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On Some Problems in Discrete Wavelet Analysis of
Bivariate Spectra with an Application to Business
Cycle Synchronization in the Euro Zone
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Nicolaus Copernicus University, Torun

Abstract The paper considers some of the problems emerging from discrete wavelet
analysis of popular bivariate spectral quantities like the coherence and phase spectra
and the frequency-dependent time delay. The approach taken here, introduced by
Whitcher and Craigmile (2004), is based on the maximal overlap discrete Hilbert
wavelet transform (MODHWT). Firstly, we point at a deficiency in the implementation
of the MODHWT and suggest using a modified implementation scheme resembling the
one applied in the context of the dual-tree complex wavelet transform of Kingsbury
(see Selesnick et al., 2005). Secondly, via a broad set of simulation experiments we
examine small and large sample properties of two wavelet estimators of the scale-
dependent time delay. The estimators are: the wavelet cross-correlator and the wavelet
phase angle-based estimator. Our results provide some practical guidelines for
empirical examination of short- and medium-term lead-lag relations for octave
frequency bands. Besides, we show how the MODHWT-based wavelet quantities can
serve to approximate the Fourier bivariate spectra and discuss certain issues connected
with building confidence intervals for them. The discrete wavelet analysis of coherence
and phase angle is illustrated with a scale-dependent examination of business cycle
synchronization between 11 euro zone member countries. The study is supplemented
with wavelet analysis of variance and covariance of the euro zone business cycles. The
empirical examination underlines good localization properties and high computational
efficiency of the wavelet transformations applied, and provides new arguments in
favour of the endogeneity hypothesis of the optimum currency area criteria as well as a
wavelet evidence on dating the Great Moderation in the euro zone.
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1. Introduction

Wavelet analysis is a kind of frequency studies émables to examine local signal properties
efficiently. It is a relatively new mathematicalra®pt with a broad range of applications in stiast
data compression and image processing. But thioapp found also its place in a modern time series
analysis as it makes it possible to analyze timesé¢hat are subject to structural breaks, laeaids,
changing cyclical patterns, outliers or show otinensient characteristics. The distinguishing featu
of this technique among other time-frequency meshiscan endogenously varying time window, i.e.
the ability to analyze short oscillations with roaw time windows and longer cycles with wider
windows. Due to this, wavelet methodology is thduighconstitute the next logical step in spectral
analysis, one that elaborates on time localizgtimperties of frequency methods. The methodology is
known to have a significant impact in, e.g., gegitsy, oceanography and medicine. However, with
social sciences it is much less popular with bussirgycle studies becoming probably one of the most
pronounced exceptions (see, among others, &Jaguin, 2004, Crowley, Lee, 2005, Raihan et al.,
2005, Crowley et al., 2006, Gallegati, Gallega@p0?, Yogo, 2008, Aguiar-Conraria, Soares, 2009,
2010)*

In the paper we try to answer some of the questoising from discrete wavelet analysis of
popular bivariate spectral quantities like the atage, phase and coherence spectra and the
frequency-dependent time delay. The approach, dotred by Whitcher and Craigmile (2004), is
based on a non-decimated version of the dual-traeelet transform of Kingsbury (1998, 2001).
Following e.g. Percival and Walden (2000) we comete exclusively on the discrete wavelet
transform (DWT) regarding it as a more natural vefiyhandling discrete time series, especially in
economics, where we often operate on frequencysistead of a single frequency like for example
in the case of a business cycle examination. Inhberetical considerations firstly, we point ateed
to modify the implementation scheme of the MODHWiTaiway similar to the implementation of the
dual-tree complex wavelet transformation of Kinggb(see Selesnick et al., 2005). Secondly, via a
broad set of simulation experiments we examine Isamal large sample properties of two estimators
of the wavelet time delay — a quantity measurirgaasal distance between time series on a scale by
scale basis. The estimators are: the wavelet cmselator and the wavelet phase angle-based
estimator. Our results provide some practical dirde for empirical examination of short-term lead-
lag relations for octave frequency bands, poinéihg better small sample performance of the wavelet
phase angle-based estimator for the first seve@brdposition stages and low signal-to-noise ratios.
Further, we show how the wavelet quantities camestr approximate the Fourier cross-spectrum and

discuss issues connected with constructing condel@éntervals for estimators of the wavelet bivariat

! Another promising area of applications arises ifrarice and includes examining comovements between
financial time series, risk management as welloasdasting (see, e.g., Gengay et al., 2002, Woiad},e2003,
Fernandez, 2008, Rua, Nunes, 2009).



spectra. In our empirical analysis of businessecy@riability and synchronization in the euro zone
two ‘continuous discrete’ wavelet transformatiome applied: the MODWT (the maximal overlap
discrete wavelet transform) and MODHWT (the maximegrlap discrete Hilbert wavelet transform).
The characteristic feature of the two transformeiss that they are continuous in time and disdrete
frequency (scales) in the sense that all time wamt only octave frequency bands are considered in
the analysis. From the point of view of an econdmidling to study business cycles the MODWT
and MODHWT offer the following:

- a model-free (nonparametric) approach to examifrieguency characteristics of time series,
i.e. short-, medium- and long-run features in thaxies; In particular, due to their
nonparametric nature, wavelets enable to examindinear processes without loss of
information;

- good time-frequency resolution, and due to thiiciehcy in terms of computations needed to
extract the features; This enables precise exaioimaf a time-varying frequency content of
time series in an efficient way;

- decomposition of variance and covariance of statipnprocesses according to octave
frequency bands In particular, the wavelet variance gives a sifigal alternative to the
spectral density function, which uses just one egdar octave frequency band; The same is
true for the wavelet co- and quadrature spectrighwdive piecewise constant approximations
to the appropriate Fourier cross-spectra on a $gaseale basis (see section 2.4);

- precise timing of shocks causing and influencingitess cycles;

- low computational complexify

- examination of trended, seasonal and integratee siemies without prior transformations; In
particular, we do not need to deseasonalize the, de# seasonal components are left
automatically in lower decomposition levels, unlesg is interested in examining very short
cycles less than two years in length; Besidesetli®mo need of any prior elimination of
deterministic and stochastic trends due to the faat wavelet filtering usually embeds
enough differencing operations;

- efficient estimation of short-term lead-lag relagdor different frequency bands;

- global and local (short-term) measures of assacidtr business cycle components like the
wavelet correlations and cross-correlations, theeled coherence and the wavelet phase

angle.

% See Percival (1995) for the variance. The covagarase is examined by Whitcher (1998) (see alsibct\ér
et al., 2000).

% The conventional DWT can be computed with an allgor that is faster than the well known fast Fourie
transform (FFT) — the Mallat’'s pyramid algorithmslked on a mirror filters cascade and downsamplin@,by
which requires onlyO(N) multiplications. On the other hand, the compuotai complexity of the MODWT is
O(Nlog;N) and is exactly the same as the FFT — see Perdalden (2000), p. 159 — while the MODHWT
consumes twice more operations.



Recent studies on business cycle synchronizatitmmihe euro zone (see, e.g., de Haan et
al., 2008, Goncalves et al., 2009, and referenteein) usually provide evidence in favour of the
endogeneity hypothesis of the optimum currency argéaria as stated in Frankel and Rose (1998),
according to which (intra-industry) trade intercfiion and monetary integration lead to more
correlated business cycles. Our empirical exanonatovering 11 euro zone member countries tries
to contribute to the debate by looking at synchraton patterns alone, decomposed on a scale by
scale basis. The study documents a rise in synidation between business cycles after the firgisste
towards European integration were taken in thersbbalf of the 1980s. Besides, changes in business
cycle variation are examined providing a new wavgleece of evidence on dating the Great
Moderation (comp. Aguiar-Conraria, Soares, 201QJ ataying in agreement with the hypothesis
about an early start of the process (see Blanc&ambn, 2001).

The structure of the paper is as follows. In thet section we shortly introduce the wavelet
transform in its conventional and non-decimatedximal overlap) versions as well as the wavelet
analysis of variance and covariance. Next, we ptede maximal overlap discrete Hilbert wavelet
transform based on the dual-tree wavelet transfiiomand discuss more deeply the bivariate wavelet
spectral analysis, its connections with the Fouaiealysis as well as implementation and statistical
inference issues. Section 3 presents the resuisnoflation analysis comparing two wavelet methods
of examining lead-lag relations for octave frequebands, while Section 4 summarizes our empirical

findings. Finally, the last section offers briehctusions.
2. Wavelet analysis

Wavelet analysis consists in decomposing a sigmalshifted and scaled versions of a basic

function, ¢/(x) , called the mother wavelet. There are differentlkiof this decomposition depending

on the wavelet transform applied. The continuougeha transform (CWT) enables to recognize local
features in the data, especially in the case afadigthat defined over the entire real axis, algfmoit

results in excessive redundancy of information. Tiserete wavelet transform (DWT) provides a
parsimonious representation of the data and icpéarly useful in discrete time series processing
especially in noise reduction and information coesgion. The maximal overlap discrete wavelet
transform (MODWT) removes certain deficiencies toé tiscrete transformation by considering all

time units, while — similarly to the DWT — octaveduency bands are analyzed.
2.1. Conventional and maximal overlap discrete wavet transforms®

The discrete wavelet transform of a real-valuggtfion f (x ) is defined as follows:

* In this subsection we concentrate exclusivelyeai wavelets.



W =" f (9w, (9 dx, (1)
where j=12,...,J, t= 01,...,2°71 -1 and the wavelet daughter¢/,jvt(x , are shifted and scaled
versions of the mother wavelet with dyadic shiftg acales, i.e.:

w, (=272 x~1). @)
For certain functiongy(x )with good localization propertie{z//jvt(x)} is an orthonormal basis in
L2(0). The functiong(x )is usually defined via another function (the swglfunction or father

wavelet), ¢(x ), that, applied to the signal after shifting analisrg analogously to (2), produces

another set of coefficients in the form:
Vi = 109, () dx 3)
known as scaling coefficients. For a giyethe wavelet coefficientdV, ,, are computed as differences

of moving averages for the previous scale scalogffcients and are associate with scdle= 27,

while their squares contribute to the decompositbrenergy of the signal on the time-frequency

plane. On the other hand, the leyekaling coefficients are moving averages of scgle = 2). The
two types of coefficients give the multiresolutidacomposition of the original function in the form:
f(x) = ZVJ,t(”J LX)+ ZWJ,t‘//J,t (X) + ZWJ—].,th—l,t (X)+---+ Zwl,t‘//n X =

t t t t

= S,(X)+ D, (X) + Dy (%) + -+ Dy (X).

(4)

The functionsS; (x )and D, (x) are known as approximations (smooths) and def&hie. highest
level approximationS;(x) represents smooth, low-frequency component ofsigeal, while the
details D,(x), D,(x), ..., D;(x) are associated with oscillations of length-4, 4-8, ...,

2J _2J+1-

In filtering notation the discrete wavelet traovsh is defined via quadrature mirror filters: the

pass filter is obtained through the so-called twals relationship Consider a vector of length
N =27 in the form x =(xy, X,..., Xy ). Then the highest possible decomposition levéldad the
numbers of wavelet and scaling coefficients ofabeventional DWT for each level ahg,V;, ...,1.

On the other hand, the maximal overlap discreteeledvransform produces the same number of

wavelet and scaling coefficients at each decomiposi¢vel (\/le 1 and\7]- +» accordingly) as it does not

® The two filters fulfill the quadrature mirror réanship g = (—1)|+1 h,__1_; , have unit energy and are even-shift

orthogonal; the wavelet filter integrates (sumszeoo, while the scaling filter — to@ .



use downsampling by 2. The coefficients are apjmtgly scaled in order to retain variance
preservation. They are given as follows:

Wi =Z:-=j(;lhi" X (21 (t+1)-1-1 ] modN t=0...2"7" -1, (5)
zjlzvvj,t = le-:;:h“ Xi-tymoan» £ =0ty N =1, (6)
Vie = |L=j(;lgi" X (2 (t+1)-1-1]modN t=0,...2"7 -1, (7)
2j/2\7j,t = :-:j(;lgj,l Xt-tymoans 1=0,...,N -1, (8)

where{h, } and{g;} are thg-the level wavelet and scaling filters of lendth = @ -DL-np+ 1
obtained by convolving together the followipfilters (Percival, Walden, 2000, Chapter 4):
(A) for {h; }:

filter 1: O0:91s---,91 2,94,
fiter2:  ¢4,0,0,,0,...,0,,,0,0, 4;
filter 3: 9,.0,0,0,0,,0,0,0,...,9,.,,0,0,0,9, 4;

' 9)

filter j -1: g,,0,...,0,9,, 0,...,0,...,9,.,, 0,...,0,9, 4;
212-1zeros  2/72-1zeros 2172-1zeros

filter j:  hy,0,...,0,hy, O,..., 0,00 ships O, O, h s
2i-1zeros  2/t-1zeros 21 1-1zeros

(B) for {g;,}:

Filters 1, ... j—1 as in (A)

filter j: 90.0,...,0,0,, 0,...,0,...,9,,, 0,...,0,0, ;. (10)
21t -1zeros 21t -1zeros 21 -1zeros

{h,,} is a bandpass filter with a nominal passband'** <|f|<1/2’, while {g,,} is a low-pass
filter with cutoff frequency 1/2!**. In the notation above we assume tHat,} ={h, ahd

{g,} ={g,} . Further in the text we will also uﬁgz%, g =%, h,=h,/2/%, §, =g, /2".

For further considerations, we provide relatiopsthetween transfer functions of the above
filters with the following correspondence:

{h} - HO{h;;} - H;M{g} - GOt{g;,} - G} andH,(f)=H(f); G, (f)=G(f).
Then we have (Percival, Walden, 2000, p. 154):

H(f)=-e"?"tVGE - 1), (11a)

Hj(f)=H(2j_1f)i;|zG(2'f), (11b)
j-1

G (f)=[1GE" f). 11

i () H 2 f) (11c)



The same relationships also hold for the transferctions of{ﬁ,},{§|),{r~1jyl},{§jyI ) which we

further denote a#i () G(OL H, (UG, 1)

The reconstruction part of wavelet analysis zd8i the inverse wavelet transformation in its
conventional or maximal overlap versions, what tesn a sequence of details and smooths. Though
the details and smooths form an additive decomipasitf the signal, the lack of translation invadan
of the DWT, on the one hand, and the lack of engmpservation of the MODWT details and
smooths, on the other, make them somewhat lesst@it in studies concerning business and growth
cycle synchronization.

The distinguishing features of the conventional D& the MODWT can be summarized as
follows (see Whitcher, 1998, Percival, Walden, 2086ncay et al., 2002):

- The MODWT can handle any sample size, whileXle order partial DWT only multiplies of
2.

- The MODWT s translation invariant, which meanstthicularly shifting a time series is
equivalent to analyzing its circularly shifted whateand scaling coefficients or details and
smooths. This property is particularly useful ines¢ing singularities and examining lead-lag
relations between frequency components of timeseri

- Like the conventional DWT, the MODWT enables vaciarand covariance decomposition.
But the MODWT provides a better estimator of thev@at variance in terms of its efficiency
and gives an estimator of the wavelet covariancesetvariance does not depend on the true
time lag between time series.

- The conventional DWT approximately decorrelatesr@atl range of stationary as well as
nonstationary processes; Assuming that the deetioel property of the DWT is effective,
the maximal order of serial correlation of the ley®ODWT wavelet coefficients is equal
2-1.

- The MODWT approximations and details from the rmefolution analysis are associated
with zero phase filters, which makes it possiblealign their features with those from the
original series. Additionally, the result of the &/T MRA is smoother and less dependent
on the wavelet.

- An additive decomposition of the time series imtgiof its details and approximations is valid
for both the DWT an the MODWT. Contrary to the DWibwever, the MODWT details and

approximations do not form an energy (and covagaadecomposition.

Among the most popular real wavelet and scaliigré are the compactly supported

orthonormal Daubechies filters: the extremal pHdkg and the least asymmetricl{}dfilters. The two



families are characterized by the smallest filergthL for a given number of vanishing momehts.
Besides, the extremal phase scaling filters hagdaktest build-up of the energy sequence, whée th

least asymmetric filters are approximately linelaage.
2.2. Wavelet analysis of variance and covariance

For the stochastic processthe time-dependent wavelet variance is defined as:
1 ~
al(A;) =§Var(Wj,t) =VarW;,). 12)
i
Assuming that (12) does not depend on finvee arrive at variance decomposition according to

different scales in the form:
_1s1 _N 2
Var(Y,) ==Y —VarW,,) =Y c%(4;). (13)
2934 =
The wavelet variance at levetorresponding to scalg; = 217 02(/]]- ), informs about variation of

oscillations of length approximately in the intdn@ —2/**. Similarly, the wavelet covariance and
wavelet correlation are introduced. For the stotbasocessesX andY, the time-varying wavelet
covariance is defined as:
1 ~ ~
i
As in the case of the variance decomposition (E£3he wavelet covariances do not depend on time,
they produce decomposition of the covariance betweeandY, according to different scalek :
_i1 X WYy =N
COV(Xt-Yt)—EZA_COVQNj,t-Wj,t)—ZV(/]j)- (15)
j=11j j=1

J
Next, let us define the (time invariant) waveletretation coefficient for scald; via:

2
o1y =— A

= -~ 16
0,(A;)0,(4)) (4o

® Roughly speaking, vanishing moments (VM) are resfile for eliminating artifacts due to the wavelet
function itself as well as for the degree of apjm@tion to an ideal bandpass filter and make itsjide to
interpret the filters as generalized differencesdjficent observations with the number of embediiféerence
operations equal the number of vanishing momengee- Daubechies (1992), §7.4, Mallat (1998), p. 166,
Percival, Walden (2000), p. 483. The number of \fbtsthe Daubechies filters equals half the filemgth.

" The assumption is also fulfilled for nonstationarpcesses provided that they are integrated @frardnd the
width of the wavelet filterL, is sufficient to eliminate nonstationarity. Iretiease of the Daubechies wavelet
filters the condition isL. = 2d — see, e.g., Percival, Walden (2000), p. 304.Heurtve assume that> 2d in

order to haveE{VT/j't} =0.



The quantity (16) measures the strength and diredf linear dependence between two processes for

a given decomposition level(scale A, ). Finally, the wavelet cross-covariance and itsmadized

version are given as:

1
yr (A ) = COVWJ VY, t+r) COVWJ tr UV, t+r) ’ (17)

J
P (A)) =A- (18)
0,(A;)0,(4;)

As was mentioned in section 2.1, MODWT-basedredtirs have generally better statistical
properties as compared to their DWT-based countstfirstly, MODWT coefficients produce better
estimates of the wavelet variance in terms of figiency; secondly, they give an estimator of the
wavelet covariance whose variance does not depentthe true time lag between time series and,
thirdly, decimation by 2 affects the lag-resolutioh DWT-based estimators of the wavelet cross-
covariances and cross-correlations, so they shmitlthe used in practice (see Percival, Walden, 2000,
308-310, Gencay et al., 2002, p. 252—-253). Foretheasons, further we concentrate on estimation
with the MODWT coefficients.

An unbiased estimator of the wavelet varianaefined as:

ZWZ (19)

Nj =6
WhereVT/]-yt are the MODWT wavelet coefficients, = (2' -1)(L-1)+ i4 the length of the wavelet

filter for scale A; and Nj =N-L; + lis the number of wavelet coefficients unaffected the
boundary.

Estimates of wavelet covariances and waveletetaiions are computed via the following
formulas:
V(A)) == z th, (20)
N =0~
_ W)
G,(4))3,(4;)

while anunbiased estimate of the wavelet cross-covariamobtiained via:

A (21)

N-7-1__ - ~
! S WIW,, for r=01...,N; -1
N] - Tt:Lj -1
. 1 E~~y ~
V,(A)={= DWW, for 7=-1,-2...,-(N, -1 (22)
Nj =7 =
0 otherwise.




Constructions of confidence intervals for the qiigest described in this section are discussed
by Percival (1995) and Whitcher (1998) (see alscciRal, Walden, 2000, Serroukh et al., 2000,
Whitcher et al., 2000, Gengay et al., 2002). Ad #bove estimators may be based on only a porfion o
wavelet coefficients, which results in estimatedaafal versions of the wavelet quantities. A good
time resolution is exactly what the non-decimatestrdte wavelet transform offers and — together
with certain simplifications in obtaining globalesgral estimates — is the most important charastteri
of the approach presented hdree same holds for the MODHWT-based quantities ritesd in §2.4.

2.3. Maximal overlap discrete Hilbert wavelet trangorm

The maximal overlap discrete Hilbert wavelet sfanm (MODHWT) makes use of a recently
introduced class of filters based on Hilbert wavedairs (HWP) and utilizes the non-decimated
(maximal overlap) version of the dual-tree comphevelet transform of KingsbufyThe approach
was advocated by Whitcher and Craigmile (2004) @ee Whitcher et al., 2005). The filters in a
Hilbert wavelet pair are approximate Hilbert trangfis of each other and, as in the case of the usual
discrete wavelet transformation, form a basis foolkection of orthogonal bandpass filters. Thiedj
however, the approximate analyticity of the filtersables to compute quantities with direct anatogy

the appropriate bivariate Fourier spectra.

Let{h’} and{g }be conjugate quadrature mirror filters, i.e.
Zh|0 =0 Z(h|0)2 =1 th)hﬁrzn =0, n#0; g|0 = (_1)I+lh8—1—| . (23)
| | |
The father and mother wavelets are obtained via:
PO=V23 g’ @D Y0 =2 @), (24)
Now consider another pair of such filtef$y' ahd{g/ } that define another couple of father and

mother waveletsg' (t and*(t ). We say thaty'(t )is the Hilbert transform o/ °(t )f:

e [-iWO(F), >0
LP(f)_{iwo(f), f<0' (25)

where Wo(f )and W(f ) are the Fourier transforms ¢gf°(t and¢*(t ), respectively. This means
that the wavelets ar§ out of phase with each other. The following theoreas proved by Selesnick
(2001

If transfer functions of two scaling filters fulfthe condition:

8 For an introduction see Selesnick et al. (2005).

® Their continuous (in both time and scale) courdgmhave been known for a longer time in applicetiof
wavelet analysis — see, e.g., Torrence, Compo (1998

19 The converse of the theorem is also true, so #esSick’s condition is both sufficient and necegsasee
Selesnick et al. (2005) and references therein.

10



GHf)=G(f)e™", |f <05, (26)

where8(f)=7f , then the corresponding wavelets are a Hilbartdform pair.

The condition (26) says that the digital filteg| should be a half-sample delayed versiof@f , }
i.e. g :glo_%. As a half-sample delay cannot be implemented Witite impulse response filters,

only approximate solutions are available.

In what follows we use mainly the HWP filtersrimduced by Selesnick (2002). All the filters
we apply below have the following property: theeiis in the Hilbert pair are of the same length and
have the same squared gain functions. In the Sekesso-called ‘common factor approach’ firstly an
all-pass filter with approximately constant fractéb group delay is constructed and then orthonormal
filters are build via a solution to a linear systefmequations and a spectral factorization. Under a
specified degree of approximatioh) (to the half-sample delay the design procedureuymres short
filters with a given number of vanishing momenk9.(The length of each HWR( L) filter equals
2(K+L). In our study we apply mid-phase solutions for HB/P3), HWP(4, 2), HWP(3, 5),
HWP(4, 4) and denote themKK.'. An alternative approach introduced by Kingsby2001)
produces the so-called Q-shift (quarter-shiflefs which are approximately linear phase with the
property that the wavelets in the Hilbert pair enieror images of each other. For comparison purpose
in our simulation analysis we also use the 6-tagh@-filter of Kingsbury (2001) with 1 VM and the
12-tap Q-shift filter of Tay et al. (2006) with 3Wand denote them ‘kin’ and ‘tkp12’, respectively.

Figure 1 shows two examples of Selesnick's apprately analytic wavelets with their

corresponding phase difference functigid . )

k3I3 ka4l2 o(f) for k3I3 a(f) for k412
2 2 3 3
1 1
2 2
0 0 /S =
1 1
1 1
-2 : -2 : 0 0
0 5 10 0 5 10 0 05 0 0.5

t t f f

Figure 1. Example Hilbert wavelet pairs togethethwaiorresponding phase differences for scalingrilt

It is clear that the function®(f fulfill the condition stated in the Selesnick’settem only for

frequencies below 0.3-0.4. However, this is notnafich worry as the condition concerns the

approximately half-band low-pass scaling filterdjiley transfer functions of the wavelet filters are
obtained viaH(f)=-e"*"*?G(1 - f) and are not much affected either. As such, théetil

wavelet pairs can be seen as localized version®sihe and sine waves forming the classic Fourier

transformation.
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The maximal overlap discrete Hilbert wavelet sfanm (MODHWT) consists in a
simultaneous application of a pair of wavelet (aedling) filters in their non-decimated (maximal
overlap) forms. As a result, two sequences of @oeffts are obtained, which are the real and

imaginary parts of the final wavelet coefficieritsother words, the following filters are used:

h, =hS +ihl;
(27)
g :gj,l +|gj,I’
where hO = " ﬁ = " 'g'Jl —g" Q'Jl —g". These filters produce the complex wavelet and
V2
scaling coefficients in the following form:
Y <o YRRV
Wi h Xeo =Wy +TW (28)
1=0
7 T 70 i/l
Vig = 2.0 Xy =V iV, (29)

1
o

To invert the MODHWT, its real and imaginary pgarre inverted separately with the
appropriate inverse maximal overlap discrete wavedasformations. In this way two real signals are
first obtained and then the signals are averaged.

As discussed in Selesnick et al. (2005), the Est@approach to combine wavelet and Hilbert
transforms is via DWT post-processing. Howeversiich a case we end up with operations that are
more computationally complex, as we operate onpgamallel complex wavelet transformations. Also
performing the Hilbert transform as the first osendbt recommended, as then we loose the possibility
to optimize it at all scales simultaneously. Thealdvee complex wavelet transform of Kingsbury is
based on two real orthogonal wavelet filters with Hilbert transform built into them. Thanks tosthi
the Hilbert transformation automatically adaptstte wavelet scales. This feature makes the approach
particularly attractive as compared to other timegiency methods producing instantaneous
amplitudes, phases and frequencies like the cladsimodulation method (see, e.g., Granger,
Hatanaka, 1964, Chapter 10, Priestley, 1981, &)1 &. the modern Hilbert-Huang transform (see
Huang, Shen, 2005).

2.4. Wavelet analysis of coherence and phase angle

In this section we start with a detailed desaiptof the relationships between the wavelet
spectra obtained via the MODHWT and the appropriaarier spectra. The wavelet analogues of

Fourier spectral characteristics of bivariate tgrees has been introduced by Whitcher and Craggmil

(2004). LetWX andWY be complex-valued wavelet coefficients obtaineal filtering X, and,.

Assuming that the wavelet filters applied have @touanishing moments to eliminate deterministic

12



trend components of the series, the time-varyingelet spectrum of X,,Y, Jor scale/; is defined
as:
Sxy (4;,1) = EW'); W)z E[(\/T/jfio HIWE WP - iVT/jTtl)] = 30
= E[(ij),iovviY,to +V\~/j§lVViY,tl)_i (ij),(tOVViY,tl —Vijil\K/jTtO)]z Cxv (4j,1) =1 Qxy (4}, 1), .
where C,y (4;,t) and Qy,(4;,t) denote the time-varying wavelet cospectrum anddigare

spectrum (quad-spectrum), respectively. If the Wwetveospectrum and quadrature spectrum do not
depend on time, it is possible to relate them ® dppropriate Fourier quantities. Let the process

(X;,Y;) be covariance stationary with absolute summalassecovariance sequence. We will denote
its cross-spectral density function & (f)=C,y(f)—iQy (f .")The wavelet cospectrum for

scale/; is then:
SIXOATYO 4 \A7 X7 YL i T0/4? i T164[?
Crov(4)) = WO +WXWE )= [IRO(H)[ S (D)dlf + [|AH(H)] Sy (1)t (31)
2 2
where I—T?(f )and I—T}(f ) are transfer functions of the scale MODWT wavelet filters{ﬁf, }and
{ﬁjlyl} . As in our case the two squared gain function81) are identical, we obtain:

v2_, v2_ o,
Cyr(A)) =2 [HP(F)] Sey (F)df =2 [|HP(F) Cy(1)df =2y (), (32)
-2 -2

where yy(4; ) denotes the scalel, wavelet covariance computed with the filt(afffI (%r,

equivalently,{ﬁﬁ, ). Further, assuming that the wavelet filter isg@mough to be considered a good

approximation to an ideal bandpass filter, we have:

el
Cxr(A))=4 [Cy(f)df . (33)
1/2j+1
As the quantity:
v
21" [Cry (F)df (34)
]/2j+1

1 For wavelet filters with enough vanishing mometits discussion concerning wavelet co- and quadratur
spectra can be directly generalized to the caswuo$tationary processes with stationary backwaifdrdnces.
To this end we consider two integrated proces3es= I (dy ), Y, ~1(d, ), whose differences of ordet, and

d,, respectively, are jointly stationary. Then, feliog Whitcher and Craigmile (2004), we define
_ Swz(F)
SXY(f) - (1_e—i2nf )dxz(l_e—izﬂ )dV ’

not apply to the part of our analysis that utililes complex scaling coefﬁcienlf:.f1 -

whereW, =A% X, Z, = A™Y, . Note, however, that the generalization does

13



is the average value o€,,(f )n the interval[zjlﬁ,z—lj , we can interpretC; =4,Cy,(4; )

j=1...,J, as the average values of the Fourier cospectrwar dhe frequency bands

[~ 100

R L L]. If it is possible to assume that the Fourier siggectrum is piecewise

2117 ol

constant over the octave frequency bands, estimatoC; may serve to consistently estimate the

Fourier cospectrurtf. In any case however, the wavelet quantities dismishere will provide
piecewise constant approximations to their Foudeunterparts and summarize the information
included in the cross-spectrum in a way similartite wavelet variance in the univariate spectral
analysis (see Percival, 1995).

In order to obtain similar results for the wavejaadrature spectrum, we recall the analyticity

property of the Hilbert wavelet pair. The conditi@b) is equivalent to:

wo(f)e':, >0

y (25%)
Wwo(f)e'z, <0

Wi(f)=wo(f)e*" ={

Making use of this and utilizing the <51pproximatior1§?(f):llJ°(2j f), I—~|}(f)=qJ1(2j f) (see
Percival, Walden, 2000, p. 476), we obtain:
Qxy (1)) = E(WfioWjY,tl _Wj>,<t1\Nj\,(t0): IH D(FYHT(F) Sy (f)df - J.H}(f) HY (f) Sy (f)df =

32 2

12 Y2 -
= jwo(zif)wl(zif)sXY(f)df— jwl(zif)wO(zif)sXY(f)dfz

-12 -2
Y2 ¥2
= [lwe@ ) et s, (fdf - [[wo@! 1) €4S, (f)df = (35)
12 Y2
2. o o2
= [|Wo@ 1) Sue(f) [=2ising(F)]df =2 [|W°(2) )] Quy (F) siné(f)df =
-12 =12

y2 ) 2 0 ) 2 ]/2~ 5
=2[[W@ 1) Qe (F)df ~2 [|W0 @1 )] Quy (F)df =4 [|A%(1)] Quy ().
0 Y2 0

Unfortunately, it turns out that the first appiroation assumed in (35) is of little use for the
first several decomposition levels, as the appraxity analytic mother waveletg®(t gnd ¢ (t)
are most helpful in describing the behavior of #ssociated wavelet filters at leyjehs j - . In

order to obtain more practical results, one is setvito apply different orthogonal quadrature mirror

filters at the first stage of the Mallat's pyranatyjorithm, namely filters approximately satisfyitige

12 Note that such an assumption is valid only foheatspecial kinds of relationships like the ‘fixadgle lag’
relationship (Granger, Hatanaka, 1964, p. 98) withstant amplitude spectrum over the frequency $arid
interest or a linear regression without delay.
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condition: g =32, (see Selesnick et al., 2005). The condition ifedt (and easier to implement)
than the half-sample delay requiremegt:= {j,o_% :

To see that it solves the approximation problesh Ws consider in more detail the
implementation of the MODHWT. Now we are going ieadiminate between level 1 and leyd| =
2, 3, ...) filters. We maintain the previous notatfon the transfer functions of the remaining fiter

while transfer functions of the level 1 scaling andavelet filters will be denoted as:
1GO(f), 'GX(f), HO(f), H(f), respectively. For the level 1 scaling filters nave:

IGY(f)=e"?" 1GO(f). (36)
Using this and (11a) for the level 1 wavelet fiteve obtairn?

HY(F) = -2 ). (37)
The imaginary part of the second stage waveletrfit given as:

Hi(f)=H(2f) 'GY(f)=—-e 2D Gl/2-2f) 'GO(f). (38)
If the level 2 scaling filters approximately sagighe half-sample delay condition, we further obtai
the following approximation forf > 0

—ifant (L-v+7]

Hi(f)=-e Go@/2-2f)G°(f)=e 2 HO(2f) 'G°(f)=e 2HY(f), (39)

while the appropriate relation fof < & obtained via complex conjugation. So, for tleeond
decomposition level we do not need to substitute ﬁ)?(f) and I—~|}(f ) in (35) and the

approximation is valid. A similar relationship heldor all the subsequent stages. To see this let us

consider thg-th decomposition level and the frequencies satigfy f |<2j—1,1 . We start with writing:
J1 —Ol/oi1¢y 11 ~1 ~1 ~1/nj-2
Hi(f)=H ('™ ) G (f)G (2f)G (4f)...G (2" " f). (40)

For f > 0 the first factor in (40) is given as:

[i@i ) =—e 22 109G 2 - 217t £y =P 92 G0 (g pit gy = g2 100
= ) g0 i @1
and the whole expression is then:
J1 — gl -i2nf 1~0 -i2nf <0 -id4nf <0 -i21727f K0 5j-2 £ —
Hi(f)=H ('™ f)e” G°(f)e'" "G (2f)e" G" (4f)...e™ G ('™ f)=
_ —in(—21‘1f+L—%) —ionf —inf (2171-2) 30 _ 270
=-e e’ e’ Hi(f)=e ZH;(f). @2
The first stage complex scaling filter is easibtained via translation of any real scaling filter
by one sample and using it as the imaginary pathefesulting filter. Then the complex waveletiil

is computed via the quadrature mirror relationsapplied separately to these two parts. As the

3 Here we assume that the level 1 real and imagifikieys are of the same (even) length. We chaie t
assumption further in our computations by considgthe imaginary filters to be of length+ 1, whereL is
even and equals the length of the real parts dfilthes. This, however, does not change the rebalt follows.
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transfer functions at the first stage of the wavelecomposition obviously do not satisfy the
analyticity property, all the quantities computedhwthe help of the wavelet quad-spectrum should
basically be interpreted starting from the secomeell However, it does not cause a problem for
business cycle studies which are typically basemhonthly or quarterly data.

As in the case of the cospectrum, the waveletlgp@ctrum enables to compute the average

value of its Fourier analog in the inter\[%fl—l,z—lj] , Q;, via the following relationship:

y2! ,
QXY(/1 )=4 jva(f)df = QJ & (43)
1/2i% /]J'

Finally, we arrive at the following approximatioorfthe Fourier cross-spectrum:

Sy () =4Sy (4;) for fO[ (44)

]+1 ’ J .

J+1

To approximate the Fourier cross-spectrum initberval [—1/2 ,1/2“1] we may use the

complex scaling coef]‘icient\x;'s’]’t instead of the wavelet coefficierﬂﬁj - Similar computations to the
given above lead to:
~ ~ ~ ~ Y2 ~ 2 y2 ~ 2
EWOV, + V)= I SOEMOEANSOEMOUE
‘”2 (45)

1/2J+1
CJ+1 CJ+1
=4 J'CXY(f)df 1T

where C,,, is the average value of the Fourier cospectrutheéninterval [—1/2J+1 ,1/2“1]. For the
imaginary part of the spectrum firstly we noticeatthfrom (11c), (26) and (36) we have:

Gl(f)=Go(f)e™""? . Then we obtain:

o~ 2_ o = v2_ =
EVXNVYE —VV;0)= [GI(1)GE (1S (1)df = [GE(F)G(1)Sy (F)dlf =
-1/2 -1/2

]/2J+1 Q
~4j Q,y (f)sinz 2’ df-n2“12,

(46)
where in the last equality it is assumed that thkier of the Fourier quad-spectrum in the interval
[0, #] is constant and equé),.,; .

Next, as in Whitcher and Craigmile (2004), we sidar the time-varying wavelet cross-

amplitude spectrum:

2
A (1.0 =[S ;0] =[C2 0.0 + Q2 (1, 0], (47)
the time-varying wavelet phase spectrum (wavelesptangle):
- ALt
6XY(/]j’t):ata' M , (48)
CXY (/]j 1t)
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and the time-varying wavelet magnitude squared restoe (MSCY"

K (/] t): A>2<Y(/]J’t) :C>2(Y(Aj1t)+Q)2(y(/]],t)
xy \Aj» Sx(/lj,t)sy(/]j,t) SX(Aj1t)SY(AJ’1t)

: (49)

where Sy (4;,t) = E’\/Tlﬁ‘z, S (4.0 = E’\/le\ft‘z denote the time-varying wavelet spectra equal two

times the wavelet varianceaf(/lj . )The Schwartz inequality for complex random vdeab
guaranties tha@< K, (1;,t)< 1

Let us consider some simple examples of statjobiaariate processes. We start with a linear
regression without delay in the form:
Y, =aX, +1,, (50)
where X, andz, are stationary processes, uncorrelated with etedr at all leads and lags. Then the

appropriate Fourier quantities are as follows (corgy example, Priestley, 1981, p. 663-664):

Cir(F)+Q (f) _ 5 Sx(f)
Coy (F)= A () =Sy (), Quy(F) =00y (F) =0, Koy (F)=—2Y XYAT) = g2 9xA 1)
(f) (f) (f), Quv(f) (f) (f) s, (NS, (N a s ()

The corresponding wavelet quantities are the fahgw

Y2 2
CXY(A1)=2IU‘H?(f)‘ Sy (f)df =2a0% (M), (51)
_1/2

QXY(/]j)ZQXY(/]j):()!AXY(/‘j)zzaU)z((/‘j)i (52)

CLUN QLM _ facki )] _ ,oiu)
SNS () ooty T gi(y)

As we can see, assuming that the individual Fogpertra are approximately piecewise constant over

Ky (4)) = (53)

octave frequency bands, the wavelet coherencepwallide a good approximation to the appropriate
Fourier quantity.

In the next example we consider a linear regressith delay in the form:

Y, =aX,, +1,, (54)
where, as previouslyX, ands, are stationary and uncorrelated. In this caseave:h

Cyy ()= cos@rAT)S, (), Quy () =asin@rAr)S, (f), Ay (f)=asS,(f),

2 Sx ()

Ky ()=
(D=5,

L Oy (1) ==277

1* We will refer to it as wavelet coherence or wavelgherence spectrum. Its square root is calledvineelet
coherency.
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df
and the time delay defined as;, (f)=-%4 equalr,,(f)=7. Then, assuming that the wavelet

transformation produces a bandpass white noiseyéivelet co-, quad- and amplitude spectra are as

follows:
Y2
(4))= 2 aH (f) cos@rir)S, (f)df =a2!*?g?2 (4;) |cos@rr)df =
XY X
]/2“1 (55)
a2]+20-x(Aj) 03771' . JT
- Vg T T oin
Y2
Quy (1)) = 2 aH i () S|n(2n‘r)S (f)df =a2!*?0?2 (A;) |sin@rr)df =
XY X
y2 (56)
aZ’*zax(A) T
T gin ,
TIr 2]+1 2]+1
T
a2j+20.2 (/‘) ' e S|nﬁ
Ac () == sin = 2a0, () 2 =200%(},), (57)

21"
where the last approximation takes place for higbugh decomposition levels®. The wavelet

coherence is given as:

Y(/‘j) ( m jz
2j+1

and, as previously, for higher decomposition leeals be approximated via:

KXY(/]j)~ (58)

a’oy (4;)
Ky ()= —. (59)
T aay)
The wavelet phase spectrum is:
— A
B, (A,) =ata REAGIN P 3 . (60)
Cxv (1)) 2’

In order to obtain a wavelet estimator of the patmmz, we also introduce a quantity called the

wavelet time delay. It is defined as:

dt Gyy(4))
Ty (1) =— J
XA 27f |4

: (61)

5 Assuming thatsinx = x for xs]—; the last approximation will work for <2/2 (j = 2, 3, ...) — comp.

Percival, Walden (2000), p. 344.
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where f,, is the center frequency of the octave band, coetpas the arithmetic mean of the upper

and lower cutoff frequencies, i.4;, =—3-. Then in our example we haveyy (A;)=T.

- 23+2
A slightly more general situation arises in tlese of the so-called time delay estimation
(TDE) problem described as follows. Let us assuma¢ X, andY, are two spatially separated sensor
measurements of an unobserved sighathat satisfy:
Xi =S +xe
Yt :aSt—r +/7Yt'

where S, 77, andn,, are stationary and mutually uncorrelated at aliifeand lags. Then:

(62)

Cov(X,,Y;.) =@ COV(S,, Sy, ) =@ Covg (k= 7)
and
Sy (f) =ae™"Tsg(f).

From this we obtain that the phase spectrum isnahe previous example, i.é, (f)=-27r1.

2?*1 mr and the wavelet time delay 15, (4;) =7 .

Similarly, Oy (4;)=-

Estimators of (47)—(49) and (61) are obtaineddplacing the wavelet cospectrum and quad-
spectrum as well as the wavelet individual spewtita their estimates computed via smoothing in
time. The smoothing is necessary, in particulaestimation of the wavelet coherence. In Whitcher
and Craigmile (2004) a simple two-sided moving ageris suggested and this is the approach taken
here as well.

Figures 2 and 3 below present mean estimateseofvaivelet coherence, phase spectrum and
time delay for samples ranging from 10 to 500 wet/ebefficients not affected by the boundary,
obtained with the k4|2 HWP filter for the lineargression with delay (54) witlr = .1Figure 2
illustrates the case, when the first stage fileres different and fulfill the one-sample delay citind.

The lal2 Daubechies filter was applied in the paat of the first stage complex filter. For comgan
purposes the appropriate results obtained withtustrhodification are also presented (see Figure 3).
As we can see, the modified procedure gives acoleptesults starting from scale 2, while the
simplified method introduces a mado&s in both the coherence and time delay estimaéspecially

at the second decomposition level. Another obsenvaioncerns the small sample bias of the wavelet
coherence estimator. The bias clearly increasdsthié scale.

To construct confidence intervals for the waveleherence the multivariate process in the

form:

P = [’\let‘z ’ ’VT/jTt‘Z’ D‘/Vjﬁ W)’ D(/vj%t W)}T (63)

is considered together with the function:
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Figure 2. Estimates of the wavelet coherence, veaydlase spectrum and wavelet time delay with theified
method; the first stage filters are l1al2 and its-eample shifted version and the complex filterthar
higher levels is k4l2; figures present the thecedtFourier quantities (thin dotted lines) togethdth
the mean estimates of the corresponding wavelettijies obtained with 500 replications for samples
consisting of 10, 20,

model with delayr = 1, a = 1 and X, and 77, being two independent AR(1) processes with
autoregressive parameters 0.8 and unit error va@gathick solid lines).
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Figure 3. Estimates of the wavelet coherence, weavehase spectrum and wavelet time delay with the
simplified method; k4l2 HWP filter is applied ad@ decomposition level; see detailed description
below Figure 2.
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Then, assuming thaK,,(4;)> @nd applying the delta method, the following reswblds

(64)

(Whitcher, Craigmile, 2004):
N R (1)) = K (1))~ AN, Ry 0), (65)
where R, ; (0) = Dg(Pjyt)T (Bapea j (0) IG(P; ) s Sapeaj (O is the 4 x 4 spectral matrix foP;, and:

_?+d® P+d® 2c 2d]
a’b = ab? ‘ab’ab|

Dg([a,b,c,d]T)z[

As suggested by Whitcher and Craigmile (2004), atimate of the large sample variance
Rue,; 0/ N, of K, (A;) may be obtained by replacirigg(P;, wjith 0g(P;,) and S,.q; (0) with
an estimate utilizing sample covariances of elemefithe vector proces®, . Then, an approximate

large sample CI for the wavelet coherence is:

. Rivca 1 0))
va(/]j)ng{chN«L_]()J , (66)

J

where ¢, is the (1-4/2) quantile of the standard normal distribution.

Due to the analytic complexity, when testing fignificance of the wavelet coherence
bootstrap methods are usually applied. Both pandenahd nonparametric bootstrap techniques are
recommended. For example, Whitcher et al. (2008) the block bootstrap method, while Aguiar-
Conraria and Soares (2010) suggest bootstrappsedban ARMA models either in the parametric or
nonparametric setting, i.e. assuming or not a @adi distribution for residuals. It is worth natig
that asymptotic results for significance tests wels derived, though they concern only certain
specific wavelet families — see Ge (2008), Cohealdéh (2010a), (2010b).

To construct confidence intervals for the wavelese angle we assume ti@&g, (4;) # 0

and take:
g([a, b,c,d]’ )= tan’l(%j . (67)
Then, applying the delta method, we arrive at:
IR By (1)) =05 (1))~ AN R, ) (68)
where the large sample variandg,,.; ,(® computed as previously utilizing an approgria¢ctor

of partial derivatives equal:

Dg([a,b,c,d]T)z[O,O,— d c T.

c?+d? ' c?+d?
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Then, the confidence intervals are given in thenfeimilar to (66). Multiplying them by a constant
will produce approximate Cls for the wavelet tineday.

Estimates of the large sample variances of thenators of the wavelet spectra can be
obtained via nonparametric kernel methods. Belowew@mine properties of two kernel estimators:
one based on the popular Bartlett kernel and therdiased on the truncated (rectangular) kernel tha
is recommended when the order of serial correlatdmowrt®. Figures 4 and 5 present an example
investigation conducted for the same linear redgpaswith delay as in the case of the mean wavelet
estimates in Figures 2 and 3. In terms of unbiasesinboth methods seem to produce quite
satisfactory results for the variances of the waivghase spectrum and time delay estimators, eren f
relatively small sample sizes, when carefully cimosencation parameters are used. However, their
performance in the case of the wavelet coherenoeaatsr is much worse, depending on the particular

value of the delay parameter and the scale ofrihlysis’’
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Time delay; scale, 2 Time delay; scale, 4 Time delay; scale, 8 Time delay; scale, 16
- 4

Figure 4. Sample standard deviations of wavelémeasbrs and their kernel estimates — the caseeBtrtlett
kernel; truncation parameter was set to twice taesM = 24;); solid lines are the sample SDs and
dashed lines present the kernel estimates; rebaked on 200 simulations of the linear regression
model with delayr = 1, a = 1 and X, and 77, being two independent AR(1) processes with
autoregressive parameters 0.8 and unit error v@@sgrsamples consist of 20, 35, 50 ..., 500 wavelet
coefficients unaffected by the boundary; the fitsige filters are lal2 and its one-sample shiferdion
and the complex filter for the higher levels isX4l

16 See Ogaki et al. (2009), Chapter 6.
" Results of a detailed examination are availabEnugquest.
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Figure 5. Sample standard deviations of wavel@mnasors and their kernel estimates — the caseefrtmcated
kernel; truncation parameter was set to the sdale 4;); see detailed description below Figure 4.

3. Wavelet time delay estimation — a simulation study

In this section we summarize results of simulag@periments examining statistical properties
of two wavelet estimators of the time delay par@néiVe concentrate on the model (55) and analyze
mainly a small sample performance of the estimatoieder to recommend a method of examining
short-term lead-lag relations for octave frequebayds. In particular, such a method might be of
interest in business cycle studies, as it shoulddsdéul when analyzing changing patterns of busines
and growth cycle synchronization. The estimatorsmared are: the wavelet cross-correlator (WCC)

that is based on maximizing values of the crossdauce estimates, i.e.:

f\jNCC = argmka>CovVT/jXWjY (k) = argmka)Cov(\Nj)ft ,WjTHk) , (71)

and the estimator of the wavelet time delay (68); i

puend_ O (1)) 72
27t
which we call further the wavelet phase angle (WB@&lpy estimator. It is worth stressing that we do
not maximize the absolute value of the cross-camae in (71), as is often done in the time delay
literature, due to the fact that a large negatiegadance will be interpreted as an anti-phase
relationship.

The Cramér-Rao lower bound (CRLB) on the variapicany unbiased time delay estimator

was derived to be (see Carter, 1987):

23



. 1
ming? =

(73)

® o2 K(f)
N [ (@A)2——1 2 df
f 1-K(f)

where K(f ) is the Fourier coherence of the processes undely sin our case — the wavelet
coefficientsV\~/jx and VVjY). Formula (73) predicts that the variance of atinogl estimator decreases

with the value of coherence, the signal bandwidttl the center frequency. For the wavelet cross-
correlator it is known that for jointly stationapyocesses and large enough data samples the CRLB is
automatically achieved in the case of the signdlmmise processes with spectra that are flat dweer t
same range of frequencies and zero outside thigrarsee Scarbrough et al. (1981), Carter (1987). |

the spectra ofX, ands, are relatively featureless within octave frequebapds, MODWT wavelet
coefficients of X, and Y, will be approximately bandpass white noises arel WICC becomes

efficient asymptotically. However, the actual penfiance of the asymptotically efficient estimaton ca
be much worse, especially for low signal-to-noiatos, SNR (see simulation results in Scarbrough et
al., 1981, Carter, 1987). As for estimators basedhe Fourier phase angle, it has been proven that
they are fully consistent with other asymptoticaijytimal methods after regression analysis is egdpli
to the phase data — see Piersol (1981).

When discussing properties of the estimators &f) (72), it is worth underlining that the
WPA method enables to estimate delays that aramabteger multiple of the sampling period and
guarantees a maximal time localization limited obyythe length of the applied filter. On the other
hand, the wavelet cross-correlator makes it possikstimate delays that are longer than halfief t

center periodl/ f,,, is asymptotically unbiased, also for the firstget of analysis, and can be based

on shorter filters, as the approximately analytienplex wavelet filters are usually longer than real
filters with similar squared gain functions. Theandéh of the wavelet filter plays a crucial role in

empirical examination, since it directly influencdse number of wavelet coefficients that are
unaffected by the extrapolation method at the eofdshe sample and therefore determines the
maximal number of decomposition levels as wellhesgrecision of estimation.

In our simulations the following data generatimgqess is used:

Yo =a X, +17,
X =BX,+&,
0=y té (74)

& 2
tonjo|% O]
é, 0 o;
Figures 6-8 present a comparison of small sampleebi root mean square errors (RMSE) and large

sample standard errors of the two estimators foe ttaese: a= 1 r=1;, [B=y=08;

SNR=Z- =1,3.1,2,3, and the following wavelet filters: lal2 for WC@dalal2 (first stage) + k4l2

g,
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(higher stages) for WPE The search range for the WCC wa$0+7 . In each case 1000 replications
were run‘® In the presentation we also include the outcorneshe first decomposition level, largely
because to some extent they are comparable tother stages. The findings resulting from the
experiments are summarized bel@w:

» For wide ranges of signal-to-noise ratios and scdalee WPA estimator is better than WCC in

small samples (see Figure 7). For the majority wit@mes, the relative efficiency of the two

methods defined a§ystice increases with the SNR, the scale and the sanige s large

samples (see Figure 8) the WCC dominates the WH#asr or their performance is similar.
In small samples the relative efficiency of the hoels depends largely on the search range for
the WCC, although for similar ranges of delaystdoth methods and for lower signal-to-noise
ratios, the WPA method performs better.

* In larger samples the RMSE for both estimators eseewith the scale. For this reason, it is
generally advisable to assume smoothing windowss leitgth proportional to the scéfe.

* For the lowest SNR case, both estimators show saaible bias, although with opposite signs:
the WPA estimator towards 0, while the cross-catoglin the opposite direction (see Figure 6).
This suggests that the usual biased estimatoreotiiss-covariance might be preferred in very
small samples, when an estimate of the time dedastipeter is needed. Other our experiments
also demonstrate that the small sample bias o'MB€ largely depends on whether the search
range for the WCC is symmetric around the trueealithe delay.

» Other experiments not reported here indicate tbatjdintly stationary processes including
observations affected by circularity increases ffective sample size and improves the overall
performance of both estimators, especially for bgjhscales, where the number of affected
coefficients is large. This, however, does not falleee for nonstationary processes.

» All the above observations are unchanged acrog$erelift wavelets, although the outcomes
obtained with the WPA method depend on the analytaperties of the HWP filters. Good
analytic wavelets, however, produce almost idehtesults (for example, k412, k3I3). Different

values offand y(including the nonstationary case) do not changectinclusions either.

8 These wavelet filters where chosen due to thepufmity and also to guarantee maximal similarity i
implementation of the WCC and WPA methods: 1al12 le4l@ are of the same length € 12) and have similar
squared gain functions. However, basically the sesmelts were obtained for, e.g., 1a8 + k3I3, |&1i2414, real
part of k4l2 + k4l2. The Selesnick’'s HWR(L) filters outperformed the two Q-shift filters thatere also
considered, i.e. kin and tkp12.

19 All computations, including the empirical part, neeexecuted in Matlab. Numerical codes are availatd e-
mailing the author.

2 We also comment shortly on other experiments wéopeed. More detailed results are available upon
request.

2L Comp. Cohen, Walden (2010b).
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Figure 6. Small sample bias of time delay estingtimes with and without markers correspond toWfA and
the WCC methods, respectively; samples consisbpoBQ, 45, ..., 255 wavelet coefficients unaffected
by the boundary.
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Figure 7. Root mean square errors of time delaiynastrs in small samples; lines with and withoutrkeas
correspond to the WPA and the WCC methods, resdgtisamples consist of 15, 30, 45, ..., 255
wavelet coefficients unaffected by the boundary.
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Figure 8. Standard errors of time delay estimatotarge samples; lines with and without markensespond to
the WPA and the WCC methods, respectively; samptassist of 300, 400, , ..., 2500 wavelet
coefficients unaffected by the boundary.

The main finding of this section is that in busiseycle studies, in which one often deals with
low signal-to-noise ratios and which are typicdbigsed on relatively short time series, especially
when countries undergoing transitions are examitiexlwavelet phase angle methodology seems to
be particularly attractive and might be used astles a supplementary method. It is worth stressing
that, besides its good localization properties, WA estimator is also simple and efficient
computationally. For these reasons we believe ghinbe recommended for empirical analysis on

business cycle synchronization.

4. Empirical examination

The data used in the empirical study are quart@P volume estimates from the OECD
Quarterly National Accounts (measure: VOBARSA) aawg the period from the first quarter of 1960
till the second quarter of 2010 (202 observatidos)the following 11 countries: Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Itahg Netherlands, Portugal, Spain. Besides, the
OECD GDP volume for the euro area (16 countries)sisd, which covers the shorter period from
1995 till the end of the sample (62 observatiomBe examination is divided into two parts. In tirstf
part local wavelet variance analysis is perfornve]e the second deals with local and global wavele

analysis of synchronization.
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4.1. Business cycle variability

Our examination of business cycle variability h&ser performed with the help of the d4
Daubechies wavelet filter of length 4 that guarasteery good localization properties. The estimates
of the wavelet variance have been computed in wusdoonsisting of 30 wavelet coefficients

unaffected by the boundary. The results are predantFigures 9 and 10.
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Figure 9. Running wavelet variance for scales B dnd 16 corresponding to oscillations with petengths 4—
8 (1-2 years), 8-16 (2-4 years), 16-32 (4-8 ye®2}64 (8-16 years); results obtained with d4
Daubechies wavelet filter of length 4 and windoWS8® wavelet coefficients unaffected by circularity
after aligning them to the observations in the dangiep = 1.

Firstly, we notice quite similar patters of volayilchanges across countries in our sample,
except for Finland (scale 4 and 8) and Irelandgedlles). Also contributions of different scaleshe
total variance as well as estimates of the wawaeiaince alone seem not to vary much across the
economies. For some countries we observe a systedeiine in the variance for all decomposition
levels, which started at the beginning of our s@npt is the case for Germany (except for the more
volatile period about the reunification as wellfasthe highest scale) and Spain. It is seen theaoil
price shocks of 1973 and 1979 have been capturadsalentirely by the shortest components of
business cycle fluctuations. Thanks to this théesBavavelet variance provides a more clear view of
the Great Moderation, revealing that the procegmhtritiave started well before the mid-1980s (comp.

Aguiar-Conraria, Soares, 2010, for similar evidefurehe United States obtained with the continuous
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wavelet transformation). Also the most recent pestions (the financial crisis of 2007-2009) are

becoming apparent at the lowest decomposition |@geteen for example in the case of the euro area
GDP.
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Figure 10. Running wavelet variance for scales,B dnd 16 corresponding to oscillations with pediengths
4-8 (1-2 years), 8-16 (2—4 years), 16-32 (4-8 yeabs-64 (8-16 years), except for the euro zone
data, where scales 2 and 4 are only considereditsasbtained with d4 Daubechies wavelet filter of

length 4 and windows of 30 wavelet coefficients fitewted by circularity after aligning them to the
observations in the sample; step = 1.

4.2. Business cycle synchronization

Business cycle synchronization in the euro area amined with the help of the local
wavelet correlations, the global and local wavelghterences and the global and local wavelet time
delays. Figure 11 presents running wavelet corosiatfor scales 4, 8 and 16 computed in windows
consisting of 40 non-boundary wavelet coefficiesfter the MODWT based on d4 wavelet has been
applied to the observations. We decided to treaim@ry as the reference country due to the high
correlation between scale 4 wavelet coefficients@ermany and the euro zone as compared to e.g.
France and the euro zone (see Figure 11). The imesésting finding resulting from the analysis of
the wavelet correlations is that for the majorifycountries in the sample we observe a systematic

increase in the strength of the instantaneousioakditips between business cycles of the examined
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countries starting from the second half of the E&®pecially for scales 4 and 8 corresponding to
oscillations with period lengths below 4 and 8 geaespectively. The change in the dynamical
correlation patterns agrees with the introductibthe Single European Act, which was signed in 1986
and came into effect in 1987. It may also be olestthat for the highest scale considered (cycles of

length 8 year and above) there often is an opptaitency in the instantaneous dependencies.
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Figure 11. Running wavelet correlations for scdle8 and 16 corresponding to oscillations with peédengths
8-16 (2—4 years), 16—-32 (4-8 years), 32—-64 (8—absyeexcept for the euro zone data, where scale 4
is only considered; results obtained with d4 Dabies wavelet filter of length 4 and windows of 40
wavelet coefficients unaffected by circularity afedigning them to the observations in the sample;
step = 1.

Figures 12—-13 present the results of the complorete wavelet analysis performed with the
modified method described in section 2.4 basecdherk#l2 wavelet filter for levels 2—4 and the lal2
Daubechies filter together with its one-sample tellifvariant at the first stage of the analysis. The
global examination shows high dependencies ateallld and lags between Germany and the other
countries in the sample at the third decompositexel (for shorter cycles) and for countries like
Austria and the Netherlands also at the fourthlleResitive delays mean that the German cycle is
behind the other countries’ cycles, as is, for gxamin the case of the long French cycle and tioets
Irish cycle. Instantaneous dependencies with then&e cycles take place for countries like Belgium,
the Netherlands, Greece and lItaly. The local armlysiFigure 13 reveals that shorter cycles are
becoming more synchronized starting from the middleur sample, while in the case of the longer

cycles there are certain patterns of lead-lagicglatthat seem to be quite stable over time (gdhrtia
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because only a couple of coefficient windows werailable), though the wavelet coherences are
uprising.

The overall conclusion from both the real as wellcamplex wavelet analysis is that the
synchronization between euro zone business cytde®d to rise after the first important steps tava
European integration were taken. This stays in\wte the endogeneity hypothesis of the optimum
currency area criteria as stated by Frankel an@ Rt898). Finally, Figure 14 presents comparison of
local wavelet time delay estimates obtained with WiCC and WPA methods. It turns out that to a

large extent both methods produce similar results.
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Figure 12. Wavelet coherence and wavelet time déayscales 1, 2, 4 and 8 (decomposition levels) 1-4
corresponding to oscillations with period lengthsi Abelow one year), 4-8 (1-2 years), 8-16 (2-4
years) and 16-32 (4-8 years) together with largepa 90% confidence intervals; in the wavelet time
delay estimation with the WPA estimator the refeezoountry (Germany) is X and the other country —
Y — see equation (55); the first stage filterslad® and its one-sample shifted version and thepbem
filter for the higher levels is k412; only wavelbefficients unaffected by circularity are consaterthe
truncated kernel is used in variance estimatiot witincation parameters for the four decomposition
levels equal: 1, 2, 2, 2 (for the wavelet cohergacel 1, 2, 4, 8 (for the wavelet time delay).
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Figure 13. Running wavelet coherence and wavetst tlelay for scales 4 and 8 corresponding to asioiis
with period lengths 8-16 (2—4 years) and 16-32 (eds); in the wavelet time delay estimation with
the WPA estimator the reference country (Germasy) and the other country — Y — see equation (55);
the first stage filters are 1al2 and its one-sangpifted version and the complex filter for the heg
levels is k4l2; data windows consist of 30 wavele¢fficients unaffected by circularity for scaleadd
40 — for scale 8, circularly shifted to align therthe real data; step = 1.

5. Conclusions

The discrete wavelet analysis provides a summamsvolutionary spectral and cross-spectral
properties of processes under scrutiny with highmatational efficiency, good localization propestie
and without an excessive redundancy of informattmat takes place in the case of the continuous
wavelet methodology. These features together witleréain specific fresh look at an old problem
seem to be the main reasons why the approach nighivorth considering in business cycle
examination.

The paper has discussed some of the questionsgaisidiscrete wavelet analysis of popular
bivariate spectral quantities like the amplitudeharence and phase spectra and the frequency-
dependent time delay. In particular, we show how thavelet bivariate spectra can serve to
approximate the corresponding Fourier quantitieguds certain implementation issues and statistica
inference problems. Our simulation study of prapsrof two wavelet estimators of the time delay

parameter points at a practical relevance of theelea phase angle-based estimator suggested here,
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which can be used at least as a supplementary thefrexamining short- and medium-term lead-lag
relations for octave frequency bands.

The complex discrete wavelet methodology has bdastrated with an examination of
business cycle synchronization in the euro zone. Sthdy has also been supplemented with wavelet
analysis of variance and covariance of Europeannbssicycles. The empirical examination gives
some new arguments in favour of the endogeneitytigsis of the optimum currency area criteria as

well as an early start of the Great Moderation inope.
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Figure 14. Running wavelet estimates of time dédayscales 4 and 8 corresponding to oscillatiorth weriod
lengths 8-16 (2—4 years) and 16—32 (4-8 yearskdlie blue line is the result obtained with the WP
estimator and the dashed red line — with the W@Ghé WPA method the first stage filters are lal2
and its one-sample shifted version and the higinellfilter is k4l2; the WCC is based on lal2; data
windows consist of 30 wavelet coefficients unaféecby circularity for scale 4 and 40 — for scale 8,
circularly shifted to align them to the real dadtep = 1; the numbers on the horizontal axis sgentiu-
points of the subsamples.
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