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Comparing Distributions: The Harmonic Mass Index: 
Extension to m Samples 

 
 
 

Abstract 
 
We extend the paper of Hinloopen and van Marrewijk (2005), who introduce the harmonic 
mass index to test whether two samples come from the same distribution, in the following 
directions. Firstly, we derive the Harmonic Weighted Mass (HWM) index for any number of 
samples. Secondly, this paper shows how to compute the HWM index without making any 
assumptions on the number of “ties” (i.e. identical observations) within or between samples. 
Thirdly, we investigate ties with a Monte Carlo analysis, and find that the critical percentiles 
as reported in Hinloopen and van Marrewijk (2005), for two samples that are free of ties, are 
fairly accurate approximations of the HWM percentiles for two samples with ties when the 
sample size exceeds 50 observations. Furthermore, our results show that these percentiles are 
fairly accurate as well for cases where there are more than two samples. 
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1 Introduction 
 
Recently, Hinloopen and van Marrewijk (2005) have introduced a new non-parametric test to 
infer whether two samples come from the same distribution, the so-called Harmonic Mass 
(HM) index test. Like the Anderson-Darling (AD) test and the Fisz-Cramér-von Mises 
(FCM) test, the HM index compares the Empirical Distribution Function (EDF) of the two 
samples over their entire domain (see, Anderson and Darling (1952), Fisz (1960), and von 
Mises (1931)). Other EDF tests only consider differences in the sample distributions at 
particular entries on their domain. For instance, the Kolmogorov-Smirnov test is based on the 
maximum deviation between the two cumulative distribution functions (see Kolmogorov 
(1933) and Smirnov (1939)). The Kuiper test is based on the maximum deviation above and 
below the cumulative distribution function (see, Kuiper (1960)). 
 
The key advantageous properties of the HM index test are the following. Firstly, no 
parametric specification of the population distribution is required. Secondly, the HM index 
test is distribution free. Thirdly, in contrast with the critical values of AD and FCM that are 
based on asymptotic results, critical values of the HM index can be exactly derived for 
balanced samples of any size. 
 
The HM index quantifies a so-called Percentile-Percentile plot (PP-plot) with a single 
number. A PP-plot is a graphical tool to analyse the differences between two samples. It 
shows the cumulative probability of the elements of one (let’s say first) sample against the 
corresponding cumulative probability for the other sample (i.e. at the elements of the first 
sample). The HM index for two samples is defined as the surface between the PP-plot-line 
and the diagonal, scaled by the factor two. Hinloopen and van Marrewijk (2005) compute the 
HM index under the strong assumption that there are no ties, i.e. identical observations, 
within and between samples.  
 
We extend the work of Hinloopen and van Marrewijk (2005) in the following directions. 
Firstly, we derive the Harmonic Weighted Mass (HWM) index for any number of samples.1 
Secondly, this paper shows how to compute the HWM index without making any 
assumptions on the number of ties within or between samples, and derives the probability 
density of the HWM index values for samples with “between ties” but no “within ties”. 
Thirdly, we investigate ties with a Monte Carlo analysis. 
 
Under the null-hypothesis that distributions are equal, the analytically derived critical 
percentiles (at a significance level of 10% and lower) are lower for the samples with between 
ties (but no within ties) than for samples free of  ties. The results of our Monte Carlo analysis 
show that the simulated percentiles of the HWM index for samples with within ties (but no 
between ties) are higher than for samples free of ties. We find that the critical percentiles as 
reported in Hinloopen and van Marrewijk (2005), for two samples that are free of ties, are 
fairly accurate approximations of the HWM percentiles for two samples with ties when the 
sample size exceeds 50 observations. 
 
This paper is organised as follows. The HWM index is defined and computed in Section 2. 
Its critical percentiles are analytically derived in Section 3. Section 4 shows the results of our 
Monte Carlo study whereas Section 5 concludes. The proof of Proposition 1 is put in the 
Annex. 

                                                      
1 Scholz and Stephens (1987) extend the Anderson-Darling one-sample test to K samples. 
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2 Definition and computation of the Harmonic Weighted Mass index 
 
2.1 Notation and definition 
 
Let  be the (population) cumulative distribution function of a 1-dimensional random 
variable  associated with sample i , and m  be the number of samples. The objective of this 
paper is to test whether the m  samples are drawn from the same distribution (i.e. 

.  

)(qFi

q

)...21 mFFF ===
 
We begin with the definition of the HWM index for two samples (Case 1:  as in 
Hinloopen and van Marrewijk (2005).  Then, we extend the HWM index to more than two 
samples (Case 2: . 

)2=m

)2>m
 
Figure 1: An example of a PP-plot 

F2(F1
-1(p)) 

(0,0) 

(1,1) 

F1(q)=p 

PP-plot line 
A

B

C 

 
 
Case 1:  2=m
 
The harmonic mass index of Hinloopen and van Marrewijk (2005) quantifies a Percentile-
Percentile plot with a single number. Figure 1 above shows an example of such a PP-plot. 
The axes of this plot are defined as follows. The cumulative probability associated with the 
first random variable ( ) is shown on the horizontal axis whereas the corresponding 
cumulative probability for the second random variable (  for ) is shown on 
the vertical axis. When  

pF ≤1

)(2 qF )(1
1 pFq −=

)()( 21 pFpF = p∀  then the PP-plot line coincides with the diagonal, 
which is a straight line from (0,0) to (1,1). The deviation of the PP-plot line from the 
diagonal at probability mass shows to which extent at that point the distribution  differs 
from distribution . The harmonic mass index for two samples is defined as the surface 
between the PP-plot-line and the diagonal, scaled by the factor two. The scale factor ensures 
that the index takes values on the domain [0,1]. The index is equal to one when there is no 
overlap in the domain of  and  whereas the index is zero when  and are identical. 

p 1F

2F

1F 2F 1F 2F
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Let  denote  for  equal to the inverse of  at probability . The 
Harmonic Weighted Mass index is then defined as: 

))(( 1
12 pFF − )(2 qF q 1F p

 

∫ −−=
1

0

21
1221 )))(((2),( dppFFpFFHWM .     (1) 

 
In equation (1),  is the distribution function of the base sample on the horizontal axis of 
Figure 1. The base sample is always on the diagonal whereas the other sample is below, 
above, or coincides with the diagonal. The choice of the base sample is irrelevant when there 
are two samples. To see this, let 

1F

11 Fp =  and 22 Fp =  at point A on the PP-plot line in Figure 

1;  is smaller than . Note that the distance from A to B, i.e.2p 1p 2
1

1
121 )))((( pFFp −− , is 

equal to the distance from C to A, i.e. 2
2

1
212 )))((( pFFp −− . Hence, the base sample choice 

is irrelevant. This regularity for 2=m  implies that one can choose a different base sample at 
each point p . 
 
Let  and  be a sample indicator function, .  
indicates the sample with minimum cumulative probability:  

+⊂= NmM },...,1{ )( pL [ ] MpL →1,0:)( )( pL

 
  ))}((min{)( 1 pFFpL ji

−= Mji ∈∀ ,      (2) 
 
Equation (2) first selects sample j  that has the lowest value  for probability . Then, 

 returns sample  that has the lowest cumulative probability given . Note that i  can 
be equal to

q p
)( pL i q

j . In case  is not unique, it assumes the lowest indicator value. It means that 
sample 1 is indicated when the PP-plot line is above, or coincides with, the diagonal whereas 
sample 2 is indicated when the PP-plot line is below the diagonal. Furthermore, let  
refer, for any 

)( pL

)( pM −

[ ]1,0∈p , to all indicator values in M  not identified by . )( pL
 
Then, equation (1) can be re-written as follows: 
 

∫ −
=∈

−= −

1

0

21
)(),(21 )))(((2),( 1 dppFFpFFHWM ijpLipMj ,   (3) 

 
Equation (3) gives the same index value as equation (1). Basically, equation (3) is based on a 
PP-plot line that is mirrored to one side of the diagonal. 
 
Case 2:  2>m
 
Let be the coordinates of a “multi-dimensional” PP-plot line in 

-dimensional space. The Harmonic Weighted Mass (HWM) index for  is defined as 
the surface between this multi-dimensional PP-plot line and the line which cuts all two-
dimensional spaces in exact halves, scaled by the normalisation factor of 

))}((,{ 1
)(),(1 pFFp ijpLipMj

−
=∈ −

m 2>m

1/2 −m : 
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−
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=
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The HWM index has the following properties: 
 

P1 (equality):  mFFFHWM ===↔= ...0 21    
P2 (range):   [ ]1,0∈HWM . 

 
Having defined the HWM index at population level, we now turn to the computation of its 
empirical counterpart. 
 
 
2.2 Computation of the empirical HWM index 
 
For actual samples, the HWM index is computed by replacing the population distribution 
functions in (1) by their corresponding empirical distribution functions. Hinloopen and van 
Marrewijk (2005), based on Mushkudiani (2000), show that the empirical index is consistent, 
i.e. converges to the population index, and goes to zero when the samples are drawn from the 
same distribution. 
 
We first show how to compute the HWM index when there are two samples ( .  )2=m
 
Case 1:  2=m
 
Let  and  be a vector that contain  and drawings of two (one-dimensional) 
random variables respectively. 

1X 2X 1n 2n

 
Let  be the },{ 21 XXZ = ordered vector of  observations of  and  observations of . 1n 1X 2n 2X
 
Let  be the vector of horizontal coordinates of the PP-plot. )}(),..,({)(

211111 nnZTZTZT +=
 
Let  be the vector of vertical coordinates of the PP-plot. )}(),..,({)(

212122 nnZTZTZT +=
 
Note that going from the origin of the PP-plot with coordinates (0,0) to coordinates (1,1) 
means going from (0,0) to , from to , etc.  ))(),(( 1211 ZTZT ))(),(( 1211 ZTZT ))(),(( 2221 ZTZT
 

)(1 iZT  is equal to the number of observations in  that are smaller or equal to  divided 
by ;  is equal to the number of observations in  that are smaller or equal to  
divided by . 

1X iZ

1n )(2 iZT 2X iZ

2n
 
The PP-plot line cuts the diagonal “from below” when  and 

. The PP-plot line cuts the diagonal vertically from below when at the 
same time . The PP-plot line cuts the diagonal “from above” when 

 and . The PP-plot line cuts the diagonal horizontally from 
above when at the same time 

)()( 12 ii ZTZT <
)()( 1112 ++ ≥ ii ZTZT

)()( 111 += ii ZTZT
)()( 21 ii ZTZT < )()( 1211 ++ ≥ ii ZTZT

)()( 122 += ii ZTZT . 
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Note that cutting does not necessarily imply that the PP-plot line crosses the diagonal in the 
sense that at i  it is below (above) the diagonal whereas at 1+i  it is above (below) the 
diagonal. 
 
Define  as the point where the PP-plot line cuts the diagonal either from below or above. 
We set  at the coordinate associated with the first PP-plot line departure of the diagonal 
and  at the coordinate associated with the last PP-plot line retrieval of the diagonal. For 
example, when  and 

jC

0C

JC
)()( 1211 ZTZT ≠ )()( 1211 2121 −+−+ ≠ nnnn ZTZT  then  and 00 =C 1=JC . 

  
Define  as the point where the PP-plot line departs from the diagonal after coinciding 
with the diagonal between  and , not counting the first departure as we called this 

. We assume that there are 

)( jhD

1−jC )( jhD

0C H  of such new PP-plot line departures. 
 
Let  be the ordered set of the first PP- plot line departure , the cutting points , and 
the new PP-plot line departures  and contain 

*C 0C jC

)( jhD 1+J  elements. For example, in Figure 2 

below there are four elements in the set : 0*C 0 =C  (first departure),  (cutting from 
below),  (new departure) and 

1C

1D 12 =C  (last retrieval). 
 
Figure 2: PP-plot line departures and retrievals of the diagonal 

C0 

PP-plot line 

C1 D1 C2 

 
Define  as the next cutting or departure point when standing at point , and )(ij iZ 1=iI  
when between  and  there is a (additional) cut or departure of the diagonal, i 1+i 0=iI  
otherwise. Furthermore, let  .)()( 0

*
00201 CCZTZT ===
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Proposition 1 
 
For : 2=m
 

∑ ∑∑
=

−+

==
−− −−−−=

J

j

nn

i
i

H

h
jjhjj ECDCCHWM

1

1

01

2*
1)(

2*
1

*
21

)()(   (5) 

 
where  

)()(
))((

,11,1,21,2

21,11,1
1

*

iiii

iiii
ijj TTTT

TTTT
TCC

−−−

−−
+==

++

+  if at point j  the diagonal is cut from below, 

)()(
))((

,21,2,11,1

12,21,2
2

*

iiii

iiii
ijj TTTT

TTTT
TCC

−−−

−−
+==

++

+  if at point j  the diagonal is cut from above, 

 if point )(
*

jhj DC = j  is a new PP-plot line departure. 
 
 

))())(()()(1(2 11)(212 ++ −−−= iijiiii ZTCZTZTIE  
   + ))()())(()()((1( 111212 iiiii ZTZTZTZTI −−− ++   

+ ))())((( 2)(1)( iijiiji ZTCZTCI −−  
+ ))()()(( )(12)(11 ijiijii CZTCZTI −− ++  
+ ))())(((2 )(1112)1( ijiiiji CZTZTCI −− +++ , 

when at the next cutting point  the diagonal is cut from below, )(ij
 

))())(()()(1(2 12)(111 ++ −−−= iijiiii ZTCZTZTIE   
+ ))()())(()()((1( 212111 iiiii ZTZTZTZTI −−− ++  

+ ))())((( 1)(2)( iijiiji ZTCZTCI −−  
+ ))()()(( )(11)(12 ijiijii CZTCZTI −− ++  
+ ))())(((2 )(1211)1( ijiiiji CZTZTCI −− +++ , 

when at the next cutting point  the diagonal is cut from above, )(ij
 

0=iE  when between i  and 1+i  the PP-plot line coincides with the diagonal (i.e. 
 and T ). )()( 21 ii ZTZT = )()( 1211 ++iZ = iZT

 
Proof: 
See Annex A. 
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Case 2:  2>m
 
A  comparison can be transformed into a classical PP-plot for . 2>m 2=m
 
Let  be the ordered vector of  observations of ,  observations 
of ,  observations of , etc. Furthermore, let   be equal to the number of 
observations in  that are smaller or equal to  divided by , . 

},...,,{ 21 mXXXZ = 1n 1X 2n

2X 3n 3X )( ij ZP

jX iZ jn mj ,...,1=
 
The horizontal coordinate  is equal to  if )(1 iZT )(1 iZP )()( 21 ii ZPZP ≤ , and )()( 31 ii ZPZP ≤ , 
and, …, . )  is equal to  if )()(1 imi ZPZP ≤ (1 iZT )(2 iZP )()( 12 ii ZPZP <  and )()( 32 ii ZPZP ≤ , 
and, …, . Etc.  )()(2 imi ZPZP ≤
 
The vertical coordinates  are computed as )(2 iZT

 
( ) ( )

1
)()(...)()(

)()(
2

1
2

11
12

−

−++−
+=

m
ZPZTZPZT

ZTZ imiii
ii mnnniT , +++ ...,...,1 21 .  =

 
Subsequently, the formulas of Proposition 1 can be applied. 
 
 
3 Hypothesis testing with the HWM index 
 
Hinloopen and van Marrewijk (2005) derive analytically the densities of the harmonic mass 
index under the null-hypothesis ( 210 : FFH = ) and the following assumptions: 
 

A1: ,  nnn == 21 2=m
 

A2: There are no ties possible between and within samples. 
 
Under conditions A1 and A2, the PP-plot line only consists of pieces of vertical and 
horizontal lines.  
 
It is possible however to derive analytically the densities of the HWM index for another 
particular case, namely when ties between samples occur with probability 1/3. In this case, 
the PP-plot line goes possibly with an angle of 0, 45 and 90 degrees. When, in addition, 
within ties are allowed, then the PP-plot line can have any angle. Unfortunately, in that case, 
it is not possible to derive HWM densities analytically. 
 
Consider the following modification of assumption A2: 
 

A2*: There are no ties within samples.  
        Ties between samples occur with probability 1/3.  

 
In this section we show the analytical derivation of HWM densities under both assumptions 
A1-A2 and assumptions A1-A2* because our proof is slightly different from the one of 
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Hinloopen and van Marrewijk (2005). In all other cases, one needs to resort to Monte Carlo 
simulation experiments, which is done in the next section.  
Lemma 1 
 
Under assumptions A1-A2, the number of possible distinct values of the HWM index is equal 
to . 2/)1(1)( −+=Θ nnn
 
Under assumptions A1-A2*, the number of possible distinct values of the HWM index is 
equal to . 21)( nn +=Θ
 
Proof: 
Let a “step” on a PP-plot line be an increase of  on either the horizontal axis and/or the 
vertical axis. 

n/1

 
Under assumptions A1-A2, the smallest value of the HWM index is obtained when after each 
step in the horizontal (vertical) direction the following step is made in the vertical 
(horizontal) direction. In that case, the value of the HWM index is equal to the (scaled) sum 
of  triangles where the surface of each triangle is . Hence, the smallest value of the 
HWM index is The largest value of the HWM index is obtained when n  
steps are made in the same direction. In that case, the HWM index is 1. The smallest possible 
difference in two HWM index values is . Hence, the number of distinct values is 

n 22/1 n
./1)2/(*2 2 nnn =

2/2 n

2/)1(1
/2

/111 2 −+=
−

+ nn
n

n . 

 
Under assumptions A1-A2*, the HWM index is zero when the PP-plot line coincides with the 
diagonal, i.e. each step is a between tie. The smallest possible difference in two HWM index 

values is . Hence, the number of distinct HWM values is 2/1 n 2
2 1

/1
011 n

n
+=

−
+ . 

Q.E.D. 
 
           
Lemma 2  
 
Under assumptions A1-A2, the vector ,  
contains all possible distinct HWM index values. 

2/)1(21)( njnHWM j −−= 2/)1(1,..,1 −+= nnj

 
Under assumptions A1-A2*, the vector ,  contains all 
possible distinct HWM index values. 

2/)1(1)( njnHWM j −−= 21,..,1 nj +=

 
Proof: 
Under assumptions A1-A2, the largest HWM index value is obtained for 1=j  

 whereas the smallest value is obtained for )1)(( 1 == nHWM j 2/)1(1 −+= nnj  

( ).  decreases with each step of nnHWM nnj /1)( 2/)1(1 =−+= jnHWM )( j  with , which is 
equal to the smallest possible difference in two HWM index values. 

2/2 n
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Under assumptions A1-A2*, the largest value is obtained for 1=j  ( ) whereas 

the smallest HWM index value is obtained for  ( ).  

decreases with each step of 

1)(1 == nHWM j

21 nj += 0)(21
=

+=
nHWM

nj jnHWM )(

j  with , which is equal to the smallest possible difference in 
two HWM index values. 

2/1 n

 
Q.E.D. 
 
 
Definitions 
 
• Let XX represent a possible route for 2=n  where two steps are made on the horizontal 
axis of the PP-plot. XXYX represents a possible route for 3=n  where first two steps are 
made on the horizontal axis of the PP-plot, then one step on the vertical axis, and then one 
step on the horizontal axis. Etc. 
 
• Let a “split number” at a conjunction indicate the number of possible distinct routes until 
the next conjunction. Let the “split history” associated with a conjunction indicate the 
number of routes that were continued in the direction of the respective conjunction. 
 
For example, under assumptions A1-A2, until 2=n , there are three possible routes, i.e. XX, 
XYX and XYY, which start in the X-direction and three possible routes, i.e. YY, YXY, and 
YXX, which start in the Y-direction. Among the three routes with the first step in the X-
direction, one (i.e. XX) can be continued in four directions2 whereas two (i.e. XYX and 
XYY) can be continued in three directions when the number of observations increases to 

 This is illustrated in the following tree: .3=n

(1)*3 

(1)*3 

2 

n=1 n=2 n=3

(2)*3

(1)*4

(2)*3

(1)*4

 
In the tree above, at , 3 indicates the “split number” (i.e. at 2=n 1=n , after one step in the X 
or Y-direction, there are three possible continuations) whereas the number within brackets is 
the “split history” (i.e. at  one can either go in the X or Y-direction). At , there are 
two split numbers, i.e. 3 and 4, and the split history is (2) and (1) respectively. 

1=n 3=n

 

                                                      
2 That is, XXX, XXYX, XXYYX, and XXYYY. 
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For the tree can be continued as follows: 4=n
 

(1)*3 

(1)*3 

2 

n=1 n=2 n=3

(2)*3

(1)*4

(2)*3

(1)*4

(4)*3 

n=4 

(2)*4 

(2)*3 
(1)*4 
(1)*5 
(4)*3 

(2)*4 

(2)*3 

(1)*4 
(1)*5 

 
 
Notice that each split number is continued in the same “split proportions” and with the same 
split numbers wherever it is located. For example, both at 2=n  and  split number 3 is 
continued with split numbers 3 and 4 in the proportions 2:1. Split number 4 is continued with 
split proportions 2:1:1. Indeed, any split number  has split proportions  
where there are 

3=n

k )3( ≥k 1:..:1:1:2
2−k  ones in the sequence. Split proportions, however, are different under 

assumption A2* as will be demonstrated below. 
 
• Let the matrix  contain the “split proportions” of split numbers 3 and higher. The rows 
and columns of  are defined according to decreasing split number. The last row of  
contains the split proportions of the lowest split number. The first row of  contains the 
split proportions of the highest split number. 

)(nB
)(nB )(nB

)(nB

 
Under assumptions A1-A2, )2()( nnnB ΥΔ≡ for  where 1>n nΥ  is a -dimensional column 
unit vector and  is the -dimensional upper triangular unit matrix.   
has  rows and 

n

nΔ n [ ].21)1( =B )(nB
n 1+n  columns. 

 
For example,  is equal to the non-shaded matrix in the following table: )4(B
 
 Ending split number 
Starting split number 7 6 5 4 3 
6 1 1 1 1 2 
5 0 1 1 1 2 
4 0 0 1 1 2 
3 0 0 0 1 2 
 
 
 Under assumptions A1-A2*,  only consists of uneven split numbers. From split number 
7 and higher, split proportions follow the following sequence: 

)(nB
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 Ending split number 
Starting split number 15 13 11 9 7 5 3 
13 1 2 2 2 2 3 1 
11 0 1 2 2 2 3 1 
9 0 0 1 2 2 3 1 
7 0 0 0 1 2 3 1 
 
 
Hence, the split proportions are (when standing at a starting split number): one time split 
number 3, three times split number 5, two times the other split numbers except for the 

highest split number which occurs one time. Furthermore,   has .
120
131

)1( ⎥
⎦

⎤
⎢
⎣

⎡
=B )(nB 1+n  

rows and  columns. 2+n
 
For example,  is equal to the non-shaded matrix in the following table: )3(B
 Ending split number 
Starting split number 11 9 7 5 3 
9 1 2 2 3 1 
7 0 1 2 3 1 
5 0 0 1 3 1 
3 0 0 0 2 1 
• , )()()1( nBnMnA ≡+
 
Under assumptions A1-A2,  
 

)()( )1( nanm kkjjk +−=   for 1)1(,.., −+−Θ= knkj , nk ,..,1=  
   otherwise 0)( =nm jk

 
2)1( ≡M , . 2)1( =A

 
Under assumptions A1-A2*,  
 

)()( )1( nanm kkjjk +−=   for 1,.., −+= krkj , 1,..,1 += nk , where r  is equal to the 
number of rows plus the number of columns of minus 1, )(nA

   otherwise. 0)( =nm jk

 

⎥
⎦

⎤
⎢
⎣

⎡
≡

10
02

)1(M , . 3)1( =A

 
• Let the “split sum” be the sum of the split numbers on a continuous branch (i.e. without 
counting the split numbers of sister branches in other directions), from start ( ) to end 
( +1), of the trees developed above.  

1=n
nn =
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For example, under assumptions A1-A2, for 3=n  (i.e. sum until split numbers at 4=n  
included) the highest branch of the tree consists of 2,3,3,3 with split sum equal to 11 (see tree 
above). The second highest branch of this tree consists of 2,3,4,3 with split sum equal to 12. 
Etc. 
 
Under assumptions A1-A2, each continuous branch with the same split sum has the same 
HWM index value. Furthermore, the HWM index increases with the split sum. Hence, the 
highest HWM index value (=1) coincides with the highest split sum (=14, for ). 3=n
 
The rows of matrix M  are defined according to descending split sum (i.e. the first row 
corresponds to the highest HWM index value whereas row 2/)1(1 −+ nn  corresponds to the 
smallest HWM index value). The columns of matrix M  are defined according to descending 
ending (i.e. at split number (i.e. the first column corresponds to the highest ending split 
number whereas column  corresponds to the lowest ending split number). 

)1+n
n M (n) contains 

the split history shown at  in the tree and has 1+n )(nΘ  rows and  columns. For example, 
 is equal to the non-shaded matrix in the following table: 

n
)3(M

 Ending split number 
Split sum 5 4 3 
14 2 0 0 
13 0 2 0 
12 0 4 4 
11 0 0 8 
 
 
• Under assumptions A1-A2*, split numbers can be refined into “split refinement numbers” 
according to the following sequence: 
 
 Ending split refinement number 
Starting split 
refinement number 

4 5 6 7 8 9 10 11 

3 1 2       
4 1 2       
5 1 2 1 1     
6 1 2 1 1     
7 1 2 1 1 1 1   
8 1 2 1 1 1 1   
9 1 2 1 1 1 1 1 1 
 
 
Hence, the split refinement proportions of even split refinement numbers are equal to the 
split refinement proportions of the respective closest but lower uneven split number. Split 
refinement proportions of uneven split numbers are equal to one for all split refinement 
numbers from 4 until the respective uneven split number plus 2 except split refinement 
number 5 which occurs twice. 
 
For example, under assumptions A1-A2*, until 3=n , the tree of split numbers is as follows  
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(2)*5 

(1)*3 

3 

n=1 n=2 n=3

(2)*7

(2)*3

(2)*5

(1)*3

(6)*5 

 
whereas the tree of split refinement numbers is: 
 

(2)*5 

(1)*4 

3 

n=1 n=2 n=3

(2)*7

(2)*4

(2)*5

(1)*4

(4)*5 
(2)*6

 
• Let the matrix  contain the split refinement proportions of split refinement numbers 
4 and higher. The rows and columns of  are defined according to decreasing split 
refinement number.  has  rows and 

)(nBR
)(nBR

)(nBR n2 22 +n  columns. 
 
For example,  is equal to the non-shaded matrix in the following table: )2(BR
 
 Ending split refinement number 
Starting split 
refinement number 

9 8 7 6 5 4 

7 1 1 1 1 2 1 
6 0 0 1 1 2 1 
5 0 0 1 1 2 1 
4 0 0 0 0 2 1 
 

Furthermore, . ⎥
⎦

⎤
⎢
⎣

⎡
=

1200
1211

)1(BR
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 Let the “split refinement sum” be the sum of the split refinement numbers from start •
( 1=n ) to end ( nn = +1) on a continuous branch. Under A1-A2*, the HWM index increases 
with the split ref ent sum. Let inem MR (n) contain the split refinement history shown at 1+n  
in the corresponding tree. The (nΘ ws of matrix )  ro MR  are defined according to decrea  
split refinement sum whereas th lumns of matrix 

sing
e co MR are defined according to decreasing 

ending (i.e. at )1+n split refinement number and has )(nΘ rows and n2  columns. For 
example, )2(MR ual to the non-shaded matrix in the following table: 
 

 is eq

 Split refinement number 
Split refinement sum  7 6 5 4 
15 2 0 0 0 
14 0 2 0 0 
13 0 0 4 0 
12 0 0 2 2 
11 0 0 0 1 
 
 
 )()()1( nBRnMRnAR ≡+• , 

nder assumptions A1-A2*,  

 for 

 
U
 

)()( )1( narnmr kkjjk +−= 1)1(,.., −+−Θ= knkj , nk 2,..,1=  
   wise 

 

emma 3  

he total number of possible distinct PP-plot lines, 

other0)( =nmrjk

 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
02

)1(MR , 3)1( =AR . 

 
L
 
T )(nΩ , is equal to the sum of all elements 

Proof: 
ment of 

in )(nA , i.e. ∑∑=Ω nAn )()( .
i j

ij
3

Each ele A  contains the product of the number of routes at a previous conjunction 

.E.D. 

he number of possible distinct PP-plot lines increases with a factor 4 (approximately 6) 
under assumptions A1-A2 (A1-A2*). For example, 

times the number of possible continuations. Summing over all conjunctions gives the total 
number of possible distinct PP-plot lines. 
 
Q
 
 
T

5805.9)( +=Ω en  under A1-A2 whereas 

                                                      
3 In Hinloopen and van Marrewijk (2005), )(nΩ indicates half the number of possible distinct sample plots. 

Furthermore, note that under assumptions A1-A2*, ∑∑∑∑ ==Ω
i j

ij
i j

ij nARnAn ).()()(  
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7505.2)( +=Ω en  under A1-A2*, for 100=n . Hence, by allowing ties between samples, the 
HWM index values are substantially refined. 

Proposition 2 
 

 
Under 10 : FH 2F=  and  has probability  where assumptions A1-A2, )(nHWM j )(np j

n

nj
j np =)( , 2/)1(1,..,1

nM
Ω

Υ)(
 −+= nnj . (nM j )  is row j  of matrix M . 

 
Under  and assumptions A1-A2*,  has probability  where 210 : FFH = )(nHWM j )(np j

n

nj
j np =)( , 21,..,1 nj += . )(nMR j  is ro

nMR
Ω

Υ)(
w j  of matrix MR . 

 
 is a -dimensional column unit vector. 

Pr
Υ)(  and   are equal to the sum of all possible PP-plots with the same HWM 
alue under assumptions A1-A2 and assumptions A1-A2* respectively. The relative 

frequency is HWM

nΥ n
 

oof: 
M nj n nj nMR Υ)(
index v

 of th  index value is equal to )(/)( nnM nj ΩΥ  and )(/)( nnMR nj ΩΥ  
respectively. 
 
Q.E.D. 
 
 
Hypothesis testing with the HWM index works as follows. Samples with a high empirical 

WM index value have a low probability that they come from the same distribution. The 

 percentiles, derived under both 
ssumptions A1-A2 and A1-A2*, for

H
significance level of the HWM index test thus corresponds to the corresponding percentage 
of highest HWM values. The associated HWM percentiles, derived under assumptions A1-
A2, are shown in Hinloopen and van Marrewijk (2005).  
 
Table 1 below summarizes the results for the HWM

5=na , 50,100,150,200, and 250. It turns out that the 

do not come from the same 
istribution, the power of the HWM test based on A1-A2 could be low for samples with less 

HWM percentiles at the usual confidence levels (i.e. at 10%, 5%, 2.5% and 1%) are lower 
under A1-A2* than under A1-A2. Therefore, the HWM index test accepts 0H  more often 
than justified when A1-A2 percentiles are used instead of A1-A2* percentiles and ties can be 
present between samples. As a consequence, under 0H , the size distortion of the test under 
A1-A2 is always smaller than the chosen significance level. 
 
However, under the alternative hypothesis that samples 
d
than 50 observations when there are ties between samples. For example, the difference 
between the HWM percentiles (A1:A2 – A1:A2*) is equal to 0.12 at 5=n  for all reported 
significance levels. That said, for samples with 50 observations or more, the differences in 
the HMW percentiles (first column to the right of Table 1) are vely small and 
decreasing with the sample size ( n ). This suggests that the A1-A2 HWM percentiles are 

relati
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fairly accurate approximations of the true percentiles when the sample size exceeds 50, even 
when as much as one-third of the samples consist of between ties. 
 
But, can the same conclusion also be drawn for samples with ties within samples? 

able 1: Critical percentiles of the HWM index under

 
 
 
 
 
 
T  210 : FFH = 1

N HWM percentile HWM percentile  Difference 
(A1:A2  – A1:A2*) under A1:A2*under A1:A2 

 10% significance level 
5 0.680 0.120 0.560 
50 

 

5% significance level 

0.200 0.168 0.032 
100 0.141 0.119 0.023 
150 0.115 0.097 0.018 
200 0.100 0.084 0.016 
250 0.089 0.075 0.014 
 
5 0.760 0.120 0.640 
50 

 

2.5% significance level 

0.234 0.196 0.037 
100 0.165 0.139 0.026 
150 0.134 0.113 0.021 
200 0.117 0.098 0.019 
250 0.104 0.088 0.017 
 
5 0.840 0.120 0.720 
50 

 

1% significance level 

0.264 0.222 0.042 
100 0.186 0.157 0.030 
150 0.152 0.128 0.024 
200 0.132 0.111 0.021 
250 0.118 0.099 0.019 
 
5 0.920 0.120 0.800 
50 

 
0.300 0.254 0.046 

100 0.212 0.179 0.033 
150 0.174 0.146 0.027 
200 0.150 0.127 0.024 
250 0.134 0.113 0.021 

mption A1: 21 nn 2=m .  =1 Assu , 
Assumption A2: Th no ithere are  ties w in and between samples.   

amples occur with probability 1/3. Assumption A2*: There are no ties within samples. Ties between s
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4 Monte Carlo simulation experiments 
 
To investigate within ties we resort to a Monte Carlo simulation experiment because 
analytical solutions for the HWM percentiles are not available. This is not necessarily a 
drawback since the HWM index is distribution free and, as a result, its critical values are 
independent of the distributional choices. 
 
Let the population of  and  consists of integers, which are uniformly distributed over 
the range . Here,  is the sample size of both  and , and the factor  
determines the population size. We consider all values of  in the set [20,10,5,2] and, 
therefore, draw randomly 5,10,20 and 50 percent, respectively, of the population size. Note 
however that samples  and  do not necessarily consist of distinct numbers, and, 
therefore, do not necessarily include  percent of the distinct elements of the 
population. Evidently, the probability of finding ties within and between samples is the 
highest when the sample size is half the population size, i.e. 

1X 2X
[ cn*,0 ] n 1X 2X c

c

1X 2X
cnn */

2=c .  
 
 
Table 2: Average percentage of ties in the Monte Carlo experiments (as a share of n) 
 Only within ties Between and within ties 
 Sample size is 5% of population size 
5 2.1 4.5 
50 2.5 4.8 
100 2.5 4.8 
150 2.5 4.8 
200 2.5 4.8 
250 2.5 4.8 
 Sample size is 10% of population size 
5 4.3 8.5 
50 5.0 9.3 
100 5.0 9.3 
150 5.1 9.3 
200 5.0 9.3 
250 5.1 9.4 
 Sample size is 20% of population size 
5 8.5 16.1 
50 10.1 17.5 
100 10.2 17.5 
150 10.2 17.6 
200 10.3 17.5 
250 10.3 17.6 
 Sample size is 50% of population size 
5 22.4 34.2 
50 26.1 36.5 
100 26.3 36.6 
150 26.4 36.7 
200 26.5 36.7 
250 26.5 36.7 
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Table 3: Analytical and simulated critical percentiles of the HWM index under 
 at the 5% confidence level for two samples210 : FFH = 1

Sample 
size (n) 

Analytical 
HWM 

percentile 
under A1:A2 

(no ties) 
 

Analytical 
HWM 

percentile 
under A1:A2* 

(only between 
ties) 

Simulated 
HWM 

percentile  
 under A1 

(only within 
ties) 

Simulated 
HWM 

percentile 
 under A1 

(between and 
within ties) 

Difference in 
HWM 

percentiles 
(no ties – 

between and 
within ties) 

 Sample size is 5% of population size 

5 0.760 0.640 0.760 0.760 0.000 
50 0.234 0.196 0.239 0.228 0.006 
100 0.165 0.139 0.168 0.163 0.002 
150 0.134 0.113 0.137 0.134 0.001 
200 0.117 0.098 0.119 0.114 0.003 
250 0.104 0.088 0.106 0.104 0.000 
 Sample size is 10% of population size 
5 0.760 0.640 0.760 0.720 0.040 
50 0.234 0.196 0.246 0.230 0.004 
100 0.165 0.139 0.175 0.164 0.001 
150 0.134 0.113 0.140 0.136 -0.001 
200 0.117 0.098 0.123 0.115 0.001 
250 0.104 0.088 0.109 0.102 0.002 
 Sample size is 20% of population size 
5 0.760 0.640 0.840 0.720 0.040 
50 0.234 0.196 0.257 0.233 0.000 
100 0.165 0.139 0.180 0.161 0.003 
150 0.134 0.113 0.146 0.132 0.002 
200 0.117 0.098 0.130 0.114 0.002 
250 0.104 0.088 0.115 0.104 0.000 
 Sample size is 50% of population size 
5 0.760 0.640 0.920 0.720 0.040 
50 0.234 0.196 0.294 0.231 0.003 
100 0.165 0.139 0.209 0.162 0.003 
150 0.134 0.113 0.169 0.135 0.000 
200 0.117 0.098 0.147 0.114 0.002 
250 0.104 0.088 0.133 0.102 0.002 
1 Assumption A1: 21 nn = , .  2=m
Assumption A2: There are no ties within and between samples.   
Assumption A2*: There are no ties within samples. Ties between samples occur with probability 1/3. 
 
 
Based on the population described above, we do two experiments, in one experiment we 
allow only within ties whereas in the other experiment we allow both between and within 
ties. The cumulative distribution function of HWM is simulated for , 50,100,150,200 
and 250, where for each sample size we make 10,000 runs. 

5=n

 
Table 2 shows the average percentage of within and between ties as a share of the sample 
size over the 10,000 runs. The average share of ties varies from about 2.5% for a sample size 
equal to 5% of the population size (the highest panel in the table above of the experiment 
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with only within ties) to about 37% for a sample size equal to 50% of the population size (the 
lowest panel of the experiment with between and within ties). Hence, our experiments 
capture a wide range of tie proportions that is likely to cover most of the actual datasets in 
terms of tie representation.  
 
Table 3 contains the simulated HWM percentiles and is organised as follows. The sample 
size is shown in the first column to the left. The analytically derived HWM percentile at the 
5% confidence level, under A1-A2 (no ties) and A1-A2* (only between ties), are found in the 
second and third column respectively. The fourth and fifth column shows the corresponding 
percentile of the simulated HWM distribution for the experiment with only within ties and 
for the experiment with between and within ties respectively. The difference between the 
analytically derived percentile for assumptions A1-A2 (no ties), and the simulated percentile 
for samples with between and within ties is computed in the sixth column. 
 
We recall from the previous section that between ties lead to lower HWM percentiles at the 
5% significance level in comparison to samples that are free from ties. Table 3 demonstrates 
that within ties lead to higher HWM percentiles. It is striking to observe that the analytically 
derived percentiles under assumptions A1-A2 (the second column to the left) are almost 
identical to the simulated HWM percentiles (the fifth column to the left) when there are 
between and within ties. The difference between the respective percentiles (column six) is 
smaller than 0.05 for all sample sizes, and smaller than 0.01 for samples of 50 observations 
or more.  
 
We ran a third simulation experiment to investigate the critical HWM percentiles for more 
than two samples. Here the population of  and  consists of numbers which are 
uniformly distributed over the range

1X 2X
[ ]1,0 . Therefore, in this case, the probability of drawing a 

tie is zero. 
 
The highest horizontal panel of Table 4 shows the simulated critical percentiles for two up to 
five samples whereas the lowest horizontal panel contains the corresponding differences with 
the analytically derived percentiles under assumptions A1 and A2, i.e. . Again, the 
absolute differences in percentiles are relatively small and decreasing with the sample size 
but too important to be explained by random error only when . In all cases except for 
samples with 5 observations, the critical percentiles of the HWM index for more than two 
samples are slightly higher than the critical percentiles for two samples. The A1-A2 HWM 
percentiles are again fairly accurate approximations of the true percentiles when the sample 
size exceeds 50, even when there are more than two samples. 

2=m

2>m

 
As a final remark, our simulation experiments only consider samples of equal size 
(assumption A1). Effective solutions to the comparison of samples of different sizes are 
given in Hinloopen and van Marrewijk (2005). 
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Table 4: Simulated critical percentiles of the HWM index under  at the 5% 
confidence level for multiple ( )  samples 

210 : FFH =
2≥m

Sample 
size (n) 

2=m  3=m  4=m  5=m  

 Simulated HWM percentile 

5 0.760 0.737 0.732 0.732 
50 0.236 0.239 0.245 0.247 
100 0.164 0.171 0.175 0.176 
150 0.134 0.138 0.144 0.143 
200 0.117 0.118 0.123 0.124 
250 0.106 0.107 0.110 0.110 
 Difference with analytical percentile under assumptions A1 ( ) and A22=m 1

5 0.000 -0.023 -0.028 -0.028 
50 0.002 0.006 0.012 0.014 
100 -0.001 0.006 0.010 0.011 
150 -0.001 0.003 0.009 0.008 
200 0.000 0.002 0.007 0.008 
250 0.002 0.003 0.006 0.005 
1 Assumption A1: 21 nn = , .  2=m
Assumption A2: There are no ties within and between samples.   
 
 
 
5 Conclusions 
 
We have shown how to compute the Harmonic Weighted Mass index for any number of 
samples. Under the null hypothesis, its percentiles are analytically derived for two samples 
with between ties but no within ties. The results of our simulation experiments reveal that the 
percentiles as reported in Hinloopen and van Marrewijk (2005), for two samples that are free 
of ties, are fairly accurate approximations of the HWM percentiles for two samples that 
contain between and within ties when the sample size exceeds 50. Furthermore, our results 
show that these percentiles are fairly accurate as well for cases where there are more than two 
samples. 
 
It goes without saying that the HWM index test can be used in numerous applications: 
goodness of fit analysis, treatment effect analysis, event-study analysis, regime-switching 
analysis, frontier analysis, performance analysis, inequality analysis etc. 
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Annex 
 
Proof of Proposition 1 
 
When the PP-plot line is under the diagonal, the horizontal line from  to  (i.e. from 

 to  and ), the vertical line from  to  (i.e. from 
1−jC jC

11 −= jCT jCT =1 12 −= jCT 1−jC jC 12 −= jCT  to 
 and ), and part of the diagonal form a right triangle. Triangle 1 in the figure 

below is an example of such a triangle. Triangle 2 in this figure is an example of a triangle 
following from a PP-plot line that is above the diagonal. 

jCT =2 jCT =1

 

C0=0 
C1 

C2=1

PP-plot line 

1

2

iE  is defined as a “hole” in a triangle, which occurs, for example, when  changes before 
 is reached while the PP-plot line is below the diagonal. This is illustrated in the figure 

below: 

2T

jC

 

E

C0=0 
C1 

C2=1

PP-plot line 
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Step 1: Computing the surface of the triangles 

 
The surface of the triangle from cutting  to  is equal to /2. The 

contribution of this triangle (when there are no holes) to the HWM index is . 
1−jC jC 2

1)( −− jj CC
2

1)( −− jj CC
 
However, the surface of triangles defined by the elements of must not be counted when 
the PP-plot line coincides with the diagonal between  and , that is, when  

is a new PP-plot line departure. This explains why is subtracted from 

*C
*

1−jC *
jC )(* jDC hj =

∑
=

−−
H

h
jh CjD

1

2*
1 ))((

∑
=

−−
J

j
jj CC

1

2*
1

* )( . 

 
 

)(1 ij ZTC =  when there is  a vertical cutting j  between  and  whereas 
when there is a horizontal cutting 

iZ 1+iZ
)(2 ij ZTC = j  between  and . Notice that cuttings 

are either vertical or horizontal when there are no ties in the data because, in that case, the 
PP-plot only consists of vertical and horizontal lines. 

iZ 1+iZ

 
When there are ties, the PP-plot may consist of lines that are neither vertical nor horizontal. 
Such a situation occurs from i  to 1+i  (going from  to ) if both coordinate  is 
different from coordinate T  and coordinate  is different from coordinate 

. 

iZ 1+iZ )(1 iZT
)(1 1+iZ )(2 iZT

)( 12 +iZT
 
The figure below illustrates this possibility for a “cutting from below”. The PP-plot goes with 
a straight line from coordinates  to . The diagonal goes from a straight 
line from coordinates  to . Note that, if cutting occurs from  to 

),( 21 ii TT ),( 1,21,1 ++ ii TT
),( ii DD ),( 11 ++ ii DD i 1+i , 

 where gDC ij += g  is the vertical distance between the crossing point (where the diagonal 
cuts the PP-plot) and the horizontal line at   .iD
 
In the figure below: 

iiii TTTDa 212 −=−= , 

iiii TTTDb 21,121 −=−= ++ , 

ii TTabc ,11,1 −=−= + , 
cTTd ii =−= + ,11,1 , 

ii TTe ,21,2 −= + , 

1)tan( ==
d
cα , 1)tan( ==

f
gα , 

d
e

=)tan(β , 
f

ag +
=)tan(β . 
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T1, i+1,T2, i+1 

T1i,T2i 

f

d

β

α
Di 

Di+1 

g 

a

c b e

 
 
 

Using the fact that 
f
g

d
c
=  and 

f
ag

d
e +
=  one can derive that 

)()(
))((

,11,1,21,2

21,11,1

iiii

iiii

TTTT
TTTT

ce
cag

−−−

−−
=

−
=

++

+  

 
Furthermore, , hence ii TD 1=
 

)()(
))((

,11,1,21,2

21,11,1
1

iiii

iiii
ij TTTT

TTTT
TC

−−−

−−
+=

++

+ , when at j  the diagonal is cut from below. 

 
Applying the same calculation method for a cutting from above we find that  

)()(
))((

,21,2,11,1

12,21,2
2

iiii

iiii
ij TTTT

TTTT
TC

−−−

−−
+=

++

+ , when at j  the diagonal is cut from above. 
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Step 2: Computing the holes in the triangles 
 
We only discuss possible “holes” in triangles (as computed under step 1) that are below the 
diagonal. The same procedure can be applied for holes in triangles that are above the 
diagonal. A “hole” is defined as the (additional) area of a triangle that is taken away by a 
movement in the  coordinate. Note that a movement in the  coordinate does not 
necessarily lead to a hole. 

2T 2T

 
There are three possible types of “holes” created in the surface of the triangles computed 
under step 1 when going from i  to 1+i :  
 
(i) There is no cutting of the diagonal, there is a change in  coordinate but there is no 
change in the  coordinate. In this case, the hole is a rectangle with surface 

 where  is the next cutting point. Taking into account 
the scaling factor of 2, the (negative) contribution of this rectangle to the HWM index is 
then: 

2T

1T
))())(()(( 1)(212 iijii ZTCZTZT −−+ )(ijC

 
))())(()()(1(2 1)(212 iijiii ZTCZTZTI −−− + ,  (A1) 

where . 0=iI
 
(ii) There is no cutting of the diagonal, and both coordinate  and  change. In this case, 
the hole in the triangle consists of the surface of a triangle and, possibly, of a rectangle. The 
contribution to the HWM index is: 

1T 2T

 
+−−− ++ ))())(()()(1(2 11)(212 iijiii ZTCZTZTI   

     ))()())(()()(1( 111212 iiiii ZTZTZTZTI −−− ++      (A2) 
where . 0=iI
 
The rectangle disappears when )( 11)( += iij ZTC . Note that when there is no change in the  
coordinate (i.e. ), formula (A2) boils down to formula (A1). Hence, only 
formula (A2) needs to be retained. 

1T
)()( 111 ii ZTZT =+

 
(iii) There is a cutting of the diagonal from i  to 1+i  and both coordinate  and   
change. In this case, there can be holes in two triangles. There is a possible hole in the 
triangle below the diagonal; this hole is itself a triangle. There is a possible hole in the 
triangle above the diagonal; this hole is a triangle and a rectangle. The contribution of the 
surface of these holes to the HWM index is: 

1T 2T

 
  ))()()(())())((( )(12)(112)(1)( ijiijiiiijiiji CZTCZTIZTCZTCI −−+−− ++   

+  ))())(((2 )(1112)1( ijiiiji CZTZTCI −− +++               (A3) 
where . 1=iI
 
Combining formulas (A2) and (A3) gives: 
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 ))())(()()(1(2 11)(212 ++ −−−= iijiiii ZTCZTZTIE  

+ ))()())(()()((1( 111212 iiiii ZTZTZTZTI −−− ++   
+ ))())((( 2)(1)( iijiiji ZTCZTCI −−  
+ ))()()(( )(12)(11 ijiijii CZTCZTI −− ++  
+ ))())(((2 )(1112)1( ijiiiji CZTZTCI −− +++ .    (A4) 

 
Notice that  when 0=iE )()( 111 ii ZTZT =+  and )()( 212 ii ZTZT =+ , i.e.  is  a “within” tie 
that is located before another within tie . However,  is not necessarily equal to zero 
when  is a within tie but  is not a within tie. 

iZ

1+iZ iE

iZ 1+iZ
 
Finally, we set 0=iE  when both  and  are on the diagonal (i.e.  and 

). 
iZ 1+iZ )()( 21 ii ZTZT =

)()( 1211 ++ = ii ZTZT
 
Q.E.D. 
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