields (in %, Feb. 2006 – Feb. 2010) 
5-year bonds 

  Min Avg Median Max St dev 
Austria 2.41 3.67 3.72 4.87 0.55 
Belgium 2.46 3.69 3.74 4.96 0.58 
Finland 2.28 3.60 3.71 4.87 0.62 
France 2.32 3.57 3.71 4.88 0.65 
Germany 2.14 3.44 3.67 4.74 0.73 
Greece 3.31 4.28 4.18 6.97 0.60 
Ireland 3.10 3.97 3.93 5.20 0.41 
Italy 2.77 3.86 3.90 5.14 0.54 
Netherlands 2.31 3.58 3.71 4.87 0.62 
Portugal 2.78 3.82 3.85 4.98 0.48 
Spain 2.68 3.70 3.74 4.90 0.54 
EIB 2.52 3.76 3.82 5.04 0.61 
T 1058 

10-year bonds 
  Min Avg Median Max St dev 
Austria 3.46 4.14 4.14 4.88 0.30 
Belgium 3.48 4.17 4.13 4.99 0.32 
Finland 3.42 4.06 4.03 4.86 0.32 
France 3.47 4.04 4.02 4.85 0.34 
Germany 2.97 3.86 3.93 4.69 0.41 
Greece 3.71 4.78 4.65 7.31 0.63 
Ireland 3.45 4.53 4.47 6.17 0.57 
Italy 3.71 4.42 4.42 5.32 0.30 
Netherlands 3.45 4.06 4.04 4.85 0.32 
Portugal 3.57 4.34 4.35 5.08 0.32 
Spain 3.47 4.19 4.15 4.94 0.29 
EIB 3.54 4.21 4.19 5.01 0.33 

T 1058 
Source: Own calculations based on Bloomberg. 
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Table 10: Descriptive statistics of CDS spreads (in b.p., Feb. 2006 – Feb. 2010) 
5-year CDS 

  Min Avg Median Max St dev T 
Austria 0.5 39.2 7.7 273.0 55.2 1057 
Belgium 1.0 28.0 17.2 157.8 33.5 1057 
Finland 6.5 32.2 27.9 93.9 20.0 470 
France 0.5 18.2 8.8 97.7 21.4 1057 
Germany 0.6 15.5 5.8 91.9 18.9 1057 
Greece 4.4 80.5 37.4 428.3 95.3 1057 
Ireland 1.5 72.1 20.8 395.8 91.4 1057 
Italy 5.3 50.9 28.5 200.6 52.1 1057 
Netherlands 1.0 21.8 8.2 131.0 29.4 1053 
Portugal 3.4 41.2 27.6 244.4 43.3 1057 
Spain 1.8 42.3 26.8 173.4 44.7 1054 
EIB 2.5 21.4 7.8 68.0 18.3 592 

10-year CDS 
  Min Avg Median Max St dev T 
Austria 0.8 41.2 12.0 260.1 53.6 1057 
Belgium 2.4 31.4 23.3 152.9 33.1 1057 
Finland 11.0 35.6 32.8 94.2 19.1 470 
France 1.4 20.9 13.0 96.6 21.6 1048 
Germany 0.7 17.7 9.0 90.7 18.9 1048 
Greece 10.8 87.0 47.2 379.9 87.0 1057 
Ireland 2.3 73.5 26.8 365.0 87.2 1057 
Italy 11.4 58.8 38.5 205.3 48.5 1057 
Netherlands 1.8 24.9 12.3 126.3 29.6 1018 
Portugal 7.2 46.7 36.8 227.1 40.7 1057 
Spain 4.4 46.8 35.3 169.0 43.7 1057 
EIB 3.5 24.3 14.0 78.0 19.8 481 

Source: Own calculations based on sovereign and EIB CDS spreads from Credit Market Analysis 
Limited and Markit respectively. 
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Table 11: Average bond and CDS transaction costs (in b.p.) 
5-year bond and CDS 

 Feb. 2006 – Jun. 2007 Jul. 2007 – Feb. 2010 
  Bond CDS CDS - Bond Bond CDS CDS – Bond 
Austria 0.4 1.5 1.1 3.4 4.7 1.3 
Belgium 0.4 1.4 1.0 2.0 4.6 2.6 
Finland 0.4 n.a. n.a. 2.2 5.3 3.1 
France 0.4 1.3 0.9 1.4 3.5 2.1 
Germany 0.3 1.3 1.0 0.6 3.1 2.5 
Greece 0.4 1.5 1.1 2.7 7.0 4.3 
Ireland 1.8 2.3 0.5 4.5 6.9 2.5 
Italy 0.4 1.2 0.8 1.7 4.2 2.5 
Netherlands 0.4 1.6 1.2 1.3 4.8 3.4 
Portugal 0.5 1.5 1.0 2.5 4.4 1.8 
Spain 0.4 2.2 1.8 2.1 4.2 2.1 
EIB 1.7 n.a. n.a. 4.5 n.a. n.a. 
Average 0.6 1.6 1.0 2.4 4.8 2.6 
T 357 678 

10-year bond and CDS 
 Feb. 2006 – Jun. 2007 Jul. 2007 – Feb. 2010 
 Bond CDS CDS - Bond Bond CDS CDS - Bond 
Austria 0.4 1.9 1.5 2.0 4.9 2.9 
Belgium 0.3 2.9 2.6 1.2 4.6 3.4 
Finland 0.3 n.a. n.a. 1.5 5.4 3.9 
France 0.2 2.9 2.6 1.0 3.5 2.5 
Germany 0.2 2.3 2.0 0.4 3.0 2.6 
Greece 0.3 3.9 3.6 2.1 7.3 5.3 
Ireland 0.5 2.3 1.8 3.0 7.2 4.2 
Italy 0.3 3.9 3.6 1.1 4.4 3.3 
Netherlands 0.3 1.3 1.0 0.9 4.8 3.9 
Portugal 0.4 3.2 2.9 1.9 4.4 2.6 
Spain 0.3 1.2 0.9 1.3 4.3 3.0 
EIB 1.2 n.a. n.a. 4.8 n.a. n.a. 
Average 0.4 2.6 2.2 1.8 4.9 3.4 
T 357 678 

Source: Own calculations based on sovereign bond and CDS quotes from Bloomberg (price provider = 
bond trader composite) and Credit Market Analysis Limited respectively.  
Note: The transaction cost is measured by the difference in the bid and the ask rate. 
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