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1 Introduction

When implementing portfolio optimization according to Markowitz (1952), one needs to

estimate the expected asset returns as well as the corresponding variances and covariances.

If the parameter estimates are based only on time series information, the suggested portfo-

lio tends to be far removed from the optimum. For this reason, there is a broad literature

which addresses the question of how to reduce estimation risk in portfolio optimization. In

a recent study, DeMiguel et al. (2007) compare portfolio strategies which differ in the treat-

ment of estimation risk. It turns out that none of the strategies suggested in the literature

is significantly better than naive diversification, i.e. taking the equally weighted portfo-

lio. Further, the study conducted by DeMiguel et al. (2007) confirms that the considered

strategies perform better than the traditional implementation of Markowitz optimization,

which means replacing the unknown parameters by their sample counterparts.

The global minimum variance portfolio (GMVP) has been frequently advocated in the

literature (Frahm, 2008; Jagannathan and Ma, 2003; Kempf and Memmel, 2006; Ledoit

and Wolf, 2003) because it is completely independent of the expected asset returns, which

have been found to be the principal source of estimation risk (Chopra and Ziemba, 1993;

Merton, 1980). We present two estimators for the GMVP which dominate the traditional

estimator with respect to the out-of-sample variance of the portfolio return. Due to the

arguments set forth by Frahm (2008), the same conclusion can be drawn for estimating

local minimum variance portfolios, i.e. minimum variance portfolios where the portfolio

weights are subject to other linear equality constraints besides the budget constraint.

Okhrin and Schmid (2006), Kempf and Memmel (2006) and Frahm (2008) all explore the

properties of the traditional GMVP estimator by assuming jointly normally distributed

asset returns. They derive the small-sample distribution of the estimated portfolio weights

and give a closed-form expression for the out-of-sample variance of the portfolio return. In

contrast, Bayesian and shrinkage approaches have a long tradition in the implementation

of modern portfolio optimization. Jobson and Korkie (1979) and Jorion (1986) introduce

shrinkage estimators for the expected returns. Frost and Savarino (1986) generalize these

estimators by also including the variances and covariances. Furthermore, DeMiguel et al.

(2007), Garlappi et al. (2007), Golosnoy and Okhrin (2007) as well as Kan and Zhou (2007)

present some shrinkage estimators for the weights of mean-variance optimal portfolios,

whereas Ledoit and Wolf (2003) introduce a shrinkage estimator for the covariance matrix
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of stock returns and apply their results to the estimation of the GMVP.

Our work is related to these shrinkage approaches. However, it differs in two important

aspects. First, we derive feasible estimators, and our dominance results turn out to be

valid even in small samples. The shrinkage approaches presented by the aforementioned

authors can only be justified for a large number of observations. As pointed out by Frahm

(2008), large-sample results can be misleading in the context of portfolio optimization

since, even if the sample size is large, the number of observations can be small compared

to the number of assets. Second, in contrast to Ledoit and Wolf (2003) we do not seek

to obtain a better covariance matrix estimator but instead to reduce the out-of-sample

variance of the portfolio return, which seems to be the major goal when searching for a

minimum variance portfolio.

Another method of alleviating the impact of estimation risk is to impose certain restrictions

on the estimated covariance matrix or portfolio weights. Examples for restrictions on the

covariance matrix are the single index model of Sharpe (1963) and the constant correlation

model suggested by Elton and Gruber (1973). Jagannathan and Ma (2003) show that

imposing short-sales constraints on the GMVP is equivalent to assuming a special structure

of the covariance matrix. Frahm (2008) analyzes linear equality constraints on the portfolio

weights and proves that linear restrictions reduce estimation risk. All these approaches have

in common the fact that the restrictions may be binding and so the true GMVP does not

need to be attained if the length of the time series approaches infinity. Nevertheless, in

an empirical study presented by Chan et al. (1999) it has been shown that the reduction

of estimation risk typically outweighs the loss caused by applying ‘wrong’ restrictions.

Shrinkage estimators reduce the estimation risk as well. However, in addition they have

the appealing property of converging towards the optimal portfolio weights as the sample

size grows to infinity.

Our contribution to the literature is threefold. First, we derive two shrinkage estimators

for the GMVP that dominate the traditional estimator with respect to the out-of-sample

variance of the portfolio return. Second, we present not only the small-sample properties of

the shrinkage estimators and some related quantities, but also their large-sample properties

for fixed d and n → ∞ as well as n, d → ∞ and n/d → q ≤ ∞ . The latter kind

of asymptotic behavior becomes relevant when analyzing the estimators in large asset

universes. Third, backed by the results of DeMiguel et al. (2007), we derive a small-sample

3



test for the naive diversification hypothesis, i.e. for deciding the question of whether or not

it is better to completely ignore time series information in favor of naive diversification.

2 Preliminaries

2.1 Notation and Assumptions

Suppose that the investment universe consists of d assets and the investor is searching

for a buy-and-hold portfolio which will be liquidated after one period. We will consider

the asset excess returns Rt = (R1t, . . . , Rdt) for t = 1, . . . , n ,1 i.e. the asset returns minus

the corresponding risk-free interest rates. Nevertheless we will drop the prefix ‘excess’ for

convenience and make the following assumptions:

A1. The asset returns are jointly normally distributed, i.e. Rt ∼ Nd(µ,Σ) for t = 1, . . . , n

with µ ∈ R
d and positive-definite matrix Σ ∈ R

d×d.

A2. The mean vector µ and the covariance matrix Σ are unknown.

A3. The asset returns are serially independent.

A4. The sample size exceeds the number of assets, more precisely n ≥ d + 2 .

A5. There exist at least four assets, i.e. d ≥ 4 .

The GMVP w is defined as the solution of the minimization problem

min
v∈Rd

v′Σ v , s.t. v ′
1 = 1 . (1)

Here 1 denotes a vector of ones. Since Σ is positive-definite, the GMVP is unique and the

solution of this minimization problem corresponds to w = Σ−1
1/(1′Σ−1

1) . The traditional

estimator ŵT for the GMVP consists in replacing the unknown covariance matrix Σ with

the sample covariance matrix Σ̂ , i.e.

Σ̂ =
1

n

n∑

t=1

(
Rt − R̄

)(
Rt − R̄

)′
, (2)

where R̄ = 1/n
∑n

t=1 Rt represents the sample mean vector of R1, . . . , Rn . The variance of

the GMVP return corresponds to σ2 = w′Σ w = 1/(1′Σ−1
1) and its traditional estimator

is given by σ̂2
T = ŵ′

TΣ̂ ŵT = 1/(1′Σ̂−1
1) .

1In the following ‘(x1, . . . , xd)’ indicates a d-tuple, i.e. a d-dimensional column vector.
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Since the portfolio weights always add up to 1, it is possible to omit one element of the

portfolio weights vector without losing information. We choose to omit the first element

and define wex := (w2, . . . , wd) . For convenience we introduce the (d − 1) × d matrix

∆ := [1 −Id−1 ] . By using the operator ∆, we can easily switch between the two notations.

For instance, note that (v1−v2) = −∆′(vex
1 −vex

2 ) for all vectors v1, v2 ∈ R
d whose elements

add up to 1. Moreover, the following relationship will be useful in the subsequent discussion:

(v1 − v2)
′A (v1 − v2) = (vex

1 − vex
2 )′B (vex

1 − vex
2 ) (3)

with B := ∆A∆′ for any d × d matrix A . A key note of the present work is that

v′Σ v = σ2 + (v − w)′Σ (v − w) = σ2 + (vex − wex)′Ω (vex − wex) (4)

for every vector v ∈ R
d with v ′

1 = 1, where Ω is defined as Ω := ∆Σ∆′. The first equality

in (4) can be obtained by noting that Σw = 1/(1′Σ−1
1) and thus v′Σ w = 1/(1′Σ−1

1) =

σ2. The second equality follows from the arguments given above.

In the following χ2
k(λ) denotes a noncentral χ2-distributed random variable with k ∈ N

degrees of freedom and noncentrality parameter λ ≥ 0 . This means χ2
k(λ) ∼ X ′X with

X ∼ Nk(θ, Ik) and θ ∈ R
k, where the noncentrality parameter is defined as λ := θ′θ/2 . By

contrast, χ2
k stands for a central χ2-distributed random variable (i.e. λ = 0) and we also

define χr
k(λ) :=

{
χ2

k(λ)
}r/2

for any r ∈ Z . Moreover, let χ2
k1

(λ) and χ2
k2

with k1, k2 ∈ N

be stochastically independent. Then Fk1,k2
(λ) ∼ (k2/k1)

(
χ2

k1
(λ)/χ2

k2

)
has a noncentral F -

distribution with k1 and k2 degrees of freedom as well as noncentrality parameter λ ≥ 0 .

Now suppose that X1, . . . ,Xm are m independent copies of X ∼ Nq(0 ,Σ), where 0 denotes

a vector of zeros and Σ is a positive-definite q × q matrix. Then the q × q random matrix

Wq(Σ,m) ∼ ∑m
i=1 XiX

′
i possesses a q-dimensional Wishart distribution with covariance

matrix Σ and m degrees of freedom. Furthermore, x+ := max{x, 0} denotes the positive

part and x− := −min{x, 0} the negative part of x ∈ R . Let A be some positive-definite

q×q matrix. Then A
1

2 represents the unique symmetrical q×q matrix such that A = A
1

2 A
1

2 .

Finally, x ∝ y means ‘x is proportional to y’ and ‖ · ‖ denotes the Euclidean norm.

2.2 Important Theorems

Let us now provide some important theorems which will come in handy in the following

sections. First, we present some elementary small-sample properties of the traditional
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estimator for the GMVP and its related quantities. A proof can be found in Kempf and

Memmel (2006).

Lemma 1 (Kempf and Memmel (2006))

Under assumptions A1 to A3 and n > d , the sample covariance matrix Ω̂ of ∆R , the

traditional estimator ŵex
T for the GMVP (except for the first portfolio weight), and the

traditional estimator σ̂2
T for the minimum variance σ2 satisfy the following properties:

P1. n Ω̂ ∼ Wd−1(Ω, n − 1), where Ω̂ := 1
n

∑n
t=1

(
∆R − ∆R̄

)(
∆R − ∆R̄

)′
.

P2. ŵex
T | Ω̂ ∼ Nd−1

(
wex, σ2Ω̂−1/n

)
.

P3. nσ̂2
T/σ2 ∼ χ2

n−d .

P4. σ̂2
T is stochastically independent of Ω̂ and ŵex

T .

The following theorem will play the central role in the development of the shrinkage esti-

mator and its dominance property.

Theorem 1

Consider a q×q random matrix W ∼ Wq

(
Ω,m

)
, where Ω is a positive-definite q×q matrix,

q ≥ 3 and m ≥ q +2 , a q-dimensional random vector X with X |W ∼ Nq

(
ω,W−1

)
, where

ω ∈ R
q is an unknown parameter, and a random variable χ2 ∼ χ2

k with k ≥ 2 , which

is stochastically independent of W and X. Furthermore, consider a non-stochastic vector

x ∈ R
q. For all 0 < c < 2 (q − 2)/(k + 2), the shrinkage estimator

XS = x +

(
1 − c χ2

(X − x)′W (X − x)

)
(X − x)

dominates the estimator X with respect to the loss function

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′
Ω
(
ω̂ − ω

)
, (5)

i.e. E
{
(XS − ω)′Ω (XS − ω)

}
< E

{
(X − ω)′Ω (X − ω)

}
. In case x = ω the expected loss

of the shrinkage estimator becomes minimal if and only if c = (q − 2)/(k + 2) .

Proof: See the appendix.

Note that Theorem 1 coincides with the well-known result developed by Stein (1956) if W

is substituted by the identity matrix Iq . Other extensions of Stein’s theorem, which can
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be found in the literature, require that W correspond to a non-stochastic but observable

matrix Ω , or at least that W be stochastically independent of X where Ω is unobservable

(Judge and Bock (1978, p. 177), Srivastava and Bilodeau (1989), and Press (2005, p. 189)).

By contrast, we allow X to depend on a Wishart-distributed random matrix W , but the

matrix Ω given in Theorem 1 remains unobservable.

Theorem 1 also clarifies why the shrinkage constant c = (q− 2)/(k +2) is a natural choice.

Although any constant within the interval given in Theorem 1 would lead to a dominant

estimator, only c = (q − 2)/(k + 2) turns out to be the best choice if the reference vector

x corresponds to the unknown parameter ω. The same value for c remains optimal in the

variants of Stein’s theorem where W is non-stochastic or stochastically independent of X.

2.3 Out-of-Sample Variance

The out-of-sample variance of the return of a stochastic portfolio v̂ is defined as

Var
(
v̂ ′R

)
= E

{
Var(v̂ ′R | v̂)

}
+ Var

{
E(v̂ ′R | v̂)

}
= E

(
v̂′Σ v̂

)
+ µ′Var

(
v̂
)
µ .

This means the total variance of the portfolio v̂ can be split into a within variance E
(
v̂′Σ v̂

)

and a between variance µ′Var
(
v̂
)
µ . Due to (4), it holds that

Var
(
v̂ ′R

)
= σ2 + E

{
(v̂ − w)′Σ (v̂ − w)

}
+ µ′Var

(
v̂
)
µ . (6)

Hence, the minimum variance σ2 is a lower bound for the out-of-sample variance of any

given portfolio v̂ . Interestingly, the between variance µ′Var
(
v̂
)
µ vanishes whenever the

expected asset returns are equal to each other, i.e. µ = η 1 for any η ∈ R . This can be

seen by noting that Var(v̂) = ∆′Var(v̂ex)∆ and ∆µ = 0 if µ = η 1 .

Kempf and Memmel (2006) showed that – concerning the traditional estimator ŵ for the

GMVP – the second part of (6) corresponds to

E
{
(ŵT − w)′Σ (ŵT − w)

}
=

d − 1

n − d − 1
· σ2 .

The factor (d − 1)/(n − d − 1) is large whenever the sample size n is small compared to

the number of assets d . For n, d → ∞ but n/d → q with 1 < q ≤ ∞, this factor tends to

1/(q−1) . Hence even in large samples the contribution of the estimation risk to the out-of-

sample variance is not negligible if the ‘effective sample size’ q is small. For instance, given
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an investment universe with d = 50 assets and a history of n = 100 monthly observations,

the additional variance caused by the estimation risk is 1/(100/50 − 1) = 100% .

From the small-sample distribution of ŵ presented by Frahm (2008), it follows that the

third part of (6) corresponds to

µ′Var
(
ŵT

)
µ =

r2
max − r2

GMVP

n − d − 1
· σ2 ,

where rmax denotes the Sharpe ratio of the tangential portfolio Σ−1µ /(1′Σ−1µ) and rGMVP

the Sharpe ratio of the GMVP.2 This means it holds that

Var
(
ŵ′

TR
)

=

(

1 +
d − 1

n − d − 1
+

r2
max − r2

GMVP

n − d − 1

)

· σ2 .

In most practical situations the difference of r2
max and r2

GMVP turns out to be much smaller

than the numerator d − 1 (and even vanishes if µ = η 1).

Generally, in real-world asset markets the expected returns presumably do not differ so

greatly in the cross-section; the between variance is therefore very small compared to the

within variance. Hence we believe that the between variance µ′Var
(
v̂
)
µ for any portfolio v̂

is negligible in most practical situations and will concentrate in the following on reducing

the within variance E
(
v̂′Σ v̂

)
. Note that each realization of v̂′Σ v̂ represents the actual

variance of the return belonging to the portfolio v̂, which has been chosen on the basis of

historical observations, for instance. Then due to (4), each realization of (v̂−w)′Σ (v̂−w)

can be interpreted as that part of the actual variance which is caused by estimation risk.

In the subsequent analysis this quantity will be referred to as the loss of v̂.

3 The Dominant Estimators

3.1 Small-Sample Properties

We now present the shrinkage estimator for the GMVP that dominates the traditional

estimator. Kempf and Memmel (2006) show that the traditional estimator is the best

unbiased estimator in the case of jointly normally distributed asset returns.3 However, as

2The Sharpe ratio of a portfolio is the expected excess return divided by the standard deviation.
3An estimator is called best if its covariance matrix attains the Rao-Cramér lower bound.
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already discussed earlier, this estimator can lead to a huge out-of-sample variance of the

portfolio return compared to σ2, i.e. the smallest of all possible portfolio return variances.

In this section we will use the following notation. Let ŵA be an arbitrary portfolio. Then

σ2
A = ŵ′

AΣ ŵA is the actual variance of the portfolio return, whereas σ̂2
A = ŵ′

AΣ̂ ŵA denotes

the corresponding estimator. This notation will be used both for stochastic and non-

stochastic portfolios, i.e. if wA is a non-stochastic portfolio, it holds that σ2
A = w′

AΣ wA

and σ̂2
A = w′

AΣ̂wA .

Theorem 2

Suppose that the assumptions A1 to A5 are satisfied. Let ŵT be the traditional estimator

for the GMVP w, whereas wR ∈ R
d with w′

R1 = 1 denotes an arbitrary reference portfolio.

Consider the shrinkage estimator

ŵS = κSwR +
(
1 − κS

)
ŵT (7)

with

κS =
d − 3

n − d + 2
· 1

τ̂R
,

where τ̂R =
(
σ̂2

R − σ̂2
T

)
/σ̂2

T is the estimated relative loss of the reference portfolio wR .

The shrinkage estimator ŵS dominates ŵT with respect to the loss function Lw,Σ(v̂) =

(v̂ − w)′Σ (v̂ − w), i.e.

E
{
(ŵS − w)′Σ (ŵS − w)

}
< E

{
(ŵT − w)′Σ (ŵT − w)

}
.

Proof: See the appendix.

The estimator suggested in Theorem 2 exhibits the typical structure of James-Stein-type

shrinkage estimators. It is a weighted average of a given reference portfolio and the tradi-

tional estimator for the GMVP. The better the reference portfolio fits the actual GMVP,

the smaller the out-of-sample variance of the shrinkage estimator will be. When it comes to

portfolio diversification without any subjective or empirical information as well as restric-

tions on the portfolio weights, the naive portfolio wN := 1/d can be viewed as a natural

choice for the reference portfolio. Due to the arguments given by DeMiguel et al. (2007),

there are even doubts as to whether time series information can add useful information at

all, and so wR = wN might serve as a rule. We will come back to this point in Section 4.
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Theorem 3

Under the assumptions of Theorem 2, the distribution of the relative loss

τ S =
σ2

S − σ2

σ2

of the shrinkage estimator for the GMVP given by (7) depends only on the number of

observations n , the number of assets d , and the relative loss τR = (σ2
R − σ2)/σ2 of the

reference portfolio. More precisely, τ S can be represented stochastically by

τ S =
∥∥κSθ −

(
1 − κS

)
V − 1

2 ξ
∥∥2

, (8)

with any θ ∈ R
d−1 such that θ′θ = τR , ξ ∼ Nd−1(0, Id−1) , V ∼ Wd−1(Id−1, n − 1) , and

κS =
d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
) .

Here ξ , V , and χ2
n−d are supposed to be mutually independent.

Proof: See the appendix.

Due to Theorem 2, the shrinkage estimator is dominant in the sense that E
(
τ S

)
< E

(
τT

)
,

where τT = (σ2
T − σ2)/σ2 represents the relative loss of the traditional estimator for the

GMVP. It can be shown that the expected relative loss of the shrinkage estimator is a

strictly increasing function of τR and its infimum is attained if and only if τR = 0 . Note

that τR = 0 or, equivalently, θ = 0 holds if and only if wR = w , since Σ is positive-definite.

In that case it turns out that

E
(
τ S

)
=

(
1 − d − 3

d − 1
· n − d

n − d + 2

)
d − 1

n − d − 1
.

By contrast, E
(
τ S

)
→ E(τT) for τR → ∞ .

Following the arguments given by Judge and Bock (1978, p. 182), we can try to reduce

the out-of-sample variance of the suggested estimator by restricting κS to values smaller

than or equal to 1, i.e. by taking κM := min{κS, 1} instead of κS . Then the corresponding

shrinkage estimator is given by

ŵM := κMwR +
(
1 − κM

)
ŵT . (9)

The shrinkage constant κM can only attain values between 0 and 1, which prevents ŵM

from having the opposite sign of ŵT whenever τ̂R is small, i.e. whenever the traditional

estimate of the GMVP is close to the reference portfolio. The next theorem states that the

modified shrinkage estimator does, in fact, lead to a better out-of-sample performance.
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Theorem 4

Under the assumptions of Theorem 2 and given the notation of Theorem 3, the distribution

of the relative loss

τM =
σ2

M − σ2

σ2

of the modified shrinkage estimator for the GMVP given by (9) depends only on the number

of observations n , the number of assets d , and the relative loss τR of the reference portfolio.

More precisely, τM can be represented stochastically by

τM =
∥∥κMθ −

(
1 − κM

)
V − 1

2 ξ
∥∥2

, (10)

with κM = min{κS, 1}, and it holds that

E
(
τM

)
< E

(
τ S

)
< E

(
τT

)
.

Proof: See the appendix.

The stochastic representations (8) and (10) can be used, for instance, for evaluating the out-

of-sample performances of the presented shrinkage estimators by Monte Carlo simulation.

Theorem 4 asserts that the modified shrinkage estimator dominates not only the traditional

estimator but also the simple shrinkage estimator given by (7). Moreover, it can be shown

that the expected relative loss of ŵM corresponds to

E
(
τM

)
= E

[{(
1 − d − 3

n − d + 2
· χ2

n−d

χ2
d+1

)+}2
]

d − 1

n − d − 1

in the event that τR = 0 .

Our results about the superiority of the presented shrinkage estimators require the asset

universe to consist of at least four assets. By contrast, if there are only two or three assets,

one should draw on the traditional estimator. It is worth pointing out that the methodology

presented here can be easily applied to the estimation of local minimum variance portfolios.

As has been shown by Frahm (2008), any d-dimensional asset universe can be transformed

into a (d−q)-dimensional asset universe such that q linear equality constraints (besides the

budget constraint) are implicitly satisfied for each portfolio of the d − q available assets.

In that case assumptions A4 and A5 have to be changed to n ≥ d − q + 2 and d ≥ q + 4 .

Furthermore, the chosen reference portfolio must satisfy the given linear restrictions.

11



3.2 Large-Sample Properties

In the previous section, we investigated the small-sample properties of the relative losses

of the shrinkage estimators ŵS and ŵM . Due to Theorem 3 and Theorem 4, it can be

seen that the expected relative losses of the shrinkage estimators as well as the traditional

estimator tend to zero if the number of assets d is fixed but n → ∞ . However, that does

not mean that the presented shrinkage estimators are always asymptotically equivalent to

the traditional estimator. This is confirmed by the next theorem.

Theorem 5

Under assumptions A1 to A3 it holds that

√
n





ŵT − w

ŵS − w

ŵM − w




d−→





1

11{τR= 0}

(
1 − d−3

ξ′ξ

)
+ 11{τR> 0}

11{τR=0}

(
1 − d−3

ξ′ξ

)+
+ 11{τR> 0}




Λξ , n −→ ∞ ,

where Λ is a d × (d − 1) matrix such that ΛΛ′ = σ2Σ−1 − ww′ and ξ ∼ Nd−1

(
0, Id−1

)
.

Proof: See the appendix.

For instance, from the last theorem it follows that

√
n
(
ŵT − w

) d−→ Nd

(
0, σ2Σ−1 − ww′

)
, n −→ ∞ ,

and the shrinkage estimators are asymptotically equivalent to the traditional estimator,

i.e.
√

n
(
ŵT − ŵS

) p−→ 0 and
√

n
(
ŵT − ŵM

) p−→ 0 , n −→ ∞ , (11)

only if wR 6= w .4 The last theorem also implies that if wR = w and the sample size is large

(compared to the number of assets), the modified shrinkage estimate corresponds to the

true GMVP roughly with probability Fχ2

d−1

(
d− 3

)
. Admittedly, this might be regarded as

purely theoretical, since it has to be assumed that wR 6= w in most practical situations,

with ŵM then being asymptotically equivalent to ŵT in the sense given above.

So far we have focused on the expected relative losses of the estimators for the GMVP but,

as already mentioned, these quantities vanish if the sample size tends to infinity. However,

4Actually, the proof of Theorem 5 reveals that (11) can be even strengthened to almost sure convergence.
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due to the next theorem it is possible to make statements about the relative loss itself if d

is fixed but n tends to infinity.

Theorem 6

Under assumptions A1 to A3 it holds that

n





τT

τ S

τM




d−→





1

11{τR= 0}

(
1 − d−3

χ2

d−1

)2
+ 11{τR> 0}

11{τR=0}

{(
1 − d−3

χ2

d−1

)+}2
+ 11{τR> 0}




χ2

d−1 , n −→ ∞ .

Proof: See the appendix.

This theorem asserts that the relative losses are super-consistent. It is worth pointing

out that, even if the expected relative losses of the shrinkage estimators presented here

are always smaller than the expected loss of the traditional estimator (which follows from

Theorem 3 and Theorem 4), a given realization of τ S may turn out to be greater than

τT . Surprisingly, Theorem 6 implies that, only if wR = w, the probability of this event

does not vanish (even asymptotically) but tends to Fχ2

d−1

{
(d− 3)/2

}
> 0 . For example, if

there exist d = 5 assets, this adverse effect occurs with a probability of approximately 9%.

However, the same theorem confirms that τM > τT is asymptotically impossible. This is

another advantage of the modified shrinkage estimator over the simple one.

As already discussed earlier, it might be criticized that in many practical applications of

portfolio theory the number of assets is large compared to the number of observations. In

the following we will investigate the asymptotic distribution of the relative loss assuming

that n, d → ∞ but n/d → q with 1 < q ≤ ∞ . Here the relative loss of the reference

portfolio is assumed to be constant; recall that the number q can be interpreted as the

effective sample size. The following theorem asserts that if the asset universe is large, the

relative losses of all GMVP estimators are no longer super-consistent.

Theorem 7

Under assumptions A1 to A3 it holds that

τT
a.s.−→ 1

q − 1

13
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Figure 1: Expected relative losses of the traditional (blue), simple (red) and modified

(dashed green) shrinkage estimator for n = 300 and d = 100 as well as the relative loss of

the reference portfolio (black) and the asymptotic loss function L(τR , 3) (yellow).

as n, d → ∞ but n/d → q with 1 < q ≤ ∞ . Moreover, concerning the shrinkage estimators

for the GMVP it holds that

κS , κM
a.s.−→ 1

1 + qτR

as well as

τ S , τM
a.s.−→ L

(
τR, q

)
:=

τR

(1 + qτR)2
+

(
1 − 1

1 + qτR

)2 1

q − 1

as n, d → ∞ but n/d → q with 1 < q ≤ ∞ .

Proof: See the appendix.

It can be shown that the asymptotic loss function L is increasing in τR, and it holds that

L
(
τR, q

)
< 1/(q − 1) whenever q < ∞ , i.e. the shrinkage estimators dominate the tradi-

tional estimator with respect to the asymptotic loss if not only the number of observations

but also the number of assets tend to infinity and the effective sample size remains finite.

Moreover, it turns out that L
(
τR, q

)
> τR if and only if

τR <
1

q
· 2 − q

q − 1
. (12)

14



n → ∞ , d < ∞ n → ∞ , d → ∞ , n/d → q

q = ∞ q < ∞ q = ∞
τR = 0 τR > 0 τR = 0 τR > 0 τR ≥ 0

τT 0 0 1
q−1 > 0 1

q−1 > 0 0

τ S 0 0 0 0 < L(τR, q) < 1
q−1 0

τM 0 0 0 0 < L(τR, q) < 1
q−1 0

nτT χ2
d−1 χ2

d−1 ∞ ∞ ∞

nτ S

(
1 − d−3

χ2

d−1

)2
χ2

d−1 χ2
d−1 0 ∞ ∞

nτM

{(
1 − d−3

χ2

d−1

)+}2
χ2

d−1 χ2
d−1 0 ∞ ∞

Table 1: Large-sample properties of the relative losses of ŵT, ŵS, and ŵM .

Therefore, the shrinkage estimators dominate the reference portfolio uniformly if q ≥ 2

(see Figure 1). Conversely, in terms of the asymptotic loss they become uniformly worse

than wR as q tends to 1 from above, since the right-hand side of (12) then tends to infinity.

The large-sample properties of the relative losses of the GMVP estimators ŵT , ŵS , and

ŵM are summarized in Table 1.

3.3 The Link to Covariance Matrix Estimation

Jagannathan and Ma (2003) analyze short-sales constraints as a means of lessening the

impact of estimation errors on the sample covariance matrix. They show that using short-

sales constraints is equivalent to transforming the sample covariance matrix and taking this

quantity for calculating the GMVP on the basis of the unconstrained traditional estimator

for the GMVP. The following theorem states that a similar argument holds for the shrinkage

estimators presented earlier.

Theorem 8

For any reference portfolio wR there exists a positive-definite d × d matrix Σ−1
R such that

wR ∝ Σ−1
R 1 as well as 1

′Σ−1
R 1 = 1

′Σ̂−1
1 , where Σ̂ is the sample covariance matrix given

by Eq. 2 and it is assumed that n > d . The shrinkage estimators for the GMVP can be

calculated by using

Σ̂−1
S := κSΣ

−1
R +

(
1 − κS

)
Σ̂−1 and Σ̂−1

M := κMΣ−1
R +

(
1 − κM

)
Σ̂−1

15



for the traditional GMVP estimator, i.e.

ŵS =
Σ̂−1

S 1

1′Σ̂−1
S 1

and ŵM =
Σ̂−1

M 1

1′Σ̂−1
M 1

.

Proof: See the appendix.

The random matrices Σ̂S and Σ̂M can be interpreted as shrinkage estimators for the un-

known covariance matrix Σ . However, Σ̂M is positive-definite, a trait that does not hold

for Σ̂S in general. Any other matrix which is proportional to Σ̂S or Σ̂M would lead to the

same shrinkage estimators for the GMVP, but the expressions given in Theorem 8 satisfy

a convenient scaling condition, i.e. 1
′Σ̂−1

S 1 = 1
′Σ̂−1

M 1 = 1
′Σ−1

R 1 = 1
′Σ̂−1

1 = 1/σ̂2
T .

Similar shrinkage estimators for the covariance matrix have been already suggested by

Ledoit and Wolf (2001, 2003). However, the estimators given in Theorem 8 differ from the

estimators introduced by Ledoit and Wolf in two aspects:

1. Their shrinkage constants depend on unobservable quantities which have to be es-

timated from empirical data. Even if the suggested covariance matrix estimators

dominate the sample covariance matrix asymptotically, it is not clear why the dom-

inance result should be valid in small samples. By contrast, our shrinkage approach

focuses on the small-sample properties of the resulting portfolio weights.

2. Ledoit and Wolf shrink the covariance matrix itself, whereas our approach is based

on shrinking its inverse. By shrinking the covariance matrix, it is possible to allow

for n ≤ d , i.e. the aforementioned authors are able to apply their approach to asset

universes where the number of assets exceed the number of observations.

So far our methodology consists of shrinking the traditional GMVP estimator towards

some non-stochastic reference portfolio wR . However, all the presented results remain

valid if wR is a stochastic portfolio satisfying the budget constraint and being stochastically

independent of the historical observations which are used for calculating ŵT .5 Nevertheless,

in the following we will concentrate on the special case wR = wN = 1/d .

5For example, wR could be interpreted as a portfolio which has been suggested by a layman.
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Figure 2: Expected relative losses of the traditional (blue), simple (red) and modified

shrinkage (dashed green) estimator for n = 20 and d = 10 as well as the relative loss of

the naive portfolio (black) and the asymptotic loss function L(τR , q) with q = 2 (yellow).

4 Naive Diversification vs. Portfolio Optimization

4.1 A Small-Sample Simulation Study

DeMiguel et al. (2007) raise the question of whether optimizing a portfolio using time

series information is worthwhile to begin with. They do not even refer to the fact that

asset returns typically exhibit structural breaks, serial correlations in the higher moments,

and heavy tails. According to these authors, the estimation error outweighs the potential

gain of portfolio optimization, even if the asset returns are normally distributed and serially

independent. In this section we address a similar question: Does it pay to strive for the

GMVP by using time series information or is it better to renounce parameter estimation

altogether and put the money straight away into the naive portfolio?

In order to revisit this question, we may focus on the expected relative loss which is caused

by a given GMVP estimator. Due to Theorem 4 and the arguments given in Section

3.2, we will concentrate on the modified shrinkage estimator ŵM and choose the naive

portfolio wN as a reference portfolio. Although closed-form expressions for τM in large

samples and asset universes have been already presented in Section 3.2, the relative loss
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can only be simulated, e.g. by using Equations 8 and 10, if the sample is small. Figure

2 contains the expected relative losses of the four different portfolio strategies, i.e. naive

diversification, traditional estimation, as well as simple and modified shrinkage estimation

for n = 20 observations and d = 10 assets. The x-axis denotes the relative loss τN of the

naive portfolio, whereas the y-axis accounts for the expected relative losses of the different

portfolio strategies depending on τN . Note that (according to Theorem 3) the expected

relative loss of the traditional estimator does not depend on τN but only on the number n

of observations and the number d of assets.

It can be seen that the expected relative loss of the traditional estimator corresponds to

100%. Due to Theorem 3 and Theorem 4 it is clear that the expected relative losses

of the shrinkage estimators are always below the expected relative loss of the traditional

estimator. This is also confirmed by Figure 2. Particularly if τN is small, i.e. the true

GMVP does not differ too greatly from the naive portfolio (which serves as an anchor

point for ŵS and ŵM), the shrinkage estimators are more favorable than the traditional

estimator.

Figure 2 also indicates the critical relative loss τ∗
N of the naive portfolio with respect to

the modified shrinkage estimator ŵM . This is that point on the x-axis where the modified

shrinkage estimator leads to the same expected relative loss as naive diversification. As

indicated by Figure 2, this critical value is about 63%. For example if there are 5 years of

quarterly asset returns and 10 stocks on the market, naive diversification would be better as

long as τN < 63% . Suppose that the standard deviation of the GMVP return corresponds

to σ = 10% , whereas its counterpart related to the naive portfolio amounts to 11% (per

quarter). In that case, the relative loss of naive diversification is τN = (0.11/0.10)2 − 1 =

21% , whereas the expected relative loss caused by the modified shrinkage estimator roughly

amounts to E
(
τM

)
= 43% . Therefore, it would not pay to use the modified shrinkage

estimator in that case. In contrast, if the naive portfolio leads to a standard deviation

of 13% , it holds that τN = (0.13/0.10)2 − 1 = 69% > τ∗
N and so the modified shrinkage

estimator is slightly better than the naive portfolio. Note that traditional estimation is

always worse than naive diversification in all such cases.

Table 2 lists some critical relative losses of naive diversification for different combinations

of n and d . For example, if 10 years of monthly asset return observations are available

(i.e. n = 120) and the stock market consists of d = 50 assets, one should use the modified
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n \ d 5 10 25 50 100

12 52%
(550%)

847%
(99261%)

— — —

24 16%
(111%)

40%
(334%)

— — —

36 9%
(59%)

19%
(132%)

152%
(1809%)

— —

60 5%
(30%)

9%
(58%)

28%
(209%)

420%
(7806%)

—

120 2%
(13%)

4%
(24%)

8%
(57%)

21%
(161%)

377%
(5202%)

Table 2: Critical relative losses of the naive portfolio with respect to the modified shrinkage

estimator for different combinations of n and d . The parentheses under the critical relative

losses contain the critical thresholds of τ̂N for testing the naive diversification hypothesis

at a significance level of α = 5% .

shrinkage estimator if and only if the variance of the naive portfolio return is at least 21%

greater than the variance of the GMVP return. Depending on the length of the time series

and the number of assets, the modified shrinkage estimator is able to reduce the relative

loss of naive diversification. However, the table also indicates that, if the number of assets

is large compared to the number of observations, naive diversification is apparently the best

strategy, which reconfirms the naive diversification hypothesis of DeMiguel et al. (2007).

4.2 Testing the Naive Diversification Hypothesis

For applying the decision rule discussed above, one needs two numbers, i.e.

1. the critical relative loss of the naive portfolio with respect to the modified shrinkage

estimator and

2. the relative loss of the naive portfolio.

The critical relative loss can be calculated by Monte Carlo simulation (as it was done to

obtain Table 2), whereas the actual relative loss of the naive portfolio is not observable

and needs to be estimated from the history. The next theorem provides the distribution

of its empirical counterpart τ̂N or, more generally, τ̂R (see also Theorem 2).
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Theorem 9

Under assumptions A1 to A3 and n > d , the estimator τ̂R =
(
σ̂2

R− σ̂2
T

)
/σ̂2

T for the relative

loss of the reference portfolio is conditionally noncentrally F -distributed, more precisely

τ̂R ∼ d − 1

n − d
· Fd−1,n−d

(
τRχ2

n−1/2
)
.

Proof: See the appendix.

With Theorem 9, it is possible to test whether one should invest in the naive portfolio or

to apply a GMVP estimator, i.e.

H0 : τN ≤ τ∗
N vs.

H1 : τN > τ∗
N .

The test statistic is given by τ̂N =
(
σ̂2

N − σ̂2
T

)
/σ̂2

T and according to Theorem 9, H0 can be

rejected whenever the realization of τ̂N exceeds the upper α-quantile (0 < α < 1
2) of the

cumulative distribution function of

d − 1

n − d
· Fd−1,n−d

(
τ∗

Nχ2
n−1/2

)
,

which can be also calculated by Monte Carlo simulation.6

Critical thresholds for this hypothesis test at a significance level of α = 5% are presented in

Table 2. For instance, suppose that the asset universe consists of 50 assets and the investor

can observe 10 years of monthly asset returns. Then the naive diversification hypothesis

can be only rejected if τ̂N > 161% . Note that this is by far greater than the theoretical

value of the critical relative loss τ∗
N = 21% , since the distribution of τ̂N is considerably

skewed to the right.

We consciously formulate the hypothesis test in such a way that the naive portfolio has to

be rejected but not the portfolio based on some GMVP estimator. Therefore, for typical

significance levels like α = 1%, 5%, 10% , our decision rule favors naive diversification. More

precisely, if H0 can be rejected, the considered GMVP estimator significantly leads to a

better out-of-sample performance but if H0 is not rejected, from a statistical point of view

it cannot be assumed that naive diversification is better. However, in that case the naive

6This hypothesis test can be adapted to any GMVP estimator if its expected relative loss E(τ ) < ∞

depends only on n, d, and τN and provided τN 7→ E(τ ) has only one intersection point with τN 7→ τN .
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portfolio can be justified either empirically, e.g. because of the well-known stylized facts of

financial data, or due to the arguments given by DeMiguel et al. (2007). In other words:

if it is not possible to guarantee that a statistical method will lead to a better result but

it is likely that the outcome will become worse, the naive portfolio can be justified by the

principle of insufficient reason (against naive diversification).

5 Conclusion

We present two shrinkage estimators for the GMVP that dominate the traditional estimator

under the assumption of serially independent and identically normally distributed asset

returns. Their small-sample and their large-sample properties alike have been investigated.

The presented shrinkage estimators considerably reduce the out-of-sample variance of the

portfolio return compared to the traditional estimator, especially if the asset universe is

large. In addition, we provide a hypothesis test to decide whether one should invest in

a portfolio based on estimators for the GMVP or in the naive portfolio. This decision

depends only on three quantities: the number of observations, the number of assets, and

the relative loss (compared to the GMVP) caused by naive diversification. Further research

could include, for instance, an empirical investigation of the presented shrinkage estimators.

Appendix

Lemma 2

For any λ ≥ 0 it holds that

E
{
χ−2

q

(
λ
)}

= q E
{

χ−4
q+2

(
λ
)}

+ 2λE
{

χ−4
q+4

(
λ
)}

, (13)

and if q ≥ 3 ,

(q − 2)E
{
χ−2

q

(
λ
)}

= (q − 2λ)E
{

χ−2
q+2

(
λ
)}

+ 2λE
{

χ−2
q+4

(
λ
)}

. (14)

Proof: Eq. 13 follows immediately from Theorem 2 in Judge and Bock (1978, p. 322) by

setting φ(x) = x−2, A = Iq , and θ ∈ R
q such that λ = θ′θ/2 . Similarly, with φ(x) = x−1,

1 = q E
{
χ−2

q+2

(
λ
)}

+ 2λE
{
χ−2

q+4

(
λ
)}

= (q − 2)E
{

χ−2
q

(
λ
)}

+ 2λE
{

χ−2
q+2

(
λ
)}

for any q ≥ 3 , which leads to (14). Q.E.D.
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Lemma 3

Consider a q×q random matrix V ∼ Wq

(
Iq,m

)
with q ≥ 3 and m ≥ q+2 . Further, define

λ := θ′θ/2 and λ̂ := θ′V θ/2 for some θ ∈ R
q. Then it holds that

E

[(
trV −1 − λ

λ̂
· q
)

E
{
χ−2

q+2

(
λ̂
)
|V
}]

=
q − 1

m − q − 1
· E
[
(q − 2) · λ

λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}]

and

E

[(
tr V −1 − λ

λ̂
· q
)

E
{
χ−4

q+2

(
λ̂
)
|V
}]

=
q − 1

m − q − 1
· E
[
λ

λ̂
· E
{

χ−2
q

(
λ̂
)
|V
}]

−

q − 1

m − q − 1
· E
[
2λE

{
χ−4

q+2

(
λ̂
)
|V
}]

.

Proof: Consider the function h
(
2λ̂
)

= E
{
χ−2

q+2(λ̂) |V
}

and note that, after rotating θ, it

holds that 2λ̂ = θ′θχ2 for some random variable χ2 ∼ χ2
m . Then, due to Theorem 6 in

Judge and Bock (1978, p. 324),

E
{(

tr V −1
)
h
(
2λ̂
)}

=
q (m − 2)

m − q − 1
· E
{

h
(
2λ̂
)

χ2

}

+
2 (q − 1)

m − q − 1
· E
{

θ′θ h′
(
2λ̂
)}

,

where h′ denotes the first derivative of h with respect to 2λ̂ . Since λ/λ̂ = 1/χ2,

E

{(
trV −1 − λ

λ̂
· q
)

h
(
2λ̂
)}

=
q − 1

m − q − 1
·
[

q E

{
h
(
2λ̂
)

χ2

}

+ 2 θ′θ E
{

h′
(
2λ̂
)}
]

, (15)

where

h′
(
2λ̂
)

=
1

2
·
dE
{
χ−2

q+2(λ̂) |V
}

dλ̂
=

1

2
·
[
E
{
χ−2

q+4(λ̂) |V
}
− E

{
χ−2

q+2(λ̂) |V
}]

,

which follows from the derivative rule on page 327 in Judge and Bock (1978). After

substituting h′(2λ̂) in (15) and some re-arrangement, we obtain

E

[(
tr V −1 − λ

λ̂
· q
)

E
{

χ−2
q+2

(
λ̂
)
|V
}]

=

q − 1

m − q − 1
· E
[

λ

λ̂

[
(q − 2λ̂)E

{
χ−2

q+2

(
λ̂
)
|V
}

+ 2λ̂E
{
χ−2

q+4

(
λ̂
)
|V
}]]

.

Now the first statement of the lemma appears immediately after applying (14). Similarly,

by allowing for the function h
(
2λ̂
)

= E
{
χ−4

q+2(λ̂) |V
}

and using (13), the second statement

of the lemma becomes valid. Q.E.D.
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Proof of Theorem 1

The loss function Lω,Ω can be re-formulated as

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′
Ω
(
ω̂ − ω

)
=
(
θ̂ − θ

)′(
θ̂ − θ

)
= Lθ

(
θ̂
)
,

where θ̂ := Ω
1

2 (ω̂−x) and θ := Ω
1

2 (ω−x) . Accordingly, the random vector X is transformed

into Y := Ω
1

2 (X − x) |V ∼ Nq

(
θ, V −1

)
with V := Ω− 1

2 WΩ− 1

2 ∼ Wq

(
Iq,m

)
and similarly

YS := Ω
1

2 (XS − x) =
(
1 − c χ2

Y ′V Y

)
Y .

After some elementary transformations, it turns out that

Lθ(YS) = Lθ(Y ) −
{

2cχ2 · Y ′(Y − θ)

Y ′V Y
− c2χ4 · Y ′Y

(Y ′V Y )2

}
.

This means the random variable YS dominates Y if and only if

E
{
Lθ(Y ) − Lθ(YS)

}
= 2ckE1 − c2k (k + 2) E2 > 0 , (16)

where

E1 := E

{
Y ′(Y − θ)

Y ′V Y

}
and E2 := E

{
Y ′Y

(Y ′V Y )2

}
.

Hence, the dominance result is satisfied for all c with 0 < c < 2/(k + 2) · E1/E2 and, to

prove the theorem, it has to be shown that E1/E2 ≥ (q − 2) . Now we define Z := V
1

2 Y

and ζ := V
1

2 θ so that Z |V ∼ Nq(ζ, Iq) . Then it holds that

Y ′(Y − θ)

Y ′V Y
|V ∼ Z ′V −1(Z − ζ)

Z ′Z
|V and

Y ′Y

(Y ′V Y )2
|V ∼ Z ′V −1Z

(Z ′Z)2
|V .

By setting φ(x) = x−1 in Theorem 1 and Theorem 2 of Judge and Bock (1978, pp. 321–322)

and allowing for λ = θ′θ/2 and λ̂ = θ′V θ/2 it follows that

E

{
Y ′(Y − θ)

Y ′V Y
|V
}

=
(
trV −1

)
E
{
χ−2

q+2

(
λ̂
)
|V
}

+2λE
{
χ−2

q+4

(
λ̂
)
|V
}
−2λE

{
χ−2

q+2

(
λ̂
)
|V
}

.

Similarly, by setting φ(x) = x−2 in Theorem 2 given by Judge and Bock (1978, p. 322),

we find that

E

{
Y ′Y

(Y ′V Y )2
|V
}

=
(
tr V −1

)
E
{

χ−4
q+2

(
λ̂
)
|V
}

+ 2λE
{
χ−4

q+4

(
λ̂
)
|V
}

.

After some re-arrangement and an application of (14) we obtain

E

(
Y ′(Y − θ)

Y ′V Y
|V
)

= (q − 2) · λ

λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}

+

(
tr V −1 − λ

λ̂
· q
)

E
{

χ−2
q+2

(
λ̂
)
|V
}

.

23



Moreover, with an application of (13) it also turns out that

E

(
Y ′Y

(Y ′V Y )2
|V
)

=
λ

λ̂
· E
{

χ−2
q

(
λ̂
)
|V
}

+

(
trV −1 − λ

λ̂
· q
)

E
{

χ−4
q+2

(
λ̂
)
|V
}

.

Now, from Lemma 3 it follows that E1 = (q − 2) E2 + ε with

ε :=
(q − 1)(q − 2)

m − q − 1
· 2λE

[
E
{
χ−4

q+2

(
λ̂
)
|V
}]

≥ 0 .

Since E1 ≥ (q − 2) E2 with E2 > 0 it follows that E1/E2 ≥ (q − 2) . For x = ω it holds

that λ = 0 and thus E1 = (q − 2) E2 . This means the optimal constant c of the quadratic

function given by (16) does not depend on E1 or E2 . Further, it is unique and corresponds

to c = (q − 2)/(k + 2) . Q.E.D.

Proof of Theorem 2

Lemma 1 and Theorem 1 can be brought together by the following substitutions: m = n−1 ,

q = d − 1 , W = n Ω̂/σ2 , X = ŵex
T , χ2 = n σ̂2

T/σ2, k = n − d , and x = wex
R . Then the

constant

c =
q − 2

k + 2
=

d − 3

n − d + 2

leads to a dominating shrinkage estimator ŵex
S for wex, viz

ŵex
S = wex

R +

(
1 − d − 3

n − d + 2
· σ̂2

T

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R )

)
(
ŵex

T − wex
R

)
.

Note that

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R ) = (ŵT − wR)′Σ̂ (ŵT − wR)

and thus

σ̂2
T

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R )
=

σ̂2
T

(ŵT − wR)′Σ̂ (ŵT − wR)
=

σ̂2
T

σ̂2
R − σ̂2

T

=
1

τ̂R
.

Due to ŵS = e1 − ∆′ŵex
S it follows that

ŵS = wR +

(
1 − d − 3

n − d + 2
· 1

τ̂R

)(
ŵT − wR

)
= κS wR +

(
1 − κS

)
ŵT .

Q.E.D.
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Proof of Theorem 3

After some calculations we find that

τ S = τR − 2
(
1 − κS

)
a +

(
1 − κS

)2
b ,

where

κS =
d − 3

n − d + 2
· nσ̂2

T/σ2

(ŵex
T − wex

R )′(nΩ̂/σ2)(ŵex
T − wex

R )
,

a =
(ŵex

T − wex
R )′Ω (wex − wex

R )

σ2
and b =

(ŵex
T − wex

R )′Ω (ŵex
T − wex

R )

σ2
.

With θ = Ω
1

2 /σ (wex−wex
R ) , ξ ∼ Nd−1(0, Id−1) , and V ∼ Wd−1(Id−1, n−1) , the shrinkage

constant κS can be represented by

κS =
d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)

as well as a = θ′
(
θ + V − 1

2 ξ
)

and b =
(
θ + V − 1

2 ξ
)′(

θ + V − 1

2 ξ
)
, where ξ , V , and χ2

n−d are

mutually independent. Hence, τ S is equal to the expression given on the right hand side

of (8). Moreover, it holds that

τ S =
∥∥O
{
κSθ −

(
1 − κS

)
V − 1

2 ξ
}∥∥2

=
∥∥κSη −

(
1 − κS

)
OV − 1

2 ξ
∥∥2

with η := Oθ for any orthogonal (d− 1)× (d− 1) matrix O; note also that κS is a function

of V − 1

2 ξ only through the quadratic form

(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)

=
(
η + OV − 1

2 ξ
)′(OV O′

)(
η + OV − 1

2 ξ
)
.

The random matrix V has a radial distribution, i.e. OV O′ ∼ V as well as OV −1O′ ∼ V −1.

Similarly, ξ has a spherical distribution, i.e. Oξ ∼ ξ . It follows that OV − 1

2O′ ∼ V − 1

2 and

thus OV − 1

2 ξ ∼ V − 1

2 ξ . This means for any rotation η of θ it holds that

τ S ∼
∥∥κSη −

(
1 − κS

)
V − 1

2 ξ
∥∥2

.

Ergo, the distribution of τ S depends only on n, d, and τR = θ′θ. Q.E.D.

25



Proof of Theorem 4

From the proof of Theorem 3 it follows that the distribution of τM, too, is only a function

of n, d, and τR . To prove that E(τM) < E(τ S), the relative loss of the simple shrinkage

estimator can be written as

τ S = τR − 2 θ′V − 1

2

(
1 − κS

)(
V

1

2 θ + ξ
)

+
(
1 − κS

)2 ‖V 1

2 θ + ξ‖2
V .

Since
(
1−κS

)
=
(
1−κS

)+−
(
1−κS

)−
, the relative loss of the modified shrinkage estimator

becomes

τM = τ S − 2 θ′V − 1

2

(
1 − κS

)−(
V

1

2 θ + ξ
)
−
{(

1 − κS

)−}2 ‖V 1

2 θ + ξ‖2
V .

Here it holds that

E
[{(

1 − κS

)−}2 ‖V 1

2 θ + ξ‖2
V

]
> 0

and from Theorem 1 given by Judge and Bock (1978, pp. 321) it follows that

E
{

θ′V − 1

2

(
1 − κS

)−(
V

1

2 θ + ξ
)}

= τRE

[{
1 − d − 3

n − d + 2
· χ2

n−d

χ2
d+1(τRχ2

n−1/2)

}−
]

≥ 0 .

That means E
(
τM

)
< E

(
τ S

)
. The second inequality E

(
τ S

)
< E

(
τT

)
is a direct consequence

of Theorem 2. Q.E.D.

Proof of Theorem 5

The traditional estimator for the GMVP without the first portfolio weight can be rep-

resented by ŵex
T = wex + σ Ω− 1

2 V − 1

2 ξ , where V ∼ Wd−1(Id−1, n − 1) is stochastically

independent of ξ ∼ Nd−1(0, Id−1) . Since
√

nV − 1

2 =
(
V/n

)− 1

2
a.s.→ Id−1 as n → ∞ , it holds

that
√

n
(
ŵex

T − wex
) a.s.−→ σ Ω− 1

2 ξ , n −→ ∞ .

The presented expression for the asymptotic normality of ŵT = e1−∆′ŵex
T follows from the

relationship σ2∆′Ω−1∆ = σ2Σ−1 − ww′ (Frahm, 2008). Further, the shrinkage estimator

can be represented by

ŵex
S = wex

R +

{
1 − d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)

}{(
wex − wex

R

)
+ σ Ω− 1

2 V − 1

2 ξ
}

,
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where θ = Ω
1

2 /σ (wex − wex
R ) and θ′θ = τR . Following the proof of Theorem 3 it can be

assumed that θ =
(√

τR ,0
)

without loss of generality. Since

θ′V θ

n
= τR · χ2

n−1

n

a.s.−→ τR ,
2θ′V

1

2 ξ

n
= 2θ′(V/n)

1

2 ξ/
√

n
a.s.−→ 0 ,

ξ′ξ

n

a.s.−→ 0 , n −→ ∞ ,

it follows that
(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

a.s.→ τR as well as χ2
n−d/n

a.s.→ 1 as n → ∞ .

Hence, in the event that τR > 0 it holds that

√
n · d − 3

n − d + 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

·
(
wex

R − wex
) a.s.−→ 0 , n −→ ∞ .

Further, as already mentioned above,
√

nσ Ω− 1

2 V − 1

2 ξ
d→ σ Ω− 1

2 ξ and so
{

1 − d − 3

n − d + 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

}
√

nσ Ω− 1

2 V − 1

2 ξ
a.s.−→ σ Ω− 1

2 ξ

as n → ∞ . By contrast, if τR = 0 and thus θ = 0 as well as wex = wex
R ,

d − 3

n − d + 2
· χ2

n−d(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
) =

d − 3

n − d + 2
· χ2

n−d

ξ′ξ

and since χ2
n−d/(n − d + 2)

a.s.→ 1 as n → ∞ ,

√
n
(
ŵex

S − wex
) a.s.−→

(
1 − d − 3

ξ′ξ

)
σ Ω− 1

2 ξ , n −→ ∞ .

Similar arguments hold for the modified shrinkage estimator, since

min

{
√

n · d − 3

n − d + 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′

V
(
θ + V − 1

2 ξ
)
/n

,
√

n

}
a.s.−→ 0 , n −→ ∞ ,

if τR > 0 and otherwise

min

{
d − 3

n − d + 2
· χ2

n−d

ξ′ξ
, 1

}
a.s.−→ min

{
d − 3

ξ′ξ
, 1

}
, n −→ ∞ .

Q.E.D.

Proof of Theorem 6

Due to Eq. 3 it will suffice to concentrate on the GMVP estimators without the first

portfolio weight for calculating the relative losses, e.g.

nτT =

√
n (ŵex

T − wex)′Ω
√

n (ŵex
T − wex)

σ2
.

Now the theorem follows immediately by applying the Continuous Mapping Theorem to

the results which are given in the proof of Theorem 5 and noting that
[
11{τR=0}X + 11{τR> 0}

]2
= 11{τR=0}X

2 + 11{τR> 0}

for any random variable X. Q.E.D.
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Proof of Theorem 7

Due to the proof of Theorem 5 it holds that

τT =
(ŵex

T − wex)′Ω (ŵex
T − wex)

σ2
= ξ′V −1ξ =

χ2
d−1

χ2
n−d+1

with χ2
d−1 := ξ′ξ and χ2

n−d+1 := χ2
d−1/ξ

′V −1ξ . Note that (n − d) → ∞ as n, d → ∞ and

n/d → q . That means

τT =
d

n − d
· χ2

d−1/d

χ2
n−d+1/(n − d)

a.s.−→ 1

q − 1
, n, d −→ ∞ , n/d −→ q .

For proving the almost sure convergence of the shrinkage constants κS and κM , consider

θ =
(√

τR ,0
)

and suppose that V
1

2 is the Cholesky root of V , i.e.

θ′V
1

2 ξ =
√

τR χn−1ξ1 .

Furthermore, note that (d − 3)/(n − d + 2) → 1/(q − 1) , χ2
n−d/(n − d)

a.s.→ 1 ,

θ′V θ

n − d
= τR · χ2

n−1

n
· n

n − d

a.s.−→ qτR

q − 1
,

2θ′V
1

2 ξ

n − d
= 2

√
τR · χn−1ξ1

n − d

a.s.−→ 0

as well as
ξ′ξ

n − d
=

ξ′ξ

d
· d

n − d

a.s.−→ 1

q − 1
, n, d −→ ∞ , n/d −→ q .

Now, by applying the Continuous Mapping Theorem, we obtain κS , κM
a.s.→ 1/(1 + qτR) as

n, d → ∞ and n/d → q . Similarly, note that

2θ′V − 1

2 ξ = 2
√

τR · ξ1

χn−d+1
= 2

√
τR · n − d

χn−d+1
· ξ1

n
· n

n − d

a.s.−→ 0

and ξ′V −1ξ
a.s.→ 1/(q − 1) as n, d → ∞ and n/d → q . By relying on (8) and (10) it turns

out that

τ S , τM
a.s.−→ τR

1 + qτR
−
(

1 − 1

1 + qτR

)
τR +

(
1 − 1

1 + qτR

)2(
τR +

1

q − 1

)
.

After a little calculation it can be found that the limit corresponds to the asymptotic loss

function L
(
τR, q

)
which is given in the theorem. Q.E.D.
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Proof of Theorem 8

Since w′
R1 = 1 > 0, the angle between wR and 1 is acute. Therefore, there exists an

orthogonal d × d matrix O such that both OwR and O1 belong to the set {x ∈ R
d : x >

0} . That means there also exists a positive-definite diagonal d × d matrix Λ such that

O1 = ΛOwR , i.e. wR = A1 with A := O′Λ−1O being positive-definite. The matrix Σ−1
R

can be obtained by re-scaling A such that the condition 1
′Σ−1

R 1 = 1
′Σ̂−1

1 > 0 is satisfied.

Now the rest of the theorem can be verified by substituting Σ̂−1 by the given expressions

for Σ̂−1
S and Σ̂−1

M within the traditional GMVP estimator. Q.E.D.

Proof of Theorem 9

Due to the proof of Theorem 3 it can be seen that

τ̂R =

(
V

1

2 θ + ξ
)′(

V
1

2 θ + ξ
)

χ2
n−d

;

note that θ′V θ = τRχ2
n−1 . Q.E.D.
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