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Abstract

It has been frequently observed in the literature that many multivariate statistical methods
require the covariance or dispersion matrixΣ of an elliptical distribution only up to some
scaling constant. If the topic of interest is not the scale but only the shape of the elliptical
distribution, it is not meaningful to focus on the asymptotic distribution of an estimator for
Σ or another matrixΓ ∝ Σ . In the present work, robust estimators for the shape matrix
and the associated scale are investigated. Explicit expressions for their joint asymptotic
distributions are derived. It turns out that if the joint asymptotic distribution is normal, the
presented estimators are asymptotically independent for one and only one specific choice of
the scale function. If it is non-normal (this holds for example if the estimators for the shape
matrix and scale are based on the minimum volume ellipsoid estimator) only the presented
scale function leads to asymptotically uncorrelated estimators. This is a generalization of a
result obtained by Paindaveine (2008) in the context of local asymptotic normality theory.

Key words: local asymptotic normality, M-estimator, R-estimator, robust covariance
matrix estimator, scale-invariant function, S-estimator, shape matrix, Tyler’s M-estimator.

1 Motivation

After the seminal paper by Maronna (1976), covariance matrix estimation has be-
come a popular branch of robust statistics. Several techniques have been developed
for calculating the asymptotic distributions of robust covariance matrix estimators
such as the radial distribution approach of Tyler (1982) andthe approach based on
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influence functions (Hampel et al., 1986). Moreover, in recent years deep insights
have been gained from the viewpoint of local asymptotic normality (LAN) theory
(Hallin et al., 2006, Hallin and Paindaveine, 2006a,b).

LetX be ad-dimensional random vector possessing an elliptically symmetric dis-
tribution, i.e. it can be represented byX = µ+ ΛRU , whereU is ak-dimensional
random vector, uniformly distributed on the unit hypersphere,R is a nonnegative
random variable being stochastically independent ofU , µ ∈ R

d, andΛ ∈ R
d×k

(Cambanis et al., 1981, Fang et al., 1990, p. 42). It is assumed thatR andU are
unobservable quantities. The positive-semidefinite matrix Σ := ΛΛ′ is called the
dispersion matrixandR is the generating variateof X. If IE(R2) < ∞ , the
covariance matrix ofX is given byVar(X) = IE(R2)/k · Σ , whereas in case
IE(R2) = ∞ , the linear dependence structure ofX can be further described by the
dispersion matrixΣ althoughVar(X) is not defined.

In general I will assume thatΣ is positive-definite, i.e.r(Λ) = d ≤ k . In the robust
statistics literature (Tyler, 1982, Bilodeau and Brenner,1999, Ch. 13) and in the
context of LAN theory (Hallin and Paindaveine, 2006a, Paindaveine, 2008) it is
often supposed that the distribution ofR is absolutely continuous. Then the density
of X can be written asp(x) =

√

det Σ−1 g{(x − µ)′Σ−1(x − µ)}, where the so-
calleddensity generatorg : R

+
→ R

+

0 depends onx only through the quadratic
form (x − µ)′Σ−1(x − µ). It can be shown (Frahm, 2004, p. 9) that the density
function ofR is given byf(r) ∝ rd−1g(r2) .

Tatsuoka and Tyler (2000) wrote that ‘The assumption of an elliptically symmetric
distribution is often made simply because of its mathematical tractability’. Never-
theless, the class of elliptically symmetric distributions is a natural extension of the
multivariate normal distribution. Moreover, the elliptical distribution assumption is
fundamental in multivariate analysis and the results presented in this work gener-
ally require that the data are elliptically symmetric distributed. However, there is
one exception where the data are only assumed to begeneralized elliptically dis-
tributed(Frahm, 2004, Ch. 3). This will be treated in more detail below.

Note thatX = µ+ ΛRU = µ+ V SU with S := R/τ , V := τΛ , andτ > 0 . That
means ifX possesses the dispersion matrixΣ , there always exists an equivalent
representation ofX with dispersion matrixτ 2Σ and so this can be only identified if
the distribution ofR is somehow restricted. However, many multivariate statistical
methods like principal components analysis, canonical correlation analysis, linear
discriminant analysis, and multivariate regression require the covariance or disper-
sion matrix only up to some scaling constant. This has been frequently observed in
the literature (Croux and Haesbroeck, 1999, Hallin and Paindaveine, 2006a, Oja,
2003, Paindaveine, 2008, Taskinen et al., 2006). If the topic of interest is not the
scale but only theshapeof the distribution ofX, it is not meaningful to focus on
the asymptotic covariance matrix (ACM) of an estimator forΣ , Var(X) or another
matrixΓ ∝ Σ (i.e.Γ = τ 2Σ , whereτ is aconstantand thus not determined byΣ).
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Therefore I will concentrate on robust estimators for theshape matrixof X (Oja,
2003, Paindaveine, 2008). The associated estimators for the scale are investigated
concomitantly. I will derive explicit expressions for their joint asymptotic distri-
butions. The paper is organized as follows. Section 2 introduces the notation and
provides some helpful prerequisites about homogeneous functions. The question of
how to choose an appropriate scale is investigated in Section 3. This section also
contains the main results concerning the joint asymptotic distributions of estima-
tors for the shape matrix and scale. In Section 4 it is shown how to calculate the
asymptotic distributions of such estimators on the basis ofsome well-known robust
covariance matrix estimators, namely M-, R-, and S-estimators.

2 Prerequisites

2.1 Notation

The following notation will be used in the sequel. Thed2
× d2 identity matrix is

symbolized byId2 . Let eij be thed× d matrix with 1 in theijth position and zeros
elsewhere. Thed2

× d2 matrix Jd2 is defined asJd2 :=
∑d

i=1
eii ⊗ eii , where ‘⊗’

denotes the Kronecker product (Schott, 1997, p. 253). Then×mmatrixA′ denotes
the transpose of anm × n matrixA . In contrast, iff is anR-valued function on
an open subset ofR , thenf ′(x) stands for the derivative off at x ∈ R . Further,
thecommutation matrixKd2 is thed2

× d2 matrix given byKd2 :=
∑d

i, j=1
eij ⊗ eji

(Schott, 1997, p. 277).

For any symmetricd × d matrixA , thed2-dimensional vectorvecA is obtained
by stacking the columns ofA on top of each other, whereasvechA denotes the
d (d+1)/2-dimensional vector obtained by stacking only the elementsof the lower
triangular part ofA . Further, theduplication matrixis thed2

×d (d+1)/2 matrixDd

such thatDdvechA = vecA (Schott, 1997, p. 283). Then it holds thatD+

d vecA =
vechA , where thed (d+ 1)/2× d2 matrixD+

d is the Moore-Penrose inverse ofDd

(Schott, 1997, p. 284). LetI0 be defined as the{d (d + 1)/2 − 1} × d (d + 1)/2
matrix I0 := [ 0 Id (d+1)/2−1 ] andNd := I0D

+

d , so thatvech0A := NdvecA is the
vech ofA deprived of its first componentA11 (Hallin and Paindaveine, 2006a).

I will frequently calculate the differential of anRm-valued functionf , i.e. df =
Jf∂x , whereJf := ∂f(x)/∂x′ ∈ R

m×n denotes the Jacobi matrix off atx ∈ R
n.

Suppose thatx represents the vec of a symmetric matrix. Then each off-diagonal
element in the lower triangular part of that matrix represents an implicit function
of the corresponding off-diagonal element in the upper triangular part and vice
versa. However, I will not take the symmetry into consideration when calculating
the partial derivatives off . Otherwise, to adjust for the redundancies caused by the
symmetry it would be necessary to apply the operator(Id2 + Jd2)/2 on the partial
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differentials∂x when calculating the total differentialdf . Hence, to avoid addi-
tional notation and tedious calculations of implicit derivatives, the Jacobi matrix
Jf is understood to be the matrix of partial derivatives off which are obtained
by ignoring the symmetry condition. In the present context this poses no problem
sinceJf is always used only in combination with∂x.

2.2 Homogeneous Functions

Consider a differentiableRm-valued functionh of x ∈ R
n. The functionh is said

to be homogeneousof degreeν ∈ R if h(αx) = ανh(x) for all x ∈ R
n and

α > 0 . Due to the Euler relation it holds thatJhx = νh(x) . A functionf is said
to bescale-invariantif it is homogeneous of degree 0, i.e.f(αx) = f(x) for all
α > 0 . That meansJfx = 0 and if h is homogeneous of degree 1, it holds that
Jhx = h(x) . In the following a homogeneous function is always understood to
be homogeneous of degree 1. Note that the partial derivatives of any homogeneous
function are scale-invariant.

LetPd be the set of all symmetric positive-definited×dmatrices andϕ : Pd
→ R

k

a scale-invariant function, i.e.ϕ(αΓ) = ϕ(Γ) for all α > 0 andΓ ∈ P
d. Especially,

consider a scale-invariant functionΩ(Γ) = Γ/σ2(Γ), whereσ2 : Pd
→ R

+ is an
homogeneous function, i.e.σ2(αΓ) = ασ2(Γ) > 0 . It is supposed that the so-called
scale functionσ2 is differentiable at any pointΓ ∈ P

d and also thatσ2(Id) = 1.
Thenσ2(Γ) is called thescaleof Γ. The matrixΩ(Γ) will be called theshape matrix
(with respect to the scale functionσ2) belonging toΓ. I will write σ2

≡ σ2(Γ) and
Ω ≡ Ω(Γ) whenever these quantities cannot be confounded with the corresponding
functions.

Note thatσ2(Ω) = 1 andϕ ◦ Ω = ϕ , sinceϕ{Ω(Γ)} = ϕ{Γ/σ2(Γ)} = ϕ(Γ).
For instance, the correlation matrix produced byΓ is scale-invariant and thus it can
be derived from any shape matrixΩ . Hence, wheneverΩn is an estimator forΩ ,
an estimator forϕ(Γ) is simply given byϕ(Ωn). This is a formal justification of
directing one’s attention to shape matrices (Frahm and Jaekel, 2007a, Hallin and
Paindaveine, 2006a, Oja, 2003, Paindaveine, 2008, Taskinen et al., 2006). General
robustness and efficiency properties of scale-invariant functions have been investi-
gated by Tyler (1983).
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3 Asymptotic Distributions

3.1 The Choice of the Scale Function

In most cases asymptotic normality of robust estimatorsµn andΓn for the mean
vector and covariance matrix can be guaranteed by the usual regularity conditions
given in the robust statistics literature. Typicallyµn andΓn are also asymptotically
independent. In the present work it is shown that the asymptotic independence of
an estimatorΩn for the shape matrix and an associated estimatorσ2

n for the scale
can only be guaranteed for one and only one scale functionσ2. A similar result in
the context of LAN theory has been obtained by Paindaveine (2008) (see below).

Let Γn be some estimator forΓ ∝ Σ wheren represents the sample size. The
corresponding shape matrix estimator is given byΩn := Γn/σ

2(Γn). At a first
glance the choice of the scale functionσ2 might be considered as arbitrary and the
following variants can be often observed in the literature (Paindaveine, 2008):

(S1) Frahm (2004, p. 64), Hallin et al. (2006), Hallin and Paindaveine (2006b),
Hettmansperger and Randles (2002) as well as Randles (2000)simply choose
σ2(Γ) = Γ11 so thatΩ11 = 1.

(S2) Dümbgen (1998), Frahm and Jaekel (2007b) as well as Tyler (1987a) take the
scale functionσ2(Γ) = (tr Γ)/d so thattrΩ = d .

(S3) Dümbgen and Tyler (2005), Hallin and Paindaveine (2008a,b), Paindaveine
(2008), Salibian-Barrera et al. (2006), Taskinen et al. (2006) as well as Tat-
suoka and Tyler (2000) postulateσ2(Γ) = (det Γ)1/d so thatdet Ω = 1.

Paindaveine (2008) considers the latter normalization ascanonicalsince this is the
only one where the Fisher information matrix with respect tothe mean vector, shape
matrix and scale is block diagonal if the distribution ofX or, more precisely, the
corresponding experiment is LAN (van der Vaart, 1998, Ch. 7).

The scale functions defined byS2 andS3 correspond to the arithmetic and geo-
metric means of the eigenvalues ofΓ, respectively. Hence, another possible scale
function is given by the harmonic mean of the eigenvalues ofΓ, i.e.

(S4) σ2(Γ) = d/(tr Γ−1) so thattr Ω−1 = d .

It is worth to point out that shape matrices are not affine equivariant, since

Ω(V ΓV ′) =
V ΓV ′

σ2(V ΓV ′)
=

σ2(Γ)

σ2(V ΓV ′)
· VΩ(Γ)V ′

for any nonsingulard × d matrix V and generallyσ2(Γ) does not correspond to
σ2(V ΓV ′). This is not surprising because even after an affine-linear transformation
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of the data, the shape matrix has to satisfy the scaling condition σ2(Ω) = 1 and so
the equalityΩ(V ΓV ′) = VΩ(Γ)V ′ cannot be guaranteed in general. However, a
natural requirement is that the equivariance property holds at least for all transfor-
mationsV with σ2(V V ′) = 1. That means if not the scale but only the shape of the
distribution ofX is affected byV , the shape matrix should remain equivariant.

More generally, it can be required (Tyler, 2002) that

Ω(V ΓV ′) =
VΩ(Γ)V ′

σ2(V V ′)
,

i.e. σ2(V ΓV ′) = σ2(V V ′) σ2(Γ). Interestingly, from the scale functions consid-
ered inS1–S4 only the canonical one (S3) satisfies this kind of affine equivariance
property. This is another argument in favor of the determinant-based normalization
proposed by Paindaveine (2008).

The previous arguments as well as a thorough discussion in Hallin and Paindaveine
(2006a) show that the choice of the scale function must be driven by statistical
considerations and should be handled carefully.

Lemma 1 Let Ω(Γ) = Γ/σ2(Γ) be ad × d shape matrix andσ2 a scale function.
Then

JΩ :=
∂ vec Ω(Γ)

∂(vec Γ)′
=

1

σ2

{
Id2 − vec ΩJσ2

}
,

where

Jσ2 :=
∂σ2(Γ)

∂(vec Γ)′
=

∂σ2(Ω)

∂(vec Ω)′
.

Proof. By the product rule it follows that

JΩ =
1

σ2
·

∂ vec Γ

∂(vec Γ)′
−

vec Γ

σ4
· Jσ2 =

1

σ2

{
Id2 − vec ΩJσ2

}
.

Since the partial derivatives of an homogeneous function are scale-invariant, it
holds thatJσ2 = ∂σ2(Ω)/∂(vec Ω)′.

In the following I will write Ψ := Id2 − vec ΩJσ2 for notational convenience.

3.2 Main Results

LetQ be a symmetric randomd× d matrix. A symmetric randomd× d matrixM
is said to possess aradial distribution if OMO

′
∼ M for any orthogonald × d

matrixO (Tyler, 1982). In the following letN be a symmetric randomd×dmatrix
with finite second moments. It is supposed thatN is of the radial type with respect
to a symmetric positive-definited × d matrix Γ. That meansTNT ′ has a radial
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distribution whenever thed× d matrixT is such thatT ′T = Γ−1. Further, let(Γn)
be a sequence of symmetric positive-definite randomd × d matrices and(σ2

n) an
associated sequence withσ2

n := σ2(Γn), whereσ2 is a scale function. Moreover,
consider the sequence(Ωn) of symmetric positive-definite randomd × d matrices
with Ωn := Γn/σ

2

n .

Theorem 1 Letσ2 be a scale function andΩ ≡ Ω(Γ) = Γ/σ2(Γ) the shape matrix
belonging toΓ. Further, let(an) be a sequence of real numbers increasing to infinity
such thatan(vec Γn − vec Γ) →d vecQ asn→ ∞ with IE(vecQ) = 0 and

Var(vecQ) = γ1(Id2 +Kd2)(Γ ⊗ Γ) + γ2(vec Γ)(vec Γ)′ , (1)

whereγ1 ≥ 0 andγ2 ≥ −2γ1/d . Then it follows that

an







 σ2

n

vec Ωn



−



 σ2

vec Ω







 d
−→ ξ , n −→ ∞ ,

whereσ2
≡ σ2(Γ) , ξ is a (d2 +1)-dimensional random vector withIE(ξ) = 0 , and

Var(ξ) =




V(σ2

n) V(σ2

n,Ωn)

V(σ2

n,Ωn)′ V(Ωn)



 .

More specifically,

V(σ2

n) = σ4
{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}

with Jσ2 = ∂σ2(Ω)/∂(vec Ω)′ andσ4 = {σ2(Γ)}2,

V(σ2

n,Ωn)′ = 2γ1σ
2 Ψ(Ω ⊗ Ω)J ′

σ2 ,

with Ψ = Id2 − vec ΩJσ2 , and

V(Ωn) = γ1Ψ(Id2 +Kd2)(Ω ⊗ Ω)Ψ′ .

Proof. The vector{σ2(Γ), vec Ω(Γ)} is differentiable atvec Γ and thus

an







 σ2

n

vec Ωn



−



 σ2

vec Ω







 d
−→ ξ := Jσ2, Ω vecQ , n −→ ∞ ,

whereJσ2, Ω is defined as∂{σ2(Γ), vec Ω(Γ)}/∂(vec Γ)′. From IE(vecQ) = 0 it
follows thatIE(ξ) = 0 and the variance of the first element ofξ is given byV(σ2

n) =
Jσ2Var(vecQ)J ′

σ2 . Sinceσ2 is a homogeneous function it holds thatJσ2vec Γ =
σ2. Note also thatJσ2(Id2 +Kd2) = 2Jσ2 and thus

V(σ2

n) = 2γ1Jσ2(Γ ⊗ Γ)J ′

σ2 + γ2σ
4 = σ4

{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}
.
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Similarly, the covariances between the first element ofξ and its residual elements
are given byV(σ2

n,Ωn) = Jσ2Var(vecQ)Ψ′/σ2. SinceΩ is a scale-invariant func-
tion of Γ, due to Euler’s relation it holds that(vec Γ)′Ψ′ = 0 and thus

V(σ2

n,Ωn) = γ1Jσ2(Id2 +Kd2)(Γ ⊗ Γ)Ψ′/σ2 = 2γ1σ
2
Jσ2(Ω ⊗ Ω)Ψ′ . (2)

The expression for the variances and covariances of the residual elements ofξ , i.e.
V(Ωn) follows by a straightforward application of the arguments given above.

The next proposition ensures that the preceding theorem is applicable to any case
whereΓn represents an affine equivariant covariance matrix estimator and the data
stem from an elliptically symmetric distribution.

Proposition 1 Let σ2 be a scale function andΩ ≡ Ω(Γ) = Γ/σ2(Γ) the shape
matrix belonging toΓ. Further, let(an) be a sequence of real numbers increasing
to infinity such thatan(vec Γn−vec Γ) →d vecN asn→ ∞ . HereIE(vecN ) = 0
andN is of the radial type with respect to the matrixΓ. Then the conditions of
Theorem 1 are satisfied.

Proof. It is only necessary to show that the second moment condition(1) is sat-
isfied. SinceN is of the radial type, this follows immediately from Corollary 1 of
Tyler (1982).

In the followingΓn can be interpreted as a covariance matrix estimator. Due to the
central limit theorem, in most practical situations it can be found thatan =

√

n
and the random vectorvecN is multivariate normally distributed. A well-known
exception is theminimum volume ellipsoid(MVE) estimator (Rousseeuw, 1985).
This is only 3

√

n -consistent and its asymptotic distribution is non-normal(Davies,
1992). Nonetheless, wheneverΓn is affine equivariant and the data stem from an
elliptically symmetric distribution, the limiting randommatrix N is of the radial
type (Tyler, 1982). Hence, Proposition 1 is applicable to a wide range of covariance
matrix estimators.

An important consequence of Theorem 1 is that the asymptoticdistribution ofΩn

is only driven by the numberγ1 . That meansγ2 has no impact on the asymptotic
distribution ofΩn . Hence, the asymptotic relative efficiency of some shape matrix
estimatorΩ1n compared to another shape matrix estimatorΩ2n (i.e. both estimators
are based on thesamescale functionσ2 but different covariance matrix estimators)
can be simply calculated by the ratioγ12/γ11, whereγ11 is theγ1 of Ω1n andγ12 is
theγ1 of Ω2n (Tyler, 1983).

Corollary 1 Suppose that the conditions of Theorem 1 are satisfied andσ2 corre-
sponds to the scale function given byS3. Then it holds that

V(σ2

n) = σ4

(
2γ1

d
+ γ2

)

, V(σ2

n,Ωn)′ = 0 ,
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and

V(Ωn) = γ1 (Id2 +Kd2)(Ω ⊗ Ω) −
2γ1

d
· (vec Ω)(vec Ω)′ . (3)

In particular, if vecQ is multivariate normally distributed, the quantitiesσ2

n and
Ωn are asymptotically independent.

Proof. Note that

Jσ2 =
σ2

d det Γ
·

∂ det Γ

∂(vec Γ)′
=
σ2

d
· (vec Γ−1)′ = (vec Ω−1)′/d .

Due to Theorem 1 the asymptotic varianceV(σ2

n) is given by

V(σ2

n) = σ4
{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}

and note that(Ω ⊗ Ω)J ′

σ2 = vec Ω/d . Moreover,Jσ2vec Ω = 1, which means that
V(σ2

n) = σ4(2γ1/d+ γ2). Further,

V(σ2

n,Ωn)′ = 2γ1σ
2Ψ(Ω ⊗ Ω)J ′

σ2 = 2γ1σ
2 Ψvec Ω/d .

Due to Euler’s relation it holds thatΨvec Ω = 0 and thusV(σ2

n,Ωn)′ = 0 . That
meansσ2

n andΩn are asymptotically uncorrelated or even independent ifvecQ is
multivariate normally distributed. Finally, the expression for V(Ωn) follows by a
straightforward calculation after noting thatJσ2(Ω ⊗ Ω)J ′

σ2 = 1/d .

Theorem 2 Suppose that the conditions of Theorem 1 are satisfied withγ1 > 0 .
Then the scale function given byS3 is the only one whereσ2

n andΩn are asymptot-
ically uncorrelated.

Proof. Paindaveine (2008) shows that the determinant-based scalefunction given
by S3 is the only one where the Fisher informationIσ2, Ω is a block diagonal matrix
if the considered family of elliptically symmetric distributions is LAN. Suppose
that the data are multivariate normally distributed. Then Theorem 1 applies to the
sample covariance matrix and it is clear that the family of multivariate normal dis-
tributions is LAN. The Fisher information is the inverse of the ACM ofσ2

n andΩn

(which can be obtained after re-shapingΩn to avoid singularity (Hallin and Pain-
daveine, 2006a,b)). Hence, there is no other scale functionsuch that (2) vanishes.
Since the latter is only an algebraic statement, the same must hold for any other
distribution under the conditions of Theorem 2.

Theorem 2 extends the main result of Paindaveine (2008) which has been obtained
in the context of LAN theory. Similarly, it can be shown that the canonical scale
function is the only one which admits the simple representation of the ACM of a
shape matrix estimator given by Eq. 3. In fact, this ACM exhibits the same desirable
form as the ACM of any affine equivariant covariance matrix estimator according
to Theorem 2 and Eq. 1. The operatorsΨ andJσ2 corresponding to the remaining
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scale functions defined byS1, S2, andS4 are now given for convenience without
an explicit derivation.

ad S1. Jσ2 = e
′
1

, wheree1 is thed2
×1 vector with 1 in the first position and zeros

elsewhere, so thatΨ = Id2 − vec Ω e
′
1

.

ad S2. Jσ2 = (vec Id)
′/d and thusΨ = Id2−(vec Ω)(vec Id)

′/d (see also Theorem
5 in Sirkiä et al., 2007).

ad S4. It can be shown thatJσ2 = d/(tr Γ−1)2
· (vec Γ−2)′ = (vec Ω−2)′/d , where

Γ−2 := Γ−1Γ−1 andΩ−2 := Ω−1Ω−1, i.e.Ψ = Id2 − (vec Ω)(vec Ω−2)′/d .

If a shape matrix estimatorΩ1n defined via a scale functionσ2

1
is re-normalizedby

applying some other scale functionσ2

2
to Ω1n, its ACM simply corresponds to

V(Ω2n) = γ1Ψ2(Id2 +Kd2)(Ω2 ⊗ Ω2)Ψ
′

2
, (4)

whereΨ2 = Id2−vec Ω2 Jσ2

2

andΩ2 is the shape matrix belonging toΓ with respect
to the scale functionσ2

2
. That means the first normalization has no impact on the

asymptotic distribution ofΩ2n .

4 Robust Covariance Matrix Estimation

In the following I will present some well-known robust covariance matrix estima-
tors (i.e. M-, R-, and S-estimators) which satisfy the aforementioned conditions and
calculate the joint asymptotic distributions of the corresponding estimators for the
shape matrix and scale. It is neither possible nor reasonable to study here all ex-
isting robust covariance matrix estimators (for some contemporary overviews see,
e.g., Zuo, 2006, Maronna et al., 2006, Ch. 6), but the essential concept might be-
come clear from the subsequent discussion.

Let Γn be an affine equivariant estimator which is consistent forΓ. Due to the
general result of Tyler (1982), in most practical situations Γn is asymptotically
normally distributed with ACMV(Γn) = γ1(Id2 +Kd2)(Γ⊗Γ)+γ2(vec Γ)(vec Γ)′,
whereγ1 ≥ 0 andγ2 ≥ −2γ1/d usually depend on the generating variateR . In
the following I will only present the numbersγ1 andγ2 . The

√

n -convergence to
the normal law is implicitly assumed. Hence, Theorem 2 implies that the canonical
scale function is the only one where the estimators for the shape matrix and scale
are asymptotically independent. As a counterexample consider the MVE-estimator.
This is not

√

n -consistent and asymptotically normally distributed (Davies, 1992).
However, since the MVE-estimator is affine equivariant and the rate of convergence
does not matter, the corresponding MVE-estimators for the shape matrix and scale
remain asymptotically uncorrelated (under the ellipticaldistribution assumption).

Throughout this section it is supposed that the unknown location vectorµ ∈ R
d
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can be substituted by some
√

n -consistent estimate (here, too, it has been already
demonstrated by Rousseeuw (1985) that the MVE-estimator for the location is only
3
√

n -consistent and its asymptotic distribution is non-normal). In most cases – under
mild regularity conditions concerning the distribution ofX (see, e.g., Hallin and
Paindaveine, 2006b, Tyler, 1987a, Bilodeau and Brenner, 1999, Ch. 13) – it can
be shown that the resulting covariance matrix estimator is asymptotically normally
distributed possessing an ACM of that form which is requiredin Theorem 1. Hence,
in the followingX1, . . . , Xn will representcenteredi.i.d. random vectors for the
sake of simplicity and without loss of generality.

4.1 M-Estimation

An M-estimatorfor Γ (Maronna, 1976) is defined as a solution of

Γn =
1

n

n∑

t=1

w
(
X ′

tΓ
−1

n Xt

)
XtX

′

t ,

wherew : R
+
→ R

+

0 satisfies a set of general conditions (Maronna, 1976, Bilodeau
and Brenner, 1999, Section 13.4.1). The estimatorΓn is strongly consistent for the
matrix Γ = IE{w(X ′Γ−1X)XX ′

} which is related to the dispersion matrix ofX
by Γ = τ 2Σ , whereτ > 0 is such thatIE{ψ(R2/τ 2)} = d with ψ(t) := tw(t). The
numbersγ1 andγ2 can be calculated byγ1 = (d+ 2)2ψ1/(d+ 2ψ2)

2 and

γ2 =
(ψ1 − 1) − 2 (ψ2 − 1)ψ1{d+ (d+ 4)ψ2}/(d+ 2ψ2)

2

ψ2
2

,

whereψ1 := IE{ψ2(R2/τ 2)}/{d (d + 2)} andψ2 := IE{ψ′(R2/τ 2)R2
}/(dτ 2)

(Tyler, 1982, Bilodeau and Brenner, 1999, p. 223).

If X possesses a continuous elliptical distribution andΣn is the correspondingML-
estimatorfor the dispersion matrixΣ , it holds thatγ1 = {d (d+2)/4}/IE{h2(R2)}
andγ2 = −2γ1 (1 − γ1)/{2 + d (1 − γ1)}, whereh(t) := t ∂ log g(t)/∂t . If X ∼

Nd(0,Σ) andΣn represents the sample covariance matrix, it holds thatγ1 = 1 and
γ2 = 0 . Otherwise the sample covariance matrix is an M-estimator whereψ(t) = t .
That meansIE(R2/τ 2) = IE{ψ(R2/τ 2)} = d , ψ1 = d/(d+ 2) · IE(R4)/IE2(R2),
andψ2 = 1 so thatγ1 = ψ1 andγ2 = γ1 − 1 if R has a finite fourth moment.

Now special attention is devoted to Tyler’s M-estimator (Tyler, 1983, 1987a)

Tn =
d

n

n∑

t=1

XtX
′
t

X ′
tT−1

n Xt
=
d

n

n∑

t=1

StS
′
t

S ′
tT−1

n St
, (5)

whereSt := Xt/‖Xt‖, ‖·‖ denotes the Euclidean norm, and it is only supposed that
IP(R > 0) = 1. Note thatTn is not affected by the realizations of the generating
variateR , sinceS = X/‖X‖ = RΛU/‖RΛU‖ = ΛU/‖ΛU‖ (a.s.).
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That means Tyler’s M-estimator isdistribution-freein the context of elliptically
symmetric distributions. This has been already observed byTyler (1987b). Frahm
and Jaekel (2007a,b) pointed out that the distribution-free property even holds
within the class of generalized elliptical distributions.A random vector is said to be
generalized elliptically distributed if its generating variateR can be negative and
might depend onU (Frahm, 2004, p. 46). This feature allows for the modeling of
various kinds of asymmetries (Kring et al., 2007, Frahm, 2004, Section 3.4). For
instance it can be shown that anyskew-elliptical distribution(Liu and Dey, 2004)
belongs to the class of generalized elliptical distributions (Frahm, 2004, p. 47).

Tyler’s M-estimator (5) is unique up to a scaling constant. Hence, in factTn is a
genuineshape matrixestimator since it can be only calculated with some suitable
scale functionσ2 such thatσ2(Tn) = 1. Originally, Tyler (1987a,b) applied the
trace-based scale function given byS2, whereas in Tatsuoka and Tyler (2000) the
authors prefer to use the canonical normalizationS3. For the purpose of calculating
the asymptotic distribution, Tyler (1987a,b) focuses onTn := d/(trΣ−1Tn) · Tn ,
that means he defines the scale ofTn via Σ by σ2(Tn) = trΣ−1Tn/d . This leads to
σ2(T n) = σ2(Σ) = 1 for any positive-definited× d matrixΣ .

Note that in contrast to some normalization according toS1–S4, the shape matrix
estimatorT n indeed is affine equivariant and consequently its ACM (Tyler, 1987b)
exhibits the simple structure suggested by Eq. 1, viz

V(T n) =
d+ 2

d
· (Id2 +Kd2)(Σ ⊗ Σ) −

2 (d+ 2)

d2
· (vec Σ)(vec Σ)′ . (6)

SinceΣ represents a shape matrix with respect to Tyler’s scale function, this ACM
in fact corresponds to the ACM given by Eq. 3 withγ1 = (d+ 2)/d . Furthermore,
the Jacobian of Tyler’s scale function is given byJσ2 = (vec Σ−1)′/d and this
actually corresponds to the Jacobian of thecanonicalscale function (see the proof
of Corollary 1). That means by using Tyler’s scale function in association with some
other affine equivariant covariance matrix estimator, the corresponding estimators
for the shape matrix and scale become asymptotically uncorrelated. This seems to
contradict Theorem 2. However, note that Tyler’sσ2 in general does not meet the
natural requirementσ2(Id) = 1 and unfortunatelyTn cannot be applied in practical
situations, sinceσ2 is determined by the unknown parameterΣ .

An alternative way for obtaining the desired ACM of Tyler’s M-estimator is given
as follows. Note thatTn is simply an M-estimator withψ(t) = d . That means
ψ1 = d/(d + 2) andψ2 = 0 so thatγ1 = (d + 2)/d andγ2 is not defined (since
σ2 cannot be estimated byTn). Hence, due to Theorem 1, the ACM ofTn generally
corresponds toV(Tn) = (d + 2)/d · Ψ(Id2 + Kd2)(Ω ⊗ Ω)Ψ′. Moreover, due to
Corollary 1 the ACM of Tyler’s M-estimator, based on thecanonicalscale function,
corresponds to (6) whereΣ has to be substituted byΩ .
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4.2 R-Estimation

The R-estimator for the shape matrix has been introduced by Hallin et al. (2006).
Consider Tyler’s M-estimatorTn which is normalized according toS1, i.e. the upper
left element corresponds to 1. The R-estimator is based on adiscretized versionof
Tn . Suppose thatx is an element ofTn . Then the discretization can be made by
x# := sgn x/

√

n ⌈
√

n |x|⌉ (Hallin et al., 2006), where⌈y⌉ denotes the smallest
integer not smaller thany ∈ R . The corresponding discretized version of Tyler’s
M-estimator is denoted byT#

n . Hallin and Paindaveine (2006b) also defineUt :=
(T#

n )−1/2Xt/‖(T
#

n )−1/2Xt‖. HereA−1/2 denotes a positive-definited × d matrix
such thatA−1/2A−1/2 ′ = A−1, whereA−1 is the inverse of a symmetric positive-
definited × d matrix A . Further,Rt represents the rank of‖(T#

n )−1/2Xt‖ with
respect to the sampleX1, . . . , Xn .

Let fS : R
+
→ R

+

0 be the density function of some imaginary generating variateS,
whereasfR refers to the true generating variateR . Consider the cumulative distri-
bution functionFS(x) =

∫ x
0
fS(r) dr andFR respectively. Here bothR andS are

absolutely continuous and satisfy some weak regularity conditions which guarantee
local asymptotic normality (Hallin and Paindaveine, 2006b). As already mentioned
before, the density function ofS is given byfS(r) ∝ rd−1gS(r2) , wheregS is the
density generator ofS. However, in the following consider the functionf ∗

S(r) :=
r−(d−1)fS(r) = gS(r2) and for0 < p < 1 defineKS(p) := ψS{F

−1

S (p)}F−1

S (p),
whereF−1

S is the quantile function ofS andψS(x) := −f ∗′
S (x)/f ∗

S(x) . Now, the
so-calledcross-information coefficient(Hallin et al., 2006) is given by

IR,S :=
∫

1

0

KR(p)KS(p) dp . (7)

Also define

∆n := Md

(
T#

n ⊗ T#

n

)−1/2
n∑

t=1

{

KS

(
Rt

n+ 1

)
vec

(
UtU

′

t

)
−

KS

d
· vec Id

}

with KS := 1/n
∑n

t=1
KS(t/(n + 1)) . The{d (d + 1)/2 − 1} × d2 matrix Md

symbolizes the Moore-Penrose inverse ofN ′
d (whereNd is such thatNdvecA =

vech0A). Further, letΨn := Id2 − vec T#

n e
′
1

andQn := NdΨn(Id2 + Kd2)(T#

n ⊗

T#

n )Ψ′
nN

′
d . Now the R-estimatorΩn is defined in terms of thevech0 operator, viz

vech0Ωn = vech0T
#

n +
d (d+ 2)

2n
· Î

−1

R,S,nQn∆n ,

whereÎR,S,n represents some consistent estimator for the cross-information coeffi-
cient (7) (Hallin et al., 2006). The upper left element ofΩn is set to 1.

Thereafter, following the arguments of Hallin and Paindaveine (2006a) and Pain-
daveine (2008), one can apply a re-normalization by using the canonical scale
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function and the ACM of the resulting R-estimator readily follows by applying
Eq. 4 with γ1 = d (d + 2) IS,S/I

2

S,R . Especially, ifS ∼ R it holds thatγ1 =

d (d + 2)/IR,R with IR,R =
∫

1

0
K2

R(p) dp = IE(ψ2

R(R)R2) . FromψR(r) r =
−2r2g′(r2)/g(r2) it follows thatψ2

R(r) r2 = 4h2(r2), whereh has been already
defined in Section 4.1. Recall that the functionh is used for calculating the ACM
of an ML-estimator. That means ifS ∼ R , the R-estimator has the same limiting
distribution as the corresponding ML-estimator and thus itbecomes asymptotically
efficient.

4.3 S-Estimation

The S-estimator for the dispersion matrix (Davies, 1987) can be defined asΓn =
arg minΥ∈Pd det Υ subject to

1

n

n∑

t=1

ρ
(√

X ′
tΥ−1Xt

)
= αρ(∞) ,

where0 < α < 1 andρ : R
+
→ R

+

0 has to be bounded, increasing, and sufficiently
smooth (Croux and Haesbroeck, 1999, Tyler, 2002, Bilodeau and Brenner, 1999,
Section 13.4.2). The chosen constraint guarantees thatΓn is consistent forΓ =
τ 2Σ , whereτ > 0 is such thatIE{ρ(R/τ)} = αρ(∞) .

Let ψ be the first andψ′ the second derivative ofρ . It is assumed that

IE{ψ′(R/τ)} > 0 and IE{ψ′(R/τ)R2/τ + (d+ 1)ψ(R/τ)R} > 0 .

Then the numbersγ1 andγ2 are given by

γ1 =
d (d+ 2) IE{ψ2(R/τ)R2

}

IE2
{ψ′(R/τ)R2/τ + (d+ 1)ψ(R/τ)R}

and

γ2 =
4τ 2

Var{ρ(R/τ)}

IE2
{ψ(R/τ)R}

−

2γ1

d

(Davies, 1987, Lopuhaä, 1989, Bilodeau and Brenner, 1999, p. 225).
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